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Abstract 
This article investigates market scenarios that lead to extreme losses in international 
financial markets. We propose two systemic measures: (1) identifying the foreign event 
among those with equal probability leading to the worst outcome for the domestic 
financial system; and (2) classifying tail returns of financial institutions into four groups 

based on whether losses occur alongside domestic institutions only, foreign institutions 
only, both, or neither. Using 20 years of weekly equity returns from over 150 institutions 
across four developed financial systems, results highlight the central role of US and 
European institutions, with growing importance for Canada and non-bank financial 
intermediaries. 

Topics: Financial institutions, Financial stability  
JEL codes: C02, C32, C58, G21  

Résumé 
Dans cet article, nous étudions les scénarios de marché qui entraînent des pertes 
extrêmes sur les marchés financiers à l’échelle internationale. Nous proposons deux 
mesures du risque systémique : 1) l’identification, parmi les scénarios d’égale probabilité, 
de l’événement susceptible de conduire à l’issue la plus défavorable pour le système 

financier intérieur; 2) la classification des pertes extrêmes dans quatre groupes, selon 
qu’elles touchent les institutions financières du pays seulement, les institutions 
financières étrangères seulement, les deux ou aucune des deux. Issus de l’analyse de 20 
ans de rendements boursiers hebdomadaires provenant de plus de 150 institutions 
réparties dans quatre systèmes financiers développés, les résultats montrent le rôle 

central que jouent les institutions américaines et européennes, ainsi que l’importance 
grandissante des institutions canadiennes et des intermédiaires financiers non bancaires. 

Sujets : Institutions financières, Stabilité financière 
Codes JEL : C02, C32, C58, G21 



1 Introduction

Simultaneous extreme losses across multiple financial institutions are a defining feature

of systemic risk (ECB 2009; Montagna et al. 2020). Although rare, these joint extreme

losses can have long-lasting effects on the economy—from disruptions in the real sector

to undermining the transmission of monetary policy (Bianchi 2011; Gadea et al. 2020).

The dense structure of financial networks (Diebold and Yılmaz 2014; Demirer et al. 2018)

complicates the assessment of systemic risk, as bivariate measures often provide only a

partial view of the more complex interconnections at play (Acemoglu et al. 2015, Elliott

et al. 2014). Moreover, the growing role of non-bank financial intermediaries (NBFIs)

further increases connectedness in the global financial system (see Bank for International

Settlements 2025; Financial Stability Board 2024).

Given these challenges, traditional approaches (Adrian and Brunnermeier, 2016; Acharya

et al., 2012, 2017; Brownlees and Engle, 2017) may fall short in capturing the multidi-

mensional nature of systemic risk across financial institutions.1 To address this gap, this

paper proposes two market-based measures aimed at capturing a broader picture of the

international financial conditions associated with systemic risk. Both follow an approach

based on reverse stress testing, starting from tail losses and working backward to identify

the underlying market stress scenarios. Specifically, these measures (1) identify the in-

ternational joint event linked to the worst domestic performance among all international

scenarios with the same tail probability, and (2) classify extreme equity losses of finan-

1In a simple dependence structure where one institution is clearly central, like a star-shaped network,
this pairwise analysis may be enough to identify where systemic risk concentrates. However, in more
complex and densely connected systems, this approach can underestimate the potential effects of systemic
risk, providing a partial view on the systemic institutions.
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cial institutions based on whether losses occur domestically, abroad, or jointly, thereby

improving our understanding of systemic vulnerability patterns.

The contribution of this study to the literature is threefold. First, it introduces a re-

verse stress testing perspective into the measurement of systemic risk. Unlike traditional

approaches that condition on predefined stress scenarios, the proposed method endoge-

nously identifies the most adverse market conditions, offering a more data-driven view of

systemic vulnerability. Second, the framework is applied to a large international sample

of equity returns for banks and non-bank financial intermediaries (NBFIs), uncovering

asymmetric patterns of tail risk co-movement across sectors and regions. Third, the study

develops a high-dimensional dependence model that combines the latent nested bifactor

copula of Krupskii and Joe (2015) with score-driven dynamics à la Creal et al. (2013),

enabling flexible and efficient estimation of evolving cross-border linkages in the tails of

the return distribution.

These market-based measures can be seen as extensions of standard systemic risk

metrics, adapted to the multidimensional structure of the international financial system.

First, the Return−in−Stress (RiS) generalizes the Marginal Expected Shortfall (MES)

of Acharya et al. (2012) to capture the individual role of foreign institutions in domestic

losses. Rather than conditioning on a single foreign index, the measure identifies the worst

domestic outcome across all equally probable foreign tail scenarios. This highlights both

the tail dependence among foreign institutions, affecting the likelihood of each scenario,

and between foreign and domestic institutions, which are associated with domestic losses.

Second, the Expected Shortfall Allocation (ESA) decomposes the tail losses of each insti-

tution based on whether they coincide with domestic, foreign, joint, or no systemic tail

events. This classification provides a more granular view of the international financial
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conditions in which tail risks materialize. While few studies adopt a multivariate view

of systemic risk, some exceptions include Segoviano and Goodhart (2010) and Gravelle

and Li (2013), where scenarios involve simultaneous distress across institutions. However,

these approaches condition on the number of distressed institutions without distinguish-

ing which institutions are involved, missing critical information about the structure of

systemic risk. By contrast, Gonzalez-Rivera et al. (2019) and González-Rivera et al.

(2024) endogenously identify the combination of risk factors associated with the worst

performance for conditional expected GDP growth (or quantile of GDP growth) among

all equally probable scenarios, following a reverse stress testing logic. The RiS builds

on this idea but defines the stress scenario on a joint tail probability rather than a joint

density. This distinction becomes particularly relevant in settings where outcomes be-

low the threshold may exhibit non-linear behaviors or clustering in the tails, which the

density-based approach may overlook.2 The closest reference to the Expected Shortfall

Allocation is Van Oordt and Zhou (2019). They decompose banks’ sensitivity to severe

shocks in the financial system into two components: one capturing relative tail thickness,

and another capturing tail dependence. In contrast, our approach reverses the direction

of analysis: rather than starting from a systemic shock and tracing its impact on indi-

vidual banks, we begin with an institution’s own tail loss and assess the extent to which

it coincides with tail events across other financial firms. This perspective, grounded in

reverse stress testing, reveals how much of a bank’s extreme loss occurs under broader

systemic distress. The more idiosyncratic the institution’s tail loss, the less systemic and

vulnerable it appears.

2Conditional quantile measures based on individual quantiles, rather than a set of them, may in-
herit some of the statistical inconsistencies highlighted by Mainik and Schaanning (2014), such as non-
monotonicity.
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To implement these measures, the joint distribution of financial institutions’ returns is

estimated using a high-dimensional non-Gaussian framework. The model parsimoniously

captures both domestic and international dependence while allowing for evolving tail

risk, building on the nested copula factor structure of Krupskii and Joe (2015) and

incorporating time-varying score-driven dynamics à la Creal et al. (2013). By using

a latent factor model, we can reduce model risk due to potentially misspecified explicit

factors or overly simplistic correlation assumptions, e.g., equicorrelation structure (Lucas

et al., 2017; Engle and Kelly, 2012). Latent factor approaches allow the dependence

structure to be inferred from the data itself, avoiding the limitations that come with

specifying factors ex ante. The proposed model shares similarities with the bifactor

structure of Oh and Patton (2017, 2023), but differs in two key aspects. First, it allows

dependence between global and group-specific factors through a nested structure, which

reduces parameter dimensionality and improves model fit. Second, the group-specific

factors are based on geographic regions, consistent with empirical findings (Demirer et al.,

2018) and methodologies used by practitioners such as S&P’s BICRA framework.3

This general framework is applied to weekly unbalanced equity return data from

the US (NUSA = 42), Canada (NCAN = 34), Western Europe (NWEU = 42), and

Japan(NJAP = 34) from April 2001 to October 2024 (T = 1227). Consequently, the

database considers several crises and periods of distress in the financial market. The

2008 global financial crisis, the sovereign European debt crisis, the COVID-19 crisis,

the UK gilt market crisis, and the collapse of SVB are examples of distress events that

were materialized during the sample period. The dataset mainly consists of insurance

and banking firms but also includes clearing houses, investment management, mortgage

3See, for instance, the Banking Industry Country Risk Assessment (BICRA) methodology from S&P.

4



finance, and leasing companies. This broad coverage provides a comprehensive perspec-

tive on the interconnections between banks and NBFIs within the international financial

system, complementing recent studies on bank–NBFI interconnectedness that focus pri-

marily on domestic markets (e.g., Acharya et al. 2024; Aradillas Fernandez et al. 2024;

Ojea-Ferreiro 2025).

This study finds that domestic systemically important banks (DSIBs) play a central

role in tail co-movement across international markets, along with the presence of other

deposit-taking institutions (DTIs) and some NBFIs in the United States, consistent with

the findings of Abad et al. (2022) for Europe. The role of NBFIs in explaining domestic

market co-movement is secondary but has increased over time, particularly from insurance

companies, followed by investment management and mortgage finance companies. US

and European financial institutions generate the largest impact on international financial

systems, with Canada’s systemic contribution rising from 2017. In contrast, Japanese

institutions contribute only marginally to stress propagation in global financial markets,

in line with previous evidence from Gravelle and Li (2013).

Our findings have practical implications for financial stability monitoring and policy

design. The proposed market-based risk measures can serve as early-warning indicators

of potential spillovers across borders by capturing multivariate dependencies often over-

looked by standard approaches. In addition, these measures could support the calibration

of capital buffers, such as the Countercyclical Capital Buffer (Van Oordt 2023), to better

capture the systemic vulnerabilities associated with foreign stress scenarios.

The article is laid out as follows: Section 2 presents the methodology and the tail

measures. Section 3 introduces the data and presents a descriptive analysis of our sample.

Section 4 presents the results of the estimation and the measures. Finally, section 5
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provides the conclusion.
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2 Methodology

This section presents the two market-based systemic risk indicators proposed in the paper,

followed by the high-dimensional modeling approach used to estimate them.

2.1 Systemic risk measures and tail indicators

Our approach adopts a reverse stress testing perspective: rather than starting from a

hypothetical market shock and assessing its impact, we begin with extreme losses in the

domestic financial system and work backward to identify the most adverse international

scenarios that could give rise to them.

The first measure captures the international tail scenario—among all those with a

fixed joint probability α—that results in the worst average performance of a domestic

financial index, measured as the market-weighted return of domestic institutions. This

procedure avoids underestimating the impact of international shocks on domestic stability

by searching over the full set of equally likely joint stress configurations. It also highlights

which institutions consistently appear in the most adverse scenarios over time, offering a

dynamic view of systemic importance. By focusing on multivariate rather than pairwise

dependencies, this approach reduces the risk of underestimating the conditional losses

by capturing more complex joint distress scenarios, particularly in systems where mutual

dependence—not just bilateral connections—matters.4

The second measure follows a reverse stress testing logic by starting from each financial

4To illustrate how mutual dependence can exist even when pairwise dependencies are absent, the
Appendix presents a simple example that motivates the need for a multidimensional measure of systemic
risk. A pairwise independent event refers to any two events that are independent from each other, while
mutual independence implies that every event is independent of any set or combination of other events.
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institution’s Expected Shortfall and then decomposing these losses into non-overlapping

components depending on whether they coincide with stress occurring domestically, in-

ternationally, jointly, or in isolation. This backward-looking approach provides a detailed

view of systemic vulnerability, avoiding the strong assumptions typical of traditional

decompositions (e.g., Cholesky-based methods). By remaining agnostic about the under-

lying drivers of stress events, our classification method uncovers patterns of co-movement

that conventional monitoring techniques may miss.

Together, these indicators provide new tools for identifying patterns of tail dependence

and co-movement that standard stress testing may overlook. The next sections describe

each measure in detail.

2.1.1 Return-in-Stress (RiS)

Return-in-Stress (RiS) measures the lowest expected return of a domestic financial sys-

tem conditional on extreme stress in the international financial system, defined by a joint

tail event exceeding a given probability threshold α. It captures the minimum average

return in the domestic index under scenarios where the international institutions’ returns

fall below specified quantiles, ensuring the joint probability of this event is at least α, i.e.,

RiSt(α) = min
qt

E (rm,t|rk,t ≤ V aRk,t(qk,t), . . . , rl,t ≤ V aRl,t(ql,t)) , (1)

s.t. P (rk,t ≤ V aRk,t(qk,t), . . . , rl,t ≤ V aRl,t(ql,t)) ≥ α,

where the return of the financial index m is the weighted sum of the FI’s returns within

the index, i.e., rm,t =
∑N

i=1 ωi,tri,t and V aRi,t(qi,t) is the return of the financial institution

i associated with quantile qi,t. The vector of quantiles qt is time varying as the change
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in the dependence structure over time will imply a change on the stress capture via new

values in the vector of quantiles.5

This approach helps us assess the vulnerability of domestic markets to international

tail events and identifies which foreign institutions contribute most to systemic risk over

time. Unlike traditional stress tests that specify scenarios a priori, RiS identifies the

worst-case stress scenario endogenously, avoiding overconfidence in system resilience.

Equation (1) represents the domestic index as a sum of weighted conditional expected

returns of individual financial institutions. This decomposition provides:

(i) An estimate of expected losses for the domestic financial system under international

stress;

(ii) The identification of the international tail event that maximizes these losses;

(iii) Insights into the exposure of each institution to systemic tail risk.

Figure 1 represents graphically how the Return-in-Stress (RiS) is computed. Figure

1a shows, on the left side, a scatter plot with the histogram of two foreign institutions k

and j. The purple squared area indicates an scenario with probability 5% defined by the

combination of two upper thresholds for both institutions. The upper right corner of the

area coincides with the red line. The red line indicates the position of all the possible

upper right corner of squared areas with 5% probability for foreign firms j and k. Note

that, in the axes limit, the areas indicate univariate scenarios (either in foreign firm k or

foreign firm j). Conditional on being on the purple area, the distribution of returns of the

5Note that, as a consequence of the constrain P (rk,t ≤ V aRk,t(qk,t), . . . , rl,t ≤ V aRl,t(ql,t)) ≥ α,
we know that the vector qt would have a lower bound in α and an upper bound in 1. If any value
of the vector reaches the upper bound, it is equivalent to not setting that conditioning variable, i.e.,
P (rk ≤ V aRk(qk), rl,t ≤ V aRl,t(ql,t), rw ≤ V aRw(1)) = P (rk,t ≤ V aRk,t(qk,t), rl,t ≤ V aRl,t(ql,t)).
Hence, this measure includes the univariate scenario as the case where the vector qt is a vector of ones
with the exception of the individual conditioning financial firm.
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domestic financial index moves from the blue bars to the purple bars. Figure 1b shows

the red line, but instead of showing the returns in the axes, we represent the percentiles

for the marginal distribution of firms’ returns. The color of the line indicates the average

return for the domestic financial index, showing that the maximum average losses are

found when firm k is below the percentile 70 and firm j is below percentile 5.2.

[INSERT FIGURE 1 HERE]

2.1.2 Expected Shortfall Allocation (ESA)

The tail loss for each financial institution is defined as losses above a threshold, which is

usually identified by a quantile, e.g., 5% highest losses. When those tail losses material-

ized, we can identify other tail losses in the financial system, which allow us to decompose

the tail loss of each financial institution in shares of common stress in the financial sys-

tem. To illustrate this example, Figure 2 shows, in the right side, a scatter plot for the

domestic financial sector and the foreign financial sector with histograms in the axes and,

in the left side, the histogram for institution i. The realizations of the scatter plot occur-

ring at the same time tail losses for institution i are shown in orange. Zooming in on this

subset, we could distinguish those realizations as being in the tail or not, dividing the

scatter plot into four areas. This division decomposes the tail returns of institution i into

four non-overlapping areas, identifying the share of tail return of institution i happening

jointly with tail returns in the domestic sector, foreign, both, or none. The definition

of domestic and foreign tail events can vary depending on how stress is measured. One

approach is to define stress as a certain number of institutions N (within or outside a

given region) experiencing extreme losses. Alternatively, one can use the data to extract

latent regional factors and define stress as those factors entering their tail regions. This
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subsection remains agnostic regarding the approach used to identify regional tail stress,

and the Appendix presents the corresponding formulas for each definition.

[INSERT FIGURE 2 HERE]

The Expected Shortfall (ES) of an institution i is defined as the mean return when

the return is below a quantile α, i.e.,

ESi,t = E(ri,t|ri,t ≤ V aRi,t(α)).

