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Abstract 
We present a dynamic debt strategy model framework designed to assist sovereign debt 
portfolio managers in choosing an optimal debt issuance strategy. The model consists of 
two parts: a simulation engine and a debt issuance optimization engine. The main 
innovation of this framework is the introduction of dynamic issuance strategies, which 

allow issuance decisions to vary over time based on the model’s simulated state 
variables. We apply this framework to Canada’s specific debt management setting and 
show that these dynamic strategies, when compared with the deterministic issuance 
strategies of the original Canadian debt strategy model, bring considerable 
improvements to the costs and risks of available debt portfolios. 

Topics: Debt management; Econometric and statistical methods; Financial markets; 
Fiscal policy 
JEL codes: H63, H68, G11, G17, C61 

Résumé 
Nous présentons un cadre détaillant un modèle dynamique de gestion de la dette, 
conçu pour guider les gestionnaires de dette souveraine dans le choix d’une stratégie 
d’émission optimale. Le modèle comporte deux parties : un moteur de simulation et un 

moteur d’optimisation des émissions. L’aspect le plus novateur de notre cadre est 
l’introduction de stratégies d’émission dynamiques, qui permettent une variation des 
décisions au fil du temps en fonction des variables d’état simulées du modèle. Nous 
appliquons notre cadre au contexte spécifique de la gestion de la dette au Canada. Nous 
démontrons ainsi qu’en comparaison avec la stratégie déterministe du modèle canadien 

original de gestion de la dette, ces nouvelles stratégies dynamiques réduisent 
considérablement les coûts et les risques des portefeuilles de dette disponibles. 

Sujets : Gestion de la dette ; Méthodes économétriques et statistiques ; Marchés financiers ; 
Politique budgétaire  
Codes JEL : H63; H68; G11; G17; C61 
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1. Introduction 
Sovereign debt managers face the task of structuring issuances in a way that minimizes 
debt costs—subject to limitations on risk—while considering qualitative objectives such 
as preserving the liquidity of secondary markets and maintaining predictable issuance 
plans. Moreover, with economic conditions constantly changing, debt managers need to 

know how they should alter their issuance decisions over time. 

In this paper, we introduce a modelling framework in which debt managers can adapt 
their issuances to different changes in the macro-financial state. A dynamic debt strategy 
model is a simulation-based model in which debt issuances are a function of the 
prevailing macroeconomic and financial conditions of each simulated path and point in 

time. This contrasts with the more classical approach where issuance weights are 
deterministic; see Bolder and Deeley (2011), Bergstrom, Holmlund and Lindberg (2002), 
and Pick and Anthony (2006).  

This model solves for the same general problem faced by debt managers as in Bolder 
and Deeley (2011): to find a financing strategy that best achieves the policy objectives 
given an uncertain future while capturing the appropriate debt and fiscal mechanics and 

economic interactions. Our innovation is in how we define a financing strategy—instead 
of being a fixed set of issuance weights in each instrument, it is a function of issuance 
weights on the state variables. This new definition of a financing strategy offers several 
key improvements compared with the deterministic definition. 

Models with deterministic issuance weights suffer from two main drawbacks. First, these 

models provide little guidance on deciding issuance in the short term because issuance 
amounts are fixed and not adaptable to the current environment. Second, using such a 
model for deciding on current issuances leads to a time inconsistency between the 
current decision and the issuance decisions that will be made in subsequent years. The 
model’s mapping between issuance strategies and the cost-risk space makes sense only 
if the debt manager commits to the multi-year strategy proposed by the model. With 

fixed weights, this would mean that, at all time steps, the debt manager should issue 
with the same fixed weights until the model horizon, which is generally not what they do. 
In practice, cost-minimizing debt managers do adjust issuances based on current and 
expected future economic conditions. This inconsistency is precisely what breaks the 
mapping between issuance strategies and the cost-risk space that the strategies entail. 

The discussion above highlights that debt strategy modelling is about not only 
replicating the dynamics of the economic environment but also the decisions of the debt 
managers, which points to making issuance decisions contingent on economic 
conditions. Not only will that model be more realistic, but it will also stand a better 
chance of not suffering from the time inconsistency problem mentioned above. 
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Moreover, such models can provide information on the short-term issuance strategy as 
well as insights on how the debt manager should react to a changing environment. 

