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Abstract

The bulk of the news shocks literature focuses on shocks materializing after four or five
quarters, with limited evidence on news about longer-run events. We build a new dataset
of discovery and production start dates for a wide range of giant commodity discoveries
worldwide from 1960 to 2012. Standard open economy models match the empirical
responses of short-run news but fail in the case of long-run news. Incorporating financial
frictions in the form of collateral constraints is crucial for capturing the dynamics implied
by long-run news. We also provide direct evidence on the role of these frictions.

Topics: Business fluctuations and cycles; International topics
JEL codes: E23, F3, F4, Q33

Résumé

La plupart des études sur les chocs informationnels traitent des chocs qui produisent des
effets apres quatre ou cing trimestres. Il existe peu de données probantes sur l'effet
d'informations qui concernent des événements a plus long terme. Nous élaborons un
nouvel ensemble de données comprenant les dates de découverte et d'entrée en
production d'un large éventail de gisements géants de matieres premiéres trouves a
travers le monde entre 1960 et 2012. Les modeéles courants d'économie ouverte
réussissent a reproduire les effets observés des chocs informationnels portant sur des
découvertes dont I'horizon est a court terme, mais n'y parviennent pas dans le cas des
découvertes rattachées a un horizon plus long. Pour bien saisir les dynamiques liées a un
tel horizon de long terme, il est primordial d'introduire des frictions financiéres sous la
forme de contraintes sur les garanties. Nous présentons également des données
probantes directes sur le role de ces frictions.

Sujets : Cycles et fluctuations économiques ; Questions internationales
Codes JEL : E23, F3, F4, Q33



1 Introduction

The seminal work of Beaudry and Portier (2004, 2006) sparked a renewed interest in the idea that
news about the future can generate important macroeconomic fluctuations. Our understanding of
news shocks is, to a large extent, based on studies that focus empirically on short-run news. This
paper brings new insights by analyzing the effects of giant commodity discoveries, which typically
materialize over the longer run.

The bulk of the news shocks literature analyzes the effect of shocks that materialize after four
or five quarters, with limited evidence on news about longer-run events. Arezki et al. (2017)
(henceforth ARS) take an important step in the identification of these shocks by using giant oil
and gas discoveries as a measure of news about higher future output. By their nature, giant
discoveries are major surprises, accompanied by a lead time of several years before production
begins. This makes them an attractive set of macroeconomic events to identify news shocks. We
extend ARS analysis by building a dataset of giant discoveries for a wide range of commodities,
notably minerals. Importantly, we collect information on both discovery and production dates,
which were not available in ARS. This enables us to calculate the time interval between discovery
and the start of production, defining the horizon of the news shock.

We start by documenting significant heterogeneity in lead times to production across
commodities. In particular, the median lead time for mineral discoveries is about 11 years, which
is roughly twice the median lead time for oil discoveries. Oil extraction is faster due to lower
upfront development requirements, while mining projects face longer lead times to production due
to complex geological, regulatory, and infrastructure challenges. We exploit this heterogeneity to
analyze the role of the horizon in the transmission of news shocks.

Using a dynamic panel distributed lag model, we estimate the macroeconomic impact of oil and
mineral discovery news shocks for a sample of up to 180 countries over 1960-2012. In response
to both types of discoveries, we observe sizable anticipation effects, with a sharp drop of the
current account along with a rise in investment and output, before production begins. However,
the timing of the anticipation effects strongly differs between the two types of discovery news.
We find that the macroeconomic effects of mineral discovery news are delayed, with little to no
action 4 years into the discovery. This contrasts with the responses to oil discovery news, which
exhibit significant fluctuations in the years immediately following the discovery.

We perform several robustness checks and extensions. Our results hold if we keep only
countries that experience both types of discoveries, or if we remove discoveries with very long
or very short lead times to production. We also examine alternative splits by type of commodity,
leveraging heterogeneity in lead times within each category. Our results also remain robust to
alternative measures of giant commodity discoveries, different dynamic specifications, and the use
of methodologies such as local projections. To further explore the role of the news horizon, we
use an instrumental variable approach to predict the lead time to production and then split our
sample of giant discoveries based on the predicted lead time, regardless of commodity type. We
find that long-run discovery news results in delayed macroeconomic effects, a pattern similar to
that observed with mineral discovery news. Overall, our empirical findings highlight the crucial
role of the horizon of the news shock.

Our analysis reveals that the standard small open economy model in ARS fails to rationalize the
empirical patterns observed in response to long-run news shocks. Specifically, the model exhibits
two key shortcomings. First, when a news shock occurs, the country borrows internationally to

finance investment in the commodity sector, leading to an immediate drop in the current account.



Second, the model suggests an abrupt reallocation of capital from the rest of the economy to the
commodity sector, which causes an initial decline in overall investment.

To address these limitations, we enhance the standard model along two key dimensions. First,
we incorporate a collateral constraint based on the framework of Mendoza (2002, 2010), where
borrowing is limited by the value of collateral. This collateral value depends on the capital
stock in the commodity sector and a proportionality factor reflecting the pledgeability of assets.
Such resource-backed loans are particularly common in commodity-rich countries, where natural
resources serve as collateral for long-term loans from international creditors (Mihalyi et al., 2020;
Wang et al., 2023). Second, to mitigate the excessive reallocation of capital between sectors, we
introduce investment irreversibility in the non-commodity sector, following the work of Pindyck
(1991) and Abel and Eberly (1999). The presence of these frictions fundamentally alters the
timing of macroeconomic adjustments. In our model, the inability to immediately borrow from
abroad or to reallocate capital to the commodity sector forces households to reduce consumption
(relative to the counterfactual of no collateral constraint). This allows them to self-finance early
capital accumulation and invest in the commodity sector.

Hence, in the case of long-run news, it is optimal to postpone the increase in consumption,
leading to a more gradual investment response. This results in a delayed but sharper increase in
capital accumulation once borrowing constraints begin to ease. This dynamic interaction between
collateral constraint, irreversible investment, and the timing of production explains the observed
delay in current account responses to long-run news, improving the model’s ability to match
empirical evidence while maintaining consistency with short-run news dynamics.

Finally, we provide evidence supporting the proposed mechanism. First, we investigate
how the macroeconomic impact of commodity discoveries varies across countries with different
levels of financial openness. While responses to oil discoveries are similar across both groups,
responses to mineral discoveries are delayed only in financially closed countries, suggesting the
presence of borrowing constraints. Finally, we examine the impact of commodity discoveries on
international capital flows. We find that oil discoveries lead to an immediate increase in foreign
direct investment, while mineral discoveries generate a delayed response, which further points to
the importance of financial frictions in the transmission of news shocks.

Overview of the literature. This paper contributes to the literature on the macroeconomic
effects of news shocks, which has been revived since the seminal works by Beaudry and Portier
(2004, 2006) (see, e.g., Jaimovich and Rebelo (2009), Barsky and Sims (2011), Schmitt-Grohe and
Uribe (2012), Blanchard et al. (2013), Chahrour and Jurado (2018)). While previous research
focuses on short-run news shocks, our study expands on this by examining long-horizon news
shocks. Building on the work by ARS, we create a new dataset of giant commodity discoveries,
with information on discovery and production start dates, for oil and a wide range of minerals.
We document significant heterogeneity in the lead time to production. This allows us to shed
light on the effects of long-run news shocks, addressing a significant gap in both theoretical and
empirical literature.

Second, this paper contributes to the literature on business cycle fluctuations in open
economies. We build on a rich literature which argues that world shocks, such as changes in
commodity prices, terms of trade, and interest rates, are major drivers of business cycles in
developed and emerging small open economies (see, e.g., Mendoza (1995), Neumeyer and Perri
(2005), Fernandez et al. (2017), Zeev et al. (2017), Drechsel and Tenreyro (2018), Di Pace, Federico
and Juvenal, Luciana and Petrella, Ivan (2024)). While a line of research claims that business



cycles in emerging countries are well explained by the canonical small open economy real business
cycle model (see, e.g., Schmitt-Grohe and Uribe (2003), Aguiar and Gopinath (2007), Jaimovich
and Rebelo (2008)), another strand emphasizes the importance of introducing financial frictions
to capture key features of these economies (see, e.g., Uribe and Yue (2006), Garcia-Cicco et al.
(2010), Mendoza (2010)). Our analysis of the effects of giant commodity discoveries allows us to
contribute to this debate and provide novel insights into the propagation of these shocks. We find
that the horizon of news shocks matters and helps to distinguish between the two types of models.
Specifically, we show that models with a collateral constraint & la Mendoza (2010) offer a robust
framework for understanding business cycles in open economies, not just during crises but also in
response to news shocks.

Lastly, this paper adds to the few recent studies which analyze the role of financial frictions
in the propagation of news shocks. In a closed-economy setting, Gortz and Tsoukalas (2017) and
Gortz et al. (2022) show that the presence of credit supply frictions provide a key amplification
mechanism to assign significant empirical relevance to TFP news shocks. Kamber et al. (2017)
introduce a working capital constraint in a standard small open economy model to replicate
business cycle co-movements in response to news shocks.

Outline. The paper is organized as follows. Section 2 explains the construction of the
dataset on giant commodity discoveries and presents summary statistics. Section 3 outlines
the econometric specification and presents our empirical results on the dynamic impact of giant
commodity discovery news shocks. Section 4 describes the model and how financial frictions affect
the propagation of news shocks. Section 5 provides evidence highlighting the presence of financial

frictions. Section 6 concludes.

2 Data

A giant “discovery” is an event in which a major deposit of a commodity, whether mineral or oil,
is discovered in a given country, in a given year (all our data is annual). Giant discoveries are rare
but highly significant events. They represent less than 2% of all mineral discoveries and under 1%
of all oil fields, yet they account for 33% of global mineral reserves (Schodde, 2014) and 65% of
global oil reserves (Robelius, 2007), respectively. These discoveries are defined based on reserve
size.! For example, a giant oil field must contain over 500 million barrels, equivalent to the annual
oil production of Algeria—a major oil producer and OPEC member. Similarly, a giant gold mine
contains at least 200 tons of gold, exceeding the annual gold production of the United States, one
of the world’s top five gold producers, while a giant copper mine holds at least 4 million tons of
copper, which corresponds to the annual output of Chile, the world’s largest copper producer.
As argued by ARS, commodity discoveries have two additional features, beyond their size, that
make them particularly suited for identifying news shocks. First, they are plausibly exogenous
events due to the uncertainty surrounding commodity exploration. The exploration effort,
measured by the number of wildcats drilled, is not a reliable predictor of giant oil field discoveries
(Tsui, 2011). Our analysis further shows that the size of a country is a major determinant of
the probability of a giant discovery, while the level of development has no significant influence.
Second, it typically takes several years for production to begin after a giant commodity discovery

happens. This lead time can be used to proxy the time horizon of the news shock.

!Giant discoveries are defined according to the criteria established by Tkachev et al. (2019) for minerals and Horn
(2014) for oil. See Appendix A for details on how definitions vary across commodities.



To estimate the macroeconomic responses to giant commodity discoveries, we combine data
from several sources to construct: (i) a dataset on reserves of giant commodity discoveries
worldwide, (ii) a newly constructed dataset of both discovery and production dates for these
giant discoveries, which allows us to calculate the lead time or horizon of the news shocks, (iii) a
dataset of commodity prices, and (iv) a dataset of macroeconomic variables for a large number
of countries. In this section, we describe each dataset in turn and present summary statistics.

Appendix A provides more details on the commodity discoveries data.

2.1 Giant Commodity Discoveries and Other Macroeconomic Data

Commodity Reserves. The starting point is the database of large and super-large mineral
deposits (LSLDs) worldwide, created and continually updated by the State Geological Museum of
the Russian Academy of Sciences (Rundquist et al., 2006). Nearly all the information is available
online through the “World’s Largest Mineral Deposits” WEB-GIS application on the “Metallogeny”
Geoportal (Tkachev et al., 2019). This dataset provides detailed information on deposits size and
location. To the best of our knowledge, the LSLDs dataset has not been previously used in the
economics literature. We complement our mineral discovery dataset with the 2015 version of Horn
dataset (Horn, 2014), which contains information on the reserves and location of giant-sized oil
and gas fields.

For brevity, unless stated otherwise, throughout the paper we refer to oil and gas as simply
“0il”. Our final dataset includes information on the estimated total reserves for over a thousand

giant discoveries for the period 1960—2012 across the following types of commodities:
e base metals: bauxite, copper, iron ore, lead, nickel, tin, zinc, cobalt;
e precious metals: gold, silver, platinum-group elements (PGE);

e specialty metals: manganese, lithium, chromium, molybdenum, niobium, titanium,

tungsten, vanadium;
e mineral sands: zirconium, rare earth elements;
e non-metallic minerals: potash, phosphorus, coal, fluorite, boron;
e diamonds;
e uranium;

e oil and gas.

Discovery and Production Start Dates. A distinctive feature of our final dataset—beyond
the inclusion of a broad set of commodities—is high-quality information on production start dates.
This allows us to calculate the lead time from discovery to production, which defines the horizon of
the news shock. As our results will show, the horizon is crucial for understanding the news effect
of these giant discoveries. Descriptive statistics of these lead times to production are presented in
the next subsection.