To better understand the association between an institution’s tail losses and systemic

distress, this paper divides the Expected Shortfall into four components based on whether

distress occurs (or not) in the domestic and/or foreign financial systems:

(i) Idiosyncratic: losses when neither domestic nor foreign systems are in distress,

(ii) Domestic: losses coinciding with distress in the domestic system only,

(iii) Foreign: losses coinciding with distress in the foreign system only,

(iv) Global: losses occurring when both domestic and foreign systems are in distress,

ESi,t =

idiosyncratic︷ ︸︸ ︷
E
[
ri,t | ri,t ≤ V aRi,t(α), rd,t > V aRd,t(α), rf,t > V aRf,t(α)

]
P
(
rd,t > V aRd,t(α), rf,t > V aRf,t(α) | ri ≤ V aRi(α)

)
+

domestic︷ ︸︸ ︷
E
[
ri,t | ri,t ≤ V aRi,t(α), rd,t ≤ V aRd,t(α), rf,t > V aRf,t(α)

]
P
(
rd,t ≤ V aRd,t(α), rf,t > V aRf,t(α) | ri ≤ V aRi(α)

)
+

foreign︷ ︸︸ ︷
E
[
ri,t | ri,t ≤ V aRi,t(α), rd,t > V aRd,t(α), rf,t ≤ V aRf,t(α)

]
P
(
rd,t > V aRd,t(α), rf,t ≤ V aRf,t(α) | ri ≤ V aRi(α)

)
+

global︷ ︸︸ ︷
E
[
ri,t | ri,t ≤ V aRi,t(α), rd,t ≤ V aRd,t(α), rf,t ≤ V aRf,t(α)

]
P
(
rd,t ≤ V aRd,t(α), rf,t ≤ V aRf,t(α) | ri ≤ V aRi(α)

)
,

(2)
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where rd,t and rf,t are the returns of the domestic and foreign financial sectors, respec-

tively.

This decomposition acts like a reverse stress test: starting from an institution’s tail

losses, it reveals how those losses associate with different systemic stress environments.

A larger global share signals a stronger association between institution i’s extreme losses

and simultaneous systemic distress across international markets. Conversely, smaller non-

idiosyncratic shares suggest that tail losses at i tend to occur independently of systemic

stress, indicating potential diversification benefits and lower systemic relevance.

2.2 Modeling distribution

To build our systemic risk measures, we need to model the joint return distribution

across institutions. We estimate marginal and dependence structures using a copula

approach, simplifying the estimation of large panel data. We follow the standard ARMA-

GARCH-GJR model used in the literature (Girardi and Ergün 2013; Ojea-Ferreiro and

Reboredo 2022; Ojea-Ferreiro et al. 2024) for the marginal distribution. The dependence

structure integrates a latent bifactor model to address high dimensionality, with a Skewed-

t copula to capture skewness and tail dependence, and a score-driven dynamics for time-

varying parameters (Creal et al. 2013), which have been shown to outperform alternative

approaches (Koopman et al. 2016). The latent factor model not only helps address high

dimensionality, but also greatly simplifies the construction of the risk measures.6 Our

approach captures higher moments, heteroskedasticity, autocorrelation, as well as time-

varying dependence, asymmetries, and tail risk. This allows us to accurately estimate

systemic risk measures sensitive to extreme events.

6More details on how the factor structure simplifies the computation can be found in the Venn
diagram section of the Appendix.
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2.2.1 Marginal behaviour

Following Girardi and Ergün (2013), Ojea-Ferreiro and Reboredo (2022), and Ojea-

Ferreiro et al. (2024), the marginal densities of equity returns is characterized by an

ARMA(p,q)-GARCH-GJR(h,k) model, i.e.,

ri,t = µi,t + ϵi,t,

ϵi,t = σi,tεi,

µi,t = ϕ0 +

p∑
j=1

ϕjri,t−j +

q∑
k=1

ψkϵi,t−k,

σ2
i,t = ω +

k∑
l=1

αlϵ
2
i,t−k +

h∑
q=1

βqσi,t−q + δ1ϵi,t−1<0ϵ
2
i,t−1,

where ϕj and ψk are the parameters of the AR and MA components of the marginal model,

ω, αl, βq, and δ are the components of the GJR-GARCH, which with the parameter δ

allows for an leverage effect in the dynamics of the variance, implying a higher increase

when there are negative shocks. The standardized innovation εi follow a Hansen (1994)’s

skewed t distribution, which captures the skewness and excess of kurtosis that we might

find in financial returns. The density function is

f(εi;λi, νi) =


bc

(
1 + 1

νi−2

(
bεi+a
1−λi

)2)− νi+1

2

for εi < −a
b

bc

(
1 + 1

νi−2

(
bεi+a
1+λi

)2)− νi+1

2

for εi ≥ −a
b

,

where a = 4λic(
νi−2
νi−1

), b =
√

1 − 3λ2i − a2 and c =
Γ(

νi+1

2
)√

π(νi−2)Γ(
νi
2
)
, the number of degrees of

freedom νi must be higher than 2 and the parameter of asymmetry λi could take a value

between -1 and 1. This distribution converges to the Gaussian distribution when λi = 0
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and νi → ∞ and the symmetric Student-t when the number of degrees of freedom are

finite and λi = 0.

2.2.2 Dependence structure

We use a copula approach (Sklar 1959) to model the joint distribution of returns. The

joint distribution is obtained linking marginal distributions through a copula function,

C, so that F (x, y) = C(Fx(x), Fy(y)). The joint density can be written as f(x, y) =

c(Fx(x), Fy(y))fx(x)fy(y), where c is the copula density. This allows us to express con-

ditional densities easily: for example, f(y|x) = c(Fx(x), Fy(y))fy(y), which simplifies the

analysis of risk measures based on conditional distributions.

The copula approach also allows us to simplify the estimation in a two-step procedure

(Joe and Xu 1996), where the marginal features are estimated first and, in a second

stage, the dependence structure is estimated based on the pseudo-integral probability

transformations of the marginal distributions.7

The Skewed Student-t copula. The dependence between financial entities is esti-

mated using a Skewed Student-t copula. The Skewed Student-t distribution has been

widely employed to model financial and economic data (Lucas et al. 2014; Lucas et al.

2017; Oh and Patton 2023; Oh and Patton 2018) due to the flexibility to capture different

tail behaviours as shown by Figures 3 and 4.

[INSERT FIGURE 3 HERE]

[INSERT FIGURE 4 HERE]

The N-variate Skewed Student-t distribution discussed in Demarta and McNeil (2005)

7More details about the estimation process are provided in the appendix.
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ST (µ, P, λ, ν) has the following density distribution:

fX(x) = c
K ν+N

2
(
√

(ν + d(x))λ′P−1λ) exp([x− µ]′P−1λ)

(
√

(ν + d(x))λ′P−1λ)−
ν+N

2 (1 + d(x)
ν

)
ν+N

2

, (3)

with c = 2
2−(ν+N)

2

Γ( ν
2
)(πν)

N
2 |P |1/2

, d(x) = [x − µ]′P−1[x − µ] and Ka(b) being the modified Bessel

function of the second kind. The Skewed-t Student distribution becomes the Student-

t distribution when λ = 0 and converges to the Gaussian distribution when λ = 0 and

ν → ∞. Note that to have a defined variance, the restriction for the Student-t distribution

is ν > 2, while for the Skewed-t distribution ν > 4.

The Skewed Student-t copula is a implicit copula (Smith 2023), meaning that there is

not an explicit formula for this dependence but it is defined as the ratio between joint and

marginal distributions. In other words, given the definition of the joint distribution as the

product of density copula and marginal distributions, we defined the Skewed Student-t

copula density as

cST (u, v) =
fST (F−1

X (u), F−1
Y (v))

fX(F−1
X (u))fY (F−1

Y (v))
,

where fST (x, y) is the Skewed-t bivariate distribution with parameters µ = [0, 0]′,P = 1 ρ

ρ 1

, λ = [λ1, λ2]
′ and ν, fX(x) is an univariate Skewed-t distribution with parame-

ters µ1 = 0, P = 1, λ = λ1, and ν and fY (y) is an univariate Skewed-t distribution with

parameters µ2 = 0, P = 1, λ = λ2 and ν.8

The estimation of a N -dimensional Skewed Student-t copula could become compli-

cated for large N , as the number of parameters for correlation matrix are N(N−1)
2

. In order

8The appendix presents more details about the Skewed-t copula, the assessment of conditional copulas
and cumulative copulas, and some details about the estimation of the Skewed Student-t copula within
our framework.
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to solve this problem, we take the simplifying assumption that the relationship between

financial firms could be explained by a latent nested bi-factor model, which reduces the

number of parameters in the correlation matrix to N + G, where G is the number of

groups. Following this approach, the joint copula is built as a combination of bivariate

copulas as a truncated vine structure (Aas et al. 2009). The next subsection develops

this modeling approach.

Nested latent bi-factor structure The nested factor copula is introduced by Krup-

skii and Joe (2015), where the dependence between variables is explained by a common

or global factor and a group-specific factor. The global factor captures the dependence

between the group-specific factors. This is a realistic way to replicate the financial net-

work structure.9 Financial firms within the same country or region would be linked to a

latent factor specific for that region, then the latent factors are linked between them via

a global factor. The link with the global factor makes that stress periods in some regions

would happen at the same time as stress scenarios in other regions. In other words, the

global latent factor proxies the current state of the international financial system, which

drives other factors, reflecting the situation of domestic financial systems.10

Figure 5 shows an example for n Canadian financial firms and m US financial firms.

Canadian firms are related to a Canadian latent factor C, while US firms are connected

to a US latent factor U . Both latent factors are not independent as they are connected

9For instance, S&P follows a nested approach to assess credit risk in banks starting with a general in-
dustry rating (BICRA methodology) and then fine-tuning for the individual financial institutions (SCAP
methodology). More information about this approach can be found on the S&P website.

10I also estimate an alternative bifactor model as a robustness check in the Appendix. I provide its
comparison with our model in terms of information criteria (AIC, BIC) and check if the main outcomes
from our model hold in this alternative setting, as the bifactor model allows for a higher degree of
flexibility, a consequence of the direct link between financial firms from different regions via the global
factor without going through their corresponding regional factor, as it happens in the nested factor
model.
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via a global latent factor G.

[INSERT FIGURE 5 HERE]

This model is a truncated vine copula (Aas et al. 2009) where the two connecting com-

ponents, the global factor and the group-specific factor, are not directly observed. Since

these latent factors are unobservable, the model must consider all possible values these

factors could take. Given that the inputs to the copula are uniformly distributed, this in-

volves integrating over the unit interval, from zero to one. The nested structure assumes

that the group-specific factors are conditionally independent given a global latent factor,

which simplifies computation by reducing the full dependence to a double integral, i.e.,

C(U) =

∫ 1

0

(
G∏
g=1

∫ 1

0

(
cV (vg, v0)

Ng∏
i=1

C(ui|vg)

)
dvg

)
dv0, (4)

where there are G groups, U is the matrix of integral distribution functions for matrix

X, i.e., U = F−1
X (X), v0 and vg are the global and group-specific factors respectively,

C(. . . | . . . ) is the conditional copula, and cV (. . . ) is the density copula between the group-

specific factors and the global factor. It is worth noting that in Eq. (4), the inner

parenthesis indicates the conditional probability given the specific-group factor and the

global factor, while the outer parenthesis indicates the conditional probability given the

global factor. The density copula becomes

c(U) =

∫ 1

0

(
G∏
g=1

∫ 1

0

(
cV (vg, v0)

Ng∏
i=1

c(ui, vg)

)
dvg

)
dv0. (5)

Note that the structure shown in Figure 5 allows us to follow a sequential estimation

procedure, as the global copula sets the dependence across different groups, but the
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dependence between variables within the same group is not affected by other groups.

First, we estimate the group-specific copula in T1. Second, we can estimate the global

copula cV (. . . ) in T2.
11

GAS dynamics. We consider time-varying correlation parameters in the Skewed Student-

t copula following a general autoregressive score (GAS) model (Creal et al. 2013). The

score-driven model generalizes many financial econometrics models, capturing more data

features and outperforming autoregressive models like GARCH (Koopman et al. 2016).

The updating equation in the GAS model is

fi,t+1 = ωi + αisi,t + βifi,t, (6)

where ωi, αi, and βi are the parameters of the GAS model, si,t = Si,t∇i,t, Si,t is a scaling

factor and ∇i,t is the derivative of the log-likelihood function at time t with respect to the

parameter fi,t, i.e., ∇i,t =
∂ log(c(ui,t,vt;fi,t))

∂fi,t
. Thus, fi,t+1 is determined by an autoregressive

updating function that has an innovation term equal to the score of the log-likelihood

with respect to fi,t. I choose the scaling factor Si,t = Jt|t−1, where J ′
tJt|t−1 = I−1

t|t−1 and

It|t−1 = Et−1(∇′
t∇t). This scaling factor allows us to standardize the value of ∇t with its

standard deviation. Another way to interpret this scaling factor is as a step in a steepest

ascent method to update the value of fi,t, where the direction is given by the gradient ∇i,t

and the size of the step in that direction is given by the Hessian, which is approximated

by the outer product of the gradient. In other words, we use the local curvature of the

log-density to improve the step.

The parameter fi,t+1 is a transformation from the original correlation parameter of

11The appendix shows more details about the optimization process and the estimation approach.
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the Skewed Student-t copula ρi,t. The transformation should increase the feasible values

that the parameter could take, so there is no need to set some restrictions in the values of

ωi, αi, and βi. The transformation function fi,t = h(ρi,t) = − log(
1−ρi,t
1+ρi,t

) makes that the

original feasible values in the range (−1, 1) for ρi,t increase to the real line under h(ρi,t).

The score of the transformed parameters becomes

∂ log(c(ui,t, vt; fi,t))

∂fi,t
=
∂ log(c(ui,t, vt; fi,t))

∂ρi,t

∂ρi,t
∂fi,t

,

where
∂ρi,t
∂fi,t

=
(
∂h(ρi,t)

∂ρi,t

)−1

=
1−ρ2i,t

2
.
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3 Data

Total return equity prices, i.e., stock prices with dividends being reinvested in the same

assets, were downloaded from Refinitiv LSEG for financial firms in Canada, the United

States, Western Europe (Euro Area, United Kingdom, and Switzerland),12 and Japan

to get a global coverage of the developed financial system. Our sample compresses 152

financial institutions, of which 22% are Canadian, 22% are Japanese, 28% are Western

European, and 28% are American.13

The data length starts in April 2001, when the first observations for Japanese financial

institutions are available, and goes up to the first week of October 2024. The data length

includes several crisis and turmoil periods like the global financial crisis (GFC), the

European sovereign debt crisis, and the COVID-19 crisis. The analysis is performed in the

local currency, preventing any distortion in the distribution introduced by the exchange

rates (see Ojea Ferreiro 2020). When needed, the exchange rate is employed outside the

dependence model to get the same currency for the RiS or ESA measure of the region,

i.e., Western European metrics are provided in euros, which allow us to distinguish the

effect of the stock dependency from the effect of the exchange rate, which could add a layer

of co-movement between financial firms traded in the same currency.14 The weekly data,

computed on Wednesday, overcomes some biases that could be found in daily frequency,

e.g., the bid-ask effect and non-synchronous trading days. Also, high-frequency data

12These three regions were merged into the same region due to the higher dependence between the
financial institutions from this location.

13A balanced distribution of the FIs within each region allows for a better estimation of the global
factor. The more unbalanced distribution across regions would tend to give a higher relevance to the
region with fewer FIs.

14For instance, Swiss firms might present a higher dependence in euro returns not due to an actual
dependence between firms but because of the use of the same exchange rate.
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presents noise that is reduced when using weekly data. Regarding lower frequency data,

the monthly frequency produces strong compensation effects for the positive and negative

shocks. Using weekly data instead of monthly data leads to more reliable results as a

consequence of the larger number of observations.

I get information about the main NAICS six-digit code from EIKON to associate each

financial institution to a financial subsector following Office of the Superintendent of Fi-

nancial Institutions’ (OSFI) match between NAICS code and EB/ET return groups,15

which allows me to associate each company to banks and NBFIs. In particular, in our

sample we have deposit-taking institutions (DTIs), representing 38% of the sample; in-

surance companies, which account for 20% of the sample; investment management com-

panies, summing up to 13% of our sample; investment dealers, which are 10% of the FIs;

leasing and finance companies, 7% of the sample; mortgage finance companies, which are

close to 7% of the sample; and clearing houses, which are 5% of the sample.

The selection of financial institutions has been done such that the institutions are

representative of most of the market capitalization for each category and region. We

have also included some firms which have defaulted or have been merged to prevent an

estimation bias from the survival financial firms. Our model is flexible enough to deal

with unbalanced data, as a defaulted firm at time t in a set of N firms implies that for

time t + 1 the latent factor would explain the co-movement between the N − 1 survival

financial firms at t + 1. Our sample includes 13 defaulted or merged firms happening

during different economic episodes. The default of Lehman Brothers and Washington

Mutual or the Merrill Lynch acquisition by Bank of America, Wachovia acquisition by

Wells Fargo, and HBOS acquisition by Lloyds are defaults and mergers happening during

15More information about this matching can be found in this appendix on the OSFI website.
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the GFC. The bailout of Monte de Paschi is an example of defaults and acquisitions

happening during the European sovereign debt crisis. Banco Popular in Western Europe,

Home Capital in Canada, and Silicon Valley Bank (SVB) in the US are institutions

that suffered funding stress events during the period of analysis. Credit Suisse and First

Republic Bank occurred during the March 2023 banking crisis. Dexia and MF Global

were non-banking institutions that defaulted during the period of analysis.

Table 1 presents the RIC code for the stock, common name, sector classification, and

2-digit ISO code for the country of each institution in the sample.

[INSERT TABLE 1 HERE]
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4 Results

The results of the model are presented in three subsections. First, the estimates of the

dependence model are displayed, showing the time evolution of the dynamic parameters.

