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Abstract 
This paper studies how financial shocks shape the distribution of output growth by 
introducing a quantile-augmented vector autoregression (QAVAR), which integrates 
quantile regressions into a structural VAR framework. The QAVAR preserves standard 
shock identification while delivering flexible, nonparametric forecasts of conditional 

moments and tail risk measures for gross domestic product (GDP). Applying the model to 
financial conditions and credit spread shocks, we find that adverse financial shocks 
worsen the downside risk to GDP growth significantly, while the median and upper 
percentiles respond more moderately. This underscores the importance of nonlinearities 
and heterogeneous tail dynamics in assessing macro-financial risks. 

 

Topics: Central bank research, Econometric and statistical methods, Financial markets, 
Financial stability, Monetary and financial indicators 

JEL codes: C32, C53, E32, E44, G01 

Résumé 
Dans cette étude, nous examinons comment les chocs financiers influent sur la 
distribution de la croissance de la production. Nous introduisons un modèle vectoriel 

autorégressif semi quantile qui intègre des régressions quantiles à un cadre vectoriel 
autorégressif structurel. Ce modèle conserve l’identification conventionnelle des chocs 
tout en permettant de produire des prévisions flexibles et non paramétriques des 
moments conditionnels ainsi que des mesures de risque extrême pour le produit intérieur 
brut (PIB). En appliquant le modèle aux conditions financières et aux chocs d’écarts de 

crédit, nous constatons que les chocs financiers défavorables accentuent 
considérablement les risques à la baisse entourant la croissance du PIB, tandis que les 
centiles médian et supérieurs de la croissance du PIB présentent des réactions plus 
modérées. Ces constats soulignent l’importance des non-linéarités et de la dynamique 
hétérogène des queues de distribution dans l’évaluation des risques macrofinanciers. 

 

Sujets :  Recherches menées par les banques centrales, Méthodes économétriques et 
statistiques, Marchés financiers, Stabilité financière, Indicateurs monétaires et financiers 
Codes JEL : C32, C53, E32, E44, G01 



1 Introduction

Financial shocks are a major source of macroeconomic fluctuations, but their effects vary

with economic conditions. At times, adverse shocks to financial markets coincide with mild

slowdowns; in other cases, they precipitate deep recessions. Identifying when financial shocks

translate into material downside risk to growth is essential for both policymakers and market

participants, particularly in periods of elevated uncertainty or fragility.

This paper studies how financial shocks affect the distribution of gross domestic product

(GDP) growth. We first develop a quantile-augmented vector autoregressive model (QAVAR)

by incorporating regressed conditional quantiles into a VAR while preserving conventional

shock identification. We then apply the QAVAR to revisit two seminal studies—Adrian

et al. (2019) and Gilchrist and Zakraǰsek (2012)—on the effects of financial shocks on GDP

growth.

The QAVAR is an extension of the standard VAR that retains conventional shock iden-

tification while recovering the conditional distribution of a single variable—GDP growth in

our case. By numerically integrating over a finite set of fitted quantiles, the model yields

flexible density forecasts and direct estimates of conditional moments and risk measures,

without imposing a parametric distribution.

Our empirical application unifies the strengths of Gilchrist and Zakraǰsek (2012) (here-

after GZ), who identify structural financial shocks but do not examine distributional effects,

and Adrian et al. (2019) (hereafter ABG), who study distributional impacts of financial

conditions without structural identification. We embed ABG’s setup in our QAVAR and

show that structural financial conditions shocks worsen downside risks to GDP growth, as

measured by the 5th percentile (Growth-at-Risk). We then extend GZ’s setup and find that

corporate bond market stress worsens downside risk: it is twice as detrimental as the average

effect in GZ’s model. In contrast, the median and upper percentiles of the GDP response

to excess bond premium shocks are about 30% less severe than the average effect in GZ’s

linear model.

Our findings align with the literature showing that financial turmoil deepens recessions

and slows recoveries (e.g., Reinhart and Rogoff, 2014). They also support Loria et al. (2024),

who find that the 10th percentile of GDP growth falls more sharply than the median or 90th

percentile after financial shocks. Unlike their quantile local projection approach, our method

allows for both shock identification and dynamic quantile evolution.

We show that our QAVAR identifies similar structural shocks to those in the linear VAR

of GZ. Monte Carlo simulations confirm that quantile-based conditional moment estimates

perform well in settings with volatility clustering and non-Gaussian innovations. The idea of
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using a sequence of quantiles to approximate distributions and simulate non-linear dynamics

is not new. In recent years, many applications have drawn from the same heuristic projection

to uncover general model-free distribution effects.1

Our QAVAR offers a middle ground between standard VARs and fully quantile-based

systems by modelling the distribution of a single variable. Models such as the conditional

autoregressive VAR (CAViaR) (Engle and Manganelli, 2004; White et al., 2015), cast in a

VAR framework by Chavleishvili et al. (2021) and Chavleishvili and Manganelli (2024), model

the entire system in quantiles and use quantile shocks to simulate tail scenarios. Instead, our

approach can retain standard VAR structural shock identification while capturing relevant

nonlinear propagation and tail dynamics.

The rest of the paper is organized as follows. Section 2 outlines the QAVAR modelling

framework and outlines impulse response function simulation procedures. Section 3 revisits

the works of Adrian et al. (2019) and Gilchrist and Zakraǰsek (2012) to highlight the con-

tribution of non-linear dynamics in the propagation of structural financial shocks. Section

4 concludes. Monte Carlo simulations comparing the conditional moments estimated by the

QAVAR to those of the standard VAR counterpart are left for the appendix.

2 The model

This section first presents the standard VAR model before introducing the QAVAR model.

The key difference in the QAVAR is that a single variable of interest relies on a quantile-based

density forecast while the other variables are modelled as in a VAR. To ease exposition, we

discuss the case of a bivariate (QA)VAR with one lag, but the framework easily extends

to general multivariate autoregressive vectors with extended lag structures. This flexible

approach allows for non-linear transmission of shocks through heterogeneous conditional

quantile responses of the variable of interest, while preserving the structural identification

methods of a standard VAR. Because quantile regression (QR) estimates are distribution-

free, the hybrid model does not yield analytically tractable forecasts. Hence, we rely on

density forecasts to simulate the mean and quantile impulse response functions.

2.1 The standard VAR

Let {Yt = (Y1,t, Y2,t)
′ : t = 0, 1, . . . , T} denote a weakly stationary bivariate process governed

by a first-order VAR, Yt = µ+ BYt−1 + εt, where µ = (µ1, µ2) is a vector of intercepts, B is

1Quantile-based density estimates have been implemented, for instance, within deep Q-learning algorithms
(see, e.g., Bellemare et al., 2017; Dabney et al., 2018). Other relevant applications include stock returns
forecasting (Arısoy, 2023) and multi-objective hedging (Cao et al., 2020), to name only a few.
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a matrix of autoregressive coefficients satisfying the usual stationarity conditions, and εt =

(ε1,t, ε2,t)
′ is a vector of serially independent innovations satisfying E[εt] = 0 and E[εtε

′
t] = Σ.

In matrix form, we can write[
Y1,t

Y2,t

]
=

[
µ1

µ2

]
+

[
β1,1 β1,2

β2,1 β2,2

] [
Y1,t−1

Y2,t−1

]
+

[
ε1,t

ε2,t

]
. (1)

In the first-order VAR, the expectation of Yt given Yt−1, denoted Y t = Et−1[Yt], is given by

Y t = (Y 1,t, Y 2,t)
′ = µ+ BYt−1, and the system in Equation (1) can be formulated as

Yt = Y t + εt , (2)

where Y t represents the mean forecast of Yt given Yt−1, and εt captures the innovation

component.