For mineral discoveries, the LSLDs dataset lacks information on discovery and production
dates. To address this, we compiled our own dataset on these dates, drawing from a range
of sources, including proprietary data. The primary source is a proprietary dataset generously
provided by Richard Schodde, Managing Director of MinEx Consulting. This dataset is further
supplemented with information from Global Energy Monitor (Global Energy Monitor, 2024),
Porter GeoConsultancy (portergeo.com.au), Mindat, The Diggings, the International Atomic



Energy Agency, Mining Technology (mining-technology.com), Rio Tinto, and De Beers, among
others.

For oil discoveries, the Horn dataset provides information on discovery dates but lacks
production start dates, as noted in ARS (p. 120). To fill this gap, we identified the production
start dates for each discovery in the Horn dataset by consulting various alternative sources. These
include the Uppsala University Giant Oil Field Database (H66k et al., 2009; Robelius, 2007), the
Petroleum Dataset from the Peace Research Institute Oslo (PRIO) (Lujala et al., 2007), Global
Energy Monitor (Global Energy Monitor, 2024), the International Atomic Energy Agency, and
The Diggings, among others.?

After this effort, we managed to obtain the production dates for nearly half of the oil

discoveries and two-thirds of the mineral discoveries in our sample.

Commodity Prices. To determine the economic value of the discoveries, we rely on commodity
price data. Our primary sources for this data are the U.S. Geological Survey and the World Bank
Commodity Price Data, which cover giant commodities starting from 1960. Uranium price data

is obtained from TradeTech (www.uranium.info).

Macroeconomic Data. Our main macroeconomic data source is similar to ARS, namely the
IMF World Economic Outlook. Our macro dataset contains information on GDP, investment,
consumption, the current account, the saving rate, and the employment rate for 181 countries.
Our baseline estimation is based on the 19802012 time span at the yearly frequency.? All national
accounts data are provided in real local currency units. For GDP, we also use a series in real USD
in order to compute the value of the discovery (in USD) as a percentage of GDP. We also note
that the dataset contains some extreme values, such as a drop in the current account in Kuwait
from 20% of GDP in 1990 to -224% in 1991 (due to the Gulf War.) We have checked that the
results are not driven by these rare instances. Finally, to investigate the role of financial frictions
in the impact of commodity discoveries, we also use panel data on capital flows from Alfaro et al.
(2014), which is normalized by the annual nominal GDP in USD.

2.2 Descriptive Statistics

Table 1 contains a first set of descriptive statistics for all commodities in our merged dataset
(minerals and oil). It lists the total number of discoveries across commodities, along with their
value, which is calculated by multiplying reserves (in physical quantities) by the prices at the time
of discovery, expressed in billions of 1998 US dollars.

Our sample includes a total of 220 mineral discoveries, with more than one-third of these
being base metal discoveries. The second and third most common types of mineral deposits are
precious metals and uranium. The sample also contains 421 oil discoveries and 388 gas discoveries.
As we will discuss below, many of these oil and gas discoveries occur in the same country and
year. Although there are fewer mineral discoveries than oil discoveries in the data, their economic

significance is similar. The average value of a mineral deposit is USD 51 billion, while the average

2For the Petroleum Dataset, we used the PETRODATA V1.2 update.

3Similar to ARS, due to data limitations, we cannot start earlier. Before 1970, the macroeconomic data is mostly
available for advanced economies. Even though our estimation starts in 1980, we use the information on discoveries
pre-1980 in the ADL model below. We also point out that the World Economic Outlook misses some of the series for
some countries even after 1980—the most complete series being GDP—and therefore these are automatically dropped
from the regression.



values of oil and gas deposits are USD 50 billion and USD 83 billion, respectively. Additionally,
there is substantial heterogeneity in deposit values.
Diamond and precious metal discoveries have the lowest mean values, whereas base metal

discoveries, particularly copper, stand out with the highest averages.
Table 1: Giant Discoveries Merged Data Set: Type, Number, and Value (bln 1998 USD), 1960-2012

Obs. Mean Median Std. Dev. Min Max

Minerals 220 51 13 119 13 958
Base Metals 85 83 37 152 .08 958
Precious Metals 65 12 9 11 1.7 62
Specialty Metals 8 121 23 269 6.9 785
Mineral Sands 14 29 21 29 .16 85
Non-Metallic Minerals 13 137 92 138 3.3 438
Diamonds 10 4.9 4 3.8 13 10
Uranium 25 12 7 17 1.1 82
Oil & Gas 792 58 21 204 2.8 4,997
Oil 417 50 20 100 2.8 1,141
Gas 375 67 21 278 2.8 4,997

Figure 1 shows the geographical distribution of discoveries. These discoveries happened in 96
countries between 1960 and 2012. 26 countries in the sample have experienced only one discovery.
It is interesting to note that discoveries are well spread out around the globe. There are more
oil discoveries in our data; consequently, a country is more likely to experience an oil discovery
than a mineral discovery. Moreover, large countries have—mnaturally—a higher probability of
multiple discoveries of both oil and minerals. On the contrary, small countries often have no

discovery.

Commodity discoveries require significant lead time of several years or even decades before
production begins. These lead times in developing resource fields and mines stem from
a complex mix of technical, regulatory, environmental, safety, economic, and geopolitical
challenges, despite continuous efforts to push projects forward.* Overcoming these obstacles often
necessitates collaborative efforts, involving cooperation among governments, private companies,
and international organizations. Figure 2 shows histograms of these lead times to production

5

for minerals (left) and oil (right) discoveries.” We note that minerals exhibit significantly

longer lead times to production, with a median of 11 years, compared to 6 years for oil

6 Qil extraction is faster due to lower upfront development requirements, while

discoveries.
mining projects face longer lead times to production due to complex geological, regulatory, and
infrastructure challenges. Mineral deposits are often more challenging to locate and extract,
requiring deeper exploration and more specialized extraction techniques. Mineral mining requires

extensive infrastructure, including roads, tunnels, and processing plants, with many deposits

4In Appendix A.3, we provide further details on the discoveries that experienced lead times to production of over
40 years.

®Ideally, we would want to have access to the ex-ante (expected) lead time once a discovery is made. This data,
however, is not available. The implicit assumption in our statistical analysis below is that agents form a rational
expectation on the lead time conditional on the information of the type of discovery (essentially the type of commodity).

S ARS assume that the typical lead time for oil discoveries is 4 to 6 years. We confirm this assumption in our sample,
with a median lead time of 6 years for this type of discoveries.



Figure 1: Geographical Distribution of Giant Mineral and Oil Discoveries, 1960-2012
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needing significant excavation and waste management, which can take several years to develop,

particularly in remote locations. In addition, mining projects often face more intense regulatory
and environmental scrutiny.

Moreover, we observe substantial heterogeneity in lead times across discoveries for each type of
commodity, ranging from 0 years to several decades, resulting in a long right tail in the empirical
distributions. However, the distribution of lead times for mineral discoveries is relatively uniform,
while the distribution for oil discoveries is more concentrated around the median. Notably, for
approximately 5% of oil discoveries, production began in the same year as the discovery.

A key distinction between the mineral discovery data and the oil data used by ARS lies in
these lead times to production, which define the horizon of the news shocks.

Table 2 shows some descriptive statistics of the lead times to production. Notably, there is
considerable variability within each commodity type. Specifically, gas discoveries tend to have
longer lead times compared to oil, with an average lead time of 11 years versus 8 years for oil. Gas
discoveries typically take longer to reach production than oil due to the complex infrastructure
required for transportation and processing, especially in offshore or remote locations. As final
markets are typically distant, gas discoveries require simultaneous investments in drilling and
transport infrastructure. Among minerals, our data shows that precious metals experience the
shortest lead times, averaging around 9 years, while uranium and base metals discoveries have
the longest lead times, averaging 19 and 17 years, respectively. Gold deposits tend to be either
high-grade underground mines that require less infrastructure or near-surface deposits that involve
less complex and quicker exploration, studies, and construction. On the other hand, longer
lead times for base metals such as copper reflect more intensive exploration of deeper deposits
and greater infrastructure to bring into production and transport the ore to export markets.”

"For example, the proximity of Chile’s copper mines to the sea has facilitated the profitable shipment of concentrates,
while copper mines in central Africa have had to depend on local smelting and refining to minimize the volume of
material transported to ports (Crowson, 2011).



In addition, uranium discoveries face heavy environmental and safety requirements due to the
radioactive nature of the commodity.
We will exploit this remarkable heterogeneity in lead times between oil and minerals, but also

within each commodity type, to analyze the role of the horizon in the transmission of news shocks.

Figure 2: Histograms: Lead Time (in years) from Discovery to Production Start
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Notes: For presentation purposes, in these histograms we do not include discoveries with lead time greater than 40
years (there are 6 oil discoveries and 6 mineral discoveries with lead time greater than 40 years).

Table 2: Giant Discoveries Merged Dataset: Lead Time (in years) from Discovery to Production Start
19602012

Obs. Mean Median Std. Dev. Min Max

Minerals 147 14 11 11 0 58
Base Metals 51 17 13 12 1 58
Precious Metals 52 8.9 6 7.4 0 36
Specialty Metals 4 16 10 15 6 38
Mineral Sands 5 11 8 7.7 4 23
Non-Metallic Minerals 5 16 9 17 4 45
Diamonds 9 13 10 10 4 32
Uranium 21 19 16 11 5! 39
01l 6 Gas 358 9.1 6 9.4 0 55
Oil 223 8 5 8.2 0 42
Gas 135 11 7 11 0 55

3 Macroeconomic Effects of Giant Commodity Discoveries

In this section, we describe the econometric specification and present our baseline empirical results

for the dynamic impact of giant commodity discovery news shocks on relevant macroeconomic



variables. We document that macroeconomic responses to commodity discovery news shocks are
delayed, with little or no action 4 years into the discovery. A news effect appears only 2 or 3 years
before production starts. After splitting by commodity type, we find that this result is driven
by mineral discovery news shocks, characterized by significantly longer lead times to production

than oil discovery news shocks.

3.1 Empirical Model

We follow ARS and use an autoregressive distributed lag (ADL) regression model to estimate the
response of key macroeconomic variables to a giant commodity discovery. Specifically, we estimate

the following linear regression:
Yit = ayii—1 + B(L)MViy + a; + g + €it (1)

where y;; is the value of a dependent macroeconomic variable in country i at time ¢. Given
our focus on the open economy dimension, our analysis centers on the following three dependent
macroeconomic variables: the ratio of investment over GDP, the ratio of CA over GDP and log
GDP.

MYV;; is the monetary value of the commodity deposit discovered in country i in year t
(fully described below) normalized by GDP. «; denotes country fixed effects, which control
for unobserved time-invariant country-specific characteristics (like geographic features), and p;
denotes time fixed effects, which control for global trends or events (like commodity price shocks,
global economic downturns, etc.) that might affect all countries in a given year. e; is a
homoscedastic disturbance. B(L) is a pth order lag polynomial, with p > 0. Impulse responses are
derived from the ADL model’s coefficients by recursively combining the direct effects of discovery
shocks, captured by the coefficients of B(L), with the dynamic feedback effects from the dependent
variable’s lag, governed by the a coeflicient.

Next, to compare the dynamic effects of mineral and oil news shocks, we extend this regression

model as follows:
Yit = ayis—1 + B(LYMVS + C(L)YMVM + o + py + et (2)

where C(L) is a gth order polynomial, with ¢ > 0. This specification accommodates separate
analysis of the effects of each type of discovery by allowing distinct coefficients for all independent
variables.® For Equation (1), we pick p=15, which is roughly twice the median lead time between
discovery and production dates in the sample. Similarly, for Equation (2), we pick p=10 and
q=20. Following ARS, we do not include controls (beyond country and time fixed effects) to
compute our baseline estimates. In regressions using log levels of variables (rather than percent
of GDP) and employment rate, we also include (country-specific) linear trends. Under the
assumption—introduced by ARS—that giant discoveries are exogenous, these regressions can
be estimated by OLS. Standard errors are computed applying the Driscoll and Kraay (1998)
correction.

To measure the size of a commodity discovery, we construct its monetary value (MV) as percent
of GDP. This measure differs from the net present value used in ARS, as it abstracts from the

8This specification assumes identical autoregressive coefficients (and other control variables) for both types of
discoveries. However, when we estimate the regressions separately for each discovery type, the results remain consistent.

10



production profile. This simplification allows us to accommodate very different types of minerals,
which largely differ in their production profiles and timing.? Specifically, we use the following
formula for MVj;:

100 Res;jit X pjit
MVy = 2WC8jit X Pjit
t= app. * Z [(1 n Tit)LTj,t:|

{discovery j}

where LT};; is the observed lead time from the year of discovery to the start of production, Res
the estimated reserves (quantity), and p;; the price of the commodity of discovery j in country 4
at time ¢.10

Due to data limitations, we do not observe the lead time for all discoveries (see Section 2.1 for
more details), in which case we use the average of our sample.

The summation is over discoveries, because it is possible—and actually observed in our
data—that two or more discoveries happen in a given country in the same year.!! GDP;; is the
output of country ¢ at time ¢, and r;; is the country-specific risk-adjusted rate used for discounting.
In countries with high political risk, the development of commodity fields can become extremely
difficult, if not entirely unfeasible. Consequently, discoveries in such regions must be discounted
more heavily compared to those in lower-risk countries, to compensate for political and economic
risk. The adjusted discount rate is calculated by adding a country-specific risk premium, based
on a NYU report compiled by Damodaran (2019), to a risk-free rate based on the prevailing rate
in the United States.