Second, we analyze what is driving the latent factor over time and which are the contri-

butions of the different types of financial institutions. Third, we compute the proposed

systemic risk measures.

To identify the drivers of the latent factors, we obtain the distribution of the latent

factor conditional on the performance of the financial firms and we assess how different

market variables could explain the upper tail, the lower tail, and the median conditional

value of the latent factor. We also identify the contribution of each type of institution

in the overall co-movement from the latent factor, captured via the correlation matrix.

That contribution might be not linear, as a result of the flexibility of Skewed-t dependence

structure, which implies the use of the principal component analysis to gather the main

contributors in the correlation structure.16 Finally, we consider the uncertainty in the

model estimation by aggregating the institutions with highest correlation on a top bucket

of co-movement with the latent factor. We rely on a similar estimation as Blasques et al.

(2016) to get the in-sample confidence bands for the highest correlation within the regional

latent factors and we bucket institutions with similar strength in the connection with the

latent factor, as Hurlin et al. (2017) have implemented with systemic risk measures. We

examine if the top bucket is aligned with the list of DSIBs in each region,17 incorporating

16Krupskii and Joe (2015) provide the analytical expression of the correlation matrix when the de-
pendence is fully Gaussian.

17The list of systemic institutions is obtained from the supervisory authorities within each region
(OSFI, EBA, BoE, OFR, FINMA) and international authorities (BIS, FSB)
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NBFIs into the metric.

Regarding systemic risk measures, we present two measures to better understand

the tail co-movement between international financial systems, getting a clearer picture

on the role of NBFIs in those tail market linkages. First, we assess the conditional

expected return within each financial system that generates the highest losses from all

the foreign conditioning scenarios with a 5% probability. This would allow us to identify

the role of set of institutions as foreign stress scenarios generating the highest impact on

market performance of the domestic financial system. Second, we compute how much of

the market tail return for domestic financial institutions is shared with tail scenarios in

foreign financial systems. We present this decomposition of the average tail return by

type of institution to get a better view on how DTIs and NBFIs co-move in the tail with

foreign stress events.

4.1 Model estimates

Table 2 gathers the estimates of the long-run correlation with the regional latent factor,

i.e., h(ρ̄j) =
ωj

1−βi in Eq.(6) for institution j from region i, together with the 90% con-

fidence interval computed by MonteCarlo simulation in brackets.18 The DSIBs, which

are represented with those codes with an asterisk, present the highest correlation with

the latent factor, followed by some large insurance companies in Canada (POW.TO,

SLF.TO) and Japan (8750.T), other DTIs in US (PNC, USB), and DTIs and investment

management companies in Europe (UBSG.S, BBVA.MC).

[INSERT TABLE 2 HERE]

18The two-step estimation, also known as IFM estimation, implies that simulation is needed for the
confidence intervals to include in the copula estimates the uncertainty about the marginal distribution
from which we obtained the pseudo probability integral transformations.
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The estimates of the parameters of the copula for the regional latent factors are

presented in Table 3, where both skewness parameters are negative, being λ2 lower than

λ1 for most of the regions, with a low number of degrees of freedom. This generates

a dependence pattern similar to a Clayton copula, with strong lower tail dependence

(see Figures 3 and 4). Table 3 also presents the estimates of the regional and global

GAS parameters, showing a high persistence (β > 0.95). The long-term correlation of

the latent regional factor with the global latent factor distinguish two different groups:

Canada, the US, and Europe with a correlation close to 75% and Japan with a correlation

around 30%.

[INSERT TABLE 3 HERE]

Figure 6 shows the median and mean correlation of each region, together with the

cross-section interquartile range for each region. We see a higher dispersion between

financial institutions and the Canadian latent factor than the financial institutions within

the United States, Japan, or Europe. The United States latent factor presents a median

correlation with the financial firms in that region, with a correlation between 65% to

80%. The European latent factor presents a more stable correlation structure with the

firms in the region, with median correlation between 70% to 75%. The Canadian latent

sector presents a median correlation between 40% to 70%, which is the largest change

in the median correlation within the sample, followed by the median correlation between

the Japanese financial institutions and the regional factor, with values that go from 60%

to 85%.

[INSERT FIGURE 6 HERE]

The size of the correlation matrix might change over time, as a consequence of a
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financial institution that is not quoted anymore or that has started quoting. Figure 7

shows how Merrill Lynch, Mellon Financial, and Wachovia present the highest correlation

with the US latent factor before being merged or defaulting around 2008. MF Global and

Washington Mutual present the lowest correlation with the US latent factor within the

financial firms facing issues in the sample. If a firm within a set of N firms stops being

quoted at time t + 1, the st and ft from Eq. (6) would be vectors of length N − 1, with

the N − 1 firms still being quoted at time t + 1. This figure shows the flexibility of our

econometric model to deal with unbalanced data.

[INSERT FIGURE 7 HERE]

The latent factors are related between them via a correlation with a global latent

factor. The US latent factor presents the highest correlation with the global latent factor,

close to 90%, which is followed by Western Europe and, in third place, Canada, with an

average correlation around 75%. The Japanese latent factor presents a much more volatile

pattern, as shown by Figure 8, with an average correlation around 30% but a maximum

correlation around 60% during 2018 and minimum below zero at 2003 and 2024. There

are two periods in which the Japanese latent factor presents a negative correlation with

the global latent factor. The periods are from mid-2002 to mid-2003, when the Bank of

Japan was implementing quantitative easing to fight deflation while banks were trying

to get rid of nonperforming loans (NPLs) from the bursting of asset price bubbles,19 and

the end of 2023, when there was still a divergence in monetary policy between Japan and

the rest of the regions, as key interest rates in Japan were negative and not increasing

up to March 2024.

19See this bulletin from Bank of Japan (BoJ) and this IMF report.
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[INSERT FIGURE 8 HERE]

4.2 Latent factor structure

This subsection analyzes the conditional density distribution of the latent factor on the

realization from the financial institutions. It also assesses the role of each type of in-

stitution to explain the joint dependence structure, identifying the bucket of financial

institutions with the highest correlation with the latent factor. Finally, it explores how

characteristics of market information shape the conditional distribution of the regional

latent factors.

Figure 9 displays the density distribution of the latent regional factor’s quantiles, con-

ditional on the financial firms’ quantiles within each region. Note that the unconditional

distribution of the latent regional factor’s quantiles is distributed as uniform (0,1). The

conditional distribution shows a concentration on the upper tail for most of the regions,

while the Japanese latent factor shows a U-shaped conditional distribution, indicating a

higher probability of the latent factor being at extreme quantiles when incorporating the

information about the performance of the financial institutions.

[INSERT FIGURE 9 HERE]

Figure 10 shows, in the left axis, the contribution of each type of financial institution

to the first principal component of the regional correlation matrix obtained from the

latent factor model, assessed as the sum of coefficient for the institutions within the same

type of institutions, while the right axis indicates the share of the correlation matrix

that could be explained by this first component. This figure provides two important

insights about our model and the sector composition explaining the correlation matrix.
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First, the percentage of the correlation matrix from the latent factor model that could be

explained by the first component of the principal component analysis (PCA) is between

65% (Japan) and 32% (Canada). This indicates that the PCA fails to capture the rich

dependence structure from the latent factor link, although the dependence is created by

a single factor. Second, the share of that percentage that is explained by DSIBs and

other DTIs decreases in Canada (from 50% to 40%) and Japan (from 35% to 30%),

while it is constant over time for the US (25%) and Europe (20%). For NBFIs, the most

important shares are related to insurance companies followed by investment management

and mortgage finance companies.

[INSERT FIGURE 10 HERE]

The main role of DSIBs is also found in the bucket of institutions with the highest

correlation with the regional latent factor. The time-varying estimates of correlation

shown by Figure 6 present some estimation uncertainty, so a slightly higher value in the

correlation of one financial institution compared to the estimated correlation in another

firm might be statistically indistinguishable. We employed the iterative bootstrap-based

testing procedure proposed by Hurlin et al. (2017) to identify the top group of institutions

that, at each time t, are indistinguishable from each other in terms of correlation with the

latent regional factor with a confidence level of 95%, showing the highest connection with

this factor. Figure 11 shows in the top chart the number of institutions in the top bucket

with stronger correlation with the Canadian latent factor and the type of institution. The

number of institutions varies from 1 to 10 depending on the time period, showing the

largest group during the global financial crisis (GFC) and the smallest group during the

2018–2020 period. At each time period, at least one DSIB is always present in the top
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bucket, with a marginal role of insurance companies. The bottom chart from Figure 11

shows the number of institutions in the right axis and the correlation interval considered

in the top bucket in the left axis (red area) together with the observations within that

range (red dots). The smaller correlation range is 5% (from 85% to 90% during 2020), and

the largest correlation range is 35% (from 55% to 90% at the beginning of the sample).

[INSERT FIGURE 11 HERE]

Figure 12 presents the same type of chart for the US, where the presence of a DSIB

is nearly constant over time. Investment dealers are more prominent before the GFC,

while insurance companies and other DTIs play a larger role in the post-GFC period.

The number of institutions in this top bucket goes from 1 to 11, with a correlation range

smaller than the Canadian one. The largest 95% confidence interval for the correlation

occurs at the beginning of the sample, ranging from 65% to 90% (a 25 percentage point

range). The charts for the European region in Figure 13 present the smallest set of

institutions along all the regions, where the biggest set of financial institutions in the top

bucket is just nine, with a shorter correlation range with a 95% confidence interval being

just 10% (from 80% to 90%). The Japanese financial institutions in the top bucket of

correlation with its latent factor in Figure 14 support the central role of DSIBs explaining

the latent factor, with a relevant presence of other DTIs during the GFC and at the end

of 2023.

[INSERT FIGURE 12 HERE]

[INSERT FIGURE 13 HERE]

[INSERT FIGURE 14 HERE]

We explore which individual characteristics of market information are associated with
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the probability of the latent factor being at the tails (below the bottom 10% and above

the top 10%) or around the median (between percentile 45 to 55). Following previous

research on systemic risk, we consider market features, such as market indices,20 as a

high-frequency proxy of the performance of the real activity and bond prices as a proxy

of credit activity21 yield slope (the difference between 10-year and 1-year sovereign gov-

ernment bonds22) as a leading indicator of recession. We also use some variables related

with exchange rates (effective exchange rates)23 and commodity prices.24 The dataset is

sourced from Refinitiv EIKON, unless stated otherwise.

We explore how the change of the weekly lower/middle/upper 10% of each latent

factor i is explained by the following panel regression model:

△Fi,t(q|Ut) = αi +
3∑
j=1

βjri,j,t−1 + λ△Xi,t−1 +
3∑

k=1

ψkrk,t−1 + εi,t, (7)

where △Fi,t(q|Ut) could be Fi,t(0.1|Ut)−Fi,t−1(0.1|Ut−1) for the bottom 10%, 1−Fi,t(0.9|Ut)−

(1−Fi,t−1(0.9|Ut−1)) for the top 10% and Fi,t(0.55|Ut)−Fi,t(0.45|Ut)−(Fi,t−1(0.55|Ut−1)−

Fi,t−1(0.45|Ut−1)) for the middle 10%, where Ut is the transform integral transformation of

the firms within that region at time t, βj are the coefficients for the returns from market,

bond, and exchange rate indices, λ is the coefficient for the change in the yield slope, ψk

is the coefficient associated to the commodities returns, and αi denotes the region fixed

effects. We also control for unobserved heterogeneity by including year fixed-effect dum-

mies.25 We lagged all control variables to mitigate potential reverse causality concerns

20TSX60, S&P500,EURO STOXX600, TOPIX
21S&P CAN IG CORP BOND 0-10Y INDEX, Bloomberg Security Corporate Bond USD, IBOXX

EURO CORPORATES, S&P JAPAN IG CORP BOND INDEX
22For Europe, we use the German government bond.
23Nominal with broad basket obtained from BIS.
24S&P GSCI Commodity, S&P GSCI Non-Energy, S&P GSCI Energy & Metals
25We also applied smoothing time effects by using a cubic spline to capture time trends in a more
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and compute robust standard errors using double clustering at the region and time levels

(see Petersen 2008).

Table 4 shows the results indicating that the stock return plays a key role explaining

the change in the distribution of the latent regional factor, with a higher weight in the

upper tail. A return of 1% increases the area within the 10% unconditional probability

between a 160 b.p. to 1200 b.p. depending on the tail, shaping the conditional distribu-

tion into a more leptokurtic shape with a stronger right tail skewness. The bond index

return has an opposite sign and half the magnitude of the stock returns, with an effect

around the median and in the upper tail. Finally, the exchange rate is just statistically

significant for the left tail, having a negative impact on the left tail if the exchange rate

appreciates.

[INSERT TABLE 4 HERE]

4.3 Systemic risk measures

We present in this subsection the results for the Return-in-Stress (RiS) for the market-

weighted financial index for each region, analyzing the role of the different foreign fi-

nancial sectors and types of institutions, and the Expected Shortfall Allocation (ESA),

distinguishing between DTIs and NBFIs, in different scenarios for domestic and foreign

stress.

4.3.1 Return-in-Stress

The Return-in-Stress (RiS) shows the minimum average return given a tail stress market

scenario with a 5% probability. We build the RiS for the market-weighted return from

flexible way with similar results.
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each region,26 and we look at the foreign stress scenarios with a 5% probability that would

condition those outcomes.

Figure 15 shows the RiS for the four regions under scope. Europe shows the highest

vulnerability given the worst foreign scenario with a 5% probability. US and Japan

returns show a RiS around -7%, while the Canadian RiS shows the lowest volatility and

loss, with a loss lower than 5%, crossing the 10% threshold during the GFC and the

COVID-19 crisis.

[INSERT FIGURE 15 HERE]

Figure 16 shows the RiS for each region together with the weighted-market return

for the financial institutions within each region. The number of exceedances is similar

to a Value-at-Risk with a 95% confidence level (the minimum percentage of exceedances

being 3.6% of the sample for Canada and the maximum 5.5% of the sample for Japan).

[INSERT FIGURE 16 HERE]

The foreign market scenarios that condition these average returns vary by region.

Figures 17 and 18 show, respectively, the upper threshold of the scenario for individual

foreign financial institutions or aggregated by region and type of institution (showing the

average threshold by category). The top chart in these figures shows the threshold in

terms of quantile, while the bottom chart translates the quantile into returns, capturing

the marginal characteristics of the returns. Although the joint probability is always 5%,

more institutions could be under stress due to a change in the dependence structure.

26For Europe, the market-weighted return is computed in euros, although the dependence structure
is built in the local currency. The exchange rate is set as deterministic at each period of time, without
considering how the scenario might affect the FX behavior, as this effect is out of scope for this piece of
research.
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The return threshold could be more extreme because of the higher probability of large

losses, presenting the largest losses in the scenarios in mid-2002, 2008–2009, and 2020,

coinciding with the stock market downturn of 2002, the GFC, and the COVID-19 crisis.

Most of the stress for Canada comes from US and European DSIBs, with some institutions

being practically always present over the sample, like JP Morgan (JPM), BNP Paribas

(BNPP.PA), and Société Générale (SOGN.PA), while other institutions present a more

discontinuous presence in the stress scenario, like ING (INGA.AS) or Bank of America

(BAC). The NBFIs are present during a specific time period: for instance, the presence of

European insurance companies occurs during the European sovereign debt crisis (2011–

2012).

[INSERT FIGURE 17 HERE]

[INSERT FIGURE 18 HERE]

For the US RiS, the scenario leading to the largest average losses changes over time,

while the weight in European DSIBs is more relevant before 2017, and Canadian DSIBs

become more relevant to generate the worst average return in US financial institutions.

This can be seen in the darker colors in Figure 20 in European and Canadian DSIBs. At

the individual institution assessment, shown by Figure 19, the Canadian DSIB present

in this scenario is concentrated in the Royal Bank of Canada (RY.TO), which is the

largest bank in Canada in term of market capitalization.27 The presence of NBFIs in

this market scenario for the US is marginal, with the European insurance companies

being relevant during the 2011–2012 period. Deutsche Bank (DBKGn.DE) is present

in the stress scenario before the GFC and the European sovereign debt crisis, but not

afterward.
27https://financialpost.com/feature/how-rbc-became-canada-biggest-bank
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[INSERT FIGURE 19 HERE]

[INSERT FIGURE 20 HERE]

The RiS for Europe is generated by a scenario where the stress is shared by Canadian

and US DSIBs, with a more relevant presence of US NBFI institutions, as shown by Figure

22. The presence of other DTIs in the scenario occurs for the US but not for Canada.

The stress during early 2023, when the SVB crisis occurred, is reflected in other DTIs

being included in the scenario, but with the stress, measured in terms of quantiles, being

lower than in US DSIBs, showing that the US DSIBs work as a market transmission

with international markets. Also, the international market connection of SVB is lower

than other DTIs, like PNC, as shown by Figure 21. The role of Japanese institutions is

marginal for international stress scenarios for Canada, the US, and Europe.

[INSERT FIGURE 21 HERE]

[INSERT FIGURE 22 HERE]

For the Japanese RiS, the connection with foreign financial institutions is weaker,

which explains the larger number of institutions under the 5% probability scenario com-

pared to the number of institutions for the scenarios in Canada, the US, and Europe.