The formulation in Equation (2) highlights the decomposition of each realization of Yt

into a model-implied predictable component and a corresponding mean-zero innovation. In

the VAR above, the predictable component is a linear function of lagged variables where in-

tercept and autoregressive coefficient estimates are obtained by ordinary least-squares (OLS)

and denoted µ̂OLS and B̂OLS, respectively. Under the usual OLS assumptions, the fitted value

denoted with a hat, Ŷ t = µ̂OLS + B̂OLSYt−1, is the best linear unbiased estimator of Y t, and

innovations are then identified as regression residuals ε̂t = (ε̂1,t, ε̂2,t) = Yt− Ŷ t. Importantly,

this decomposition into predictable (fitted) and unpredictable (residual) values accommo-

dates alternative models and hence other estimators of Et−1[Yt]. Our model novelty is to

replace Y t with a mean forecast based on conditional quantile estimates.

2.2 The quantile-augmented VAR

The QAVAR modifies the standard linear VAR framework in Equation (2) to capture state-

dependent distribution features beyond the first moment. One variable, Y1,t, is modelled

using conditional quantile estimates. The resulting model-free density estimates, unlike the

linear VAR, capture time-varying higher-order moments and nonlinear shock transmission.

The other variable, Y2,t, is still modelled linearly as in a standard VAR, such that Y2,t|Yt−1
maintains the same linear form. Any additional variable in the QAVAR would continue to

follow the linear VAR framework; thus, the case with more than two variables is a simple

extension of the bivariate setup presented here.

Define FY1,t|Yt−1 as the conditional cumulative distribution function (CDF) of Y1,t given

Yt−1 and its generalized inverse (or quantile function) as QY1,t|Yt−1 . Moreover, quantile residu-
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als for each quantile τ ∈ (0, 1) are defined as ηt,τ = Y1,t−QY1,t|Yt−1(τ), satisfying Qηt,τ (τ) = 0

by construction (Koenker and Bassett Jr, 1978).

Next, consider a partition of the probability space given by an evenly spaced grid, TN =

{τn = n/(N + 1) : n = 1, . . . , N}.2 The quantile-based approximation of Et−1[Y1,t] is then

given by

Ỹ
(N)
1,t =

1

N

∑
τ∈TN

QY1,t|Yt−1(τ) . (3)

Under mild integrability assumptions, the approximation Ỹ
(N)
1,t converges to

∫ 1

0
QY1,t|Yt−1(τ) dτ =

Et−1[Y1,t] as N → ∞. Beyond the conditional mean, this simple numerical integration ap-

proach lends itself to the approximation of other relevant risk metrics—such as conditional

variance, skewness, kurtosis, value-at-risk, expected shortfall, and more—via appropriate

transformations of the quantile function. More generally, this quantile-based fit is designed

to capture heterogeneous effects across quantiles of the conditional distribution Y1,t|Yt−1.
We modify Equation (2) to incorporate Ỹ

(N)
1,t into the VAR framework. Specifically, we

replace the traditional conditional expectation Y 1,t with Ỹ
(N)
1,t , the quantile-based approx-

imation of Et−1[Y1,t] representing the predictable component in the QAVAR model. Here,

the tilde denotes a quantile-based conditional expectation, while the bar indicates the con-

ventional linear conditional expectation. The resulting system is written as[
Y1,t

Y2,t

]
=

[
Ỹ

(N)
1,t

Y 2,t

]
+

[
ε̃
(N)
1,t

ε2,t

]
, (4)

where the (approximated) forecast error for Y1,t is given by ε̃
(N)
1,t = Y1,t−Ỹ (N)

1,t = 1
N

∑
τ∈TN ηt,τ .

This expression captures the deviation between the realized value of Y1,t and its quantile-

based approximation constructed from N conditional quantiles. By the same numerical

integration argument used in Equation (3), the fitted QAVAR residual ε̃
(N)
t = (ε̃

(N)
1,t , ε2,t)

′ from

Equation (4) converges to the model-implied forecast error ε̃∗t = (ε̃∗1,t, ε2,t)
′ = Yt−Et−1[Yt] as

N →∞.

In summary, the system in Equation (4) approximates the true data-generating process

specifying the quantile function QY1,t|Yt−1(τ) across all τ ∈ (0, 1). To incorporate QR into the

VAR framework, we adopt a hybrid approach whereby only a finite collection of quantiles

are considered for Y1,t, while the second variable, Y2,t, remains governed by its conventional

2The appropriate number of quantiles N should be proportional to the sample size T , since larger T
permits estimation of quantiles further into the distribution’s tails. In the Monte Carlo simulations reported
in Appendix C, we set N = 99 and examine results for T = 200, 500, and 1000.
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linear VAR form.3

2.3 Estimating conditional expectations with quantile regressions

The hybrid QAVAR model approximates the conditional expectation in Equation (3) by

averaging N fitted quantiles of Y1,t|Yt−1. We now detail how to compute those quantile esti-

mates. Assuming a first-order autoregressive structure as above, we see that the conditional

quantile estimator follows a linear specification given by

QY1,t|Yt−1(τ) = ατ + βτYt−1 = ατ + β1,1,τY1,t−1 + β1,2,τY2,t−1 , (5)

where the coefficients ατ and βτ = (β1,1,τ , β1,2,τ ) are indexed by the quantile level τ . QR

estimates α̂τ and β̂τ = (β̂1,1,τ , β̂1,2,τ ) are obtained by solving

α̂τ , β̂τ = argmin
α,β

T∑
t=1

ρτ (Y1,t − α− βYt−1) , (6)

where ρτ (u) = u(τ − 1{u<0}) is the standard check function (Koenker and Bassett Jr, 1978).

The estimated autoregressive coefficients across quantiles are stored in the matrices

α̂QR =


α̂τ1
...

α̂τN

 and B̂QR =


β̂τ1

...

β̂τN

 =


β̂1,1,τ1 β̂1,2,τ1

...
...

β̂1,1,τN β̂1,2,τN

 .

Note that for each τ ∈ TN , the QR estimation is carried out independently. Hence, the rows

of α̂QR and B̂QR are estimated separately.4

If QR coefficients are constant across τ , the model reduces to a standard VAR. Other-

wise, the heterogeneity in coefficients across quantiles captures non-linear and asymmetric

3Extensions to multivariate QR lie beyond the scope of this analysis, as such generalizations would
necessitate accounting for dependence across conditional quantile functions of different variables. We instead
assume that the conditional distribution of Y1,t is a function of past innovations alone, just like the rest of
the system. A possible solution to modelling multiple quantile processes is offered by Chavleishvili and
Manganelli (2024), who assume a triangular factorization of structural quantile shocks. In other words, a
given conditional quantile of one variable depends on the quantiles of preceding variables in a user-chosen
causal ordering.

4We acknowledge the issue of quantile crossing with a linear specification, where fitted quantile functions
may not be generally monotone in τ . This phenomenon is more prevalent in data-poor regions of the
distribution’s support domain and may arise more frequently for tail events, such as deep recessions. To
compute tail risk metrics, we ensure monotonicity by simply sorting fitted quantiles (Chernozhukov et al.,
2010). More computationally intensive solutions would include those proposed by He (1997) and Bondell
et al. (2010), which enforce monotonicity through parameter restrictions, and by Schmidt and Zhu (2016),
where the spacings between adjacent quantiles are modelled as positive functions.
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responses of Y1,t to lagged values, allowing the model to approximate conditional higher

moments and multimodality. QR thus provides a flexible, semi-parametric representation

of the conditional distribution of Y1,t|Yt−1, relaxing the distributional assumptions typically

required to estimate conditional moments.

Given the quantile approximation of the conditional mean Ỹ
(N)
1,t in Equation (3), the

estimated conditional mean is

ˆ̃
Y

(N)

1,t =
1

N

∑
τ∈T

Q̂Yt|Yt−1(τ) , (7)

with corresponding residual ˆ̃ε
(N)

1,t = Yt −
ˆ̃
Y

(N)

1,t . To express the complete QAVAR system,

define respectively the stacked estimated intercept terms and autoregressive coefficients as

µ̂ =

[
α̂QR

[µ̂OLS]−1

]
=


α̂τ1
...