Our paper therefore aims at addressing that shortcoming. We follow from Belton et al. 
(2018) in the sense that our framework allows issuances to depend on the economic, 

financial or fiscal environment. Our work differs from Belton et al. (2018) by the 
functional forms mapping state variables to issuances: in Belton et al.’s framework, 
issuances deviate from a “base” allocation using a linear combination of issuance 
kernels, which are intended to induce a bias toward either short-, middle- or long-term 
debt issuances. In our model, we use a more generic functional form of “softmax,” which 

is often used as the activation function of a neural network to normalize the output. We 
believe that our specification is more flexible and avoids issues related to negative 
issuances,1 which are a possibility with Belton et al.’s model. 

While this dynamic debt strategy model framework is intended to be applied by any 
sovereign debt manager, the specifications of the model will vary based on each debt 
manager’s unique policy objectives, data sources, and economic and market realities. In 

this paper, we apply this framework to the case of Canada, building on the existing 
Canadian debt strategy model’s core elements (described in Bolder and Deeley 2011). 
The precise settings and results are thus illustrative and are intended to provide 
guidance to others who wish to adapt this framework for their own application. 

We take the approach of dynamically optimizing government borrowing costs for a given 

level of risk under uncertainty. Our micro portfolio approach, which treats debt 
management as distinct from the government’s broader fiscal policy, is consistent with 
the practice of most sovereign debt managers worldwide (Blommestein and Hubig 
2012), including Canada. 

The remainder of this paper is structured as follows. Section 2 provides an overview of 
the workflow of the debt optimization problem. Section 3 contains an in-depth 

description of the components of the model. Section 4 presents preliminary results of a 
specific debt optimization, which includes conditioning issuances on various macro-
financial variables, based on the model specifications for Canada. Section 5 concludes. 
Descriptions of the simulation process, the issuance strategy optimization and the 
dynamic issuance strategy itself can be found in the appendices. 

 
1 Negative issuances do occur in reality as debt buy-back. However, these operations are generally either for 

cash management purpose or for improving secondary market liquidity. They therefore fall outside the 
scope of this paper. 
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2. Overview of the issuance strategy 
optimization problem 

2.1. Translating policy objectives into model 
objectives 

In general, a debt manager aims to achieve two primary objectives:2  

• to provide the government with stable, low-cost funding  

• to maintain a well-functioning market for government securities  

From the point of view of the debt strategy modeller, these policy objectives must be 

translated into the model’s objectives (Figure 1).  

Figure 1: Policy and model objectives 

 

The first objective can be understood as choosing the issuance strategy in a way that 
minimizes the expected debt costs,3 subject to maintaining the volatility of costs below a 
certain threshold. Spanning a range of values for the threshold for cost volatility 
generates the efficient frontier, which maps the minimum expected cost for a range of 

 
2 In this document, the objective of the debt manager is understood to be to reduce expected debt costs and 

their volatility by choosing only amounts to issue for each bond sector, with the fiscal, monetary and 
macroeconomic environment being essentially independent of the debt manager’s decisions. This is a 
narrower definition of the manager’s objectives than what is found in a sizable share of the literature on 
optimal debt management. That literature uses a canonical framework of a Ramsey planner, where a 
household’s intertemporal utility is optimized over consumption and leisure, and where the government 
chooses tax and bond policy. See Faraglia et al. (2019) for an illustration of this framework. Section 3.4 in our 
paper briefly discusses how the related concepts of tax smoothing can be accommodated by our 
framework. 

3 Debt costs are understood to be the amounts paid as coupon on bonds. 

Raise stable, low-
cost funding

Model objectives:
- Minimize expected debt 

costs
- Maintain cost volatility 

below a threshold

Maintain a well-
functioning 

market

Model objectives:
- Satisfy minimum 

issuance constraints
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risk levels. This part of the issuance strategy optimization is perfectly analogous to 
common mean-variance portfolio selection as in Markowitz (1952). 