3.2 Pooled Oil and Mineral Discoveries

We start the analysis by examining the aggregate effects of all giant commodity discoveries—both
oil and mineral—in our sample. Figure 3 displays the estimated impulse responses of the current
account-GDP ratio, the investment-GDP ratio and GDP to a commodity discovery news shock. In
this pooled sample, the median lead time between the discovery date and the start of production
is 7 years, indicated by a vertical red dashed line on the plots. The 68% and 90% confidence
bands are shown in all cases.

As regards the current account, we observe a long initial period with a small or nil reaction,
followed by a sharp decline after 5 years and sequential reversal. It reaches a trough 6 years after
the discovery, i.e., 1 year before the median start of production. Then, the response of the current
account turns positive and reaches a peak about 10 years after the discovery, before gradually
returning to normal. The response of investment reflects the response of the current account.
Investment starts to rise significantly after 4 years and reaches a peak 6 years after the discovery,
with no reaction during the first 3 years. The response of investment quickly returns to normal
after the start of production. Regarding GDP, there is a strong positive impact a few years after
the discovery, which peaks after 7 years, followed by a slow return to normal.

Quantitatively, the estimates indicate that GDP peaks at 0.015 in year 8, meaning that the
median discovery—which is of size 8% of GDP—raises GDP by 8% x 0.015 = 0.12%. The total

9ARS embed in the net present value the notion of a discounted production profile for oil fields. This is difficult to

do in our case given the large heterogeneity of minerals and, likely, respective extraction technologies.

0Results are similar if we use the average lead time by commodity type instead of the observed lead time for each

discovery.

1 The summation takes into account that different minerals may be discovered in the same field. Note that MV;; is
expressed as a percentage of GDP and differs from the value of discovery in dollars (Res;i+ X pjit) prior to aggregation
across discoveries, as reported in Table 1. The descriptive statistics for MV, both for the pooled sample and for oil

and mineral discoveries separately, can be found in Appendix A.2 (see Table 7).
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cumulated effect of this discovery is the integral below the impulse response and is equal to 0.188.
This means that the median discovery leads to a total increase of GDP of 8% x 0.188 = 1.5%.
Similarly, investment peaks at 0.06% of GDP, with a cumulative increase that represents about
0.26% of GDP. The current account falls by 0.08% of GDP and later peaks at 0.07% of GDP.

Similar to ARS, we find evidence of anticipation effects in response to these discovery news
shocks, as current account, investment, and GDP react before the median start of production. A
standard news effect appears to kick in: this effect generates a procyclical response of investment
and GDP. At that moment, the economy borrows from abroad, generating a fall in the current
account. When production starts, the response of the current account turns positive, as output
rises and investment starts to decline. However, the timing of the anticipation effects strongly
differs from ARS. In contrast to ARS, there is relatively little or no impact, in any of the variables,
4 years into the discovery. In addition, we observe significant fluctuations in both the current
account and investment up to 15 years after the discovery, although the estimates for investment
are imprecise. In contrast, in ARS the effects begin to fade after 10 years.

This raises the question of what accounts for these differences. Why are the responses of
macroeconomic variables to a commodity discovery more delayed, with fluctuations persisting even
after 10 years, compared to the responses to an oil discovery as observed in ARS? One obvious
explanation is that our sample includes not only oil discoveries, but also mineral discoveries. As
discussed in Section 2, the lead time before production start of new mines is significantly longer
than that for new oil fields, notably due to geological, regulatory, and infrastructure challenges.

To investigate this hypothesis, we next split our sample of giant discoveries by commodity

type in order to compare the dynamic responses to an oil discovery and to a mineral discovery.
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Figure 3: Impulse responses to commodity discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to a commodity news shock. The
vertical red dashed line indicates the median lead time between the discovery date and the start of production date (7
years). 90% and 68% confidence intervals are shown in all cases.

3.3 Split by Commodity: Oil vs. Mineral Discoveries

We now compare the dynamic effects of mineral and oil discovery news shocks. To do this, we
split our sample of commodity discoveries into two categories, oil and minerals, and we estimate
Equation (2). Figure 4 shows the impulse responses of the current account-GDP ratio, the
investment-GDP ratio, and GDP to an oil discovery news shock (first row) and to a mineral
discovery news shock (second row), along with 90% and 68% confidence bands. Further evidence

for savings, consumption, and employment is reported in Appendix C. The median lead time
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before the start of production is 6 years in the sample of oil discoveries and 11 years in the sample
of mineral discoveries, indicated by the vertical red dashed lines on the plots.

The responses to an oil discovery news shock are qualitatively similar to the responses reported
by ARS (p. 128-9) and indicate significant anticipation effects.'> The current account sharply
declines from period zero as investment begins to rise 1 year after the discovery. It reaches a trough
when investment peaks, 5 years after the discovery, 1 year before production starts. Following the
start of production, 6 years after the discovery, the current account turns positive as investment
declines and stabilizes by year 7. GDP begins to rise significantly 5 years after the discovery,
peaking in year 8. These results suggest that a country discovering oil initially borrows from
abroad to finance investment, then repays the borrowed funds as returns from these investments
materialize and production starts.

In contrast, after a mineral discovery, there is no response in the current account or investment
for the first 4 years. However, we still observe anticipation effects, as investment rises significantly
before production begins, from 5 to 9 years after the discovery. GDP gradually increases, peaking
after 11 years. The current account drops significantly 6 years after the discovery, coinciding with
the first peak in investment. This delay contrasts with the immediate news effects we observe
after oil discoveries and suggests that the time horizon matters to understand the impact of news
shocks. Investment reaches a second peak a few years before the median start of production and
remains elevated even after GDP peaks, between years 12 and 14. This is reflected in a second
drop in the current account around the same time, followed by its reversal in year 19.

Turning to the magnitude of the impulse responses, the estimates indicate that investment
peaks at 0.018 following an oil discovery and at 0.014 after a mineral discovery. This implies
that the median oil discovery, which represents 9% of GDP, raises investment by 0.16% of GDP,
while the median mineral discovery, at 2% of GDP, raises investment by 0.03% of GDP. The
total cumulative effect of a commodity discovery on investment, represented by the integral of the
impulse response, is 0.044 for oil discoveries and 0.079 for mineral discoveries. Thus, the median
oil discovery leads to a total investment increase of 0.40% of GDP (0.044% x 9), while the median
mineral discovery leads to a total increase of 0.16% of GDP. These effects are substantial, given
that the median investment-GDP ratio is approximately 21%. In terms of GDP, the median oil
discovery results in a peak increase of 0.18% and a total cumulative change of 1.08%, while the
median mineral discovery leads to a peak increase of 0.09% and a total change of 0.80%.

Overall, the qualitative shape and the magnitude of the responses of investment and the
current account are similar for both types of discoveries, with two important distinctions. First,
the responses after mineral discoveries are clearly delayed by at least 4 years compared to those
after oil discoveries. Second, the effects are more spread out across a larger number of periods. As
discussed in Section 2, the first difference likely reflects the fact that mineral discoveries have, on
average, lead times that are nearly twice as long as those for oil discoveries; the second difference
may arise from the more uniform distribution of lead times for mineral discoveries, while the

distribution of lead times for oil discoveries is more concentrated around the median.!? The

quantitative differences.

12While the responses to an oil discovery are qualitatively similar to those in the ARS results, there may be minor
These discrepancies arise from differences in how the size of the discoveries is measured.
Additionally, we use an updated version of the Horn dataset, which includes some revisions. Nevertheless, the median

size of an oil discovery remains the same as in ARS, at 9% of GDP.

3The initial reversal in the current account following a mineral discovery is likely muted due to the more evenly
distributed lead times associated with these discoveries, resulting in a mix of discoveries occurring with different
lead times before production starts. Note that the estimates of responses to mineral discoveries are more imprecise,
particularly for the GDP response. This is also likely due to the more uniform distribution of lead times associated
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importance of this heterogeneity in the lead time between discovery and production has been

overlooked by the literature, as it lacked detailed information on these lead times.
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Figure 4: Impulse responses to oil (first row) and mineral (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil news shock (first row) and to
a mineral news shock (second row). The vertical red dashed line indicates the median lead time between the discovery
date and the start of production date for each type of commodity (6 years for oil discoveries, 11 years for mineral
discoveries). 90% and 68% confidence intervals are shown in all cases.

To further assess the general patterns of the responses, we perform hypothesis tests on the
cumulative effects over the first 5 years and the subsequent 5 years to determine whether these
effects are significantly different from zero after oil and mineral discoveries. Table 3 presents the
results of these hypothesis tests. For the current account-GDP ratio, the results show that, after an
oil discovery, the response is significantly negative during the first 5 years and significantly positive
during the next 5 years. In contrast, after a mineral discovery, the response is not significantly
different from zero in the first 5 years but becomes significantly negative in the subsequent 5
years. Regarding the investment-GDP ratio, the response to an oil discovery shock is significantly
positive in the first 5 years, whereas the response to a mineral discovery shock is not significantly
different from zero. However, the investment response to a mineral discovery turns significantly
positive in the following 5 years, while the response to an oil discovery is no longer different from
zero. For GDP, the response is significantly positive after an oil discovery during the first 5 years
and subsequent 5 years, while it is not different from zero during the first 5 years after a mineral
discovery. In sum, these tests confirm that the responses after a mineral discovery are significantly
delayed, with negligible impact during the first 5 years. This contrasts with the responses after an

oil discovery, which exhibit significant fluctuations in the first 5 years, before production begins.

with these discoveries.
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Table 3: Hypothesis tests on responses to an oil and a mineral news shock

Variable Hypothesis test P-Value
Oil  Minerals

Current account Hy : Zg irf, =0 0.00 0.80
Ho:Yoirf, >0 000  0.40
Ho:Y>g'irf, =0 001  0.11
Hy: Y gtirf, >0 1.00 0.06
Hy : ZG irf, <0 0.00 0.94

Investment Hy : Zg irf, =0 0.00 0.22
Hoy:Y5irf, <0 0.00  0.11
Hy : 26 irf, =0 0.80 0.01
Hy : 26 irfy, 0.60 0.01

GDP Ho:>0irf,=0 002 028
Ho: Y girf, <0 0.01  0.14
Hy : ZG irf;, =0 0.02 0.08
Ho: Y 3lirf, <0 0.01  0.04

Notes: irf, denotes the estimated impulse response at horizon h. p-values are obtained from the delta method.

It is tempting to interpret the different timing of macroeconomic responses to the type
of discovery as being driven by the lead time between discovery and production. However,
for this interpretation to be causal, it is crucial to ensure that macroeconomic factors do not
affect the likelihood of discovering one type of commodity over another. To check this, we
perform multinomial logistic regressions of the type of discovery (oil, mineral, both, or none)
on key long-term growth determinants, using cross-country data from Sala-i-Martin, Xavier and
Doppelhofer, Gernot and Miller, Ronald T (2004). Specifically, we regress the discovery type
on variables identified by Sala-i-Martin, Xavier and Doppelhofer, Gernot and Miller, Ronald I
(2004) as significantly related to growth, including geographic factors (land area, East Asian,
Latin American, and African dummies), demographic factors (life expectancy, overall and coastal
population density, and the fraction of the population under 15), and economic growth factors
(real GDP per capita, relative price of investment, primary school enrollment, and number of
years the economy has been open). The demographic and economic explanatory variables are
measured in 1960, the start of our sample period, which helps mitigate concerns about reverse
causality.

The results, reported in Appendix C (see Table 10), indicate that country size, measured
by total land area, is the strongest predictor of a commodity discovery (either oil, minerals, or
both). Larger countries are significantly more likely to experience giant commodity discoveries.
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Additionally, East Asian countries show a higher likelihood of experiencing both types of
discoveries. Most demographic factors are not significant, except for population density, where
countries with lower population densities are more likely to experience both types of commodity
discoveries. This likely reflects the association between larger land area and a greater probability
of commodity discoveries. Notably, economic factors such as GDP per capita, relative investment
price, primary school enrollment, and years of openness do not appear to significantly influence the
likelihood of a commodity discovery. Therefore, while we do not formally rule out reverse causality,
it seems reasonable to interpret the differences in responses to giant mineral and oil discoveries as
causal. As robustness checks, we examine other splits by commodity type in Section 3.5, as well
as by short and long lead time in the next subsection.

3.4 Split by Lead Time: Short vs. Long

Previous results show that the macroeconomic effects of mineral discoveries are delayed, with
negligible impact during the first 5 years, while oil discoveries trigger short-run anticipation effects.
A major difference between oil and mineral discoveries is the lead time before production, which is
significantly longer for mineral discoveries, notably due to geological, technological, and regulatory
challenges, as discussed in Section 2.2. To further explore the role of the lead time, we next split
our sample of giant discoveries based on the time lag between the discovery date and the start of
production, irrespective of the commodity type.