α̂τN

µ̂OLS
2

 and B̂ =

[
B̂QR

[B̂OLS]−1

]
=


β̂1,1,τ1 β̂1,2,τ1

...
...

β̂1,1,τN β̂1,2,τN

β̂2,1 β̂2,2

 ,

where [µ̂OLS]−1 denotes the vector µ̂OLS without the intercept for Y1,t, and [B̂OLS]−1 denotes

the matrix B̂OLS without the coefficients that correspond to Y1,t, which is instead modelled

via QR.

The vector of N + 1 fitted values (N conditional quantile estimates for Y1,t, plus one

conditional mean estimate for Y2,t) is then Λ̂t = µ̂+B̂Yt−1 = (Q̂Y1,t|Yt−1(τ1), . . . , Q̂Y1,t|Yt−1(τN),

Ŷ 2,t)
′, and the corresponding residual vector is Ĥt = (η̂t,τ1 , . . . , η̂t,τN , ε̂2,t)

′. The QAVAR

system is written as

Yt = W(µ̂+ B̂Yt−1 + Ĥt) = W(Λ̂t + Ĥt) , (8)

where the weighing matrix

W =

[
1
N
· · · 1

N
0

0 · · · 0 1

]
aggregates the N quantile forecasts and the N quantile residuals for Y1,t and leaves the

dynamics of other endogenous variables intact. This formulation highlights the QAVAR

model’s ability to incorporate heterogeneous conditional dynamics and non-linear propaga-

tion of shocks in a simple VAR-style representation given by

Yt = ˆ̃µ+
ˆ̃
BYt−1 + ˆ̃ε

(N)

t =
ˆ̃
Λt + ˆ̃ε

(N)

t , (9)
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where ˆ̃µ = Wµ̂,
ˆ̃
B = WB̂, and ˆ̃ε

(N)

t = (ˆ̃ε
(N)

1,t , ε̂2,t)
′ = WĤt. Note that the QAVAR forecast

ˆ̃
Λt is analogous to the one derived in Equation (2) for the VAR. Altogether, the aggregated

model in Equation (9) resembles a conventional VAR, while preserving a model-free quantile

structure.

In summary, the key distinction between the VAR and QAVAR lies in the use of quantile

aggregation to estimate the conditional expectation of Y1,t. Beyond that, the two models

share a common structure, and standard structural identification methods apply directly to

the QAVAR residual vector ˆ̃ε
(N)

t .

2.4 Structural identification

Let the reduced-form shocks ε̃∗t = (ε̃∗1,t, ε2,1)
′ be expressed as a linear combination of or-

thogonal structural shocks Ut = (U1,t, U2,t)
′ with variance-covariance matrix E[UtU

′
t ] = Ω.

Specifically, we assume ε̃∗t = AUt, where A is a full-rank square matrix. Consequently,

the variance-covariance matrix of reduced-form shocks is given by E[ε̃∗t ε̃
∗
t
′] = Σ̃ = AΩA′.

Imposing identifying restrictions on the entries of the matrix A (via, e.g., Cholesky-based

orderings and sign/zero restrictions) yields a structural representation that permits econom-

ically meaningful interpretation of the vector Ut, consistent with the conventional structural

VAR.

In the context of the QAVAR, reduced-form shocks are approximated as

ε̃
(N)
t = A(N)U

(N)
t , (10)

where E[U
(N)
t U

(N)
t
′] = Ω(N). Accordingly, the reduced-form variance-covariance matrix is

approximated as E[ε̃
(N)
t ε̃

(N)
t
′] = Σ̃(N) = A(N)Ω(N)A(N)′. Equation (10) highlights that struc-

tural identification in the QAVAR depends on the choice of the quantile grid TN used to

construct the reduced-form shock approximation ε̃
(N)
1,t . If the grid is too coarse (i.e., small

N), then the approximation error may interfere with the identification procedure. However,

under regularity conditions on the QR estimators, we have that as N → ∞, ε̃
(N)
t → ε̃∗t and

U
(N)
t → Ut, implying convergence of the moments Σ̃(N) → Σ̃, Ω(N) → Ω, and A(N) → A.

Consequently, the structural QAVAR becomes asymptotically equivalent to the standard

structural VAR in terms of identification.5 The estimated counterparts of the theoretical

approximations U
(N)
t ,Ω(N), Σ̃(N) and A(N) are denoted by Û

(N)
t , Ω̂(N),

ˆ̃
Σ

(N)

, and Â(N), re-

5In practice, we find that using a moderately fine grid, such as N = 99, is sufficient for the quantile-based
residuals and shock decompositions to closely replicate those obtained in the traditional VAR. Note that
standard QR procedures are not computationally restrictive for moderate sample and model sizes, which
allows the user to increase N as needed, at little additional cost.
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spectively.

To integrate QR outputs into the structural VAR framework, we decompose the quan-

tile residuals ηt,τ into a quantile-invariant structural component ε̃
(N)
1,t and a quantile-specific

disturbance ζ
(N)
t,τ indexed by τ . For notational simplicity, we hereafter omit the superscript

(N) and write

ηt,τ = ε̃1,t + ζt,τ (11)

for all τ ∈ TN . The analogous estimated relationship is given by η̂t,τ = ˆ̃ε1,t + ζ̂t,τ . In this

formulation, ε̃1,t captures a location shift of the mean forecast characterized by a homoge-

neous shock across quantiles, whereas ζt,τ reflects heterogeneous effects changing the shape of

the conditional distribution. Furthermore, note that the innovations ˆ̃ε1,t are assumed i.i.d.,

implying that variations in the shape of the distribution are all attributed to ζ̂t,τ .

Substituting the decomposition of quantile residuals of Equation (11) in the residual

vector Ĥt of Equation (8) and then applying the structural representation of Equation (10),

we can rewrite Equation (8) as

Yt = W(µ̂+ B̂Yt−1 + Ẑt) + ÂÛt ,

where Ẑt = (ζ̂t,τ1 , . . . , ζ̂t,τN , 0) is a vector of quantile-specific disturbances. Since Ẑt consists

of deviations orthogonal to the structural shock, we have WẐt = 0. Aggregating across

quantiles then yields the quantile-augmented structural representation Yt =
ˆ̃
Λt + ÂÛt.

The key identifying assumption that allows the structural QAVAR representation is that,

on impact, shocks change only the location of the conditional distribution without altering

its shape. Subsequently, at a future time horizon, k > 0, the system’s response to the

shock propagates non-linearly through the term B̂Yt+k−1 + Ẑt+k, altering the shape of the

distribution.

To illustrate, suppose that the one-step-ahead forecast of GDP growth at time t is nor-

mally distributed. At time t, an unexpected adverse financial shock occurs, leading to an

immediate downward shift in all quantiles and preserving the Gaussian shape of the den-

sity. From time t+ 1 onward, however, the shock’s effect is nonlinearly transmitted through

heterogeneous quantile dynamics. As a result, the distribution of GDP growth may become

skewed, fat-tailed, or even multimodal. Notably, the magnitude and shape of the response

vary depending on the economy’s initial condition. In particular, the adverse effects may be

amplified under weak macroeconomic conditions, leading to a more pessimistic revision of

future growth outlooks than what a standard VAR would predict.

In sum, while structural shocks in the QAVAR model produce a location shift on impact,

subsequent propagation allows for non-linear responses across the conditional distribution of

8



one variable, extending the structural VAR toolkit to model hetereogenous quantile effects

within a compact and estimable model.

2.5 Impulse response functions and simulation approach

A key feature of the structural VAR framework is its capacity to support counterfactual

analysis, most notably through impulse response functions (IRFs). IRFs measure the dy-

namic response of an endogenous variable to an exogenous structural shock by comparing

conditional trajectories under a baseline scenario and a counterfactual (or shocked) scenario.

Although IRFs are conventionally used to characterize the evolution of the conditional mean,

the same logic can be extended to study other distributional moments: for instance, to derive

quantile impulse response functions (QIRF).