The second objective aims at maintaining a well-functioning market for government 
securities, which reflects the external benefit of having sufficient levels of liquidity in 

secondary markets. In terms of issuance strategy optimization, this objective can be 
implemented as a constraint on minimum levels of issuances for each bond type. The 
determination of these levels is outside the scope of this paper. We therefore treat the 
minimum issuance constraints as given. See Appendix C for the technical 
implementation of minimum issuance constraints for a dynamic issuance strategy. 

2.2. Overview of the strategy optimization process 
This section provides an overview of the workflow used for the optimization of the 
issuance strategy. The process is illustrated in Figure 2. 

Figure 2: Issuance strategy optimization workflow 

 

 

The first component in the optimization of the issuance strategy is the simulation 
engine, which simulates the financial, fiscal and macroeconomic environment. The 
financial variables consist of the term structure of interest rates at which government 
bonds are issued. The fiscal variable is intended to describe the evolution of the 
government’s funding needs, which are modelled through the primary government 
deficit. Macroeconomic variables complete the description of the environment.4 

The second component is the definition of the issuance strategy. In a simple static 
model, the strategy would be defined as a set of weights (one per term issued), and 
issuances in each sector would equal the total funding requirements multiplied by the 

 
4 Note that our framework implies that the simulation engine produces data that are independent of the 

issuance strategy. This means that we exclude the possibility that the issuance strategy can influence, for 
example, the dynamics of macroeconomic variables. This is a simplification that is made to ease the 
numerical burden associated with optimizing the debt issuance strategy. Estimating the cost and risk 
associated with any given strategy would otherwise require re-running the simulation engine.  
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weight assigned to that sector. A slightly more sophisticated deterministic model would 
assign weights with a deterministic function of time. In this dynamic model, issuance 
weights are assigned with a function of both time and the state variables generated by 
the simulation engine. Introducing this association of state variables to issuance is the 

key innovation of our framework. 

The next element is the calculation of the simulated debt costs associated with a 
particular issuance strategy. This calculation simply relies on an accounting-style 
description of the portfolio dynamics.  

This is then followed by the definition of both the cost and risk functions. These are 

typically defined as a function of the debt costs but can also include other variables, such 
as the government’s primary deficit,5 gross domestic product (GDP) or consumer price 
index (CPI),6 debt stock, etc. The cost function is typically a measure of central tendency, 
such as the expected total debt cost, while the risk function is typically a measure of 
dispersion, such as the variance of the cost or a tail risk measure. 

The next step is to pass the objective function to a strategy optimizer, which finds the 

issuance strategies that minimize the cost measure while respecting an upper bound 
constraint on the risk measure. Spanning different risk values generates the efficient 
frontier, from which debt managers can pick a debt issuance strategy. The selection of a 
specific point on the efficient frontier depends on the debt manager’s aversion to risk 
and therefore falls outside the scope of this paper. 

3. Model components 
This section provides a detailed description of the model components described in 
section 2. In particular, section 3.3 describes the issuance strategies that form the core 
of the dynamic model’s added value. As noted, the specifications can be adjusted based 
on the issues and environment facing each individual debt manager.7 

We use the following notational conventions throughout the paper: 
• time—𝑡𝑡 ∈ (1 …𝑇𝑇)  

o a variable indexed by 𝑡𝑡 is ℱ𝑡𝑡-measurable 
o today is 𝑡𝑡 = 0; the first simulated date is 𝑡𝑡 = 1 

 
5 This can be included to rewrite the optimization in terms of the total deficit, which is the sum of the primary 

deficit (generated by the simulation engine) and the debt costs. 

6 This could be used to deflate the debt costs using GDP or CPI growth. 

7 Note that both for simplicity and because real return bonds are no longer issued by the Canadian 
government, we assume throughout this paper that only nominal bonds are issued by the government. 
Adding real return bonds should not be particularly complex, although care must be taken to ensure the 
debt costs include the effect of the indexation of the principal amount to the price index. See Bolder and 
Deeley (2011) for a discussion on how this can be done. 
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o in general, the simulation horizon will be relatively long (for example: 𝑇𝑇 =
60, or 15 years)  

• bond maturity—𝑚𝑚 ∈ (1 …𝑀𝑀) 
o a bond issued at 𝑡𝑡 with maturity 𝑚𝑚 matures at 𝑡𝑡 + 𝑚𝑚7F

8 
• time and maturities are measured (and indexed) in quarters 

o bond year fraction: 𝜃𝜃 = 0.25 
• simulated path—𝑝𝑝 ∈ (1 …𝑃𝑃) 
• state variable index9—𝑛𝑛 ∈ (1 …𝑁𝑁) 

The order of the indexes is always (𝑡𝑡,𝑚𝑚, 𝑝𝑝) or (𝑡𝑡,𝑛𝑛, 𝑝𝑝).  