A potential issue with this split is that the lead time might be influenced by economic
conditions. To investigate this, we first regress the lead time on key long-term growth
determinants, using cross-country data from Sala-i-Martin, Xavier and Doppelhofer, Gernot and
Miller, Ronald T (2004), as in the multinomial logistic regressions in Section 3.3. The estimates
from these regressions, reported in Appendix C (see Table 11), show that some demographic
factors have a significant impact, with shorter lead times in countries with coastal population
density and with higher fraction of population under 15. The most significant determinants
appear to be the type of commodity, with significantly lower lead times for oil and gas discoveries,
and whether the discovery is offshore, which are characterized by longer lead times. However,
the geographic variables related to the continent or the land area of the countries where the
discoveries occur are not statistically significant. Importantly, none of the economic variables are
statistically significant. This confirms that economic conditions do not appear to play a major
role in explaining the lead time between discovery and production start.

Next, to overcome endogeneity concerns, we use an instrumental variable approach to predict
the lead time to production for all discoveries in our sample. As an instrument, we use the distance
between the location of the discovery and the nearest major city.'* The identifying assumption is
that the proximity of the commodity field to a large urban center affects the timing of production
through its impact on infrastructure development and access to resources, but is not related to
macroeconomic conditions at the time of discovery.

To compute this distance, we use the latitude and longitude coordinates of the commodity
fields for all discoveries in our giant mineral discoveries dataset. The information on the location
of major cities worldwide (defined as cities with more than one million inhabitants) is collected
from the World Cities Database available at Simplemaps.com. Using our sample of discoveries

with observed lead times, we regress the observed lead time on the distance to the nearest big city,

1¥We also used as an instrument the minimum distance between the discovery location and the nearest port or city.
The results are qualitatively similar.
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as well as commodity dummies, an offshore dummy, and the interaction between these dummies
and the distance, controlling for regional and time fixed effects. The regression estimates are
provided in Appendix D.8. They show that the distance to the nearest major city and the type
of commodity discovered explain a substantial portion of the lead time to production, with an
adjusted R-squared of 0.19. The estimates indicate that greater distance to the nearest major
city is associated with longer lead times, with statistical significance at the 5% level. As expected,
minerals are associated with longer lead times to production compared to oil discoveries, further
supporting our earlier analysis based on the split by commodity type. The lead time to production
increases more for offshore and gas discoveries as the distance to the nearest big city grows, while
it decreases more for precious metals. These results are consistent with our analysis in Section 2.2.

We then split our sample into two groups based on the predicted lead time: short-run
discoveries (predicted lead time below the median) and long-run discoveries (predicted lead
time above the median). The estimated impulse responses to short- and long-run discoveries
are displayed in Figure 5. They reveal strikingly similar patterns to the responses observed in
the baseline split by commodity type. Short-run discoveries yield almost immediate anticipation
effects, while long-run discoveries have delayed macroeconomic effects, with negligible impact

during the first 5 years. These results highlight the crucial role of the horizon of the news shock.
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Figure 5: Impulse responses to short-run (first row) and long-run (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to a short-run discovery (first row)
and to a long-run discovery (second row). The vertical red dashed line indicates the median lead time between the
discovery date and the production start date for each group (8 years for short-run discoveries, 14 years for long-run
discoveries). 90% and 68% confidence intervals are shown in all cases.
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3.5 Robustness and Extensions

In this subsection, we perform several robustness checks of our baseline results documented in
Section 3.3. We examine alternative measures of giant commodity discoveries, alternative splits
by type of commodity, the effects of removing discoveries with very long or very short lead times
before production start, alternative dynamic specifications, and the use of a different methodology
such as local projections. All results can be found in Appendix D.

We begin by testing the robustness of our main results to alternative measures of the size of
giant commodity discoveries. First, we use a dummy variable that captures the occurrence of an
oil or mineral discovery event, relying solely on the timing of the discovery. This approach avoids
assumptions about the construction of the monetary value of the discovery but disregards the size
of the discovery relative to the economy, potentially omitting crucial information. As shown in
Figure 15, the estimated responses of the three key variables to an oil or mineral discovery event
are largely consistent with our baseline results. However, the output response to an oil discovery
event is imprecise and not statistically distinguishable from zero. Next, we test robustness by
replacing the country-specific risk-adjusted discount rate with a common discount factor of 10%.
The resulting impulse responses for the key macroeconomic variables remain virtually unchanged
(see Figure 16).

Second, we explore alternative splits by commodity type, leveraging heterogeneity in lead
times within each category. As shown in Table 2, the median lead time for oil discoveries is
shorter than for gas discoveries—6 years compared to 8 years. Similarly, the median lead time
for precious metals is 6 years, whereas other mineral discoveries have a median lead time of 13
years. We estimate Equation (2) for two splits: (i) oil vs. gas, and (ii) precious metals vs. other
minerals. For the first split, we set p = ¢ = 10, and for the second, p = 10 and ¢ = 20. The
results are qualitatively consistent with our baseline findings, highlighting similar delayed effects
of gas and other minerals discoveries relative to oil and precious metals discoveries, respectively
(see Figure 10 and Figure 11).

Third, we examine whether excluding discoveries with lead times exceeding 20 years before
production affects our estimates. It could be argued that such discoveries represent noise rather
than genuine news shocks, and that their long lead times may be influenced by factors unrelated
to technology, such as political instability or strategic timing in response to commodity price
fluctuations. The results remain robust, indicating that discoveries with exceptionally long lead
times are not driving the observed differences in responses to oil and mineral discovery news
shocks (see Figure 12). We also check that the results are robust to excluding discoveries with
lead times of less than 2 years before production, as these are less likely to represent news shocks
(see Figure 13).

Fourth, we estimate the same regression on the sample of countries that experience both oil
and mineral discoveries. This comparison can help rule out the possibility that the delayed effects
observed after mineral discoveries are driven by different economic conditions between countries
that discover minerals and those that discover oil. Figure 14 shows that these delayed effects hold
in countries that discover both types of commodities.

Lastly, our findings remain robust across various dynamic specifications. Specifically, the
results hold when changing the lag order of the independent variables to p = 15, ¢ = 15, or
g = 25 (Figure 16). In addition, we estimated alternative impulse responses using the Jorda
(2005) local projection method. While local projections offer a more flexible approach to
modeling dynamic effects with fewer restrictions than ADL models, this flexibility comes at
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the cost of reduced efficiency and the loss of a substantial number of observations, particularly
at longer horizons. Despite these trade-offs, the resulting impulse response patterns align
well with those from our baseline model (Figure 17). The main exception is the response of

GDP to oil discovery shocks, which is no longer significantly different from zero in the medium run.

4 A Small Open Economy Model with Financial Frictions

In this section, we present a small open economy model that qualitatively illustrates how financial
frictions affect the propagation of news shocks. The starting point is the two-sector small open
economy model of Arezki et al. (2017), which we briefly describe in Section 4.1. We extend this
model by incorporating a collateral constraint as in Mendoza (2002, 2010), which limits borrowing
capacity based on the value of capital in the commodity sector. Additionally, we introduce
investment irreversibility, following Pindyck (1991) and Abel and Eberly (1999), to capture the
costly reallocation of capital across sectors. These two frictions fundamentally alter the economy’s
adjustment to news shocks by constraining the ability to finance investment through external
borrowing and limiting the speed at which resources can be reallocated. The combination of
these features generates delayed and nonlinear responses of macroeconomic variables, particularly
investment and the current account, to long-run news. Our model demonstrates that the
timing of investment depends on both the lead time—the exogenous delay between discovery
and production—and the extent to which borrowing constraints bind over time. By incorporating
these elements, the model provides a richer framework for understanding how financial constraints

shape the macroeconomic effects of resource discoveries.

4.1 Standard Small Open Economy Model

We start by presenting ARS benchmark model. ARS model is a small open economy framework
that consists of two distinct sectors: a commodity extraction sector and the rest of the economy,
reflecting the dual structure common in many small open economies. The small open economy
does not affect the world interest rate or world commodity prices. A key feature of this model
is the explicit inclusion of lead times between the onset of the discovery news shock and its full
realization when production starts, referred to as the “time to connect.” This concept reflects
the time required to overcome technological, regulatory, and infrastructure challenges before full

production can begin. We will use this to compare the effects of news with different time horizons.

4.1.1 Firms

There are two sectors in the economy: a commodity sector and another sector, which we will call
manufacturing. Sector 1, the manufacturing sector (non-resource), uses a Cobb-Douglas, constant
returns to scale technology, which depends on capital at the end of period t -1, K; ;—1, and labor,
Ny

Yig= Al,thf% Kll,;f‘{

Sector 2, the commodity sector, uses capital K>;_1, labor, Na, and the stock of commodity

reserves available for production in period ¢, R;_1, also with a Cobb-Douglas, constant returns
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to scale, production function:
« « l—ap—«
You = Ao Ny Koy Ry 2y

where 0 < ag, a2, ap < 1. Capital accumulation in each sector is subject to investment adjustment
costs a la Jaimovich and Rebelo (2009):

¢ Ist ?
Koy =1 1—= -1
s,t s,t l 2 Is,tfl

where s denotes the sector, 6 € (0,1), ¢ > 0. Adjustment costs in steady state are equal to zero.

+(1=80)Key1 , s=1,2

4.1.2 Households

The economy is populated by identical agents who maximize lifetime utility defined over sequences

of consumption C; and hours worked NV;. Lifetime utility is

> (Cr—yNO'TT -1
Eo Zﬂt l-0o

t=0

It is assumed that 8 > 1,9 > 0, and o > 0. Following ARS, we opt for Greenwood et al. (1988)

(GHH) preferences, which shut down the wealth effect on labor supply and are commonly used

in open economy models. The household supplies capital and labor in a competitive market.
Households consume only good 1 but can exchange the commodity (good 2) for good 1 on

international markets. Thus, the flow budget constraint is as follows:
B =14+r)Bi—1+ Y +pYor) = (Co+ L+ Ioy)

where p; is the relative price of a commodity determined exogenously in the world market.
To induce stationarity of foreign bond holdings, we follow the external debt-elastic interest
rate proposed by Schmitt-Grohe and Uribe (2003):

re=1"+x [exp(B — Bi—1) — 1]

4.1.3 Aggregation

Aggregate output, capital, investment, and domestic labor are defined as:

Yo = Yii+pYo,
Ky = K+ Koy
Iy = L +1y

Ny, = Nit+ Noyy

The current account is defined as
CAy =B, — By 1 =5 -1

where S; is aggregate saving.
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4.1.4 Exogenous Processes

We model the lead time between discovery and production using the same “time-to-connect”
concept as ARS. Reserves are known immediately upon discovery but become productive only once
the necessary infrastructure—such as roads for minerals or pipelines for oil—has been connected
to capital and labor. This process takes time. Thus, the stock of producing reserves evolves as
follows:

Ri=R+ Ry — Yo, + €t—j

This relation states that the producing reserves at the end of year t — 1, R;_1, are augmented with
an exogenous stream R, are endogenously depleted by commodity production, Ys ¢, during year ¢.
€;—; captures the interaction between the news of a commodity discovery and the time-to-connect
feature. At time ¢ — j, the discovery news is received, leading to an immediate increase in known
reserves. However, producing reserves only increase at time ¢, as it takes time to connect them
to capital and labor. The lag on €;_; captures this lead time between the announcement of the
discovery and the actual availability of reserves for production. We set j to 6 and 11, reflecting

the median lead times for oil and mineral discoveries, respectively.

4.2 Introducing Financial Frictions

As we will show in Section 4.4, the model described previously delivers an immediate response
of the current account and investment to discovery news shocks, which is not in line with our
evidence in the case of mineral discoveries. The mechanism behind these results crucially relies
on the country’s ability to borrow externally.

However, the timing of macroeconomic responses to commodity discoveries is significantly
influenced by two key factors: the lead time between discovery and production and the presence of
borrowing constraints. The lead time determines how long it takes to establish productive capacity
for technological reasons. In particular, mining projects face longer lead times compared to oil
extraction, due to complex geological and infrastructure challenges. At the same time, developing
a commodity deposit typically requires substantial upfront investments over an extended period,
during which uncertainty about prices, macroeconomic conditions, and policy environments
remains high. Borrowing constraints limit access to external financing, preventing the smoothing
of investment over time. When borrowing constraints are binding, this can result in a delayed but
sharper macroeconomic response, as financial conditions ease.

Therefore, a natural extension of the model is the introduction of borrowing constraints,
a well-established feature in explaining business cycle fluctuations, particularly in emerging
markets (Mendoza (2002, 2010)). As we will show, incorporating these constraints helps the
model to better capture the delayed responses of investment and current account following a

mineral discovery.

Collateral constraint. We opt for a particular form of borrowing constraint by assuming that
the amount of borrowing is limited by the value of collateral, which depends on the capital
stock in the commodity sector and a proportionality factor reflecting the pledgeability of assets.
This type of collateral constraint, known as resource-backed lending, is particularly prevalent in

commodity-rich countries, as we will discuss below.

By > ¢Kyy (3)
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Collateral constraints play a critical role in explaining the excess aggregate volatility
in emerging economies, as emphasized by Mendoza (2010). In these economies, access to
international capital markets is often limited by external factors, such as terms-of-trade shocks
or sudden stops in capital flows. When asset prices or output in the collateral-constrained sector
fall, the country’s borrowing capacity is reduced, leading to a sharp adjustment in consumption,
investment, or both. This constraint amplifies the impact of external shocks and generates
large swings in macroeconomic aggregates, contributing to the volatility commonly observed in

emerging markets.