In contrast to linear VARs, non-linear VARs like the QAVAR allow for distributional IRFs

that may depend on initial conditions or exhibit asymmetric or non-linear response to shocks

(Gallant et al., 1993; Koop et al., 1996; Potter, 2000).6 The nonlinear and distribution-free

nature of the QAVAR framework complicates inference for distributional statistics.7

To address these challenges, we adopt a simulation-based approach to compute IRFs for

various moments of the conditional distribution.8 Specifically, we construct two measures:

the mean IRF and the quantile IRF, which traces the one-step-ahead conditional quantile

forecast at a given level τ ∈ TN . These allow us to capture both conditional mean dynamics

and tail risks.

Simulating the variable Y1,t modelled with QR requires an approximation of the condi-

tional density of Y1,t|Yt−1, while so far we specified only its conditional quantiles. One method

estimates the conditional density by interpolating and rescaling fitted quantiles (Schmidt and

Zhu, 2016; Koenker, 2005). Alternatively, one can fit a parametric distribution to a set of

quantiles (Adrian et al., 2019) or use kernel density estimates (Gaglianone and Lima, 2012;

Davino et al., 2013; Korobilis, 2017). These methods are robust but can be computationally

intensive. We instead adopt an efficient ad-hoc method by sampling directly from the set of

N fitted conditional quantiles, sidestepping any issues related to estimating and sampling

from an explicit density.

The simulation algorithm is outlined below.9 The procedure concurrently simulates base-

6Note that in our QAVAR applications, we do not find a strong dependence to the magnitude or sign of
the shock. This is not too surprising, since the shock propagates through a set of conditional linear quantiles,
and the response to shocks is symmetric on impact (else for instance see Beaudry and Koop, 1993).

7The mean IRF in the QAVAR can be analytically tractable under suitable assumptions. See Appendix
A for more details.

8Density forecast simulations by linearly weighting alternative forecasts have also become more popular
in forecasting to improve accuracy, see Kapetanios et al. (2015).

9The same algorithm can be adapted to construct bootstrapped confidence intervals. See Appendix B for
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line paths {Yt+k : k = 0, 1, . . . , h} and shocked paths {Y δ
t+k : k = 0, 1, . . . , h} to construct

IRF and QIRF estimators up to a user-chosen time horizon h.

1. Initialization: Given initial conditions Yt and a structural shock δt, set Y δ
t = Yt+Âδt.

Sample a sequence of independent quantile levels {θt+1, . . . , θt+h} from TN uniformly

with probability 1/N . Simulate a sequence of structural shocks {Û2,t+1, . . . , Û2,t+h}
from an appropriate white noise process, such that Û2,t ∼ WN(0, [

ˆ̃
Ω]−1), where [

ˆ̃
Ω]−1

is the sub-matrix of
ˆ̃
Ω that excludes covariance terms involving Û1,t.

2. Simulating the quantile-augmented variable: For 0 < k ≤ h, we sample from a

discrete approximation of the conditional densities of Y1,t+k|Yt+k−1 and Y1,t+k|Y δ
t+k−1,

and set
Y1,t+k = Q̂Y1,t+k|Yt+k−1

(θt+k) ,

Y δ
1,t+k = Q̂Y1,t+k|Y δt+k−1

(θt+k) .
(12)

Note that the same quantile level θt+k is used to simulate both paths.

3. Recovering reduced-form shocks on the quantile-augmented variable: The

quantile-based conditional mean forecasts are computed as

ˆ̃
Y 1,t+k =

1

N

∑
τ∈TN

Q̂Y1,t+k|Yt+k−1
(τ) ,

ˆ̃
Y
δ

1,t+k =
1

N

∑
τ∈TN

Q̂Y1,t+k|Y δt+k−1
(τ) ,

(13)

and the associated innovations are ε̃1,t+k = Y1,t+k −
ˆ̃
Y 1,t+k and ε̃δ1,t+k = Y δ

1,t+k −
ˆ̃
Y
δ

1,t+k.

The structural shocks Û1,t+k and Û δ
1,t+k are then recovered using the structural decom-

position in Equation (10) and computed as

Û1,t+k =
1

[Â]1,1

(
ε̃1,t+k − [Â]1,−1Û2,t+k

)
Û δ
1,t+k =

1

[Â]1,1

(
ε̃δ1,t+k − [Â]1,−1Û2,t+k

)
,

(14)

where Â]1,1 is the entry in the first row and the first column of matrix Â, and [Â]1,−1

is the first row without the first column entry.

4. Simulating the VAR component: The structural shock vectors Ût+k = (Û1,t+k, Û2,t+k)
′

and Û δ
t+k = (Û δ

1,t+k, Û2,t+k)
′ then yield the reduced-form shock vectors ε̃t+k = ÂÛt+k

more details.
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and ε̃δt+k = ÂÛ δ
t+k.

The values of Y2,t+k and Y δ
2,t+k are obtained as in the VAR by adding the reduced-form

innovations to the conditional mean forecasts, yielding

Y2,t+k = µ̂2 + β̂2,1Y1,t+k−1 + β̂2,2Y
δ
2,t+k−1 + ε̂2,t+k

Y δ
2,t+k = µ̂2 + β̂2,1Y

δ
1,t+k−1 + β̂2,2Y

δ
2,t+k−1 + ε̂δ2,t+k ,

(15)

or, using a similar notation as above, Y2,t+k = [
ˆ̃
Λt+k]−1 + [̂ε̃t+k]−1.

5. Recursion and repetition: Repeating steps 2 to 4 recursively for k = 1, . . . , h

completes the simulation procedure for a pair of counterfactual paths. Repeat the sim-

ulation R times to obtain a sample of trajectories (Y
(r)
t+k, Y

δ(r)
t+k ) for k = 1, . . . , h and r =

1, . . . , R along with the sorted quantile fitted values (Q̂
(r)
Yt+k|Yt+k−1

(τ), Q̂
δ(r)

Yt+k|Y δt+k−1

(τ))

for all τ ∈ T .

Finally, we estimate the IRF with initial conditions Yt as the average difference between

shocked and baseline simulated paths across all repeated draws

ÎRF(k, δt) =
1

R

R∑
r=1

Y
δ(r)
t+k − Y

(r)
t+k .

Similarly, the level-τ QIRF with initial conditions Yt is estimated as the average difference

between fitted quantiles, such that

Q̂IRF(k, δt, τ) =
1

R

R∑
r=1

Q̂
δ(r)

Yt+k|Y δt+k−1

(τ)− Q̂(r)
Yt+k|Yt+k−1

(τ) .

Monte Carlo experiments in Appendix C demonstrate that the QAVAR outperforms the

linear VAR when the data-generating process features time-varying higher moments. If the

true model is linear, the QAVAR slightly biases conditional variance estimates due to the

expectation approximation. This trade-off suggests that the QAVAR is most appropriate

in settings where higher-order dynamics, such as time-varying skewness or kurtosis, are

empirically relevant. Notably, GDP growth is known to exhibit conditional skewness during

periods of financial stress (Adrian et al., 2019), a feature we examine further in the following

section.
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3 Impact of financial shocks on the distribution of GDP

We employ the QAVAR framework to investigate how financial shocks influence the condi-

tional distribution of future GDP growth. While Adrian et al. (2019) document that the

distribution of GDP growth exhibits conditional skewness related to financial conditions,

their analysis does not isolate the effects of identified financial shocks. In contrast, Gilchrist

and Zakraǰsek (2012) identify structural financial shocks and examine their impact on GDP

growth within a linear VAR, but they do not account for potential asymmetries or higher-

moment dynamics in the conditional response. We bring both papers together with our

QAVAR.

3.1 Financial conditions shocks in the spirit of Adrian et al. (2019)

We apply our QAVAR to analyze how financial shocks shape the distribution of future GDP

growth. Adrian et al. (2019) model the distribution of GDP growth with QR and show that

the conditional distribution of GDP growth is skewed due to financial conditions. But they

do not identify the impact of financial shocks on the conditional distribution. In this section,

we replicate their results with our QAVAR, which also allows for the identification of shocks.