3.1. The simulation engine 
3.1.1. General requirements 
The simulation engine is intended to produce: 

• Bond yields—𝑦𝑦𝑝𝑝,𝑚𝑚,𝑡𝑡 observed at time 𝑡𝑡 for a bond reaching maturity at time 𝑡𝑡 + 𝑚𝑚. 
The coupon paid by this bond will be 𝜃𝜃𝑦𝑦𝑝𝑝,𝑚𝑚,𝑡𝑡 for each unit of the bond issued, 
which is to be paid at times 𝑡𝑡 + 1, … , 𝑡𝑡 + 𝑚𝑚. The principal will be repaid at time 𝑡𝑡 +
𝑚𝑚. 

Note that we assume all bonds pay a coupon, which is not the case for bills (for 
𝑚𝑚 ∈ {1,2,4}). This approximation is done for simplicity. 

• Primary deficit—𝐷𝐷𝑝𝑝,𝑡𝑡, which represents the government’s funding needs, 
excluding debt costs and rollover of bonds that have reached their maturity. 

The simulation engine can also generate other variables, such as inflation, output or 

other macroeconomic variables. These variables can be added if they are part of the 
calculation of the objective function, the universe of state variables that inform issuance 
weights, or if they improve the properties of the simulated distribution of yields or the 
primary deficit (such as adding to the predictive power). 

3.1.2. Our simulation engine  
The debt issuance strategy optimization in this paper is based on a vector 
autoregression (VAR) similar to Diebold and Li (2006) and augmented with fiscal (primary 

deficit) and macroeconomic variables (inflation and output).  

Let 𝑥𝑥𝑡𝑡 represent the model state variables, which are:  

• 𝐿𝐿𝑡𝑡—yield curve level factor from the Nelson-Siegel decomposition10 
• 𝑆𝑆𝑡𝑡—yield curve slope factor from the Nelson-Siegel decomposition 
• 𝐶𝐶𝑡𝑡—yield curve curvature factor from the Nelson-Siegel decomposition 

 
8  In practice, bond maturities are restricted to the set of available financing instruments (for example: T-bills, 

2-year, 5-year, 10-year, 30-year). 

9 These variables form a basis for the dynamic issuance strategy, which will be described in section 3.2.3. 

10 See Nelson and Siegel (1987) for details on the yield curve decomposition. 
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• 𝐷𝐷𝑡𝑡 = log(1 + 𝑃𝑃𝐷𝐷𝑡𝑡/𝐺𝐺𝐷𝐷𝑃𝑃𝑡𝑡), where 𝑃𝑃𝐷𝐷𝑡𝑡  is the quarterly primary deficit11 
• 𝐺𝐺𝑡𝑡 = Δ log(𝐺𝐺𝐷𝐷𝑃𝑃𝑡𝑡) 
• 𝜋𝜋𝑡𝑡 = Δ log(𝐶𝐶𝑃𝑃𝐼𝐼𝑡𝑡) 

Details on the data sources (all macro variables seasonally adjusted): 

• inflation—core CPI (CANSIM vector number v41690924) 12  
• GDP—nominal GDP (v62305784)13  
• deficit—primary deficit, which is the Government of Canada’s negative fiscal 

balance minus debt costs: 
o fiscal balance: net lending or net borrowing (CANSIM vector number 

v62425704)14  
o debt costs: interest on debt (CANSIM vector number v62425704)15  

• yields—yield curves for zero-coupon Government of Canada bonds published by 
the Bank of Canada, with the three Nelson-Siegel factors estimated from rates at 
the relevant tenors (3-month, 6-month, 12-month, 2-year, 3=year, 5-year, 10-year 
and 30-year) 

Note that all interest rates and associated costs and risks are in nominal terms. 