Investment Irreversibility.  Turning discovery into production requires large upfront
investments in the commodity sector. If the country faces borrowing constraints and cannot
secure external financing, it would reallocate capital from other sectors of the economy to fund
resource development. However, this reallocation can lead to a contraction in non-resource sectors,
potentially causing an economic downturn—a pattern that is not strongly supported by the
data. Moreover, capital reallocation may be difficult in practice due to sector-specific skills,
infrastructure needs, and institutional frictions.

To limit sector reallocation, we introduce an additional constraint on investment in the rest
of the economy, ensuring that capital flows into the commodity sector do not excessively disrupt
overall economic activity. This adjustment allows the model to better align with observed patterns

following a resource discovery.

Il,t Z VII,SS (4)

The amount of disinvestment in the rest of the economy is limited to a lower threshold,
which represents a steady-state investment level. This threshold reflects the irreversibility of
capital reallocation: once resources are allocated, they cannot easily be withdrawn or redirected
without incurring significant adjustment costs. This feature captures a realistic rigidity observed
in many economies, where investment decisions are not only forward-looking but also constrained
by sunk costs and technological limitations. Alternatively, one can think that there is specific
resource-extraction capital, which is distinct from the general capital stock. Examples of
oil-extraction capital include drilling rigs, pipelines, pumps, and seismic exploration tools (Bohn
and Deacon, 2000). Another interpretation is that resource-extraction capital becomes productive
in the periods after it is purchased, reflecting an installation lag similar to the time to build
concept introduced by Kydland and Prescott (1982).

Discussion. We now present illustrative examples that support our assumption about the
importance of collateral constraints in the commodity sector.

Developing commodity fields requires large upfront investments, which are often financed
through borrowing. However, access to international capital markets is frequently constrained,
particularly for developing economies. Resource-backed lending—where loans are collateralized by
oil, minerals, or metals—has become a key financing mechanism, particularly in Latin America and
Sub-Saharan Africa. According to Mihalyi et al. (2020, 2022); Wang et al. (2023), this common
practice allows countries to access much-needed financing for infrastructure development and
other projects without the immediate need for cash by leveraging their natural resource wealth as
collateral. Resource-backed loans have been especially prevalent in commodity-rich countries, with

financing typically involving natural resources as security for long-term loans from international
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creditors. China has been a dominant player in this form of lending, providing at least $152 billion
in resource-backed loans since 2004 (Horn et al., 2021).

Our model is directly applicable to state-owned enterprises (SOEs). SOEs play a critical
role in developing new commodity fields, particularly in oil, uranium, and coal. Globally, SOEs
control a significant share of resource reserves and production. For example, national oil companies
(NOCs) manage over $3 trillion in assets and dominate global oil and gas production (International
Monetary Fund, 2019). Similarly, in mining, SOEs hold substantial reserves across key metals,
including copper, iron ore, and gold, despite a decline in state control since the 1980s (World
Bank, 2008). In coal, state ownership remains prevalent, driven by energy security and industrial
policy considerations (U.S. Energy Information Administration, 2020; World Coal, 2022).

While SOEs dominate many commodity sectors, private companies also play a significant
role in commodity extraction. Our model remains relevant in this context because private firms,
especially in developing economies, often face significant financial constraints. As Baumgartner
and Thoni (2019) highlight, private investment in resource-rich economies is frequently hindered
by limited access to capital, creating barriers to project development and expansion. Project
financing structures, which rely on collateralized borrowing, mirror the borrowing constraints faced
by governments. As Esty (2004) explains, project finance plays a crucial role in funding large-scale
infrastructure and resource extraction projects by structuring loans around collateralized assets
and expected cash flows rather than the balance sheet of the borrowing firm. This approach allows
firms with limited creditworthiness to secure funding, but it also ties investment decisions closely
to the availability of collateral and the stability of future revenues. Additionally, domestic firms
in resource-rich economies typically encounter greater difficulty accessing international financial
markets, exacerbating financing challenges. As Venables (2016) emphasizes, both state-owned
and private firms struggle with securing adequate funding for resource extraction, which in turn
influences investment decisions and project timelines. Therefore, the dynamics of investment
delays and financial frictions apply broadly, whether the commodity sector is state-owned or

private.

4.3 Calibration

Table 4 presents the baseline calibrated parameters for our two-sector model. The values are
broadly consistent with the literature, particularly ARS and Jaimovich and Rebelo (2008).

The model incorporates Cobb-Douglas production functions with constant returns to scale for
both sectors. The manufacturing sector is labor-intensive, with a labor share «; of 64%, following
Jaimovich and Rebelo (2008). In contrast, the commodity sector is capital-intensive, with a
labor share ap of 13% and a capital share ay, of 49% (thus, the resource share is 38%). These
parameters are calibrated using the estimates from Gross et al. (2013), who provide production
function parameters for the Australian mining industry, which contributes approximately 13%
to the country’s GDP, with oil and gas accounting for around 3%. The relatively higher capital
and resource shares reflect the capital-intensive nature of commodity extraction compared to
manufacturing.

The depreciation rate ¢ is set at 10%, following ARS, reflecting the relatively high wear and tear
of capital in resource extraction industries. The household sector is characterized by a discount
factor 8 = 0.909, risk aversion 0 = 1, and a Frisch elasticity # = 1.2, consistent with Jaimovich
and Rebelo (2008). The disutility of labor parameter ¢ = 0.408 and the elasticity of the interest
rate with respect to debt x = 0.0001 are taken from ARS, ensuring consistency with previous
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Table 4: Baseline Calibrated Parameters

Parameter  Value Description Target /Source
o1 0.64 Labor Share in Manufacturing Jaimovich and Rebelo (2008)
Qs 0.13 Labor Share in Commodity Extraction Gross et al. (2013)
Qg 0.49 Capital Share in Commodity Extraction Gross et al. (2013)
o 0.37 Reserve Share in Commodity Extraction Gross et al. (2013)
] 0.10 Depreciation Rate Arezki et al. (2017)
B 0.909 Discount Factor Arezki et al. (2017)
o 1.000 Risk Aversion Jaimovich and Rebelo (2008)
0 1.200 Frisch Elasticity Jaimovich and Rebelo (2008)
Y 0.408 Disutility of Labor Arezki et al. (2017)
X 0.0001 Elasticity of Interest Rate wrt Debt Arezki et al. (2017)
B -11.878 Steady State Debt steady-state % = 0.04
" 0.1 Investment Adjustment in Manufacturing Arezki et al. (2017)
Yo 0.1 Investment Adjustment in Commodity Arezki et al. (2017)
De 1 Commodity Price Arezki et al. (2017)
R 2 Value of Discovery steady-state % = 0.06
10} -5.97 Debt Constraint ¢ = 1.005 x w5
v 1.000  Investment Irreversibility in Manufacturing Abel and Eberly (1999)

small open economy models.

To capture the economy’s external borrowing capacity, we calibrate the steady-state debt
level B at -11.878, which corresponds to a trade balance-to-GDP ratio of 4%, a typical value
for emerging market economies. The investment adjustment costs are set to 0.1 in both the
manufacturing (7;) and commodity (7y2) sectors, following ARS.

We calibrate the collateral constraint parameter ¢ to -5.97 by computing the steady-state

values of capital (Kss2) and debt (Bss) in an economy without borrowing constraints and then
setting ¢ = 1.005 x Iﬁ . This ensures that the collateral constraint is not binding in the initial
steady state but remains very tight. As regards the investment irreversibility constraint, we set
v = 1, meaning that capital in the non-commodity sector cannot be reallocated once invested.
This follows Pindyck (1991) and Abel and Eberly (1999), capturing the well-documented difficulty
of shifting capital across sectors in resource-rich economies.

Finally, following ARS, the commodity price p. is normalized to 1, and the discovery value
R is calibrated to 2, so that the steady-state output ratio of the commodity sector to the total

economy (%) is approximately 6%.

4.4 Results

Figure 6 presents the results of our baseline model (solid red line) and compares them to the
model without financial frictions (dashed black line), similar to the one in ARS. The first row
shows the responses to short-lead time discoveries, which serve as our proxy for short-run news.
The second row displays the responses to long-lead time discoveries, our proxy for long-run news.

The lead time for short-run news is 6 years, similar to the median lead time for oil discoveries,
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while the lead time for long-run news is 11 years, corresponding to the median lead time for
mineral discoveries.

The presence of constraints in our model clearly amplifies the responses compared to the
standard model.'> However, for short-run news, the responses are qualitatively similar in both
models: the current account drops immediately as investment rises, and GDP increases when
reserves become available for production. In contrast, for long-run news, the responses diverge
significantly. In our model, the current account remains unchanged for the first 4 years, then
sharply declines. Similarly, investment and GDP stay near zero for several periods before
increasing sharply. These patterns closely mirror the empirical dynamics observed for mineral
discoveries. In the standard model, however, the current account, investment, and GDP all
initially drop in the years immediately after the discovery news.

After a discovery, to fully capitalize on the benefits at the time of production, it is crucial to
begin investing in the commodity sector to build production capacity. To finance this investment,
resources are sourced through a hierarchical process: borrowing from abroad, reallocating capital
between sectors, temporarily increasing output in the commodity sector using existing deposits,
and increasing savings. While the borrowing constraint limits the ability to borrow from abroad,
investment irreversibility restricts capital reallocation. The time available to build the capital
stock in the commodity sector is crucial. Our model suggests that it takes around 5 years to build
the capital stock in the economy. The shorter the time available to accumulate capital, the more
viable it becomes to temporarily boost production from existing deposits, putting less pressure
on consumption. As shown in Figure 20, output in the commodity sector increases quickly and
gradually after the discovery in the case of short-term news, while the response is delayed and
more pronounced after long-run news. Over time, this gradual rise in commodity output leads to
an increase in the capital stock of the resource sector, which in turn eases the borrowing constraint.

After both short- and long-run discovery news, the borrowing constraint plays a significant
role, but its impact differs. In the case of short-run news, the borrowing constraint does not bind,
allowing for temporary boosts in consumption and mild amplification of the responses for other
macroeconomic variables. In contrast, in the case of long-run news, the constraint binds along
the first 5 years of transition, which forces a more delayed and pronounced adjustment process.
Consequently, the timing of the consumption increase and the decision to allocate resources toward
capital accumulation depends heavily on the interaction of the time horizon of the news shock
and the borrowing constraint.

To sum up, borrowing constraints and investment irreversibility play a crucial role in generating
delayed responses by limiting firms’ ability to front-load investment and preventing the immediate
reallocation of capital from other sectors. These features effectively capture the delayed responses
observed in the data, particularly in response to long-run news. This highlights the important
role of the horizon in shaping macroeconomic responses to news shocks, as both constraints and
the resource allocation process influence the optimal strategies for investment and consumption

decisions.

'5One can note a discrepancy between the empirical estimates and the magnitudes of the theoretical model responses.
Similar to ARS, our model is not designed to perform a quantitative matching exercise but rather to highlight the
transmission mechanism.

Furthermore, the shock is normalized so that the present value of the increase in oil revenue corresponds to 1% of
initial GDP. Empirically, however, oil discoveries lead to an increase in government revenue equivalent to approximately
9% of GDP, while mineral discoveries result in a smaller increase of around 2% of GDP.
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Figure 6: Impulse responses for current account, investment and GDP

Notes: This figure presents the impulse responses of the current account to GDP ratio, investment to GDP ratio, and
GDP to a short lead-time discovery (first row) and to a long lead-time discovery (second row). The responses are shown
for our baseline model with financial frictions (red solid lines) and without financial frictions (black dashed lines).

4.5 Additional Results and Sensitivity Analysis

We now discuss the responses of other macroeconomic variables and provide a sensitivity analysis
of our findings with respect to some key parameters. All related figures are displayed in
Appendix E.

Figure 19 shows the responses of savings, consumption, and hours. These responses align with
our empirical results (Figure 9). In particular, in response to long lead-time discoveries, savings
decrease and consumption increases with a 5-year delay following the discovery, while hours rises
around the start of production. In contrast, the SOE model predicts that sectoral reallocation
causes a drop in hours, with capital flowing from manufacturing to the commodity sector, leading
to a large drop in manufacturing hours and a small increase in the low labor-intensive commodity
sector. Savings drop and consumption jumps immediately due to the wealth effect from expected
higher future income. In our baseline model, the delayed responses of savings and consumption
to long-lead time discoveries reflect the gradual buildup of investment required for the long-term
benefits of the discovery. Overall, our baseline model captures well the delayed responses of

consumption, employment, and savings to long-run news, in line with the evidence, while the
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standard SOE model generates immediate responses due to sectoral reallocation and capital flows.

In Figure 21, we examine the case of a tighter borrowing constraint, setting ¢ = 1.001 x %
Our results indicate that a tighter borrowing constraint leads to counterfactual excess saving, as
the economy is unable to borrow as much in response to shocks.