The stress is mainly focused on DSIBs, with the presence of NBFIs just for the US region,

as shown by Figure 24. Figure 23 shows that Société Générale (SOGN.PA) and Morgan

Stanley (MS) are more relevant, in terms of being in a lower quantile, at the beginning of

the sample, while Bank of America (BAC) and Royal Bank of Canada (RY.TO) are more

relevant at the end of the sample. JP Morgan (JPM) and BNP Paribas (BNPP.PA) are

continuously present in the scenario over the full period.

[INSERT FIGURE 23 HERE]
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[INSERT FIGURE 24 HERE]

4.3.2 Expected Shortfall Allocation

We divide the Expected Shortfall for each financial institution into four categories, de-

pending on if those tail losses are happening or not at the same time as left tail realizations

on the latent domestic and foreign factor.28 This decomposition allows us to identify an

idiosyncratic section, where only the financial institution under analysis is at the tail; a

domestic section, where tail returns for the institution under analysis is happening at the

same time as left tail realizations for the domestic sector but not for any foreign sector;

a foreign sector, which would indicate the opposite; and a global section, where the tail

returns are happening for domestic and foreign sectors, too.

Figure 25 presents the ESA of a Japanese financial firm (left axis), the correlation

of the financial institution with the regional factor (black line, right axis), and the cor-

relation between the Japanese latent factor and the global latent factor (red line, right

axis). We distinguish three different combinations of correlations that generate a different

decomposition of the Expected Shortfall. Before 2010, correlation between the Japanese

factor and the global factor is above 50%, but the correlation between the Japanese

firm and the regional factor is close to zero, which makes the idiosyncratic sector of the

Expected Shortfall close to 70% and the global section slightly above 10%. In 2019,

both series of correlations are close to their historical maximum: the idiosyncratic sector

around 25%, the global section 30%, and the domestic section 35%. At the beginning of

2024, the correlation between the regional factor and the global factor is close to zero,

28We also perform this exercise with a certain number of institutions being at the tail, e.g., a domestic
tail event would be an event in which at least N domestic institutions are in their tail, similar to the
approach used by Gravelle and Li (2013). Results are similar if the number of institutions under stress
is 4 or more. This comparison allows us to better understand what the tail event for the latent factor
implies.
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while the correlation between the firm and the regional factor is still at its maximum.

This is reflected in a 40% share of the domestic section, a 30% share of both idiosyncratic

and global portions, and a 25% share of the global part. This representation shows how

the evolution of the dependence structure is captured by the changes in the Expected

Shortfall Allocation.

[INSERT FIGURE 25 HERE]

Figures 26 to 29 present the shares of the Expected Shortfall (left axis) and the

actual Expected Shortfall (right axis) of the DSIBs and DTIS (left charts) and NBFI

(right charts) aggregated by market weight for the four different regions. Canadian and

European NBFIs show a more volatile pattern of the Expected Shortfall than for DSIBs

and DTIs in the same region, while for the US and Japan, the opposite is true. One

insight that we can appreciate in all the regions is a higher share of the idiosyncratic

part in NBFIs than in DTIs, which implies a higher tail co-movement between DTIs and

foreign financial systems. The domestic share is usually larger than the global share,

which indicates a “home bias” feature, meaning that cross-country contribution to the

Expected Shortfall tends to be smaller than domestic risk contribution, aligned with the

results found by Gravelle and Li (2013) for Canada.

[INSERT FIGURE 26 HERE]

[INSERT FIGURE 27 HERE]

[INSERT FIGURE 28 HERE]

[INSERT FIGURE 29 HERE]
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5 Conclusion

This paper develops a flexible multivariate framework that captures tail co-movements

across financial institutions to analyze international systemic risk. We propose two sys-

temic risk measures: the Return-in-Stress (RiS), which identifies the most adverse inter-

national scenario for a domestic financial system under a fixed joint probability constraint;

and the Expected Shortfall Allocation (ESA), which decomposes individual institutions’

tail losses according to the presence or absence of systemic distress across domestic and

foreign markets. These measures are built using a bi-factor latent Skewed-t copula model

that captures non-linear dependencies, asymmetries, and time-varying features in the

joint distribution of returns across a large cross-section of global financial institutions.

This approach, inspired by a reverse stress-testing perspective, provides a more realistic

and scenario-rich characterization of systemic risk than traditional models.

Using weekly equity returns from 2001 to 2024, we examine financial institutions from

Canada, the United States, Western Europe, and Japan, including both banks and non-

bank financial intermediaries (NBFIs). Our empirical findings underscore the central

role of DSIBs and other deposit-taking institutions in shaping tail dependencies and

international spillovers. These institutions consistently appear in scenarios that maximize

conditional domestic losses and exhibit a large non-idiosyncratic share of their Expected

Shortfall. While NBFIs historically played a secondary role, their systemic relevance

has grown—especially in the U.S.—with insurance firms, asset managers, and mortgage

finance companies showing rising co-movement with regional risk factors. Regionally,

stress originating in the U.S. and Europe tends to produce the most severe international
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spillovers. The systemic weight of Canada has increased since 2017, while Japan remains

relatively insulated, consistent with previous findings (e.g., Gravelle and Li 2013).

The results should be interpreted with care given three important considerations.

First, the use of equity data means the analysis focuses on listed firms, potentially under-

representing parts of the financial system with limited or no market data—such as small

banks, pension funds, or other non-listed institutions. Second, the framework captures

co-movement through market prices, emphasizing confidence and information channels,

while other transmission mechanisms, such as direct exposures or funding links, might be

better captured using balance sheet data. Third, the reverse stress testing approach be-

gins with the outcome—extreme and unlikely losses—and identifies the financial scenarios

in which these events tend to occur. This highlights the conditions most often present

when distress happens but does not imply that these conditions are the most likely to

lead to distress. The method reveals associations conditional on loss events rather than

causal drivers and, consequently, should be used to complement forward-looking risk

assessments.

This framework opens several avenues for future research. It can be extended to

analyze tail risk connections among emerging markets, taking into account the role of

exchange rate dynamics in shaping cross-border stress transmission. Recent work (Du

et al. 2018; Ojea-Ferreiro and Reboredo 2022) emphasizes that frictions in FX markets

are key to understanding how financial shocks propagate internationally, particularly in

times of equity market distress. The Return-in-Stress methodology could also support

the development of multi-institution, multi-region generalizations of CoV aR or SRISK,

enhancing the systemic risk monitoring toolkit. Additionally, the Expected Shortfall Al-

location enables the decomposition of tail risk across any grouping of interest—not only
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by region, but also by institution type, asset class, or exposure category. For instance,

it could be used to disentangle severe declines in banks’ regulatory capital in scenarios

involving mortgage defaults, market shocks, yield curve shifts, or other valuation risk

factors. Adapting the model to alternative data types, such as CDS spreads or bond

yields, may also provide a more comprehensive view of financial fragility. Ultimately,

this approach can inform the design of macroprudential policies to limit the cross-border

transmission of financial stress.
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Appendix

Tables

Table 1: Financial institutions in the sample

Code EBET Classification Company Common Name Country
BAM.TO Investment Management Companies Brookfield Asset Management Ltd CA
BMO.TO* DTIs Bank of Montreal CA
BNS.TO* DTIs Bank of Nova Scotia CA
CF.TO Investment Dealers Canaccord Genuity Group Inc CA
CHW.TO Leasing & Finance Companies Chesswood Group Ltd CA
CIX.TO Investment Management Companies CI Financial Corp CA
CM.TO* DTIs Canadian Imperial Bank of Com-

merce
CA

CWB.TO DTIs Canadian Western Bank CA
CYB.TO Investment Management Companies Cymbria Corp CA
ECN.TO Mortgage Finance Companies ECN Capital Corp CA
EFN.TO Leasing & Finance Companies Element Fleet Management Corp CA
EQB.TO Mortgage Finance Companies EQB Inc CA
FFH.TO Insurance Companies Fairfax Financial Holdings Ltd CA
FN.TO Mortgage Finance Companies First National Financial Corp CA
GSY.TO Mortgage Finance Companies goeasy Ltd CA
GWO.TO Insurance Companies Great-West Lifeco Inc CA
HCG.TOˆI23 Mortgage Finance Companies Home Capital Group Inc CA
IAG.TO Insurance Companies iA Financial Corporation Inc CA
IFC.TO Insurance Companies Intact Financial Corp CA
IGM.TO Investment Management Companies IGM Financial Inc CA
LB.TO DTIs Laurentian Bank of Canada CA
MFC.TO Insurance Companies Manulife Financial Corp CA
MKP.TO Mortgage Finance Companies MCAN Mortgage Corp CA
NA.TO* DTIs National Bank of Canada CA
ONEX.TO Investment Management Companies Onex Corp CA
POW.TO Insurance Companies Power Corporation of Canada CA
PRL.TO Clearing Houses Propel Holdings Inc CA
RY.TO* DTIs Royal Bank of Canada CA
SII.TO Investment Management Companies Sprott Inc CA
SLF.TO Insurance Companies Sun Life Financial Inc CA
TD.TO* DTIs Toronto-Dominion Bank CA
TF.TO Mortgage Finance Companies Timbercreek Financial Corp CA
VBNK.TO DTIs VersaBank CA
X.TO Clearing Houses TMX Group Ltd CA

* indicates a Domestic Systemic Important Bank (DSIB) according to OSFI.
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Table 1: Financial institutions in the sample (Cont.)

Code EBET Classification Company Common Name Country
JPM* Investment Dealers JPMorgan Chase & Co US
MS* Investment Dealers Morgan Stanley US
C* Investment Dealers Citigroup Inc US
BX Investment Management Companies Blackstone Inc US
GS* Investment Dealers Goldman Sachs Group Inc US
BLK Investment Management Companies BlackRock Inc US
APO Investment Management Companies Apollo Global Management Inc US
KKR Investment Management Companies KKR & Co Inc US
SCHW.K Investment Management Companies Charles Schwab Corp US
IBKR.O Investment Dealers Interactive Brokers Group Inc US
BK* Investment Management Companies Bank of New York Mellon Corp US
STT* Investment Management Companies State Street Corp US
MER.NˆA09 Investment Dealers Merrill Lynch & Co Inc US
MELˆG07 Investment Management Companies Mellon Financial Corp US
LEHMQ.PKˆC12 Investment Dealers Lehman Brothers Holdings Inc US
MFGLQ.PKˆF13 Investment Dealers MF Global Holdings Ltd US
WFC* DTIs Wells Fargo & Co US
USB DTIs US Bancorp US
BAC* DTIs Bank of America Corp US
PNC DTIs PNC Financial Services Group Inc US
FCNCA.O DTIs First Citizens BancShares Inc

(Delaware)
US

FRCB.PK DTIs First Republic Bank US
SIVBQ.PK DTIs SVB Financial Group US
WB.NˆA09 DTIs Wachovia Corp US
ALL Insurance Companies Allstate Corp US
PGR Insurance Companies Progressive Corp US
MET Insurance Companies MetLife Inc US
MMC Insurance Companies Marsh & McLennan Companies

Inc
US

FNF Insurance Companies Fidelity National Financial Inc US
AFL Insurance Companies Aflac Inc US
AJG Insurance Companies Arthur J. Gallagher & Co. US
TRV Insurance Companies Travelers Companies Inc US
AIG Insurance Companies American International Group Inc US
PRU Insurance Companies Prudential Financial Inc US
WAMUQ.PKˆC12 Insurance Companies WMI Holdings Corp US
AXP Leasing & Finance Companies American Express Co US
ICE Clearing Houses Intercontinental Exchange Inc US
CME.O Clearing Houses CME Group Inc US
COF Leasing & Finance Companies Capital One Financial Corp US
DFS Leasing & Finance Companies Discover Financial Services US
SYF Mortgage Finance Companies Synchrony Financial US
UWMC.K Mortgage Finance Companies UWM Holdings Corp US

* indicates a Domestic Systemic Important Bank (DSIB) according to OFR, FSB or BIS.
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Table 1: Financial institutions in the sample (Cont.)

Code EBET Classification Company Common Name Country
HSBA.L* DTIs HSBC Holdings PLC GB
SAN.MC* DTIs Banco Santander SA ES
BNPP.PA* DTIs BNP Paribas SA FR
ISP.MI* DTIs Intesa Sanpaolo SpA IT
CRDI.MI* DTIs UniCredit SpA IT
INGA.AS* DTIs ING Groep NV NL
LLOY.L* DTIs Lloyds Banking Group PLC GB
CAGR.PA* DTIs Credit Agricole SA FR
BARC.L* DTIs Barclays PLC GB
NDAFI.HE* DTIs Nordea Bank Abp FI
NWG.L* DTIs NatWest Group PLC GB
DBKGn.DE* DTIs Deutsche Bank AG DE
KBC.BR* DTIs Kbc Groep NV BE
STAN.L* DTIs Standard Chartered PLC GB
ERST.VI* DTIs Erste Group Bank AG AT
CBKG.DE* DTIs Commerzbank AG DE
SOGN.PA* DTIs Societe Generale SA FR
HBOS.LˆA09 DTIs HBOS Plc GB
BIRG.I* DTIs Bank of Ireland Group PLC IE
NBGr.AT* DTIs National Bank of Greece SA GR
BMPS.MI DTIs Banca Monte dei Paschi di Siena

SpA
IT

CSGN.SˆF23 DTIs Credit Suisse Group AG CH
POP.MCˆF17 DTIs Banco Popular Espanol SA ES
WTW.O Insurance Companies Willis Towers Watson PLC GB
PRU.L Insurance Companies Prudential PLC GB
AV.L Insurance Companies Aviva PLC GB
CB Insurance Companies Chubb Ltd CH
ZURN.S Insurance Companies Zurich Insurance Group AG CH
ALVG.DE Insurance Companies Allianz SE DE
AXAF.PA Insurance Companies AXA SA FR
AON Insurance Companies Aon PLC IE
UBSG.S Investment Management Companies UBS Group AG CH
PGHN.S Investment Management Companies Partners Group Holding AG CH
III.L Investment Management Companies 3i Group PLC GB
LGEN.L Investment Management Companies Legal & General Group PLC GB
AMUN.PA Investment Management Companies Amundi SA FR
LSEG.L Clearing Houses London Stock Exchange Group PLC GB
DB1Gn.DE Clearing Houses Deutsche Boerse AG DE
ENX.PA Clearing Houses Euronext NV NL
SQN.S Clearing Houses Swissquote Group Holding SA CH
BBVA.MC DTIs Banco Bilbao Vizcaya Argentaria

SA
ES

DEXI.BRˆL19 Mortgage Finance Companies Dexia holding SA BE

* indicates a Domestic Systemic Important Bank (DSIB) according to FINMA, FSB, EBA, BoE or BIS.
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Table 1: Financial institutions in the sample (Cont.)