The simulation engine is based on this VAR specification:16 

𝑥𝑥𝑡𝑡 = 𝑐𝑐 + ∑ 𝛷𝛷𝑙𝑙  𝑥𝑥𝑡𝑡−𝑙𝑙𝐿𝐿
𝑙𝑙=1 + 𝐶𝐶 𝜀𝜀𝑡𝑡. (1) 

Here, 𝑥𝑥𝑡𝑡 is stationary, 𝜀𝜀𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0, 𝐼𝐼𝐾𝐾) and Ω = 𝐶𝐶𝐶𝐶′ is the covariance matrix of the VAR 

innovation. Typically, 𝐶𝐶𝐶𝐶′ is the Cholesky decomposition of Ω, with 𝐶𝐶 being a lower 
triangular with real and positive diagonal entries. In this paper we set 𝐿𝐿 = 1.  

The model parameters can be estimated via ordinary least squares (OLS). 

3.1.3. Simulation output conditioning 
In general, the average output of the simulation engine will not match the expectations 
of expert forecasters. Also, debt managers will often want to align the simulation output 

with those forecasts or with various other scenarios. The main challenge with this 
requirement is to “discipline” the simulation output in a way that is meaningful from a 
probabilistic point of view. 

 
11 The transformation used for 𝐷𝐷𝑡𝑡 is intended to ensure its stationarity and improve its similarity to a Gaussian 
distribution. 
12 The data are first subsampled to quarterly frequency. Inflation is then computed as the first difference of 

the log-CPI. 

13 Note that “quarterly” GDP is annualized and requires multiplying the data by 0.25. The growth of GDP is the 
first difference of the log of quarterly GDP. 
14 Note that the “quarterly” fiscal balance is again obtained by multiplying the data by 0.25. 

15 Again, the data needs to be multiplied by 0.25 to get quarterly costs. 

16 VAR is used here because it is transparent, analytically tractable, easily estimated, as has the property of a 
“best linear predictor.” Though it is not a fundamental feature, so other specifications could be used.  

https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/


8 

Appendix A describes such a method. The forecast data for the various model state 
variables are available from the following sources: 

• data on rates, inflation and GDP growth—Department of Finance Survey of 
Private Sector Economic Forecasters  

• deficit data (primary deficit/GDP)—various Department of Finance Canada 
Federal Budget web pages (for example, 2023 Budget, Table A1.5) 

3.2. Portfolio dynamics 
The debt portfolio dynamics are defined from the following variables, using the same 
notation as in Belton et al. (2018): 

• 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡—the issued amounts at time 𝑡𝑡 of bonds reaching maturity at time 𝑡𝑡 + 𝑚𝑚. 
These bonds are assumed to be issued at par and pay a coupon rate 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑡𝑡 until 
maturity.  

• 𝐶𝐶𝑝𝑝,𝑡𝑡—the total debt costs, which are the coupons paid at time 𝑡𝑡 

• 𝑅𝑅𝑝𝑝,𝑡𝑡—the total redemption amounts, which are the payments on bonds that have 
reached maturity at time 𝑡𝑡 

In general, 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡 can take any positive value17 that respects the relevant constraints. 

Also, the issuance amounts can be a function of only those variables known to the debt 
manager, standing on path 𝑝𝑝 at time 𝑡𝑡. 

The redemption amounts and debt costs are calculated as: 

𝑅𝑅𝑝𝑝,𝑡𝑡 = � 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡−𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 (2) 

𝐶𝐶𝑝𝑝,𝑡𝑡 = 𝜃𝜃 ∑ ∑ 𝑦𝑦𝑝𝑝,𝑚𝑚,𝑡𝑡−𝑖𝑖
𝑚𝑚
𝑖𝑖=1

𝑀𝑀
𝑚𝑚=1 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡−𝑖𝑖. (3) 

Issuances must be chosen in a way that respects the budget constraint, which specifies 
that the amounts raised through issuance must cover the primary deficit, bond 
redemptions and debt costs: 

∑ 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡
𝑀𝑀
𝑚𝑚=1 = 𝐷𝐷𝑝𝑝,𝑡𝑡 + 𝑅𝑅𝑝𝑝,𝑡𝑡 + 𝐶𝐶𝑝𝑝,𝑡𝑡. 