In Figure 22, we illustrate the role of investment irreversibility. In the model without
irreversibility (v = 0), the responses of the current account are similar to those in the baseline
model. However, we observe a significant decline in investment and GDP in the years following
the discovery, driven by the reallocation of capital from the rest of the economy. This pattern,
however, does not align with empirical observations. One could argue that large adjustment
costs might lead to delayed responses in the current account and investment. However, as shown
in Figure 22, we still observe an immediate drop in investment, even under unrealistically high

adjustment costs.

5 Investigating the Mechanism

In this section, we provide evidence supporting the proposed mechanism and highlight the role
of financial frictions in the transmission of discovery news shocks. First, we investigate how the
macroeconomic impact of commodity discoveries varies across countries with different levels of
financial openness. While responses to oil discoveries are similar across both groups, responses to
mineral discoveries are delayed in financially closed countries, suggesting the presence of borrowing
constraints. Second, we examine the impact of commodity discoveries on international capital
flows. We find that oil discoveries lead to an immediate increase in foreign direct investment,
while mineral discoveries generate a delayed response, which further points to the importance of

financial frictions in the transmission of news shocks.

5.1 Split by Financial Openness

As discussed in Section 4, both the standard model and the model augmented with financial
frictions produce similar qualitative responses to short-run news, while their predictions differ in
response to long-run news, due to the presence of financial frictions.

To test this in the data, we examine how the macroeconomic effects of commodity discoveries
vary across countries with different levels of financial openness. We split the sample of countries
into two groups—financially open and financially closed—and estimate separate regressions for
each group. To measure financial openness, we follow the approach of ARS and employ a de
facto indicator based on the ratio of total assets and liabilities to GDP, using data from Lane and
Milesi-Ferretti (2007). A country is classified as financially open if its average ratio of assets and
liabilities to GDP is above the median, and financially closed if it is below the median.

Figure 7 presents the impulse responses to an oil discovery news in the first row and to
a mineral discovery news in the second row. We contrast the responses for financially open
countries, represented by dashed green lines, with those for financially closed countries, shown in
blue. Consistent with ARS, we find that the responses of the current account, investment, and
GDP to giant oil discoveries are qualitatively similar across the two groups of countries, with a
significant impact in the early years following the discovery. We observe that in the financially
closed group, investment and output peak about a year earlier, and the current account turns

from negative to positive sooner. This can likely be explained by the slightly shorter median lead
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times in this group. The median lead time is 5 years for oil discoveries and 11 years for mineral
discoveries, compared to 7 and 12 years, respectively, in the financially open group.

However, the responses to giant mineral discoveries, displayed in the second row, strongly differ
in the two groups of countries. In the financially open group, current account drops immediately
and persistently after the discovery news, whereas in the financially closed group, it only declines 5
years after the discovery. Similarly, investment increases in the years following the discovery in the
financially open group, while there is no impact during the first 5 years in the financially closed
group. Output drops in the financially open group, but the estimates are imprecise. Overall,
these results demonstrate that the responses to mineral discoveries show a significant delay, which
is observed only in financially closed countries, where borrowing constraints are more likely. In
contrast, both oil and mineral discoveries lead to an immediate impact on macroeconomic variables
in financially open countries. These findings align with the predictions of our model and suggest

the presence of borrowing constraints.
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Figure 7: Impulse responses to commodity discoveries in financially open countries (green) and

financially closed countries (blue)

Notes: These graphs present the estimated impulse responses of aggregate variables to giant commodity discovery news
shocks. The first row shows responses to an oil discovery news shock, and the second row shows responses to a mineral
discovery news shock. In each panel, the green dotted line corresponds to the response in financially open countries,
and the blue solid line the response in financially closed countries. The vertical red dashed line indicates the median
lead time between the discovery date and the start of production date for each type of commodity (6 years for oil

discoveries, 11 years for mineral discoveries).
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Importantly, studying the effects of long-run news shocks reveals the presence of borrowing
constraints and helps to distinguish between the two types of models (standard vs. augmented with
financial frictions), while the responses to short-run news appear qualitatively similar, regardless

of the presence of financial frictions.

5.2 Evidence on Capital Flows

Net Foreign Direct Investment (FDI) has become a major type of international capital flow in
recent decades and a key source of financing for capital investments. Using data on capital
flows from Alfaro et al. (2014), we estimate Equation (2) for the same panel of countries as in
the baseline analysis to examine the impact of oil and mineral discoveries on FDI. The impulse
responses, shown in Figure 8, largely reflect the response patterns of the other macroeconomic
variables. Oil discoveries lead to an increase in FDI in the first years after the discovery, while
mineral discoveries trigger a delayed response, with a surge in FDI occurring approximately 5 years
after the discovery, and no significant reaction in the first 5 years. For both types of discovery,
the response of net FDI peaks about 2 years before production starts. This suggests that financial
frictions may play a critical role in moderating the flow of foreign capital. Notably, these findings
indicate that the delayed economic impact of mineral discoveries may be due to financial barriers
that impede the immediate flow of FDI.
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Figure 8: Impulse responses to oil (first row) and mineral (second row) discoveries

Notes: These graphs show the estimated impulse responses of net Foreign Direct Investments (FDI) to an oil news
shock (first row) and to a mineral news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of commodity (6 years for oil discoveries, 11
years for mineral discoveries). 90% and 68% confidence intervals are shown in all cases.
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6 Conclusion

While most of the news shocks literature focuses on news shocks that materialize after a few
quarters, this paper brings new insights by examining long-horizon news shocks that materialize
after several years or even decades. Building on the work by ARS, we construct a new dataset of
giant commodity discoveries worldwide for oil and for a wide range of minerals. Importantly, we
gather data on both discovery and production start dates, which allows us to calculate the lead
time between discovery and production. This lead time defines the horizon of the news shock. We
document significant heterogeneity in lead times across commodities, which we leverage to study
news events with different horizons.

The horizon of news shocks matters. First, our empirical analysis reveals that discoveries
with long lead times—typically, mineral discoveries—have a delayed economic impact, with little
to no response in the first 4 years following the discovery. In contrast, discoveries with shorter
lead times—typically, oil discoveries—trigger significant macroeconomic fluctuations shortly after
the discovery. Second, we show that both a standard small open economy model and a model
with collateral constraints yield similar predictions for the effects of short-horizon discovery
news. However, only the model with collateral constraints can explain the empirical findings
related to long-horizon discovery news. Lastly, we further provide evidence that highlights the
role of financial frictions in the transmission of discovery news shocks. Our findings have broader
implications for macroeconomics. In particular, exploring how the time horizon shapes the
impact of news about future fiscal or monetary policy changes could be a promising area for

future research.

30



References

Abel, Andrew B. and Janice C. Eberly, “The Effects of Irreversibility and Uncertainty on
Capital Accumulation,” Journal of Monetary Economics, 1999, 44 (3), 339-377.

Aguiar, Mark and Gita Gopinath, “Emerging Market Business Cycles: The Cycle Is the
Trend,” Journal of Political Economy, 2007, 115 (1), 69-102.

Alfaro, Laura, Sebnem Kalemli-Ozcan, and Vadym Volosovych, “Sovereigns, Upstream
Capital Flows, and Global Imbalances,” Journal of the European Economic Association, 2014,
12 (5), 1240-1284.

Arezki, Rabah, Valerie A. Ramey, and Liugang Sheng, “News Shocks in Open Economies:
Evidence from Giant Oil Discoveries,” The Quarterly Journal of Economics, 2017, 132 (1),
103-155.

Barsky, Robert and Erik Sims, “News Shocks and Business Cycles,” Journal of Monetary
Economics, 2011, 58 (3), 273-289.

Baumgartner, Peter and Christian Thoni, “Private Investment in Resource-Rich Economies:
The Role of Financial Constraints,” Journal of Development Economics, 2019, 138, 125-141.

Beaudry, Paul and Franck Portier, “An Exploration into Pigou’s Theory of Cycles,” Journal
of Monetary Economics, 2004, 51 (6), 1183-1216.

and _ , “Stock Prices, News, and Economic Fluctuations,” American Economic Review,

September 2006, 96 (4), 1293-1307.

Beverelli, Cosimo, Salvatore Dell’Erba, and Nadia Rocha, “Dutch Disease Revisited.
Oil Discoveries and Movements of the Real Exchange Rate When Manufacturing is

Resource-Intensive,” International Economics and Economic Policy, 2011, 8, 139-153.

Blanchard, Olivier J., Jean-Paul L’Huillier, and Guido Lorenzoni, “News, Noise,
and Fluctuations: An Empirical Exploration,” American Economic Review, 2013, 103 (7),
3045-3070.

Bohn, Henning and Robert T Deacon, “Ownership Risk, Investment, and the Use of Natural
Resources,” American Economic Review, 2000, 90 (3), 526-549.

Chahrour, Ryan and Kyle Jurado, “News or Noise? The Missing Link,” American Economic
Review, 2018, 108 (7), 1702-36.

Crowson, P., “Economics of the Minerals Industry,” in Peter Darling, ed., SME Mining
Engineering Handbook, Englewood, CO: Society for Mining, Metallurgy and Exploration, 2011.

Damodaran, Aswath, “Country Risk: Determinants, Measures and Implications — the 2019
Edition,” 2019.

Di Pace, Federico and Juvenal, Luciana and Petrella, Ivan, “Terms-of-Trade Shocks Are

Not All Alike,” American Economic Journal: Macroeconomics, 2024.

31



Drechsel, Thomas and Silvana Tenreyro, “Commodity Booms and Busts in Emerging
Economies,” Journal of International Economics, 2018, 112, 200-218.

Driscoll, John C and Aart C Kraay, “Consistent Covariance Matrix Estimation with Spatially
Dependent Panel Data,” Review of Economics and Statistics, 1998, 80 (4), 549-560.

Esquivel, Carlos, “The Sovereign Default Risk of Giant Oil Discoveries,” Technical Report,
Working Paper 2024.

Esty, Benjamin C., “Why Study Large Projects? An Introduction to Research on Project
Finance,” European Financial Management, 2004, 10 (2), 213-224.

Fernindez, Andrés, Stephanie Schmitt-Grohé, and Martin Uribe, “World Shocks, World
Prices, and Business Cycles: An Empirical Investigation,” Journal of International Economics,
2017, 108, S2-S14.

Garcia-Cicco, Javier, Roberto Pancrazi, and Martin Uribe, “Real Business Cycles in
Emerging Countries?,” American Economic Review, 2010, 100 (5), 2510-2531.

Global Energy Monitor, “Global Oil and Gas Extraction Tracker: March 2024 Release,” 2024.

Gortz, Christoph and John D. Tsoukalas, “News and Financial Intermediation in Aggregate
Fluctuations,” Review of Economics and Statistics, 2017, 99 (3), 514-530.

_ , — , and Francesco Zanetti, “News Shocks under Financial Frictions,” American Economic
Journal: Macroeconomics, 2022, 14 (4), 210-243.

Greenwood, Jeremy, Zvi Hercowitz, and Gregory W. Huffman, “Investment, Capacity
Utilization, and the Real Business Cycle,” The American Economic Review, 1988, 78 (3),
402-417.

Gross, Isaac, James Hansen et al., “Natural Resources in Partial Equilibrium| RDP 2013-14:
Reserves of Natural Resources in a Small Open Economy,” Reserve Bank of Australia Research

Discussion Papers, 2013, (December).

HO66k, Mikael, Robert Hirsch, and Kjell Aleklett, “Giant Oil Field Decline Rates and Their
Influence on World Oil Production,” Energy Policy, 2009, 37 (6), 2262-2272.

_ , Simon Davidsson, Sheshti Johansson, and Xu Tang, “Decline and Depletion Rates
of Oil Production: A Comprehensive Investigation,” Philosophical Transactions of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 2014, 372 (2006).

Horn, Myron K., “Giant Oil and Gas  Fields of the  World,”
http://www.datapages.com/Associated Websites/ GISOpenFiles/HornGiantFields.aspx 2014.

Horn, Sebastian, Carmen M Reinhart, and Christoph Trebesch, “China’s Overseas
Lending,” Journal of International Economics, 2021, 153, 103539.

International Monetary Fund, “World Economic Outlook: Global Manufacturing in
Transition,” 2019. Accessed: 2025-01-03.

32



Jaimovich, Nir and Sergio Rebelo, “News and Business Cycles in Open Economies,” Journal
of Money, Credit and Banking, 2008, 40 (8), 1699-1711.

_ and _ , “Can News About the Future Drive the Business Cycle?,” American Economic Review,
2009, 99 (4), 1097-1118.

Jorda, Oscar, “Estimation and Inference of Impulse Responses by Local Projections,” American
Economic Review, 2005, 95 (1), 161-182.

Kamber, Giines, Konstantinos Theodoridis, and Christoph Thoenissen, “News-Driven
Business Cycles in Small Open Economies,” Journal of International Economics, 2017, 105,
77-89.

Kydland, Finn E. and Edward C. Prescott, “Time to Build and Aggregate Fluctuations,”
Econometrica: Journal of the Econometric Society, 1982, pp. 1345-1370.

Lane, Philip R. and Gian Maria Milesi-Ferretti, “The External Wealth of Nations Mark
II: Revised and Extended Estimates of Foreign Assets and Liabilities, 1970-2004,” Journal of
International Economics, 2007, 78 (2), 223-250.