Code EBET Classification Company Common Name Country
8306.T* DTIs Mitsubishi UFJ Financial Group

Inc
JP

8316.T* DTIs Sumitomo Mitsui Financial Group
Inc

JP

8411.T* DTIs Mizuho Financial Group Inc JP
7182.T DTIs Japan Post Bank Co Ltd JP
8308.T DTIs Resona Holdings Inc JP
7186.T DTIs Concordia Financial Group Ltd JP
8331.T DTIs Chiba Bank Ltd JP
5830.T DTIs Iyogin Holdings Inc JP
7163.T DTIs SBI Sumishin Net Bank Ltd JP
8334.T DTIs Gunma Bank Ltd JP
5831.T DTIs Shizuoka Financial Group Inc JP
8418.T DTIs Yamaguchi Financial Group Inc JP
7180.T DTIs Kyushu Financial Group Inc JP
8354.T DTIs Fukuoka Financial Group Inc JP
8304.T DTIs Aozora Bank Ltd JP
5844.T DTIs Kyoto Financial Group Inc JP
8410.T DTIs Seven Bank Ltd JP
8766.T Insurance Companies Tokio Marine Holdings Inc JP
8725.T Insurance Companies MS&AD Insurance Group Hold-

ings Inc
JP

6178.T Insurance Companies Japan Post Holdings Co Ltd JP
8750.T Insurance Companies Dai-ichi Life Holdings Inc JP
8630.T Insurance Companies Sompo Holdings Inc JP
8604.T* Investment Dealers Nomura Holdings Inc JP
8601.T* Investment Dealers Daiwa Securities Group Inc JP
8473.T Investment Dealers SBI Holdings Inc JP
8628.T Investment Dealers Matsui Securities Co Ltd JP
8698.T Investment Dealers Monex Group Inc JP
8609.T Investment Dealers Okasan Securities Group Inc JP
8591.T Leasing & Finance Companies ORIX Corp JP
8593.T Leasing & Finance Companies Mitsubishi HC Capital Inc JP
8252.T Leasing & Finance Companies Marui Group Co Ltd JP
8439.T Leasing & Finance Companies Tokyo Century Corp JP
8424.T Leasing & Finance Companies Fuyo General Lease Co Ltd JP
8425.T Leasing & Finance Companies Mizuho Leasing Co Ltd JP

* indicates a Domestic Systemic Important Bank (DSIB) according to BIS.
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Table 2: Table of estimates for the long-run correlation with the regional latent factor

CANADA US WESTERN EUROPE JAPAN
Code ρ̄ Code ρ̄ Code ρ̄ Code ρ̄

BAM.TO 0.77 JPM* 0.88 HSBA.L* 0.66 8306.T* 0.89
[0.68,0.80] [0.79,0.88] [0.64,0.68] [0.79,0.90]

BMO.TO* 0.80 MS* 0.83 SAN.MC* 0.83 8316.T* 0.88
[0.70,0.82] [0.77,0.84] [0.80,0.83] [0.79,0.89]

BNS.TO* 0.82 C* 0.84 BNPP.PA* 0.88 8411.T* 0.87
[0.73,0.84] [0.77,0.85] [0.85,0.88] [0.81,0.88]

CF.TO 0.44 BX 0.61 ISP.MI* 0.79 7182.T 0.74
[0.30,0.53] [0.56,0.63] [0.76,0.80] [0.65,0.77]

CHW.TO 0.21 GS* 0.82 CRDI.MI* 0.79 8308.T 0.81
[0.07,0.31] [0.76,0.83] [0.76,0.80] [0.70,0.83]

CIX.TO 0.55 BLK 0.67 INGA.AS* 0.87 7186.T 0.86
[0.44,0.60] [0.60,0.69] [0.84,0.87] [0.77,0.88]

CM.TO* 0.80 APO 0.53 LLOY.L* 0.72 8331.T 0.79
[0.71,0.83] [0.49,0.55] [0.70,0.73] [0.73,0.82]

CWB.TO 0.62 KKR 0.61 CAGR.PA* 0.84 5830.T 0.74
[0.53,0.66] [0.52,0.62] [0.81,0.85] [0.65,0.78]

CYB.TO 0.33 SCHW.K 0.74 BARC.L* 0.78 7163.T 0.50
[0.20,0.41] [0.68,0.76] [0.75,0.79] [0.41,0.56]

ECN.TO 0.41 IBKR.O 0.53 NDAFI.HE* 0.72 8334.T 0.75
[0.31,0.48] [0.48,0.56] [0.69,0.73] [0.67,0.78]

EFN.TO 0.39 BK* 0.80 NWG.L* 0.73 5831.T 0.77
[0.27,0.47] [0.75,0.82] [0.70,0.74] [0.69,0.80]

EQB.TO 0.38 STT* 0.79 DBKGn.DE* 0.83 8418.T 0.74
[0.22,0.45] [0.72,0.80] [0.80,0.84] [0.64,0.77]

FFH.TO 0.29 MER.NˆA09 0.82 KBC.BR* 0.77 7180.T 0.79
[0.15,0.39] [0.74,0.83] [0.75,0.78] [0.69,0.81]

FN.TO 0.35 MELˆG07 0.75 STAN.L* 0.68 8354.T 0.77
[0.24,0.43] [0.69,0.76] [0.64,0.69] [0.68,0.80]

GSY.TO 0.26 LEHMQ.PKˆC12 0.62 ERST.VI* 0.68 8304.T 0.67
[0.13,0.37] [0.62,0.68] [0.66,0.70] [0.60,0.71]

GWO.TO 0.69 MFGLQ.PKˆF13 0.52 CBKG.DE* 0.77 5844.T 0.77
[0.57,0.74] [0.45,0.54] [0.73,0.77] [0.67,0.79]

HCG.TOˆI23 0.41 WFC* 0.81 SOGN.PA* 0.87 8410.T 0.54
[0.27,0.47] [0.75,0.82] [0.84,0.88] [0.42,0.59]

IAG.TO 0.61 USB 0.81 HBOS.LˆA09 0.67 8766.T 0.76
[0.51,0.66] [0.75,0.82] [0.64,0.68] [0.67,0.78]

IFC.TO 0.33 BAC* 0.86 BIRG.I* 0.62 8725.T 0.76
[0.22,0.44] [0.79,0.86] [0.59,0.63] [0.66,0.78]

IGM.TO 0.66 PNC 0.83 NBGr.AT* 0.49 6178.T 0.73
[0.57,0.70] [0.77,0.83] [0.45,0.51] [0.65,0.76]

LB.TO 0.57 FCNCA.O 0.61 BMPS.MI 0.65 8750.T 0.82
[0.47,0.64] [0.54,0.63] [0.62,0.66] [0.74,0.84]

MFC.TO 0.73 FRCB.PK 0.66 CSGN.SˆF23 0.79 8630.T 0.75
[0.63,0.77] [0.60,0.68] [0.79,0.81] [0.66,0.78]

MKP.TO 0.30 SIVBQ.PK 0.72 POP.MCˆF17 0.67 8604.T* 0.82
[0.22,0.40] [0.67,0.74] [0.64,0.68] [0.72,0.84]

NA.TO* 0.74 WB.NˆA09 0.72 WTW.O 0.33 8601.T* 0.82
[0.64,0.78] [0.72,0.76] [0.29,0.34] [0.72,0.84]

ONEX.TO 0.46 ALL 0.60 PRU.L 0.73 8473.T 0.69
[0.36,0.54] [0.52,0.63] [0.70,0.73] [0.59,0.73]

POW.TO 0.74 PGR 0.51 AV.L 0.76 8628.T 0.72
[0.66,0.77] [0.46,0.54] [0.73,0.76] [0.62,0.77]

PRL.TO 0.46 MET 0.79 CB 0.42 8698.T 0.62
[0.36,0.50] [0.72,0.81] [0.38,0.44] [0.53,0.66]

RY.TO* 0.82 MMC 0.58 ZURN.S 0.72 8609.T 0.78
[0.73,0.84] [0.53,0.62] [0.69,0.73] [0.68,0.81]

SII.TO 0.17 FNF 0.46 ALVG.DE 0.79 8591.T 0.74
[0.02,0.27] [0.40,0.49] [0.76,0.80] [0.63,0.77]

SLF.TO 0.71 AFL 0.62 AXAF.PA 0.84 8593.T 0.71
[0.63,0.74] [0.55,0.66] [0.80,0.85] [0.62,0.74]

TD.TO* 0.81 AJG 0.51 AON 0.33 8252.T 0.59
[0.72,0.83] [0.47,0.55] [0.31,0.36] [0.49,0.66]

TF.TO 0.48 TRV 0.58 UBSG.S 0.82 8439.T 0.66
[0.33,0.54] [0.54,0.62] [0.78,0.82] [0.57,0.69]

VBNK.TO 0.21 AIG 0.70 PGHN.S 0.53 8424.T 0.65
[0.09,0.30] [0.63,0.72] [0.51,0.54] [0.54,0.70]

X.TO 0.39 PRU 0.83 III.L 0.63 8425.T 0.69
[0.27,0.46] [0.76,0.84] [0.60,0.65] [0.60,0.71]

WAMUQ.PKˆC12 0.58 LGEN.L 0.73
[0.52,0.60] [0.70,0.74]

AXP 0.75 AMUN.PA 0.69
[0.70,0.77] [0.66,0.70]

ICE 0.47 LSEG.L 0.48
[0.41,0.50] [0.45,0.49]

CME.O 0.43 DB1Gn.DE 0.48
[0.37,0.48] [0.44,0.50]

COF 0.78 ENX.PA 0.40
[0.72,0.80] [0.37,0.42]

DFS 0.75 SQN.S 0.42
[0.68,0.76] [0.39,0.43]

SYF 0.72 BBVA.MC 0.83
[0.65,0.74] [0.80,0.84]

UWMC.K 0.36 DEXI.BRˆL19 0.68
[0.28,0.39] [0.68,0.72]

This table presents the estimates of the long-run correlation of each financial institution with the regional latent factor. Top values indicates the estimates
using the original data. Bottom values between brackets indicates the 90% confidence interval for the estimates using Monte Carlo simulation. We
simulate 200 paths of the data assuming that the original estimated model is the true generating data process. We reestimate the model 200 times using
the simulated data and we present in the brackets percentile 5 and 95 for each parameter. Note that, because we are simulating returns, the confidence
interval of the dependence estimates includes the uncertainty about the true estimates from the marginal distribution. More information about this method
can be found in chapter 5 from Joe (2014).
* indicates a Domestic Systemic Important Bank (DSIB). See Table 1.



Table 3: Table of estimates for the copula structure and the GAS dynamics

λ1 λ2 ν α β ρ̄

CA -0.16 -0.23 5.19 0.027 0.995 0.72
[-0.20,-0.09] [-0.28,-0.18] [5.14,5.48] [0.022,0.030] [0.988,0.995] [0.63,0.73]

US -0.12 -0.16 5.02 0.044 0.988 0.79
[-0.14,-0.06] [-0.21,-0.11] [4.94,5.25] [0.038,0.049] [0.981,0.989] [0.70,0.80]

WE -0.12 -0.15 4.99 0.041 0.966 0.78
[-0.13,-0.07] [-0.18,-0.10] [4.95,5.20] [0.034,0.047] [0.952,0.973] [0.68,0.78]

JP -0.12 -0.09 5.00 0.055 0.991 0.30
[-0.17,-0.07] [-0.14,-0.03] [4.78,5.22] [0.049,0.061] [0.986,0.992] [0.25,0.33]

GL -1.04 -0.98 6.28 0.073 0.989
[-1.07,-0.81] [-1.01,-0.76] [6.25,7.04] [0.053,0.118] [0.974,0.994]

This table presents the estimates of the long-run correlation of each financial institution with the
regional latent factor. Top values indicates the estimates using the original data. Bottom values
between brackets indicates the 90% confidence interval for the estimates using Monte Carlo simulation
(W=200). λ1 and λ2 are the skewness parameters, ν is the number of degrees of freedom, α and β
are the parameters of the GAS dynamics, ρ̄ is the long-term correlation between the latent regional
factors and the latent global factor.

Table 4: Variables influencing the regional latent factor

Distribution of the regional latent factor
Bottom 10% Middle 10% Top 10%

Effective Exchange Rate return -0.286* 0.882 1.476
(0.109) (1.350) (1.526)

Change in Yield Slope -0.026 0.082 0.145
(0.020) (0.081) (0.086)

Bond return -0.396 -3.783* -4.760**
(0.345) (1.295) (1.420)

Stock return 1.661** 10.41*** 11.85***
(0.287) (0.769) (0.715)

Commodity return 0.329 0.104 -1.472
(0.712) (3.593) (4.052)

Energy return -0.331 -0.645 0.527
(0.554) (2.714) (3.053)

Commodity non-energy return -0.024 0.181 0.583
(0.213) (1.214) (1.339)

Observations 4,896 4,896 4,896
R-squared 0.163 0.272 0.287

Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1
This table presents the estimates of Eq. (7) to explain the change in the bottom 10%,
middle 10%, or top 10% of the latent factor distribution.
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Figures
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Figure 1: Computation of the Return-in-Stress (RiS)

(a) Effects of a stress scenario (left side) on a distribution of the domestic financial index
(right side)

Left side represents the scenario construction that impacts on the returns’ distribution of
the domestic index on the right side. On the left side, the purple squared area indicates a
joint scenario for foreign firms j and k with probability 5% that modifies the distribution
of the domestic index returns on the right side from the blue bar to the purple bars. The
red line on the left side indicates the upper threshold for firm j and k, below which the
probability is 5%. This line is shown in subfigure 1b in terms of percentiles instead of
returns.

(b) Combination of stress scenarios with probability 5% for two
foreign firms.

This graph represents the combination of scenarios built from the
percentiles of foreign firm k and j with 5% probability. The color of
the line indicates the average loss in the corresponding conditional
distribution of the domestic index return.
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Figure 2: Shares of Expected Shortfall in common tail scenarios

(a) Histogram of returns for institution i (left side) and scatter plot of domestic and foreign
factors (right side)

Left side shows the histogram of equity returns for institution i. The tail returns are defined
as those below the red threshold (orange bars). Those extreme realizations for institution i
are occurring at the same time as the realizations of the domestic and foreign factors shown
by the orange dots.

(b) Expected Shortfall Allocation for institution i as the combination of tail scenarios for
domestic and foreign factors.

Right scatter plot shows the realizations of domestic and foreign factors when institution i
is experiencing tail returns. We divide the area depending on domestic and foreign factors
experiencing tail returns. That division allows us to see tail returns of institution i in terms
of tail returns for the other factors.
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Figure 3: Copula density for different values of λ1 and λ2

These figures show the density copula of a Skewed Student-t copula with ρ = 0.8,
ν = 5 and different values for the asymmetric parameters as shown above each picture
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Figure 4: Simulation of a Skewed t copula

(a) Simulation of uniform variables with
a Skewed-t dependence structure

(b) Isoquants of normal distributed vari-
ables with a Skewed-t dependence struc-
ture

These figures show the simulation from a Skewed Student-t copula with uniform marginals
(Figure 4a) and Gaussian marginals (Figure 4b). The parameters selected for the Skewed-t
copula are the same as in Figure 3.

Figure 5: Hierarchical dependence structure of a nested factor copula model.

V

v1 v2 . . . vn

U

u1 u2 . . . um

G

T1

T2

This figure shows the structure of hierarchical dependence for a nested bivariate copula. For
variables in the bottom the dependence is always explained by a one-factor model (either factor
V or U), and the dependence between the variables with a different factor comes from the
dependence between those factors via a second factor, i.e., global factor G, that drives the co-
movement between factor C and factor U . The estimation process starts with the estimation
of the dependence of the bottom layer T1, followed by the dependence in the top layer T2.
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Figure 6: Correlation structure in the nested copula model

(a) Canada (b) United States

(c) Western Europe (d) Japan

These charts show the interquartile range (area), the median (solid line) and the mean
(dashed-dotted line) correlation of the financial institutions in each region with the corre-
sponding latent factor.
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Figure 7: Correlation of defaulted financial institutions in United States with the
US latent factor
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This chart shows the correlation link of eight defaulted or merged financial firms with
the US latent factor. The correlation starts when the financial institution starts being
quoted and ends when it stops being quoted, increasing and decreasing the matrix
correlation between financial institutions in United States.
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Figure 8: Correlation of regional latent factors with the global latent factor

This chart shows the correlation linkage between different regional latent factors with
the global latent factor.
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Figure 9: Conditional latent regional factor distribution

(a) Canada
(b) US

(c) Western Europe (d) Japan

These figures show the conditional distribution of the quantiles of the latent factor (Z) on
the realization of quantiles of the FIs (U) within each region, i.e., f(Z|U) = c(Z|U) =
c(Z,U)
c(U) = c(Z,U)∫ 1

0 c(Z,U)dZ
, where U,Z are uniformly distributed (0,1) and c(...) is the density

copula of the Skewed-t distribution estimated for that region.
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Figure 10: First principal component of the correlation matrix obtained from the
latent factor

(a) Canada

(b) US

(c) Western Europe

(d) Japan

These figures show the contribution of each type of institution to the first principal
component of the regional correlation matrix obtained from the latent factor struc-
ture. Correlation is obatined as ρij,t = E(ui,t, uj,t) − E(ui,t)E(uj,t), where E(ui,t, uj,t) =∫ 1
0

∫ 1
0 uiujct(ui, uj)duiduj and ct(ui, uj) =

∫ 1
0 c(ui, z; ρi,t)c(uj , z; ρj,t)dz with z being the la-

tent regional factor. Note that the principal component analysis (PCA) fails to capture
the rich dependence structure from the latent link. In the best case, PCA captures 2/3 of
the correlation structure (Japan), but it explains between 1/2 and 1/3 of the correlation
structure for most of the regions.
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Figure 11: Top bucket (95% confidence level) of FIs with highest correlation with
the Canadian latent factor

(a) Aggregated by industry classification

(b) 95% confidence interval for the correlation bucket
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Figure 12: Top bucket (95% confidence level) of FIs with highest correlation with
the US latent factor

(a) Aggregated by industry classification

(b) 95% confidence interval for the correlation bucket
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Figure 13: Top bucket (95% confidence level) of FIs with highest correlation with
the European latent factor

(a) Aggregated by industry classification

(b) 95% confidence interval for the correlation bucket
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Figure 14: Top bucket (95% confidence level) of FIs with highest correlation with
the Japanese latent factor

(a) Aggregated by industry classification

(b) 95% confidence interval for the correlation bucket
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Figure 15: Return-in-Stress (RiS) for the different financial institutions
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Figure 16: Return-in-Stress (RiS) and weighted-averaged log-return of each finan-
cial system

(a) Canada

(b) US

(c) Western Europe

(d) Japan

These figures show the log-returns of the weighted-market financial index for each region
(European index is computed in EUR) together with the Return-in-Stress (RiS). The
number of exceedances in RiS is similar to a Value-at-Risk with a 95% confidence level
(minimum percentage of exceedances is 3.6% of the sample for Canada and maximum
percentage of exceedances is 5.5% of the sample for Japan.)
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Figure 17: Scenario generating Return-in-Stress (RiS) for the Canadian financial
system
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This chart shows the scenario generating the Return-in-Stress (RiS) for the market-
weighted average Canadian financial return. We consider the 5% probability foreign
scenario with the highest negative impact on the average Canadian financial returns.
Top (Bottom) figure indicates the distribution of stress across international FIs in
terms of quantile (returns) as an upper bound for the scenario. The same quantile is
translated into a different return, as the conditional distribution of foreign institutions
evolves over time.
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Figure 18: RiS Scenario (aggregated by type and region) for the Canadian financial
system