 
(4) 

Equations (2), (3) and (4) describe the portfolio dynamics. Note that equations (2) and (3) 

could refer to past issuances and coupon rates (with time indexes 𝑡𝑡 ≤ 0) and would thus 
take the composition of the initial debt stock as an input. Through equations (2) and (3), 
equation (4) connects past and current issuance amounts. 

 
17 We ignore the possibility of bond buybacks. 

https://www.canada.ca/en/department-finance/services/publications/private-sector-survey.html
https://www.canada.ca/en/department-finance/services/publications/private-sector-survey.html
https://www.budget.canada.ca/2023/report-rapport/anx1-en.html
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3.3. Issuance strategies 
This section describes three ways issuance strategies can be characterized. This model 
uses a dynamic issuance strategy, which allows issuance to respond to different states. 

All issuance strategies described below are based on issuance weights, which are 
defined as follows:18 

𝑤𝑤𝑚𝑚 = 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡
∑ 𝐺𝐺𝑝𝑝,𝑙𝑙,𝑡𝑡
𝑀𝑀
𝑙𝑙=1

 . 

 
(5) 

This implies that ∑ 𝑤𝑤𝑚𝑚𝑚𝑚 = 1. Furthermore, we impose that 𝑤𝑤𝑚𝑚 > 0 for all 𝑚𝑚, which makes 
it impossible for the debt manager to invest in some sectors while issuing in others. 

3.3.1. Fixed issuance strategy 
The simplest way to parametrize the issuance strategy is to assume that each sector 
forms a fixed percentage of the total amount issued: 

𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡 = 𝑤𝑤𝑚𝑚�𝐷𝐷𝑝𝑝,𝑡𝑡 + 𝑅𝑅𝑝𝑝,𝑡𝑡 + 𝐶𝐶𝑝𝑝,𝑡𝑡�. 

 
(6) 

This strategy is the simplest, but obviously it has the drawback of not using information 
from the model state variables, and it also implies a discontinuity with the issuances at 
time 𝑡𝑡 = 0. 

3.3.2. Deterministic issuance strategy 
A simple way to improve on the discontinuity of the static issuance strategy is to assume 
that the proportion of issuances for each sector is given by a deterministic function of 
time: 

𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡 = ��1 − 𝜙𝜙(𝑡𝑡)�𝑤𝑤𝑚𝑚,0 + 𝜙𝜙(𝑡𝑡)𝑤𝑤𝑚𝑚,∞� �𝐷𝐷𝑝𝑝,𝑡𝑡 + 𝑅𝑅𝑝𝑝,𝑡𝑡 + 𝐶𝐶𝑝𝑝,𝑡𝑡�. 

 
(7) 

Here, 𝐷𝐷𝑝𝑝,𝑡𝑡 + 𝑅𝑅𝑝𝑝,𝑡𝑡 + 𝐶𝐶𝑝𝑝,𝑡𝑡 is total issuances, via the budget constraint from equation (4). 

Therefore, we have  

𝑤𝑤𝑚𝑚,𝑡𝑡 = �1 − 𝜙𝜙(𝑡𝑡)�𝑤𝑤𝑚𝑚,0 + 𝜙𝜙(𝑡𝑡)𝑤𝑤𝑚𝑚,∞. 

 
(8) 

 
18 Note that in order to enforce minimum issuance amounts �𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡

𝑀𝑀𝑖𝑖𝑀𝑀 �
𝑚𝑚=1

𝑀𝑀 , one can apply the issuance weights on 
the funding needs net of the sum of minimum issuance amounts, and then add back the minimum 
issuances amounts. 
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Therefore, the term 𝑤𝑤𝑚𝑚,𝑡𝑡 corresponds to the percentage, or weight, of the issuances in 

bonds with term 𝑚𝑚. They are not indexed with the path and are therefore deterministic. 