Lei, Yu-Hsiang and Guy Michaels, “Do Giant Oilfield Discoveries Fuel Internal Armed
Conflicts?,” Journal of Development Economics, 2014, 110, 139-157.

Lujala, P&ivi, Jan Ketil Rod, and Nadja Thieme, “Fighting over Oil: Introducing a New
Dataset,” Conflict Management and Peace Science, 2007, 24 (3), 239-256.

Mendoza, Enrique G., “The Terms of Trade, the Real Exchange Rate, and Economic
Fluctuations,” International Economic Review, 1995, pp. 101-137.

_, “Credit, Prices, and Crashes: Business Cycles with a Sudden Stop,” Preventing Currency

Crises in Emerging Markets, University of Chicago Press, 2002, pp. 335—392.

— , “Sudden Stops, Financial Crises, and Leverage,” American Economic Review, 2010, 100 (5),
1941-1966.

Mihalyi, D., A. Adam, and J. Hwang, Resource-Backed Loans: Pitfalls and Potential, New
York, NY: Natural Resource Governance Institute, 2020.

Mihalyi, David, Jyhjong Hwang, Diego Rivetti, and James Cust, “Resource-Backed
Loans in Sub-Saharan Africa,” Policy Research Working Paper, 2022, 99285.

Neumeyer, Pablo A. and Fabrizio Perri, “Business Cycles in Emerging Economies: The Role
of Interest Rates,” Journal of Monetary Economics, 2005, 52 (2), 345-380.

Pindyck, Robert S., “Irreversibility, Uncertainty, and Investment,” Journal of Economic
Literature, 1991, 29 (3), 1110-1148.

Robelius, Fredrik, “Giant Oil Fields—The Highway to Oil: Giant Oil Fields and their Importance
for Future Oil Production.” PhD dissertation, Acta Universitatis Upsaliensis 2007.

33



Rundquist, D. V., A. V. Tkachev, S. V. Cherkasov et al., “Krupnye i superkrupnye
mestorozhdeniya rudnykh poleznykh iskopaemykh. T.1. Global’'nye zakonomernosti
razmeshcheniya (Large and Superlarge Ore Deposits. Volume 1. Global Tendencies of
Distribution),” 2006.

Sala-i-Martin, Xavier and Doppelhofer, Gernot and Miller, Ronald I, “Determinants
of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach,”
American Economic Review, 2004, 94 (4), 813-835.

Schmitt-Grohe, Stephanie and Martin Uribe, “Closing Small Open Economy Models,”
Journal of International Economics, 2003, 61 (1), 163-185.

_ and _ , “What’s News in Business Cycles,” Econometrica, 2012, 80, 2733-2764.

Schodde, Richard, “Key Issues Affecting the Time Delay Between Discovery and Development,”
MinEx Consulting presentation March 3 2014. Presented at MinEx Consulting.

Sorens, Jason, “Mineral Production, Territory, and Ethnic Rebellion: The Role of Rebel
Constituencies,” Journal of Peace Research, 2011, 48 (5), 571-585.

Tkachev, A. V., S. V. Bulov, and E. I. Chesalova, “Geoportal ‘Metallogeniya’,”
Geoinformatika, 2019, (1), 3-12.

Tsui, Kevin K., “More Oil, Less Democracy: Evidence from Worldwide Crude Oil Discoveries*,”
The Economic Journal, 2011, 121 (551), 89-115.

Uribe, Martin and Vivian Z. Yue, “Country Spreads and Emerging Countries: Who Drives
Whom?” Journal of International Economics, 2006, 69 (1), 6-36.

U.S. Energy Information Administration, “Coal Explained: Where Our Coal Comes From,”
2020. Accessed: 2025-01-03.

Venables, Anthony J., “Using Natural Resources for Development: Why Has It Proven So
Difficult?,” Journal of Economic Perspectives, 2016, 30 (1), 161-184.

Wang, W., Z. Ning, Y. Shu, J. S. Riti, and M.-K. J. Riti, “Natural Resource Rents
and Public Debts Nexus in African Resource-Rich and Most Indebted Nations: Issues with
Aggregation Bias,” Resources Policy, 2023, 82, 103409.

‘World Bank, “World Development Report 2008: Agriculture for Development,” 2008. Accessed:
2025-01-03.

World Coal, “The Role of State-Owned Enterprises in Global Coal Markets,” 2022. Accessed:
2025-01-03.

Zeev, Nadav Ben, Evi Pappa, and Alejandro Vicondoa, “Emerging Economies Business
Cycles: The Role of Commodity Terms of Trade News,” Journal of International Economics,
2017, 108, 368-376.

34



A Commodity Discoveries

A.1 Definition of giant commodity discoveries

Giant commodity discoveries are defined by the size of their reserves. Table 5 provides a summary
of the minimum size of these giant-sized deposits across commodities. This definition follows the
criteria used by Tkachev et al. (2019) (LSLDs) for mineral deposits and by Horn (2014) for oil and
gas fields. For mineral deposits, this size-based definition is broadly consistent with the criteria
proposed by Minex Consulting, which is based on company-making mines that are large, are
long-lived, and have a net present value (NPV) greater than 1 billion USD.

To put those sizes into perspective: a giant oil field contains over 500 million barrels, which
is equivalent to the annual oil production of Algeria—a major oil producer and OPEC member.
Similarly, a giant gold mine contains at least 200 tons of gold, exceeding the annual gold production
of the United States, one of the world’s top five gold producers, while a giant copper mine holds
at least 4 million tons of copper, which corresponds to the annual output of Chile, the world’s

largest copper producer.

A.2 Data Construction

This section describes the sources and the construction of our data for a broad set of commodities.
Our analysis is based on two key characteristics of a discovery: its size (measured as the discovered
reserves multiplied by the corresponding commodity price) and the lead time between the discovery

year and the start of production year.

Mineral Discoveries

The data on the size of reserves, deposit name, location, and geological characteristics of giant
mineral deposits come from the Large and Super-Large Mineral Deposits (LSLDs) database,
created and continually updated by the State Geological Museum of the Russian Academy
of Sciences (Rundquist et al. (2006)). Most of the information is accessible online through
the WEB-GIS application “World’s Largest Mineral Deposits” on the Geoportal “Metallogeny”
(Tkachev et al. (2019)). To the best of our knowledge, this dataset has not yet been used in the
economics literature.

We complement this data by drawing on additional sources to obtain information on
the year of discovery and production. The primary sources for discovery and production
years is the MinEx Consulting dataset, a proprietary dataset generously provided by Richard
Schodde, Managing Director of MinEx Consulting. This dataset is further supplemented with
information from Global Energy Monitor (Global Energy Monitor, 2024), Porter GeoConsultancy
(portergeo.com.au), Mindat, The Diggings, the International Atomic Energy Agency, Mining
Technology (mining-technology.com), Rio Tinto, and De Beers, among others.

Overall, our final dataset of mineral discoveries contains a total of 220 giant discoveries of 27
commodities in 60 countries between 1960 and 2012. 23 countries in the sample experience only
one mineral discovery. After merging all sources mentioned above, we obtain information on the

production start date for 147 mineral discoveries.
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Table 5: Giant-sized deposits

Commodity Symbol Unit Giant size (from)
0il & Gas
Oil - 10° bbl 500
Gas — 10 BOE 500
Precious Metals
Gold Au t 200
Silver Ag t 4000
Platinoids Pt, Pd, Rh, Ru, Os, Ir ¢t 100
Base Metals
Copper Cu 106 ¢ 4
Bauxite Al O3 10° ¢ 40
Iron Ore Fe 109 ¢ 100
Lead Pb 10° ¢ 1
Nickel Ni 103 t 500
Zinc Zn 10° ¢ 2
Tin Sn 103 t 50
Cobalt Co 103 ¢ 50
Non-Metallic Minerals
Coal — 10° ¢ 500
Potash K20 109 t 100
Phosphorus P05 106 t 40
Boron B503 109 ¢ 2
Fluorite Flr 109 ¢ 2
Specialty Metals
Chromium Cro03 109 t 4
Lithium LioO 103 t 100
Manganese Mn 106 ¢t 10
Molybdenum Mo 103 t 100
Niobium NboOs5 103 ¢ 100
Titanium TiOy 109 ¢ 2
Tungsten WO3 103 t 50
Vanadium V505 103 t 250
Mineral Sands
Zirconium ZrOs 103 t 150
Rare Earths TR5O3 10% ¢ 100
Other
Diamond Dia 10° ct 20
Uranium U 103 t 20

Note: t means metric ton, ct carat, bbl barrel, and BOE barrel of oil equivalent.
Source: Horn (2014), Tkachev et al. (2019).
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Oil Discoveries

Data on oil and gas discoveries primarily comes from the Horn dataset (Horn, 2014), updated
version of 2015. This dataset, which was already used in a few previous studies (Lei and Michaels,
2014; Arezki et al., 2017; Esquivel, 2024), contains information on 1063 discoveries greater than
500 million barrels across 75 countries. It provides details on the field name, discovery year,
estimated ultimate recovery (in million barrels of oil equivalent, MMBOE), location (country,
latitude, longitude, offshore or onshore) and field type (oil or gas). However, it lacks information
on the year of production.

We supplement this dataset with several other sources to obtain information on the year
of production. These include the Petroleum Dataset compiled by the Centre for the Study of
Civil War at the Peace Research Institute Oslo (PRIO) (Lujala et al., 2007), the Uppsala Giant
Oil field database (Hook et al., 2014), Global Energy Monitor (GEM), and Offshore Technology
(https://www.offshore-technology.com/). The Petroleum Dataset compiled by the Centre for the
Study of Civil War at the Peace Research Institute Oslo (PRIO) (Lujala et al., 2007), which was
used in the political science literature on conflicts (Sorens, 2011), contains information on the field
name, year of discovery, year of production and location for several hundreds of discoveries in 80
countries from 1927 until 2003. 229 of these discoveries happen after 1950. Unfortunately, the
year of production is missing for some observations. The Uppsala Giant Oil field database (Hook
et al., 2014), which was used in Beverelli et al. (2011), contains information on estimated ultimate
recovery, year of discovery, year of production and year when production reaches its peak for 264
discoveries in 40 countries between 1887 and 1999. 212 of these discoveries happen after 1950. As
regards Global Energy Monitor, it contains data on more than 8000 currently operational oil and
gas fields. This includes information on field name, its location, discovery year, production start
year, operator, and owner.

Overall, our final dataset of oil discoveries contains a total of 792 giant discoveries in 72
countries between 1960 and 2012. 19 countries in the sample experience only one oil discovery.
After merging all sources mentioned above, we obtain information on the production start date

for 358 oil discoveries.

Table 6: Production date coverage 1960-2012

Minerals Oil

Discoveries with production date 147 358
Production date missing 73 434
Total 220 792

Table 7: Giant Discoveries Merged Data Set: value (percent of GDP) — unique country-year coverage,

19602012
Obs. Mean Median Std. Dev. Min Max

Oil 361 74 9 451 037 8,101
Minerals 151 7 2 370 .00011 4,008
Pooled 480 80 8 442 .00011 &,101

Note: This table presents summary statistics on the number and size (as a percentage of GDP) of discoveries, after
aggregation by country and year. Note that GDP data is missing for certain countries in some years.
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A.3 Lead Times from Discovery to Production

Lead times in the development of commodity fields arise from a mix of technical, economic,
geopolitical, and regulatory challenges, which vary across different projects. We reviewed
discoveries with lead times longer than 40 years.

Several oil and gas discoveries have faced extensive lead times due to technical difficulties,
including complex geological formations and high C'O5 content in natural gas and oil. Notable
cases include Natuna (57 years, natural gas), Kudu (55 years, natural gas), Russkoye (50
years, oil), and Bakken Oil (49 years, oil). Similarly, discoveries like Mansuriyah (48 years,
natural gas), Semakovskoye (47 years, oil), Attahadi (42 years, natural gas), and Bovanenko
(41 years, oil) have experienced issues related to the extraction and processing of unconventional
resources, delaying progress.

On the mining side, projects such as Mutun (58 years, iron ore), Twangiza (55 years,
gold), Ambatovy (50 years, nickel), Reko Diq (50 years, copper and gold), Khorat Basin
(45 years, potash), Nyabikere (42 years, rare earths), and Goro (41 years, nickel) have faced
economic challenges, including high initial development costs, limited local demand, and the
lack of necessary infrastructure. These economic barriers further slow progress in these mines,
especially in regions where market conditions are unfavorable.

Geopolitical disputes and regulatory delays also play a crucial role in hindering the development
of oil fields and mines. For example, fields like Natuna (57 years, natural gas), Kudu (55 years,
natural gas), and Dorra (60+ years, natural gas) have been delayed by territorial disputes and
conflicts over resource ownership. Meanwhile, projects such as Mutun (58 years, iron ore) and
Khorat Basin (45 years, potash) have faced regulatory hurdles, including legal uncertainties and
strong local opposition, particularly due to environmental concerns.