This chart summarizes the scenario generating the Return-in-Stress (RiS) for the
market-weighted average Canadian financial return. We consider the 5% probability
foreign scenario with the highest negative impact on the average Canadian financial
returns. Top (Bottom) figure indicates the average distribution of stress across regions
and type of FIs in terms of quantile (returns) as an upper bound for the scenario.
JAP: Japan. USA: United States. WEU: Western Europe.
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Figure 19: Scenario generating Return-in-Stress (RiS) for the US financial system

This chart shows the scenario generating the Return-in-Stress (RiS) for the market-
weighted average US financial return. We consider the 5% probability foreign scenario
with the highest negative impact on the average US financial returns. Top (Bottom)
figure indicates the distribution of stress across international FIs in terms of quantile
(returns) as an upper bound for the scenario. The same quantile is translated into
a different return, as the conditional distribution of foreign institutions evolves over
time.
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Figure 20: RiS Scenario (aggregated by type and region) for the US financial system

This chart summarizes the scenario generating the Return-in-Stress (RiS) for the
market-weighted average US financial return. We consider the 5% probability foreign
scenario with the highest negative impact on the average US financial returns. Top
(Bottom) figure indicates the average distribution of stress across regions and type
of FIs in terms of quantile (returns) as an upper bound for the scenario.
JAP: Japan. CAN: Canada. WEU: Western Europe.
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Figure 21: Scenario generating Return-in-Stress (RiS) for the European financial
system

This chart shows the scenario generating the Return-in-Stress (RiS) for the market-
weighted average European financial return. We consider the 5% probability foreign
scenario with the highest negative impact on the average European financial returns.
Top (Bottom) figure indicates the distribution of stress across international FIs in
terms of quantile (returns) as an upper bound for the scenario. The same quantile is
translated into a different return, as the conditional distribution of foreign institutions
evolves over time.
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Figure 22: RiS Scenario (aggregated by type and region) for the European financial
system

This chart summarizes the scenario generating the Return-in-Stress (RiS) for the
market-weighted average European financial return. We consider the 5% probability
foreign scenario with the highest negative impact on the average European financial
returns. Top (Bottom) figure indicates the average distribution of stress across regions
and type of FIs in terms of quantile (returns) as an upper bound for the scenario.
JAP: Japan. USA: United States. CAN: Canada.
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Figure 23: Scenario generating Return-in-Stress (RiS) for the US financial system

This chart shows the scenario generating the Return-in-Stress (RiS) for the market-
weighted average Japanese financial return. We consider the 5% probability foreign
scenario with the highest negative impact on the average Japanese financial returns.
Top (Bottom) figure indicates the distribution of stress across international FIs in
terms of quantile (returns) as an upper bound for the scenario. The same quantile is
translated into a different return, as the conditional distribution of foreign institutions
evolves over time.
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Figure 24: RiS Scenario (aggregated by type and region) for the Japanese financial
system

This chart summarizes the scenario generating the Return-in-Stress (RiS) for the
market-weighted average Japanese financial return. We consider the 5% probability
foreign scenario with the highest negative impact on the average Japanese financial
returns. Top (Bottom) figure indicates the average distribution of stress across regions
and type of FIs in terms of quantile (returns) as an upper bound for the scenario.
WEU: Western Europe. USA: United States. CAN: Canada.
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Figure 25: Expected Shortfall Allocation (ESA) for a Japanese financial institution

This chart shows the shares (left axis) of Expected Shortfall for a Japanese financial
institution happening (or not) at the same time as tail returns in other Japanese or
foreign FIs. The right axis shows the correlation of that financial institution with
the regional latent factor (black line) and the correlation of the regional latent factor
with the global latent factor (red line).
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Figure 26: Expected Shortfall Allocation (ESA) for the DTIs and NBFIs in Canada

(a) DSIBs and other DTIs (b) NBFIs

This chart shows in the right axis the weighted-average Expected Shortfall of the
set of institutions which are Deposit-Taking Institutions (left figure) or Non-Banking
Financial Institutions (right figure). The left axis indicates the share of the Expected
Shortfall happening under four different scenarios.

Figure 27: Expected Shortfall Allocation (ESA) for the DTIs and NBFIs in US

(a) DSIBs and other DTIs (b) NBFIs

This chart shows in the right axis the weighted-average Expected Shortfall of the
set of institutions which are Deposit-Taking Institutions (left figure) or Non-Banking
Financial Institutions (right figure). The left axis indicates the share of the Expected
Shortfall happening under four different scenarios.
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Figure 28: Expected Shortfall Allocation (ESA) for the DTIs and NBFIs in Europe

(a) DSIBs and other DTIs (b) NBFIs

This chart shows in the right axis the weighted-average Expected Shortfall of the
set of institutions which are Deposit-Taking Institutions (left figure) or Non-Banking
Financial Institutions (right figure). The left axis indicates the share of the Expected
Shortfall happening under four different scenarios. The Expected Shortfall is com-
puted in euros.

Figure 29: Expected Shortfall Allocation (ESA) for the DTIs and NBFIs in Japan

(a) DSIBs and other DTIs (b) NBFIs

This chart shows in the right axis the weighted-average Expected Shortfall of the
set of institutions which are Deposit-Taking Institutions (left figure) or Non-Banking
Financial Institutions (right figure). The left axis indicates the share of the Expected
Shortfall happening under four different scenarios.
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Pairwise and mutual dependence.

Mutual independence is a stronger condition than pairwise independence. Pairwise in-

dependence implies that two events for a couple of variables are independent. For in-

stance, events A and B for variables X and Y are pairwise independent if PX , Y (A,B) =

PX(A)PY (B). Mutual independence implies that any set or combination of events for a

group of variables are independent from each other, which go further than the bivariate

dependence. Modeling and building metrics that account for the multivariate distribu-

tion of X, Y , and Z provide further information, preventing us from misleading pairwise

independence from mutual independence.

Romano and Siegel (1986) provides an example to illustrate the pairwise independence

and the existence of mutual dependence. Let us assume we have three independent

random variables which are normally distributed, i.e., X ∼ N(0, 1), Y ∼ N(0, 1), and

Z0 ∼ N(0, 1). Let us define Z = |Z0|sign(XY ). We would have that each variable is

independent from the other two, i.e., independent pairwise, but it is dependent given

the other two variables. Figure 30 presents a scatter plot of these variables, taking

into account that three of them instead of two provides more information about the

multivariate structure and increases the knowledge about the conditional distribution of

X given any combination of Y and Z.

79



Figure 30: Example of a pairwise independence and mutual dependence

(a) Bivariate scatter plot
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(b) Three-dimension scatter plot

These figures show the scatter plot between X, Y , and Z. Note that X does not provide
any information about Y unless it is combined with the information obtained from Z. This
helps motivate the use of the multivariate scenario because although we could have pairwise
independence, we must be aware of the existence of lack of mutual independence.
This example is taken from Romano and Siegel (1986), where X ∼ N(0, 1), Y ∼ N(0, 1),
and Z ∼ N(0, 1), we have pairwise independence, i.e., ρX,Y = 0, ρX,Z = 0 and ρY,Z = 0.
Z = |Z0|sign(XY ) where Z0 ∼ N(0, 1).

The Skewed t Distribution

The bivariate skewed t distribution discussed in Demarta and McNeil (2005) has the

following stochastic representation:

X = µ+ λW +
√
WZ, (8)

where µ and λ are the mean and asymmetry vector parameter respectively, W is an inverse

gamma distributed random variable W ∼ IG(ν
2
, ν
2
) with ν being the number of degrees

of freedom, and Z is a multivariable normal random variable Z ∼ N(0, P ) independent

of W with P =

 1 ρ

ρ 1

, i.e., Z = Lε with ε ∼ N(0, I) and L =

 L11 0

L12 L22

 =
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 1 0

ρ
√

1− ρ2

.

Note that E(X) = µ+ ν
ν−2

λ and Cov(X) = Σ = ν
ν−2

P + 2ν2

(ν−2)2(ν−4)
λλ′, so ν > 4 to have

a defined variance. The bivariate distribution is

fX(x) = c
K ν+2

2
(
√

(ν + d(x))λ′P−1λ) exp([x− µ]′P−1λ)

(
√

(ν + d(x))λ′P−1λ)−
ν+2
2 (1 + d(x)

ν
)
ν+2
2

,

with c = 2−ν/2

Γ( ν
2
)πν|P |1/2 , d(x) = [x − µ]′P−1[x − µ], and Ka(b) being the modified Bessel

function of the second kind. We use the approximations from Yang and Chu (2017)

when b is close to zero and b is large. In particular, lim
b→0

Ka(b) = 1
2
Γ(a)

(
b
2

)−a
and

lim
b→∞

Ka(b) =
√

π
2b

exp(−b)
(

1 + 4a2−1
8b

(
1 + 4a2−9

16b

))
. As shown by Lucas et al. (2014),

this approximation allows us to cancel the exponential term multiplying the modified

Bessel function, adding numerical stability for the skewness effect in the far tails.

Note that Eq. (8) conditioned to a realization of W is normally distributed, i.e.,

X|W ∼ N


µ1

µ2

+W ⊗

λ1
λ2


︸ ︷︷ ︸

µX|W

,W ⊗

1 ρ

ρ 1


︸ ︷︷ ︸

ΣX|W



where ⊗ is the Kronecker product. Eq. (3) could be rewritten as

fX(x) =

∫ ∞

0

ϕX|W (x|W )fW (w)dw, (9)

where ϕX|W (. . . ) is the normal probability distribution function with mean µX|W and

variance matrix ΣX|W and fW (. . . ) is the probability distribution function of the inverse
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Gaussian with all parameters equal to ν
2
.

Eq. (9) allows us to write the cumulative distribution function of the skewed t distribution

as

FX(x) =

∫ ∞

0

ΦX|W (x|w)fW (w)dw, (10)

where ΦX|W )(. . . ) is the cumulative normal probability distribution function with mean

µX|W and variance matrix ΣX|W .

We obtain the copula from the ratio between the joint density function and the product

of the marginal distributions. The univariate density of the skewed t distribution is

fX(x) = c
K ν+1

2
(
√

(ν + d(x))λ
2

σ2 ) exp
(

(x−µ)
σ2 λ

)
(
√

(ν + d(x))λ
2

σ2 )−
ν+1
2 (1 + d(x)

ν
)
ν+1
2

, (11)

with c = 21−
ν+1
2

Γ( ν
2
)(πν)

1
2 σ

and d(x) = (x−µ)2
σ2 , and where σ2 is given by the diagonal elements of

P . The copula density function is defined implicitly via

c(u, v) =
fX(F−1

X1
(u), F−1

X2
(v))

fX1(F
−1
X1

(u))fX2(F
−1
X2

(v))
. (12)

Copula function could be easily obtained from Eq. (10) as C(u, v) = F (F 1
1 (u), F−1

2 (v)),

i.e.,

C(u, v) =

∫ ∞

0

ΦX|W (Φ−1
X1|W (u),Φ−1

X2|W (v)|w)fW (w)dw. (13)
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The conditional copula could be obtained following Eq. (10) as

C(u|v) =

∫ ∞

0

Φ

(
F−1
X1

(u) − µX1|X2,W

σX1|X2,W

)
fW |X2(w)dw, (14)

with Φ (. . . ) being the standardized normal cumulative distribution function and

µX1|X2,W = µX1|W +
σ12|W
σ2
X2|W

(
F−1
X2|W (v) − µX2|W

)

, with σ12|W being the element in column 1 row 2 from matrix ΣX|W and

σX1|X2,W =
√

(1 − ρ2)W.

Latent factor structure

This section explains in detail how the latent factor model works and introduces its

bi-factor extension.

Factor copula. Let us assume that the joint behaviour of a matrix of N variables is

explained by distribution function with a correlation matrix P , i.e., f(X;P ). This model

implies estimating N(N−1)
2

parameters for the correlation matrix, i.e.,

P =



1 ρ1,2 . . . ρ1,N

ρ1,2 1 . . . ρ2,N

. . . . . . . . . . . .

ρ1,N ρ2,N . . . 1


.
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Let us assume that a one-factor model is able to explain the dynamics of the dataset,

dividing the stochastic behaviour into a systematic part, driven by the factor, and a

idiosyncratic part, e.g.,

Xi = ρiZ + ϵi.

Consequently, the correlation between variable Xi and Xj becomes ρiρj, approximating

the correlation matrix by

P̃Z =



1 ρ1ρ2 . . . ρ1ρN

ρ1ρ2 1 . . . ρ2ρN

. . . . . . . . . . . .

ρ1ρN ρ2ρN . . . 1


.

Note that to estimate this model, we would maximize the joint distribution conditioned

on the factor, i.e., f(X|Z;P ) =
∏N

i=1 f(Xi|Z; ρi).

Hence, the estimation of P̃Z would depend on the factor Z that is chosen to explain the

dynamics of the matrix X. The best factor Z∗ to explain the joint behaviour of matrix X

would be that one that generates a correlation matrix P̃ ∗ for which f(X; P̃ ∗) > f(X; P̃Z)

for any factor Z ̸= Z∗.29 The key element explaining the joint behavior is P̃Z∗ , so we

could try to estimate it directly, without explicitly selecting any particular factor if we

make some assumptions about the distribution of the factor and the relationship between

29This idea of comparing a latent factor with an explicit factor could lead to a kind of likelihood ratio
test to assess if the latent factor (unrestricted model) generates a significant higher likelihood than the
explicit factor model (restricted model). The appendix shows more details on how this test should be
computed.
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the factor and the matrix X, i.e.,

f(X; P̃ ∗) =

∫ ∞

−∞

N∏
i=1

f(Xi|Z; ρi)f(Z)dZ.

Krupskii and Joe (2013) proposes this approach to define the factor copula, where under

the assumption of a certain copula structure, the dependence structure could be estimated

as

c(U ; P̃ ∗) =

∫ 1

0

N∏
i=1

c(ui, v; ρi)dv, (15)

where c(. . . ) is the density copula, U is the matrix of integral distribution functions for

matrix X, i.e., U = F−1
X (X), and v is the latent factor driving the dependency between

the variables in the dataset.

Similarly, we could obtain the copula as

C(U ; P̃ ∗) =

∫ 1

0

N∏
i=1

C(ui|v; ρi)dv, (16)

where C(. . . | . . . ) is the conditional copula.

Latent bi-factor structure The structured factor copula is introduced by Krupskii

and Joe (2015), where the dependence between variables is explained by a common or

global factor and a group-specific factor. Krupskii and Joe (2015) suggests two ways to

generate dependence in non-homogeneous groups. The first approach would be assuming

that the common factor and the group-specific factor are independents, which in the case

of modeling dependence between financial firms might be difficult to hold. The second
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approach assumes that the group-specific factors are correlated via the global factor.30

Estimation approach and computational details

I estimate the parameters of the model following a two-step approach (Joe and Xu 1996).

First, parameters of the marginal distribution are estimated by maximum likelihood,

and, in a second step copula parameters are estimated by maximum likelihood using

pseudo-sample observations from the marginals as given by the integral probability trans-

formations of standardized returns. In other words, the parameters of uniform margins

are estimated at the first step and dependence parameters at the second step with pa-

rameters of the univariate margins fixed at the estimates obtained from the first step.

The two-step estimation approach, also known as inference function for margins (IFM)

significantly reduces the computation time, simplifying the estimation process.

The integral from Eq. (15) and the double integral from Eq. (5) could be easily ap-

proximated using a Gauss-Legendre quadrature (Stroud et al. 1966) with a good precision

using between 25 to 30 quadrature points. The Gauss–Legendre quadrature approximates

the integral as a weighted combination of integrands evaluated at quadrature points, e.g.,

we could write Eq. (15) as

c(U ; P̃ ∗) ≈
nq∑
k=1

wk

N∏
i=1

c(ui, xk; ρi),

30The definition of global and regional factors would set the main difference between both approaches.
If we define a regional factor as “the co-movement that is not common across regions,” we are choosing
the former approach, while defining the global factor as the commonality between the regional factors
is closer to the latter approach. This definition has implications not only in terms of how to understand
the latent factors but also in terms of number of parameters to be estimated. If we have N financial
institutions and G regional factors, we have to estimate 2N parameters in the first case and N+G in the
second case to get the full dependence structure. For large N and small G, the second approach becomes
computationally easier.
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where xk are the nodes, wk are the quadrature weights, and nq is the number of quadrature

points. Eq. (5) could be approximated as

c(U) =

nq∑
k1=1

wk1

G∏
g=1

nq∑
k2=1

wk2cV (xk2 , xk1)

Ng∏
i=1

c(ui, xk2).

An attractive property of Gauss–Legendre quadrature is that the same nodes and

weights are used for different functions to compute the integral quickly and with a high

precision. The same nodes also help in smooth numerical derivatives for numerical opti-

mization.

I also follow a step-optimization approach where the dependence parameters of the

copula model are estimated in steps. For the nested copula model, shown in Figure 5,

parameters for the group-specific copulas are estimated using data from the corresponding

region, as shown in the row T1 from Figure 5. Within each group, the data is modeled via

a latent one-factor model so the estimation is fast and stable, as shown by Krupskii and

Joe (2015). Once we have got the estimates for the group-specific copulas, we estimate the

parameters of the global copula, stage T2 in Figure 5, with the other parameters set equal

to their estimates. This step-wise approach allows us to get the estimates in a quick way;

however, we would need to rely on resampling methods to obtain the standard errors of

the model, as this method would give us the standard errors conditional on the previous

step. The resampling method would also allow us to get the multivariate distribution of

the parameters, which would give us the chance to generate in-sample and out-of-sample

forecast bands for the time-varying parameters using the methods shown by Blasques

et al. (2016).