In doing so, (i) we can assess the ability of our QAVAR to replicate the results of the ABG

model, since both methods focus on the distribution of one single variable, GDP growth,

and (ii) we show that their results on financial conditions changes carry over to unexpected

financial conditions shocks.

3.1.1 Model setup

Adrian et al. (2019) use a univariate QR model to consider the impact of the quarterly

average of the Chicago Fed’s National Financial Conditions Index (NFCI) on real GDP

growth four quarters later. They benchmark their results against a bivariate VAR with four

lags of real GDP and the NFCI. We run a bivariate QAVAR with four lags against the

standard VAR equivalent. Our data starts in 1973Q1 as in the ABG model, until 2019Q4.10

We follow the notation of Equation (4) and denote the time-t value of the NFCI as

NFCIt, and the log difference of real GDP as GDPt. As before, the bar notation (i.e.,

NFCI t and GDP t) indicates the conditional mean from a linear VAR; and the tilde is used

to denote the quantile-based estimate of the conditional expectation. Specifically, in the

present context, we use G̃DP t. Furthermore, ε̃GDPt is the quantile-based error term defined

10We use the same bivariate setup as Adrian et al. (2019), but we can also add the federal funds rate to
bring the model in line with Gilchrist and Zakraǰsek (2012). We find broadly similar results under both
specifications.
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as the difference between the realization and the quantile-based conditional expectation of

GDP growth. Thus the QAVAR model is[
GDPt

NFCIt

]
=

[
G̃DP t

NFCI t

]
+

[
ε̃GDP,t

εNFCI,t

]
. (16)

Reduced-form residuals ε̃t = (ε̃GDP,t, εNFCI,t)
′ are decomposed into structural shocks Ut =

(UGDP,t, UNFCI,t)
′ with ε̃t = AUt with the same method as Gilchrist and Zakraǰsek (2012),

whereby A is identified with a Cholesky ordering such that real economic shocks affect

financial conditions contemporaneously while financial shocks affect the real economy with

a lag.

3.1.2 Results

Figure 1 shows the impact of an unexpected financial conditions shock equivalent to a 1

unit increase in the NFCI. In comparison, the quarterly NFCI increased to about 2.6 at the

height of the Great Financial Crisis (GFC).

First, we observe that the structural identifications are virtually identical in the QAVAR

and the VAR models: on impact, the financial shock has the same effect on the NFCI in both

models (top right panel: the solid blue line is identical to the starred black line at period 0).

This empirically confirms that the shock identification strategy carries over from the VAR

to the QAVAR.

Second, the mean IRF of GDP obtained from the QAVAR (top left panel, solid blue line)

is lower than the VAR equivalent (top left panel, starred black line), revealing heterogeneous

effects across conditional quantiles of GDP growth. In particular within the first year, the

average response of GDP is significantly lower when computed with the QAVAR than with

the linear VAR counterpart. This suggests that the estimation of the average effect may be

influenced by a wider left-tail of GDP after a financial conditions shock.

Third, the middle and lower panels of Figure 1 show the response of the 5th, 25th, 50th,

75th, and 95th percentiles (as well as the median) of GDP growth in the QAVAR (solid

blue lines) against the mean GDP growth response of the VAR (starred black lines). Adrian

et al. (2019) use those quantiles to periodically calibrate a skewed-t distribution and generate

explicit conditional density estimates of GDP growth. Similar to the ABG model, we find

that the 5th percentile (i.e., the 95% Growth-at-Risk) is significantly lower than the mean

and other quantiles after a financial conditions shock: the 5th percentile worsens about

twice as fast as the mean effect recovered from a linear VAR equivalent.11 This is also true,

11The 10th quantile (not reported) also deteriorates significantly more than the mean, although less than
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though to a lesser extent, for the 25th percentile. The impulse response of the expected

shortfall (bottom right panel), that is, the average GDP below the 10th percentile, is also

significantly below the mean response from the linear VAR.12 In contrast, quantiles above the

median respond homogenously with the mean impulse response. The 95th percentile recovers

faster, with a level of GDP not significantly different from its pre-shock value within two

years.13 Altogether, an adverse financial conditions shock generates a negative skew in GDP

growth, qualitatively matching the results of Adrian et al. (2019) obtained without structural

identification.

Overall, financial conditions shocks are found to exacerbate downside risk, in line with

the literature on Growth-at-Risk models (e.g., Adrian et al., 2019; Aikman et al., 2019;

International Monetary Fund, 2017), but also in line with structural VAR with other types

of non-nonlinearities (like regime-switching, e.g., Hubrich and Tetlow, 2015, or stochastic

volatility, e.g., Carriero et al., 2024), vector moving average representations with non-linear

financial terms (Forni et al., 2024), or more structural models of financial frictions (e.g.,

Adrian et al., 2020; Duprey and Ueberfeldt, 2020).

the 5th percentile. Figure D.1 in Appendix D shows that the lower percentiles are significantly different from
the median and the upper percentiles. This implies a Kelly skewness (that theoretically ranges between -1
and 1) dropping by -0.1 in this case.

12It is simply computed as the average of the evenly spaced percentiles of GDP growth below the 10th
percentile, in simulations with the shock minus the equivalent control without the shock.

13Figure D.1 in Appendix D also shows that the upper percentiles are not significantly different from the
median, confirming the results of ABG that the upper percentiles of the conditional distribution of future
GDP growth are relatively less volatile.
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Figure 1: Mean and quantile impulse responses to a financial conditions shock
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Notes: The figure shows the response to a financial conditions shock of +1 units of NFCI identified as in
Gilchrist and Zakraǰsek (2012) and that mimics the univariate results of Adrian et al. (2019), using data from
1973Q1–2019Q4. The VAR model is represented by black starred lines and confidence bands in black dotted
lines. The QAVAR model is represented by the solid blue line and the blue shaded confidence bands. The
confidence bands are the 10th and 90th percentiles produced with 1000 block-bootstrap replications with
block sizes of 4 years and 151 simulated path for each possible initial conditions (151 quarterly observations).
The bottom panels show the 5th, 25th, 50th, 75th, and 95th percentile and expected shortfall estimates from
the QAVAR (in solid blue) against the mean estimate of the VAR (in dashed black). The response of
log-difference of GDP growth (mean and quantiles) is cumulated over the periods.
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3.2 Excess bonds premium shocks in the spirit of Gilchrist and

Zakraǰsek (2012)

We now apply our QAVAR to revisit the study of Gilchrist and Zakraǰsek (2012), who

document the impact of structural excess bond premium shocks on mean GDP growth in

a linear VAR. In doing so, (i) we confirm that the shock identification of the QAVAR is

the same as that of the linear VAR, and (ii) we uncover heterogenous effects of excess bond

premium shocks not accounted for in the original study.

3.2.1 Model setup

We begin by replicating the baseline results of Gilchrist and Zakraǰsek (2012), which estimate

the dynamic response of GDP growth to a financial shock captured by innovations in the

excess bond premium.14 The structural VAR contains four lags15 and three endogenous

variables: the log-difference of real output (GDPt), the quarterly average of the excess bond

premium (EBPt), and the effective nominal federal funds rate (FFRt), all expressed in

percentage points. The sample spans 1973Q1 to 2019Q4 for the United States. The EBP

series from 1973Q1 to 2002Q2 is sourced from Gilchrist and Zakraǰsek (2012); and from

2002Q3 onward, we use the updated quarterly data from Gilchrist et al. (2021).