The interplay of technical, economic, geopolitical, and requlatory challenges accounts for the
prolonged delays in the development of these oil fields and mines. Furthermore, at the time
of discovery, it is often unclear how long it will take to develop commodity fields, as various
factors can influence the timeline. The Natuna gas field in Indonesia is a prime example of this
uncertainty. Discovered in 1973 by Agip, the field initially held great promise. However, the
development timeline quickly became unclear due to a series of challenges over the years. In 1980,
a joint venture was formed between the Indonesian state-owned Pertamina and Exxon to develop
the Natuna D-Alpha block, but production faced significant setbacks due to the high COs content
in the gas. Subsequent agreements, including those signed in 1995 with Exxon and in 2008 with
Pertamina, reflected ongoing difficulties in advancing the project. Even as late as 2016, despite
numerous renegotiations and efforts by various companies, the development of the Natuna field

remained stalled.
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B Macroeconomic Data

Table 8: Variables definitions

Variable Definition and transformations Source
Main Macroeconomic Variables
log(GDP) log of GDP in constant LCU IMF(2013)
CA current account (% GDP) IMF(2013)
I investment (% GDP) World Bank(2013)

Additional Variables

S saving as (% GDP) constructed as CA+1 -
IMF(2013)

log(C) log of final consumption expenditures in
constant LCU
EMP employment to population ratio, percentage), ‘“emploare” from
male and female, age 15+ International Labor
Organization  website

(www.ilo.org/kilm)
Net FDI  FDI ~ Capital  Net Alfaro et al. (2014)

(annual-FDINetF2y-ifs)

Flows (%  GDP)

Table 9: Macro Data 1980-2012

Variable Years Nb of Obs Mean Min Median Max Std
countries
Log(GDP) 19802012 181 5478 553.4 -278.1 579.5 1477.8 321.6
CA 19802012 179 5396 -3.5 -242.2 -3.2 106.8 12.3
I 19802011 177 4954 22.2 2.4 21.1 113.6 8.4
S 19802011 171 4711 18.8 -202.9 18.1 107.2 12.2
Log(C) 19802012 162 4567 576.5 -82.3 590.7 1435.6 282.5
EMP 19912012 160 3519 58.1 28.9 57.7 88.1 11.5
Net FDI 19802012 181 4652 2.6 -147.1 1.1 164.5 7.6

C Additional Results

Figure 9 shows the impulse responses of the savings rate, consumption, and the employment rate
to an oil discovery news (first row) and to a mineral discovery news (second row).

After an oil discovery news, the savings rate immediately turns negative and becomes positive
around production start date. Consumption increases 1 year after the discovery, but the response
is small in magnitude and the estimates are imprecise, which may be due to measurement error in
the consumption data, as discussed in ARS. As regards the employment rate, it falls significantly
a year before production starts, reaches a trough 8 years after the discovery and gradually returns
to normal.

In response to mineral discoveries, we observe a delayed impact on these variables:
savings decline significantly after 6 years before turning positive around production start date,

consumption increases sharply and persistently after a few years, and employment starts to fall
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Figure 9: Impulse responses to oil (first row) and mineral (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil news shock (first row) and to
a mineral news shock (second row). The vertical red dashed line indicates the median lead time between the discovery
date and the start of production date for each type of commodity (6 years for oil discoveries, 11 years for mineral
discoveries). 90% and 68% confidence intervals are shown in all cases.

after 8 years, gradually returning to normal and even becoming positive in the long run. However,
the estimates for the employment response are imprecise and not statistically different from zero.
These findings support our baseline results, showing that the effects of mineral discoveries are
delayed, with little impact in the first 5 years following the discovery.
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Table 10: Estimates from multinomial regressions

M @ ® @
Commodity type Commodity type Commodity type Commodity type
Oil Minerals  Both Oil  Minerals Both Oil  Minerals Both Oil  Minerals  Both
Land Area 0.04***  0.04™*  0.05** 0.04**  0.03** 0.06***
(0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
East Asia -0.19  -16.51**  0.79 2.94 -38.52%  4.32%
(0.87) (0.00) (0.25) (0.17) (0.03) (0.00)
Latin America -0.03 -3.04* -0.08 1.31 -2.97 0.49
(0.97) (0.01) (0.90) (0.57) (0.05) (0.63)
Africa 0.31 -2.06™* -0.99 1.97 0.23 -1.48
(0.69) (0.00) (0.23) (0.44) (0.87) (0.24)
Life Expectancy 0.00 0.02 0.03 0.10 0.23* -0.01
(0.96) (0.62) (0.46) (0.23) (0.03) (0.90)
Population Density 0.00* 0.00 0.00 0.00 0.00 -0.02%**
(0.03) (0.16) (0.27) (0.62) (0.62) (0.00)
Population Density Coastal -0.00 -0.00 -0.00 -0.01 0.01 -0.02**
(0.42) (0.14) (0.21) (0.16) (0.16) (0.01)
Fraction Population under 15 1.37 -5.77 3.18 1.00 -5.81 2.68
(0.81) (0.26) (0.54) (0.89) (0.55) (0.77)
GDP Per Capita -9.22 5.37 -3.11 15.73 62.32 1.68
(0.68) (0.76) (0.86) (0.64) (0.13) (0.96)
Investment Price 0.00 0.00 -0.01 0.00 0.00 -0.00
(0.87) (0.89) (0.49) (0.97) (0.78) (0.74)
Years Open -0.28 -0.27 -0.16  0.02 -7.12* 1.59
(0.79) (0.79) (0.87)  (0.99) (0.02) (0.35)
Primary Schooling -1.12 0.10 -0.09 -1.08 -3.73 -1.00
(0.37) (0.93) (0.92) (0.69) (0.18) (0.71)
N 139 103 113 98
2 p 0.29 0.08 0.02 0.43

p-values in parentheses
* p<0.05,** p<0.01, *** p<0.001

Notes: This table reports estimates from multinomial logistic regressions of the type of commodity discovery experienced
by a country (there are four possible outcomes: discovering oil, discovering minerals, discovering both types of
commodities, and discovering none, which is the base outcome) on several geographic, demographic, and economic
indicators.
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Table 11: Estimates from regressions of lead times on long-term economic growth determinants

® @ ® @
Lead time Lead time Lead time Lead time

Africa -0.21 -2.19
(0.91) (0.44)

Land Area -0.31 0.01
(0.07) (0.96)

East Asia -0.88 -2.74
(0.50) (0.48)

Latin America -0.75 1.75
(0.75) (0.55)

Life Expectancy -0.19 -0.29
(0.08) (0.19)

Population Density -0.00 -0.01
(0.21) (0.19)
Population Density Coastal -0.03** -0.04**
(0.00) (0.00)
Fraction Population under 15 -32.13 -47.09*
(0.09) (0.03)

GDP Per Capita -37.92 34.14
(0.58) (0.67)

Investment Price -0.01 -0.01
(0.25) (0.60)

Years Open 0.80 3.03
(0.74) (0.44)

Primary Schooling -4.44 -5.38
(0.18) (0.41)
Oil -8.93%** -7.36** -8.19%** -8.04**
(0.00) (0.00) (0.00) (0.00)

Gas -5.51** -3.95* -4.79* -4.46*
(0.00) (0.01) (0.02) (0.03)

Offshore 4.24 4.32* 3.63 4.47*
(0.06) (0.03) (0.10) (0.04)

N 420 367 374 345

r2 0.26 0.28 0.25 0.29

p-values in parentheses
* p<0.05 " p<0.01, " p <0.001

Notes: This table reports estimates from regressions of lead times between discovery and production dates on several
geographic, demographic, and economic indicators. Commodity and time fixed effects are included.
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D Robustness and Extensions
D.1 Other commodity splits
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Figure 10: Impulse responses to oil (first row) and gas (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a gas discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 8
years for gas discoveries). 90% and 68% confidence intervals are shown in all cases.
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Figure 11: Impulse responses to precious metals (first row) and other minerals (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to a precious metals discovery news
shock (first row) and to other minerals discovery news shock (second row). The vertical red dashed line indicates the
median lead time between the discovery date and the start of production date for each type of discovery (6 years for
precious metals discoveries, 13 years for other minerals discoveries). 90% and 68% confidence intervals are shown in all

cases.



D.2 Excluding discoveries with lead time greater than 20 years or
inferior to 2 years
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Figure 12: Impulse responses to oil (first row) and minerals (second row) discoveries with lead time
inferior to 20 years

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.

45



Oil

Current Account/GDP Investment/GDP GDP
0.04 T 0.03 T 0.1 T
| | 0.08 |
0.02 | 0.02 | |
| | 0.06 1
| |
0 0.01 0.04 I
\/‘\/{ | 0.02
-0.02 | 0 ] 1
| | 0 T
-0.04 | -0.01 | -0.02 |
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Minerals
Current Account/GDP Investment/GDP GDP
0.04 T 0.03 T 0.1 I
| | 0.08 I
0.02 | 0.02 | |
| | 0.06 |
0 ! < 0.01 I 0.04 I
1 0.02 |
-0.02 | 0 |
I | 0 T
-0.04 | -0.01 | -0.02 |
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Years Years Years

Figure 13: Impulse responses to oil (first row) and minerals (second row) discoveries with lead time
greater than 2 years

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.
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D.3 Keeping countries experiencing both types of discoveries

Qil
Current Account/GDP Investment/GDP GDP
0.04 0.02 T 0.08 v
1 1
0.015 . 0.06 :
1 1
0.02 0.01 ' 0.04 1
1
0.005 ) 0.02 ]
0 M
od- ) ,
|} o 1
1 1
0.02 -0.005 ' -0.02 '
1 1
-0.01 1 -0.04 1
20 0 5 10 15 20 0 5 10 15 20
Minerals
Current Account/GDP Investment/GDP GDP
0.04 ' 0.02
1
: 0.015
0.02 001
1
0.005 1
0 1
1 0 L
1 1 1
1 I 1
-0.02 ' -0.005 ' -0.02 '
1 1 1
1 -0.01 1 0.04 1
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Years Years Years

Figure 14: Impulse responses to oil (first row) and minerals (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.
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D.4 Alternative measure of shock (dummy)
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Figure 15: Impulse responses to oil (first row) and minerals (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.
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D.5 Alternative measure of shock (common discount rate 10%)
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Figure 16: Impulse responses to oil (first row) and minerals (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.
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D.6 Alternative dynamic specifications
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Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row) for different dynamic specifications. The vertical red dashed
line indicates the median lead time between the discovery date and the start of production date for each type of
discovery (6 years for oil discoveries, 11 years for minerals discoveries). 90% and 68% confidence intervals are shown in
all cases.

Figure 16: Impulse responses to oil (first row) and minerals (second row) discoveries
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D.7 Local Projections
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Figure 17: Impulse responses to oil (first row) and minerals (second row) discoveries

Notes: These graphs show the estimated impulse responses of aggregate variables to an oil discovery news shock (first
row) and to a minerals discovery news shock (second row). The vertical red dashed line indicates the median lead time
between the discovery date and the start of production date for each type of discovery (6 years for oil discoveries, 11
years for minerals discoveries). 90% and 68% confidence intervals are shown in all cases.
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D.8 Split by Lead Time: Instrumental Variable Approach

Table 12: Estimates from regressions

0
Lead time
Distance 1.14*
(0.04)
Commodity=2 -10.29
(0.08)
Commodity=3 24.79*
(0.01)
Commodity=4 18.60*
(0.01)
Commodity=2 X Distance 2.09*
(0.04)
Commodity=3 X Distance -3.53*
(0.02)
Commodity=4 X Distance -1.42
(0.23)
Offshore=1 X Distance 0.90**
(0.00)
N 581
R? 0.19

p-values in parentheses
*p<0.05, " p<0.01, ™ p<0.001

Notes: This table reports estimates from the regression of the lead time between discovery and production dates on
the distance to the nearest big city, the commodity type, whether the discovery is offshore, and interaction terms.
Commodity type 1 (base case) is oil, type 2 is gas, type 3 is precious metals, type 4 is other minerals. Regional and
time fixed effects are included.
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Figure 18: Actual vs. predicted lead time
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Figure 19: Impulse responses for savings, consumption, and hours

Notes: This figure presents the impulse responses of savings to GDP ratio, consumption and hours to a short lead-time
discovery (first row) and a long lead-time discovery (second row). The responses are shown for our baseline model with
financial frictions (red solid lines) and without financial frictions (black dashed lines).
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Figure 20: Impulse responses for output and capital in the commodity sector as well as debt.

Notes: This figure presents the impulse responses of output (Y2) and capital (K2) in the commodity sector, as well as
debt, to a short lead-time discovery (first row) and a long lead-time discovery (second row). The responses are shown
for our baseline model with financial frictions (red solid lines) and without financial frictions (black dashed lines).
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Figure 21: Impulse responses for current account, investment, and GDP with tighter borrowing
constraints

Notes: This figure presents the impulse responses of the current account to GDP ratio, investment to GDP ratio and

GDP to a short lead-time discovery (first row) and a long lead-time discovery (second row). The responses are shown
for our baseline model with financial frictions (red solid lines) and without financial frictions (black dashed lines).
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Figure 22: Impulse responses for current account, investment, and GDP for different frictions

Notes: This figure presents the impulse responses of the current account to GDP ratio, investment to GDP ratio, and
GDP to a short lead-time discovery (first row) and a long lead-time discovery (second row). The responses are shown
for our baseline model with financial frictions (red solid lines), without financial frictions (black dashed lines), without
investment irreversibility (pink dash-dotted lines), and without investment irreversibility but with very high investment
adjustment costs (dotted lines).
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