Some additional restrictions are made for the estimation of the Skewed Student-t
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copula at each stage of the process. First, I assume the same parameters λ1, λ2, and ν for

all the variables modeled within the same factor. This simplification would speed up the

estimation because I would need to simulate realization of the Skewed-t distribution, as

there is not a closed formula for the inverse cumulative function of the univariate Skewed

Student-t distribution. Also, for each copula the number of parameters to estimate would

be N+3, where N are the number of variables modeled within the same factor. A second

restriction is the use of a “variance targeting” approach to alleviate the complexity of

the estimation process (Oh and Patton 2023). In particular, this approach implies using

a two-step procedure where the estimates of the constant copula are obtained first and,

following some stationarity assumptions, we estimate the GAS dynamics. The constant

copula gives us the estimation of the skewness parameters λ, the number of degrees of

freedom ν, and a vector of estimates ρ that defines the long-term relationship between

the variables and the latent factor. Similar to the variance targeting in the GARCH

literature, where the constant term ω is estimated based on the long-run variance, in the

GAS approach the unconditional expectation of the loadings in Eq. (6) is f̄i = ωi

1−βi as

the expectation of the score is zero (Blasques et al. 2022). The parameters αi and βi are

assumed to be equal for all the variables linked with the same factor, to further simplify

the estimation process.

For the numerical optimization of the constant copula, I used a modified Newton-

Raphson algorithm, for which the first and second partial derivatives of the copula density

with respect of the parameter vector are needed. This method allows us to get good

estimates for a large number of variables and parameters if we are starting from a sensible

starting point. Using the differentiation under the integral sign, we can build the first

and second derivatives with respect to the parameter vector. The appendix provides the
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analytical expressions of the gradient for the Skewed Student-t copula and some details

on how these derivatives would match in a factor copula framework, showing how we only

need to obtain 4 derivatives and 10 second derivatives to get the gradient and hessian of

a latent factor of any number of variables, as all the elements in the gradient and hessian

could be obtained from a combination of those outcomes.

The bifactor latent model.

Figure 31: Hierarchical dependence structure of a bifactor copula model.

V

v1 v2 . . . vn

v1|G v2|G . . . vn|G

U

u1 u2 . . . um

u1|G u2|G . . . um|G

G

T2

T1

This figure shows the structure of hierarchical dependence for a bifactor copula.
Starting from the top (T1) there is one global latent factor that explains the dependence between
variables in the dataset. Once that the common dependence is captured by the global factor,
the additional dependence between subgroups is captured by the regional factor (T2), where
depending on the subgroup, the latent regional factor V or U would describe the stronger
dependence between variables within the same subgroup than between variables from different
subgroups

c(v1, v2, . . . , vn, u1, u2, . . . , um) =
∫ 1

0

∫ 1

0

∏n
i=1 c(C(vi|G), V )dV

∫ 1

0

∏m
k=1 c(C(uk|G), U)dU∏n

i=1 c(vi, G)
∏m

k=1 c(uk, G)dG
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Row Bifactor Nested

Number of parameters (k) 314 166
AIC -35647.94 -52378.85
BIC -33087.36 -49875.77

Akaike Information Criterion: AIC = 2k − 2 log(l)

Bayesian Information Criterion: BIC = T ∗ log(k) − 2 log(L)

Likelihood ratio test on the factor structure.

The presentation of the correlation matrix as a result of a factor model makes it possible

to distinguish a restricted model, where the factor is known, e.g., a financial index, and

an unrestricted model, where the factor is unknown or latent. This distinction between

restricted and unrestricted models reminds us about a likelihood ratio test. Actually, we

could see the restricted model as a realization of the factor. The issue with this test is

similar to what Cai (1994) faced to test a Switching Markov model with a model without

structural change, i.e., the distribution function of the factor is not identified under the

null hypothesis, which makes the distribution of the likelihood ratio unknown under the

null hypothesis. Cai (1994) uses Monte Carlo techniques to get this distribution. I apply

the same idea to get the distribution under the null hypothesis that there is no significant

increase in the goodness of fit of the latent factor, or in other words, the explicit factor

is a realization of a stochastic variable with distribution f(Z).

The MonteCarlo exercise relies on the following steps:

1. Using the explicit factor and the estimated correlation matrix, simulate w realiza-

tions of the matrix X, i.e., X̃.

2. Estimate the correlation matrix for each of the w simulations of X by using the

latent factor as shown in Eq. (16). The likelihood of this model would be SwUR for

each simulation w.
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3. Estimate the correlation matrix for each of the w simulations of X by using the

explicit factor. The likelihood of this model would be SwR for each simulation w.

4. Compute the log difference log(SUR)− log(SR) for all the simulations, which would

give us a distribution of the likelihood ratio test under the null hypothesis (see

Figure 32).

5. Look at the corresponding value for a certain percentile of the distribution and

compare it with the likelihood-ratio statistic from the real data. If the likelihood

statistic is higher than the corresponding value for the selected percentile, we would

reject the null hypothesis with a probability given by that percentile.
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Figure 32: Likelihood ratio statistics distribution under the null hypothesis

This chart shows the distribution of the likelihood ratio under the null hypothesis that
the dependence structure estimated from an explicit one-factor model is a realization
of the dependence structure from the latent factor. The chart is based on a simulation
of 100 realizations for a dataset of length T=1000 and N=24 institution.

Measures and indicators in terms of copulas

I present the formulas for the indicators in terms of nested factor copulas, omitting

the time subscript to simplify the notation. To obtain the RiS measure, I start an

iterative algorithm that initiates with the univariate scenario with highest impact on the

domestic financial system; adding institutions up to the measure with N +1 conditioning

institutions generates a lower loss than the outcome with N institutions. This means

that the stress added by one extra institution is lower than the overall stress distributed
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across a smaller set of institutions, which allows us to reach more extreme quantiles in

individual institutions.

5.0.1 Return-in-Stress.

The probability of the conditioning subset A in Eq. (1) is defined as

P (A) =

∫ 1

0

∫ 1

0

∏
i∈A1

C(q∗i |va1)c(va1 , vG)dva1 · · ·
∫ 1

0

∏
j∈AM

C(q∗j |vaM )c(vaM , vG)dvaMdvG,(17)

where the set of institutions are in different M regional latent factors and q∗k ∈ (α, 1)

for k = i, . . . , j is the quantile of the conditioning institution i. The probability of the

conditioning scenario, as we are maximizing losses in the case of RiS, would be equal to

α, as the lower is the probability of the conditioning scenario and the highest would be

the potential impact.

The formula for the RiS in terms of copulas would be

RiS =
∑
j∈B

ωjE(rj|A)

=
1

α

∑
j∈B

ωj

∫ 1

0

[
F−1
j (uj)σj,t + µj,t

] ∫ 1

0

∫ 1

0

c(uj, vb)c(vb, vG)dvb∫ 1

0

∏
i∈A

C(q∗i |va)c(va, vG)dvadvGduj, (18)

where ωj is the weight of institution j in the conditioned set B.
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5.0.2 Expected Shortfall Allocation

The Expected Shortfall decomposition in Eq. (2) implies the definition of domestic (rd)

and foreign (rf ) financial sectors. We present the definition under: (i) the latent nested

structure, and (ii) a definition based on n institutions being at the tail, similar to Gravelle

and Li (2013). Both definitions lead to similar outcomes if the number of institutions is

large enough.31

Region tail stress using latent factors. The idiosyncratic section, i.e., E(ri,t|ri,t ≤

V aRi,t(α), rd,t > V aRd,t(α), rf,t > V aRf,t(α))P (rd,t > V aRd,t(α), rf,t > V aRf,t(α)|ri ≤

V aRi(α)), is defined as

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

] ∫ 1

0

∫ 1

α

cd,i(vd, ui)cG,d(wG, vd)dvd

∫ 1

α

cG,f (wG, vf )dvfdwGdui,(19)

where ui is the integral probability transformation for institution i, vd and vf refer to the

domestic and foreign latent factors, and wG indicates the global latent factor.

The domestic section, i.e., E(ri,t|ri,t ≤ V aRi,t(α), rd,t ≤ V aRd,t(α), rf,t > V aRf,t(α))P (rd,t ≤

V aRd,t(α), rf,t > V aRf,t(α)|ri ≤ V aRi(α)) is defined as

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

] ∫ 1

0

∫ α

0

cd,i(vd, ui)cG,d(wG, vd)dvd

∫ 1

α

cG,f (wG, vf )dvfdwGdui.(20)

Note that this formulation when we have M foreign financial systems would be similar,

changing
∫ 1

α
cG,f (wG, vf )dvf by

∏M
k=1

∫ 1

α
cG,fk(wG, vfk)dvfk . The definition for the foreign

section is more difficult when there is more than one foreign sector, as foreign would be if

31In our empirical exercise, a similar idiosyncratic share is found if four institutions are in the tail to
define the stress scenario.
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any foreign sector is in their tail. To simplify the computation, we just keep in mind that

the probability of the foreign section is the probability of not being domestically stressed

minus the probability of the idiosyncratic section. In other words, if we define the foreign

(domestic) tail stress as B (A) and not being in the tail as Bc (Ac), the probability of

the foreign stress is P (B ∩ Ac) = P (Ac) − P (Ac ∩Bc), i.e., the foreign section is

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

](∫ 1

0

∫ 1

α

cd,i(vd, ui)cG,d(wG, vd)dvddwG− (21)∫ 1

0

∫ 1

α

cd,i(vd, ui)cG,d(wG, vd)dvd

∫ 1

α

cG,f (wG, vf )dvfdwG

)
dui.

In a similar way, knowing that P (A ∩B) = P (A) − P (A ∩Bc), we can define the global

section as

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

](∫ 1

0

∫ α

0

cd,i(vd, ui)cG,d(wG, vd)dvddwG− (22)∫ 1

0

∫ α

0

cd,i(vd, ui)cG,d(wG, vd)dvd

∫ 1

α

cG,f (wG, vf )dvfdwG

)
dui.

Region tail stress where at least N institutions are in distress. The computation

in case we defined the tail event as at least N domestic/foreign institutions in their

tails would be computed as using the complementary probabilities, as the number of

institutions must be equal to or higher than N . For instance, in the case of N = 1, this is

the complementary probability of no institution at its tail, i.e., the idiosyncratic section
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would be

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

] ∫ 1

0

∫ 1

0

cd,i(vd, ui)

Md−1∏
j=1

(
1 − Cj|d(α|vd)

)
cG,d(wG, vd)dvd

∫ 1

0

cG,f (wG, vf )

Mf∏
j=1

(
1 − Cj|f (α|vf )

)
dvfdwGdui, (23)

where Md is the number of institutions in the domestic financial system and Mf is the

number of institutions in the foreign financial system.32 Note that Cj|d(α|vd) capture

the probability of institution j being at its tail given a realization of the latent domestic

factor (vd), so 1 − Cj|d(α|vd) is the probability of institution j not being at its tail given

the realization of vd. The product
∏Md−1

j=1

(
1 − Cj|d(α|vd)

)
is the joint probability of no

domestic institution being at its tail given the realization of factor vd. We are able to show

this probability as a product because the factor structure implies that institutions are

conditionally independent. To build the domestic section, we use the formula P (A∩Bc) =

P (Bc) − P (Ac ∩Bc), i.e.,

1

α

∫ α

0

[
F−1
i (ui)σi,t + µi,t

]∫ 1

0

∫ 1

0

cd,i(vd, ui)cG,d(wG, vd)dvd

∫ 1

0

cG,f (wG, vf )

Mf∏
j=1

(
1− Cj|f (α|vf )

)
dvfdwG −

∫ 1

0

∫ 1

0

cd,i(vd, ui)

Md−1∏
j=1

(
1− Cj|d(α|vd)

)
cG,d(wG, vd)dvd

∫ 1

0

cG,f (wG, vf )

Mf∏
j=1

(
1− Cj|f (α|vf )

)
dvfdwG

 dui. (24)

In a similar fashion, we would get the sections of the foreign and global section, just as

we already showed. For N = 2, the complementary section to the stress event becomes

larger, as if none or just one institution under stress would not be enough to trigger the

regional stress, e.g.,

P (Ac) =

∫ 1

0

Md−1∏
j=1

(
1− Cj|d(α|vd)

)
cG,d(wG, vd)dvddwG+

Mg−1∑
j=1

Cj|d(α|vd)
Mg−2∏
k ̸=j

(
1− Ck|d(α|vd)

)
cG,d(wG, vd)dvddwG,

while for N = 1 we just consider the first addend.

32We write Mg − 1 as institution i is within the Mg financial firms.
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Derivatives of the factor copula model

The minus log-likelihood function is defined as

S = −
T∑
t=1

log(c(ut, vt; Θ)),

where Θ is the set of copula parameters. The gradient with respect to the parameters Θ

would be

∂S

∂Θ
= −

T∑
t=1

∂ log(c(ut, vt; Θ))

∂Θ
.

Note that using the chain rule we can find the following relationship:

∂ log(c(ut, vt; Θ))

∂Θ
=

1

c(ut, vt; Θ)

∂c(ut, vt; Θ)

∂Θ
. (25)

The one-factor copula is defined

c(u, v; Θ) =

∫ 1

0

cu,z(u, z; θu,z)cv,z(v, z; θv,z)dz,

where Θ = [θ′u,z, θ
′
v,z]

′. In the skewed t framework we would have six parameters, i.e.,

Θ = [ρu,z, λu, ρv,z, λv, λz, ν]. Obviously, the factor model would provide a good alternative

for the estimation when the number of variables N is large (N >> 2). Following Leibniz’s
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integral rule, we can apply the differentiation under the integral sign, e.g.,

∂c(u, v; Θ)

∂ρu,z
=

∫ 1

0

∂cu,z(u, z; θu,z)

∂ρu,z
cv,z(v, z; θv,z)dz

∂c(u, v; Θ)

∂λu
=

∫ 1

0

∂cu,z(u, z; θu,z)

∂λu
cv,z(v, z; θv,z)dz

∂c(u, v; Θ)

∂ρv,z
=

∫ 1

0

cu,z(u, z; θu,z)
∂cv,z(v, z; θv,z)

∂ρv,z
dz

∂c(u, v; Θ)

∂λv
=

∫ 1

0

cu,z(u, z; θu,z)
∂cv,z(v, z; θv,z)

∂λv
dz

∂c(u, v; Θ)

∂λz
=

∫ 1

0

(
∂cu,z(u, z; θu,z)

∂λz
cv,z(v, z; θv,z) + cu,z(u, z; θu,z)

∂cv,z(v, z; ν)

∂λz

)
dz

∂c(u, v; Θ)

∂ν
=

∫ 1

0

(
∂cu,z(u, z; θu,z)

∂ν
cv,z(v, z; θv,z) + cu,z(u, z; θu,z)

∂cv,z(v, z; ν)

∂ν

)
dz

For the derivatives under the integral sign we follow Eq. (25) to get the derivative of the

copula as the product between the derivative of the log-copula multiplied by the copula

density, e.g., ∂cu,z(u,z;θu,z)

∂ρu,z
= ∂ log(cu,z(u,z;θu,z))

∂ρu,z
cu,z(u, z; θu,z). Once we get the derivative of

the factor copula with respect to the parameter, we apply again Eq. (25) to get the deriva-

tive of the log-copula with respect to the parameter, e.g., ∂ log(c(ut,vt;Θ))
∂ρu,z

= 1
c(ut,vt;Θ)

∂c(u,v;Θ)
∂ρu,z

.

The computation of the derivative of the log-copula hugely simplifies the analytical

assessment of the gradient vector. The next subsection presents the analytical derivatives

with respect to the parameters of the static copula model, as they are needed to compute

the static factor copula for a large dimensional dataset. We use a modified Newton-

Rapshon method to estimate the constant factor copula, as suggested by Krupskii and

Joe (2015), to be used as “variance targeting” to anchor the long-term dependence like

Oh and Patton (2023) and Lucas et al. (2014).
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Derivative of the GHST log-copula

The log-likelihood copula is defined as

log (c(ut, vt; Θ)) = log
(
f(F−1

X1
(u), F−1

X2
(v); Θ)

)
− log

(
f(F−1

X1
(u); Θ)

)
− log

(
fX2(F

−1
X2

(v); Θ)
)
,

with its derivative being

∂ log (c(ut, vt; Θ))

∂Θ
=

∂ log
(
f(F−1

X1
(u), F−1

X2
(v); Θ)

)
∂Θ

−
∂ log

(
fX1(F

−1
X1

(u); Θ)
)

∂Θ

−
∂ log

(
fX2(F

−1
X2

(v); Θ)
)

∂Θ
, (26)

with f(. . . , . . . ; Θ) and f... provided by Eq. (3) with N=2 and N=1 respectively.

We provide the derivative of the log-likelihood with respect of each parameter for the

marginal and the joint distribution.