Using the notation of Equation (4), we denote the conditional mean of EBP t and FFRt

as EBP t and FFRt. As before, the tilde denotes the quantile-augmented variable, and

G̃DP t is hence the quantile-based approximation of the conditional expectation of GDPt

and ε̃GDP,t = GDPt − G̃DP t is the associated error term. The QAVAR counterpart to the

GZ model then takes the formGDPtEBPt

FFRt

 =

G̃DP t

EBP t

FFRt

 +

ε̃GDP,tεEBP,t

εFFR,t

 , (17)

and the residuals ε̃t = (ε̃GDP,t, εEBP,t, εFFR,t)
′ can be decomposed into structural shocks Ut =

(UGDP,t, UEBP,t, UFFR,t)
′, with ε̃t = AUt and A identified with a Cholesky decomposition.

The identification strategy for financial shocks relies on the recursive ordering of the variables,

14Note that the GZ model includes, in order, consumption, investment, output growth, prices, the excess
bond premium, the cumulated excess market return, the 10-year Treasury yield, and the federal funds rate.
Using the authors’ code, we verified that the dynamics of output growth, the excess bond premium, and the
federal funds rate are very similar when using only the three variables with the same ordering. We focus on
this trivariate version for simplicity.

15GZ’s original model uses two lags, but we confirmed that four lags generate similar results. Using four
lags in our QAVAR brings more consistency with the ABG setup discussed in the previous section and the
GDP growth-at-risk peaking in the first four quarters (Adrian et al., 2022; Duprey and Ueberfeldt, 2020).
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with shocks to the excess bond premium affecting the real economy with a lag, while the

risk-free rate can react contemporaneously to the financial disturbance.

3.2.2 Results

Figure 2 shows the impact of an unexpected financial shock equivalent to a 1 percentage

point increase in the EBP. In comparison, the EBP increased to about 4 percentage points

around the GFC and about 2 percentage points during the pandemic (c.f., Figure 2, Gilchrist

et al. (2021)).

First, we observe that structural shocks identified in the GZ model again match those

of the QAVAR model. On impact, the financial shock has the same effect on the EBP in

both models (top middle panel: the solid blue line is identical to the starred black line at

period 0). This empirically confirms that the shock identification strategy carries over from

the VAR to the QAVAR.

Second, the mean response of cumulative GDP obtained from the QAVAR (top left panel,

solid blue line) is broadly similar to the VAR equivalent (top left panel, starred black line).

However, the response of various conditional quantiles of GDP may be different if the mean

estimator hides state-contingent heterogeneity.

Third, the middle and lower panels of Figure 2 show the response of the 5th, 25th,

50th, 75th, and 95th percentiles of GDP growth in the QAVAR (solid blue lines) against

the mean GDP response of the VAR (starred black lines). The response of the 5th quantile

(left middle panel) is significantly different from zero in the first two years and initially

significantly worse than the mean VAR estimate (the response of the quantile, the blue

line, is outside the confidence band of the mean VAR response, the dashed black lines).16

The response of the 5th percentile is about twice as negative as the mean response in the

linear VAR. Similarly, the expected shortfall that occurs with a 10% probability is largely

negative outside the confidence bands of the linear VAR. For the median (as well as the

upper quantiles), the correction of GDP is significantly more muted than the mean VAR

estimator. Thus, overall, an excess bonds premium shock also tends to be a skewness shock.

Although financial shocks associated with larger EBP are detrimental to the economy,

they are less detrimental to the median GDP growth and upside risks, and more detrimental

to downside risks, just like in the case of a financial conditions shock and the related liter-

ature mentioned in the previous section. Our results are also consistent with Loria et al.

(2024), who use the changes in the excess bond premium in a local projection model esti-

16The response of the lower percentile is also significantly different from the median and the upper per-
centile, as seen Figure D.2 in Appendix D. This implies a Kelly skewness (that theoretically ranges between
-1 and 1) dropping by -0.15.
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mated with QR. Within a year, the 10th percentile of GDP growth decreases more than the

median or the 90th percentile. Compared to the quantile local projection approach that re-

quires exogenously identified shocks, our method allows for the shock identification, dynamic

evolution, and tail elasticities within the same framework.

We note that although financial conditions shocks and excess bond premium shocks both

worsen downside risks to GDP growth, excess bond premium shocks have a relatively less

significant impact on the tail than financial conditions shocks.17 Maybe this is not too

surprising given that the NFCI is a broader composite of various types of financial markets.

This means that a worsening of the NFCI has a systemic aspect, occurring only during severe

financial crises, while excess bond premium shocks are focused only on the corporate bonds

market segment.

17Note that this not driven by the choice of a bivariate VAR to match ABG’s setup versus a trivariate
VAR to match GZ’s setup: adding the federal funds rate to Equation (16) generates similar results.
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Figure 2: Mean and quantile impulse responses to an excess bonds premium shock
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Notes: The figure shows the response to a financial shock of +1 percentage points of EBP taken from Gilchrist
and Zakraǰsek (2012) for 1973Q1–2002Q2 and from Gilchrist et al. (2021) for 2002Q3–2019Q4. The VAR
model is represented by black starred lines and confidence bands by black dotted lines. The QAVAR model
is represented by the solid blue line and the blue shaded confidence bands. The confidence bands are the
10th and 90th percentiles produced with 1000 block-bootstrapped replications with block sizes of 4 years
and 151 simulations for each possible initial conditions (151 quarterly observations). The mean response in
the VAR shown in the top panels are similar to the Figure 5 of Gilchrist and Zakraǰsek (2012). The bottom
panels show the 5th, 25th, 50th, 75th, and 95th percentile and expected shortfall estimates from the QAVAR
(in solid blue) against the mean estimate of the VAR (in dashed black). The response of log-difference of
GDP growth (mean and quantiles) is cumulated over the periods.
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4 Conclusion

We study how financial shocks affect not only average GDP growth but also the full dis-

tribution of possible outcomes—from deep recessions to strong recoveries. Using a simple

extension of the standard VAR framework that incorporates regressed conditional quantiles—

a quantile-augmented VAR (QAVAR)—we explore the effect of structural financial shocks

on the distribution of future GDP growth.

To highlight the importance of assessing risks across the entire distribution, we revisit the

influential modelling frameworks of Adrian et al. (2019) and Gilchrist and Zakraǰsek (2012).

First, we show that financial conditions shocks identified structurally significantly worsen

growth-at-risk, replicating the core insights of Adrian et al. (2019) while adding structural

identification. Second, we demonstrate that excess bond premium shocks also alter the

shape of the distribution of GDP, an effect averaged out in the linear VAR of Gilchrist and

Zakraǰsek (2012). These shocks are less harmful to the median and upper percentiles of the

GDP growth distribution, but they deepen the risk of downturns.

Our framework offers policymakers a tractable tool to better assess the risks financial

shocks pose to economic growth. By preserving standard shock identification while allowing

for nonlinear dynamics, the QAVAR enhances our understanding of macro-financial linkages

and the distributional consequences of financial stress. For example, in a world of heightened

tariff-related uncertainty and financial fragility, our findings suggest that corporate bond

market stress may serve as an early warning of a deeper recession than previous estimates

would otherwise suggest.

Future extensions of the QAVAR could explore the role of uncertainty shocks on the

interquantile range of GDP growth, for instance by incorporating uncertainty measures di-

rectly into the VAR or decomposing quantile-specific shocks. Additional research could also

extend the framework to jointly model the distribution of multiple variables or explore how

to identify structural shocks that target specific parts of the distribution.
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A Analytical impulse response function of the condi-

tional mean

In the structural VAR given by Equation (1), the conditional mean response to a one-

time shock δt = (δ1,t, δ2,t)
′ at time t admits a closed-form solution. Consider a sequence

of structural innovations, {Ut, . . . , Ut+k}, over a horizon of length, k > 0. The resulting

benchmark path is recursively given by

(Yt+k − µ) = Bk(Yt − µ) +
k∑
j=0

BjAUt+k−j . (18)

Under the counterfactual scenario, we assume the shock at time t is perturbed by δt, yielding

the modified sequence {Ut + δt, Ut+1, . . . , Ut+k}. The shocked path then satisfies

(Y δ
t+k − µ) = Bk(Y δ

t − µ) +
k∑
j=0

BjAUt+k−j , (19)

where Y δ
t = Yt + Aδt is the contemporaneous shocked value at time t. Taking expectations

of the difference between the shocked and baseline paths conditional on Yt−1, we obtain the

IRF as

IRF(k, δt) = Et[Y δ
t+k − Yt+k] = BkAδt . (20)

An analogous recursion characterizes the dynamics of the QAVAR system defined in

Equation (9). Given a sequence of structural innovations {Ût, . . . , Ût+k}, the baseline path

evolves as

(Yt+k − ˆ̃µ) =
ˆ̃
B
k

(Yt − ˆ̃µ) +
k∑
j=0

ˆ̃
B
j

ÂÛt+k−j . (21)

Following the same logic, we define a counterfactual scenario where the initial shock is per-

turbed: Û δ
t = Ût+δt. Unlike the linear case, however, all subsequent shocks {Û δ

t+1, . . . , Û
δ
t+k}

are drawn from distributions induced by the shocked path. The resulting trajectory is given

by

(Y δ
t+k − ˆ̃µ) =

ˆ̃
B
k

(Y δ
t − ˆ̃µ) +

k∑
j=0

ˆ̃
B
j

ÂÛ δ
t+k−j . (22)

Assuming that baseline and structural shocks Ût and Û δ
t both have a mean approaching zero,

we approximate the estimated impulse response as

ÎRF(k, δt) ≈
ˆ̃
B
k

Âδt . (23)
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This expression characterizes the impact of the structural shock δt on the conditional mean

within the QAVAR framework.

Importantly, this IRF remains an approximation whose accuracy depends on the granu-

larity of the quantile grid TN used to estimate the underlying conditional distribution.

B Bootstrapped confidence intervals

In this section, we describe the bootstrap procedure used to construct confidence intervals for

the mean and quantile impulse response functions (IRFs and QIRFs, respectively) reported

in Section 3. We adopt a block bootstrap method to resample structural residuals and

generate a distribution of simulated impulse responses, from which we derive confidence

bands.18

Starting from the estimated QAVAR model in Equation(9), we extract the full set of

reduced-form residuals ˆ̃εt. We then generate a synthetic residual series of the same length by

resampling blocks of size S, resulting in a sequence, {ε̃∗t = (ε̃
(b)
1,t , ε

(b)
2,t)
′ : t = 1, . . . , T}, where

the superscript (b) denotes bootstrapped quantities. The use of block sampling captures

potential remaining serial dependence of the estimated structural errors.

The synthetic sample {Y (b)
t : t = 1, . . . , T} is constructed recursively as follows:

1. Initialization: Select an initial value Y
(b)
0 . Draw dT/Se blocks of size S from {ˆ̃εt : t =

1, . . . , T} using simple random sampling, and concatenate them to form the synthetic

series {ε̃(b)t = (ε̃
(b)
1,t , ε

(b)
2,t)
′ : t = 1, . . . , T}.

2. Mean forecast: For t = 1, . . . , T , use the original QAVAR estimates µ̂ and B̂ to

construct the mean forecast, defined as Λ̃
(b)
t = W(µ̂+ B̂Y

(b)
t−1).

3. Realized value: Compute the synthetic outcome as the sum of the forecast and

bootstrapped innovation, such that Y
(b)
t = Λ̃

(b)
t + ε̃∗t .

4. Recursion: Repeat steps 2 and 3 iteratively for all k = 1, . . . , T to generate a complete

bootstrapped sample {Y (b)
t : t = 1, . . . , T}.

5. Re-estimation and identification: Estimate the QAVAR model using the synthetic

data to obtain µ̂(b), B̂(b), and the associated fitted values
ˆ̃
Λ

(b)

t = W(µ̂(b) + B̂(b)Y
(b)
t−1)

as well as the corresponding estimated residuals ˆ̃ε
(b)

t for t = 1, . . . , T . These are then

18The median and mean peak-to-trough durations for 63 crises in advanced economies are 2 and 2.9 years,
respectively (Reinhart and Rogoff, 2014). This supports the use of block bootstrapping with blocks longer
than two years to appropriately capture the dynamics of entire crisis episodes.
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used in the structural identification procedure from Section 2.4 to compute Â(b), the

bootstrapped analogue to Â(N) in Equation (10).

6. IRF and QIRF simulation: For a given structural shock δt and a horizon h, simulate

R pairs of counterfactual paths using the algorithm outlined in Section 2.5 and compute

the IRF and QIRF estimates.

Steps 1 to 6 are repeated independently to generate a sample of B independent boot-

strapped IRFs, denoted {ÎRF
(b)

(k, δt)} for k = 1, . . . , h and b = 1, . . . , B, along with a

sample of level-τ bootstrapped QIRFs, denoted {Q̂IRF
(b)

(k, δt, τ)} for all τ ∈ TN . Finally,

for each horizon k = 1, . . . , h, we construct confidence bands based on empirical quantiles of

the sets {ÎRF
(b)

(k, δt)} and {Q̂IRF
(b)

(k, δt, τ)}.

C Monte Carlo study

This appendix evaluates the finite-sample forecasting performance of the QAVAR relative

to a standard Gaussian VAR. The analysis is conducted via Monte Carlo simulations under

various data-generating processes (DGPs) that differ in terms of conditional heteroskedas-

ticity and higher-order moment dynamics. The QAVAR is designed to approximate the full

conditional distribution of a target variable, and its performance is assessed in forecasting

conditional mean, variance, and skewness. Results indicate that while both models yield

comparable accuracy in conditional mean and variance forecasts, the QAVAR provides a

substantial improvement in characterizing skewed distributions.

C.1 Data generating processes

We simulate data from a class of bivariate autoregressive processes with time-varying volatil-

ity and, in some cases, asymmetric innovations. Let Xt = (X1,t, X2,t)
′ denote the bivariate

process at time t, evolving according to

Xt = ΦXt−1 + υt

υt = σtξt

σ2
t = ω + Γυ2t−1 ,

(24)

where ξt = (ξ1,t, ξ2,t)
′ is a standard i.i.d. innovation process, and σ2

t = E[υtυ
′
t] = diag(σ2

1,t, σ
2
2,t)

is a diagonal variance-covariance matrix. The matrices Φ, ω, and Γ are specified to ensure

covariance-stationarity of Xt. We consider three DGP specifications:
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1. Gaussian AR(1):

Γ =

[
0 0

0 0

]
and ξt ∼ N (0, I2) ;

2. Gaussian ARCH(1,1):

Γ =

[
0.25 0.25

0.25 0.25

]
and ξt ∼ N (0, I2) ;

3. Skewed ARCH(1,1):

Γ =

[
0.25 0.25

0.25 0.25

]
and ξ1,t ∼ ST (0, 1, λ=0.25), ξ2,t ∼ N(0, 1) ,

where ST (λ) denotes the standardized skewed-t distribution with slant parameter λ ∈
(−1, 1) as in Davis (2015). See Adrian et al. (2019) for further discussion on the

relevance of the skewed-t distribution in macroeconomic data.

In all specifications, the remaining parameter matrices are set to

ω =

[
0.5 0

0 0.5

]
and Φ =

[
0.5 0

0.5 0.5

]
.

C.2 Simulation results

For each DGP, we generate 1000 Monte Carlo replications with sample sizes T ∈ {200, 500, 1000}.
We estimate one-lag VAR and QAVAR models with N = 99 equidistant quantile levels TN
and extract the first three conditional moments for the target variable X1,t. While the Gaus-

sian VAR delivers these moments analytically, the QAVAR relies on numerical integration.

Specifically, the quantile-based approximation of the m-th conditional moment Et−1[Y m
1,t] is

such that
1

N

∑
τ∈TN

(QY1,t|Yt−1(τ))m →
∫ 1

0

(QY1,t|Yt−1(τ))mdτ = Et−1[Y m
1,t]

as N →∞.