Derivative of the joint distribution with respect to the GHST parameters.

log (f(x1, x2; Θ)) =
2 − (ν +N)

2
log(2) − log(Γ(

ν

2
)) − N

2
log(πν) − log(

√
1 − ρ2)

+ log
(
K ν+2

2

(
((ν + A)B)1/2

))
+ L +

ν + 2

2
log
(

((ν + A)B)1/2
)

−(ν + 2)

2
log

(
1 +

A

ν

)

with x1 = F−1
X1

(u), x2 = F−1
X2

(v), A = a1 + a2 + a3 with a1 = (x1−µ1)2
1−ρ2 , a2 = (x2−µ2)2

1−ρ2

and a3 = 2(x1 − µ1)(x2 − µ2)
−ρ

1−ρ2 . µ1 = 0, µ2 = 0, B = b1 + b2 + b3 with b1 =
λ21

1−ρ2 ,

b2 =
λ22

1−ρ2 and b3 = 2λ1λ2
−ρ

1−ρ2 . L = ℓ1 + ℓ2 + ℓ3 with ℓ1 = (x1−µ1)λ1
1−ρ2 , ℓ2 = (x2−µ2)λ2

1−ρ2 and
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ℓ3 = ((x1 − µ1)λ2 + (x2 − µ2)λ1)
−ρ

1−ρ2 .

Derivative of the joint distribution with respect to the correlation param-

eter.

∂a1

∂ρ
= 2ρ

(x1 − µ1)2

(1− ρ2)2

∂a2

∂ρ
= 2ρ

(x2 − µ2)2

(1− ρ2)2

∂a3

∂ρ
= 2(x1 − µ1)(x2 − µ2)

(
−1

1− ρ2
+

−2ρ2

(1− ρ2)2

)
∂A

∂ρ
=

∂a1

∂ρ
+
∂a2

∂ρ
+
∂a3

∂ρ

∂b1

∂ρ
= 2ρ

λ21
(1− ρ2)2

∂b2

∂ρ
= 2ρ

λ22
(1− ρ2)2

∂b3

∂ρ
= 2λ1λ2

(
−1

1− ρ2
+

−2ρ2

(1− ρ2)2

)
∂B

∂ρ
=

∂b1

∂ρ
+
∂b2

∂ρ
+
∂b3

∂ρ

∂ℓ1

∂ρ
= 2ρ

λ1(x1 − µ1)

(1− ρ2)2

∂ℓ2

∂ρ
= 2ρ

λ2(x2 − µ2)

(1− ρ2)2

∂ℓ3

∂ρ
= (λ1(x2 − µ2) + λ2(x1 − µ1))

(
−1

1− ρ2
+

−2ρ2

(1− ρ2)2

)
∂L
∂ρ

=
∂ℓ1

∂ρ
+
∂ℓ2

∂ρ
+
∂ℓ3

∂ρ

∂ log (f(x1, x2; Θ))

∂ρ
=

ρ

1 − ρ2
+

 1

K ν+2
2

(
((ν + A)B)1/2

)k ν+2
2

(
((ν + A)B)1/2

)
+

(ν + 2)/2

((ν + A)B)1/2


1

2
((ν + A)B)−1/2

(
(ν + A)

∂B

∂ρ
+B

∂A

∂ρ

)
+
∂L
∂ρ

+

−(ν + 2)/2(
1 + A

ν

) 1

ν

∂A

∂ρ
,

where ka (b) = ∂Ka(b)
∂b

= −0.5 (Ka+1(b) +Ka−1(b))

Derivative of the joint distribution with respect to the asymmetric param-

eter of the first variable. The derivatives ∂x1
∂λ1

=
∂F−1

X1
(u;λ1,ν)

∂λ1
is computed numerically.
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∂a1
∂λ1

=
2(x1 − µ1)

∂x1
∂λ1

1 − ρ2

∂a2
∂λ1

= 0

∂a3
∂λ1

= 2
∂x1
∂λ1

(x2 − µ2)
−ρ

1 − ρ2

∂A

∂λ1
=

∂a1
∂λ1

+
∂a2
∂λ1

+
∂a3
∂λ1

∂b1
∂λ1

=
2λ1

1 − ρ2

∂b2
∂λ1

= 0

∂b3
∂λ1

= = 2λ2
−ρ

1 − ρ2

∂B

∂λ1
=

∂b1
∂λ1

+
∂b2
∂λ1

+
∂b3
∂λ1

∂ℓ1
∂λ1

=

(
∂x1
∂λ1

λ1 + (x1 − µ1)
)

1 − ρ2

∂ℓ2
∂λ1

= 0

∂ℓ3
∂λ1

=

(
∂x1
∂λ1

λ2 + (x2 − µ2)

)
−ρ

1 − ρ2

∂L
∂λ1

=
∂ℓ1
∂λ1

+
∂ℓ2
∂λ1

+
∂ℓ3
∂λ1

∂ log (f(x1, x2; Θ))

∂λ1
=

+

 k ν+2
2

(
((ν +A)B)1/2

)
K ν+2

2

(
((ν +A)B)1/2

) +
(ν + 2)/2

((ν +A)B)1/2

 1

2
((ν +A)B)−1/2

(
(ν +A)

∂B

∂λ1
+B

∂A

∂λ1

)
+

∂L
∂λ1

−
(ν + 2)/2(
1 + A

ν

) 1

ν

∂A

∂λ1
,

Derivative of the joint distribution with respect to the asymmetric parame-

ter of the second variable. The derivative ∂x2
∂λ2

=
∂F−1

X2
(u;λ2,ν)

∂λ2
is computed numerically.

101



∂a1
∂λ2

= 0

∂a2
∂λ2

=
2(x2 − µ2)

∂x2
∂λ2

1 − ρ2

∂a3
∂λ2

= 2
∂x2
∂λ2

(x1 − µ1)
−ρ

1 − ρ2

∂A

∂λ2
=

∂a1
∂λ2

+
∂a2
∂λ2

+
∂a3
∂λ2

∂b1
∂λ2

= 0

∂b2
∂λ2

=
2λ2

1 − ρ2

∂b3
∂λ2

= = 2λ1
−ρ

1 − ρ2

∂B

∂λ2
=

∂b1
∂λ2

+
∂b2
∂λ2

+
∂b3
∂λ2

∂ℓ1
∂λ2

= 0

∂ℓ2
∂λ1

=

(
∂x2
∂λ2

λ2 + (x2 − µ2)
)

1 − ρ2

∂ℓ3
∂λ2

=

(
∂x2
∂λ2

λ1 + (x1 − µ1)

)
−ρ

1 − ρ2

∂L
∂λ2

=
∂ℓ1
∂λ2

+
∂ℓ2
∂λ2

+
∂ℓ3
∂λ2

Derivative of the joint distribution with respect to the number of degrees

of freedom. González-Santander (2023) shows that the n-th derivative of the modified

Bessel function of the second kind is

∂n

∂νn
Kν(t) =

1

2

∫ ∞

−∞
xn exp(νx− t coshx)dx,

where cosh is the hyperbolic cosine. For n=1, we can find a closed-form solution for

non-integral ν (see Brychkov 2016, González-Santander 2018) defined as

∂Kν(t)

∂ν
=

π

2
csc(πν)

π cot(πν)Iν(z)− [Iν(z) + I−ν(z)]

 z2

4(1− ν2) 3F4


 1, 1, 3

2

2, 2, 2,−ν, 2 + ν

 |z2

+ log(
z

2
)− ψ(ν)−

1

2ν




+
1

4

I−ν(z)Γ
2(−ν)

( z
2

)2ν

2F3


 ν, 1

2
+ ν

1 + ν, 1 + ν, 1 + 2ν

 |z2

− Iν(z)Γ
2(ν)

( z
2

)−2ν

2F3


 −ν, 1

2
− ν

1− ν, 1− ν, 1− 2ν

 |z2


 ,
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where pFq is the generalized hypergeometric function and ψ(. . . ) is the digamma function.

The derivatives ∂x1
∂λ1

=
∂F−1

X1
(u;λ1,ν)

∂ν
and ∂x2

∂ν
=

∂F−1
X2

(u;λ2,ν)

∂ν
are computed numerically.

∂a1
∂ν

=
2(x1 − µ1)

∂x1
∂ν

1 − ρ2

∂a2
∂ν

=
2(x2 − µ2)

∂x2
∂ν

1 − ρ2

∂a3
∂ν

= 2

(
(x2 − µ2)

∂x1
∂ν

+ (x1 − µ1)
∂x2
∂ν

)
−ρ

1 − ρ2

∂A

∂ν
=

∂a1
∂ν

+
∂a2
∂ν

+
∂a3
∂ν

∂b1
∂ν

= 0

∂b2
∂ν

= 0

∂b3
∂ν

= 0

∂B

∂ν
=

∂b1
∂ν

+
∂b2
∂ν

+
∂b3
∂ν

∂ℓ1
∂ν

=

(
∂x1
∂ν
λ2
)

1 − ρ2

∂ℓ2
∂ν

=

(
∂x2
∂ν
λ2
)

1 − ρ2

∂ℓ3
∂ν

=

(
∂x2
∂ν

λ1 +
∂x1
∂ν

λ2

)
−ρ

1 − ρ2

∂L
∂ν

=
∂ℓ1
∂ν

+
∂ℓ2
∂ν

+
∂ℓ3
∂ν

∂ log (f(x1, x2; Θ))

∂ν
=

1

2
log(2) + ψ(

ν

2
)/2−

1

ν

∂K ν+2
2

(
((ν+A)B)

1
2

)
∂ν

1
2
+ 1

2
k ν+2

2

(
((ν +A)B)

1
2

)
((ν +A)B)

−1
2

[
(ν +A) ∂B

∂ν
+ (1 + ∂A

∂ν
)B

]
K ν+2

2

(
((ν +A)B)

1
2

) +
∂L
∂ν

+
log

(
[(ν +A)B]

1
2

)
2

+ (ν + 2)
[(ν +A)B]

−1
2

{
(ν +A) ∂B

∂ν
+ (1 + ∂A

∂ν
)B

}
[(ν +A)B]

1
2

−
log

(
1 + A

ν

)
2

−
(ν + 2)/2(
1 + A

ν

) [
∂A

∂ν

1

ν
−
A

ν2

]

Hessian of the factor copula model

We could apply the rule of chain on Eq. (25) to get the second derivative

∂2 log(c(ut, vt; Θ))

∂θ1∂θ2
=

−1

c(ut, vt; Θ)2
∂c(ut, vt; Θ)

∂θ1

∂c(ut, vt; Θ)

∂θ2
+

1

c(ut, vt; Θ)

∂2c(ut, vt; Θ)

∂θ1∂θ2
.

We apply again the differentiation under the integral sign as we did for the gradient to

obtain the second derivative with respect to the parameters of the Skewed t distribution.
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For numerical minimization in a high dimensional dataset, we need the gradient and

hessian to use a modified Newton-Raphson algorithm, where the gradient indicates the

direction to follow to minimize the minus log-likelihood and the hessian indicates the size

of the step in that direction.

Venn diagrams

Venn diagrams are visual representations of sets that help us draw probabilities of multi-

variate scenarios. To show how it works, let us imagine the set A includes all the possible

scenarios where financial firm i is in its left tail, i.e., firm i is under stress. The area of the

circle below indicates the probability of that event. The area outside the circle indicates

the probability of financial firm i not being under stress.

Figure 33: Venn diagram – 1 set

(a) Probability of A

A

Area within the circle indicates the prob-
ability of set A, that gathers all the sce-
narios where financial institution i is un-
der stress, i.e., the performance of firm
i is below the threshold marked by its α
percentile.

(b) Probability of not A

A

Area outside the circle indicates the com-
plementary probability of set A, that
gathers all the scenarios where financial
institution i is not under stress, i.e., the
performance of firm i is above the thresh-
old marked by its α percentile.

The use of Venn diagrams helps compute the analytical expression of the tail de-

composition up to the fifth term. Let us imagine we have a second institution j, and
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the set B gathers all the potential events where institution j is below its percentile α.

The probability of both institutions i and j being below their percentiles α is P (A∩B),

which in terms of copulas is Ci,j(α, α). The orange area in the left two-set Venn graph

below indicates that probability. The probability of institution i being under stress and

institution j not under stress is measured by P (A)−P (A∩B), which in terms of copulas

would be α−Ci,j(α, α). This probability is captured by the Venn diagram in the orange

area in the below right graph.

Figure 34: Venn diagram – 2 sets

(a) Probability of A and B

A B

Area in orange indicates the probability
of set A and B, i.e., both financial insti-
tutions i and j under stress (below the
threshold marked by its α percentile).

(b) Probability of A and not B

A B

Area in orange indicates the probability
of set A and not B, i.e., financial insti-
tutions i is under stress (below percentile
α) but institution j is not.

Let us imagine we have a third financial institution k and set C indicates the scenarios

where returns of firm k are under percentile α. The Venn diagram with three sets becomes

more interesting, as we could see that some common areas need to be accounting when

building the probabilities. For instance, the probability of set A and CC and BC , i.e., only

firm i is below its percentile α, could be built as P (A)−P (A∩C)−P (A∩B)+P (A∩B∩C).

P (A ∩ C) is the green and red areas, while P (A ∩ B) is the blue and red areas. When

we are subtracting those areas, we are counting twice the red area, so we need to sum it
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back to get the right amount. The red area is P (A ∩ B ∩ C). In terms of copulas, we

could write this probability as α− Ci,j(α, α) − Ci,k(α, α) + Ci,j,k(α, α, α).

Figure 35: Venn diagram – 3 sets

A B

C

Area in orange indicates the probability of set A and not B and not C. Note that, to get
this area, we could subtract from A the common area with C and the common area with B.
Because when subtracting those areas you are counting twice the red area (that is common
with B and C), you have to sum it back to compensate and get the right area.

The introduction of a fourth institution l, and the set of scenarios D associated with

stress tail events for institution l, generates a decomposition of 8 possible areas of A,

as shown by the hereinbelow figure. P (A ∩ B) = Ci,j(α, α) includes the yellow, green,

brown, and red wine areas. P (A ∩ C) = Ci,k(α, α) includes the blue, cyan, red wine,

and brown areas. P (A ∩D) = Ci,l(α, α) includes the brown, cyan, red, and green areas.

P (A ∩ B ∩ C) = Ci,j,k(α, α, α) includes brown and red wine areas, P (A ∩ B ∩ D) =

Ci,j,l(α, α, α) covers the green and brown areas, and P (A∩C ∩D) = Ci,k,l(α, α, α) covers

the brown and cyan areas. P (A∩B ∩C ∩D) = Ci,j,k,l(α, α, α, α) encompasses the brown

area. To get the probability of only institution i getting its returns under its threshold,

i.e., the orange area, implies a set of corrections for the areas that are double or triple

counted. P (A∩ (B ∪C ∪D)c) = P (A)−P (A∩B)−P (A∩C)−P (A∩D) + 2P (A∩B ∩
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C ∩D) +P (A∩B ∩D) +P (A∩B ∩C) +P (A∩C ∩D), which in terms of copulas would

be rewritten as α−Ci,j(α, α)−Ci,k(α, α)−Ci,l(α, α)+2Ci,j,k,l(α, α, α, α)+Ci,j,l(α, α, α)+

Ci,j,k(α, α, α) + Ci,k,l(α, α, α).

Figure 36: Venn diagram - 4 sets

A

B

C

D

The colors of this Venn diagram show different decompositions of set A depending on which
other areas are held in common. Getting the orange area, the unique area of A, implies a
set of adjustments from the combination of common areas.

The latent factor structure simplifies heavily the calculations, as we can work with

the conditional distribution integration over the factor. Let us imagine that those four

institutions depend on a factor X that fully explains the dependence structure. Then

P (A ∩ Bc) = P (A) − P (A ∩ B) could be rewritten as
∑

i P (A|X = xi) − P (A|X =

xi)P (B|X = xi), where xi is a realization of the factor and we are summing all across

the potential realizations of the factor. Note that the joint probability can be expressed

as a product because the dependence between the variables is fully captured by the
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factor. Conditional on the factor, the variables are independent. Note that P (A) −

P (A∩B) = P (A)(1−P (B|A)), just by taking P (A) as common multiplier and knowing

that P (B|A) = P (A∩B)
P (A)

. When we have a factor structure, this implies P (A ∩ Bc) =∑
i P (A|X = xi)(1 − P (B|X = xi)). The probability P (A ∩ (B ∪ C)c) = P (A) − P (A ∩

C)−P (A∩B)+P (A∩B∩C) could be written as P (A)[1−P (C|A)−P (B|A)+P (B∩C|A)],

which under the factor structure would be
∑

i P (A|X = xi)[1−P (C|X = xi)−P (B|X =

xi) + P (B|X = xi)P (C|X = xi)] =
∑

i P (A|X = xi)[1 − P (B|X = xi) − P (C|X =

xi)(1−P (B|X = xi))] =
∑

i P (A|X = xi)[(1−P (C|X = xi))(1−P (B|X = xi))]. In the

four institution example, P (A ∩ (B ∪ C ∪D)c) = P (A ∩ Bc ∩ Cc ∩Dc) =
∑

i P (A|X =

xi)(1 − P (B|X = xi))(1 − P (C|X = xi))(1 − P (D|X = xi)), which greatly removes the

complexity of the calculations.
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