Table C.1 reports the root mean squared error (RMSE) of one-step-ahead forecasts for

the conditional mean, variance, and skewness. Under Gaussian innovations (i.e., the first

two DGPs), both models perform comparably in forecasting the conditional mean, and

the standard VAR slightly outperforms the QAVAR in variance forecasts when volatility is

constant. However, in the skewed DGP, the QAVAR demonstrates a substantial improvement

27



in forecasting conditional skewness, with RMSE reduction factors of up to about 3 compared

to the VAR.

Table C.1: Mean RMSE of conditional mean, variance, and skewness one-step-ahead fore-
casts

Gaussian AR(1) Gaussian ARCH(1,1) Skewed ARCH(1,1)
Sample size 200 500 1000 200 500 1000 200 500 1000
RMSE of the conditional mean
VAR .078 .051 .036 .124 .078 .057 .122 .077 .055

(.032) (.022) (.015) (.053) (.033) (.023) (.053) (.032) (.024)
QAVAR .079 .051 .036 .122 .077 .056 .120 .077 .057

(.033) (.022) (.015) (.052) (.032) (.022) (.051) (.031) (.023)
RMSE of the conditional variance
VAR .040 .025 .018 .506 .503 .502 .514 .509 .508

(.030) (.019) (.013) (.050) (.031) (.024) (.056) (.035) (.025)
QAVAR .093 .064 .051 .519 .512 .509 .524 .513 .511

(.043) (.028) (.022) (.059) (.035) (.026) (.062) (.038) (.027)
RMSE of the conditional skewness
VAR 0 0 0 0 0 0 .374 .373 .383

(0) (0) (0) (0) (0) (0) (.169) (.109) (.076)
QAVAR .289 .190 .134 .304 .205 .147 .277 .189 .141

(.118) (.078) (.056) (.129) (.084) (.061) (.119) (.075) (.057)

Notes: The table shows the mean RMSE for the fitted conditional mean, variance, and skewness on vari-
able X1 governed by the three specifications of the DGP of Equation (24) for VAR and QAVAR models.
RMSE standard errors are reported in parentheses for 1000 repeated simulations with 200, 500, and 1000
observations. In each case, the lowest mean RMSE is printed in boldface.

Table C.2 complements this analysis by displaying the forecast bias for the same condi-

tional moments. Across all DGPs, the conditional mean forecasts are effectively unbiased

under both models. The QAVAR exhibits a minor positive bias in variance forecasts, partic-

ularly when volatility is constant. Most importantly, in the presence of skewed innovations,

the QAVAR achieves a skewness bias reduction factor of about 10, with negligible distortion

in lower-order moments.

C.3 Sensitivity to distributional asymmetry

Figures C.1 and C.2 focus on the skewed ARCH(1,1) and evaluate the robustness of the

QAVAR for varying degrees of skewness of the DGP. Figure C.1 displays mean RMSEs of

the conditional mean, variance and skewness one-step-ahead forecasts across a range of slant

parameter values λ ∈ {−0.9,−0.8, . . . ,−0.1, 0, 0.1, . . . , 0.8, 0.9}. Each plot aggregates results
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Table C.2: Bias of conditional mean, variance, and skewness one-step-ahead forecasts

Gaussian AR(1) Gaussian ARCH(1,1) Skewed ARCH(1,1)
Sample size 200 500 1000 200 500 1000 200 500 1000
Bias of the conditional mean
VAR .000 .001 .000 .001 -.004 .000 .000 -.002 -.002

(.048) (.033) (.023) (.069) (.044) (.031) (.069) (.045) (.032)
QAVAR .000 .001 .000 .001 -.004 .000 -.008 -.009 -.009

(.048) (.033) (.023) (.067) (.043) (.031) (.067) (.044) (.031)
Bias of the conditional variance
VAR -.004 -.002 -.001 -.012 -.004 -.003 -.014 -.006 -.002

(.049) (.032) (.022) (.108) (.073) (.051) (.114) (.073) (.053)
QAVAR .038 .035 .035 .033 .032 .031 .027 .026 .028

(.054) (.035) (.024) (.104) (.068) (.048) (.103) (.066) (.048)
Bias of the conditional skewness
VAR 0 0 0 0 0 0 -.373 -.373 -.383

(0) (0) (0) (0) (0) (0) (.171) (.109) (.076)
QAVAR -.006 .001 .000 -.007 -.002 -.002 -.036 -.038 -.035

(.182) (.122) (.083) (.206) (.132) (.096) (.152) (.093) (.071)

Notes: The table reports the mean forecast bias for the conditional mean, variance, and skewness of variable
X1 under the three specifications of the DGP in Equation (24). Biases are averaged over 1000 Monte Carlo
replications with sample sizes of 200, 500, and 1000 observations. Standard errors are reported in parentheses.
The lowest absolute bias is shown in boldface.

over 200 repeated simulations with T = 1000 observations. The QAVAR and VAR models

yield indistinguishable forecasting performance for the mean and variance (Panels (a) and

(b)), regardless of the level of asymmetry. However, as seen in Panel (c), the QAVAR delivers

markedly improved skewness forecasts as |λ| approaches 1, confirming its superior ability to

capture asymmetry.

Altogether, these results indicate that the QAVAR is well-suited for environments in

which higher-order conditional moments are of interest, and skewness in particular. Indeed,

while its performance in forecasting the conditional mean and variance remains comparable

to that of a standard VAR, its ability to approximate conditional skewness is significantly

superior in non-Gaussian settings. This makes the QAVAR a compelling alternative for

modelling macroeconomic variables known to exhibit asymmetric dynamics, such as GDP

growth (Adrian et al., 2019, 2022).
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Figure C.1: Mean RMSE of the conditional mean, variance, and skewness one-step-ahead
forecasts for different slant parameter of the skewed-t distribution

(a) Conditional mean (b) Conditional variance (c) Conditional skewness

Notes: The panels show the mean RMSE for the fitted conditional mean, variance, and skewness forecast
on variable X1 in the skewed ARCH(1,1) specification of the DGP of Equation (24) for VAR and QAVAR
models, along with 95% confidence intervals. Results are computed with 200 repeated simulations for slant
paramaters |λ| ∈ {0, 0.1, . . . , 0.9}.

Figure C.2: Bias of the conditional mean, variance, and skewness one-step-ahead forecasts
for different slant parameter of the skewed-t distribution

(a) Conditional mean (b) Conditional variance (c) Conditional skewness

Notes: The panels show the bias for the conditional mean, variance, and skewness forecast on variable X1

in the skewed ARCH(1,1) specification of the DGP of Equation (24) for VAR and QAVAR models, along
with 95% confidence intervals. Results are computed with 200 repeated simulations for slant paramaters
|λ| ∈ {0, 0.1, . . . , 0.9}.
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D Additional empirical results

Figure D.1: Difference across quantile responses after a financial conditions shock
−
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Notes: The figure shows the response to a financial conditions shock of +1 unit of NFCI identified as in
Gilchrist and Zakraǰsek (2012) and that mimics the univariate results of Adrian et al. (2019), using data
from 1973Q1–2019Q4. Difference across quantiles from the QAVAR model. The confidence bands are the
10th and 90th percentiles produced with 1000 block-bootstrap replications with block sizes of four years
and 151 simulated path for each possible initial conditions (151 quarterly observations). The response of
log-difference of GDP growth is cumulated over the periods.

Figure D.2: Difference across quantile responses after an excess bonds premium shock
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Notes: The figure shows the response to a financial shock of +1 percentage point of EBP taken from Gilchrist
and Zakraǰsek (2012) for 1973Q1–2002Q2 and from Gilchrist et al. (2021) for 2002Q3–2019Q4. Difference
across quantiles from the QAVAR model. The confidence bands are the 10th and 90th percentiles produced
with 1000 block-bootstrapped replications with block sizes of four years and 151 simulations for each possible
initial conditions (151 quarterly observations). The response of log-difference of GDP growth is cumulated
over the periods.
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