The term 𝑤𝑤𝑚𝑚,0 is the initial issuance weights at time 𝑡𝑡 = 0 and corresponds to  

 

𝑤𝑤𝑚𝑚,0 = 𝐺𝐺𝑝𝑝,𝑚𝑚,0
∑ 𝐺𝐺𝑝𝑝,𝑙𝑙,0
𝑀𝑀
𝑙𝑙=1

. 

 
(9) 

The function  𝜙𝜙(𝑡𝑡) is defined such that 𝜙𝜙(0) = 0, 𝜙𝜙(∞) → 1 and 𝜙𝜙(𝑥𝑥) > 0. It is therefore 
used as an interpolation coefficient between current issuances 𝑤𝑤𝑚𝑚,0 and long-term 

issuances 𝑤𝑤𝑚𝑚,∞. Introducing this interpolation guarantees that issuance weights will not 

deviate too quickly from current issuance weights to ensure the consistency of 
government’s issuance strategy near the initial time. 

The parameters 𝑤𝑤𝑚𝑚,∞ represent the long-term issuance weights. They are the choice 

variable for the portfolio manager. As we describe in the next sections, the values for 
𝑤𝑤𝑚𝑚,∞ can be found through the optimization of the cost and risk trade-off, as defined by 
the specific objective function guiding the portfolio manager. 

Despite this improvement, this strategy is still deterministic and has the same drawback 
of not using information from the model state variables—and hence the issues of time 
inconsistency and short-term ineffectiveness described in the introduction. 

Note that a static strategy is simply a restricted form of a deterministic strategy where 
𝜙𝜙(𝑡𝑡) = 1 for all 𝑡𝑡 (i.e., all the weight is on long-term issuance, none is on current). 

3.3.3. Dynamic issuance strategy 
The dynamic issuance strategy parametrization is a generalization of the deterministic 
issuance strategy. It allows issuance weight to be a function of the state variables of the 
model. Issuances are defined similarly as before, with the exception that weights can 
now vary across paths: 

𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡 = ��1 − 𝜙𝜙(𝑡𝑡)�𝑤𝑤𝑚𝑚,0 + 𝜙𝜙(𝑡𝑡)𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡� �𝐷𝐷𝑝𝑝,𝑡𝑡 + 𝑅𝑅𝑝𝑝,𝑡𝑡 + 𝐶𝐶𝑝𝑝,𝑡𝑡�. 

 

 
(10) 

With the dynamic issuance strategy, the issuance weights are defined as a function of 

the state variables. Let �𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡�𝑀𝑀=1
𝑁𝑁

 be a set of 𝑁𝑁 state variables generated by the model. 

We call the set of those variables the “issuance basis.” These can be any transformation 
of any variable that is observable at time 𝑡𝑡 or earlier, along path 𝑝𝑝. These can include 
simulated variables such as those in 𝑥𝑥𝑡𝑡, variables that are part of the portfolio dynamics 
(past issuances, debt stock composition), lagged variables, deterministic functions of 
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time, or combinations of all of these. By convention, we assume that a constant is 
included, 𝑉𝑉𝑝𝑝,1,𝑡𝑡 = 1.  

The mapping relationship between issuance weights and the chosen state variables is 
flexible; however, it should satisfy two basic criteria in practice:  

• 𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡 ≥ 0 to ensure the non-negative issuance weights 
• ∑ 𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡𝑚𝑚 = 1 to ensure the total sum of issuance weights equals 1  

In theory, any mapping function that satisfies the above criteria can be a candidate for 
the issuance reaction in our modelling framework. The refinement of the issuance 

reaction function is out of the scope of this paper, though one could consider using 
more advanced techniques such as machine learning.  

For this paper, we choose a linear-logistic functional form, which satisfies the two criteria 
above:19 

𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡 =
exp�∑ 𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡𝛽𝛽𝑀𝑀,𝑚𝑚𝑀𝑀 �
∑ exp�∑ 𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡𝛽𝛽𝑀𝑀,𝑙𝑙𝑀𝑀 �𝑙𝑙

. 

 

(11) 

The above reaction function considers only the first-order linear basis functions of state 
variables; however, it can be easily generalized to incorporate the nonlinear basis 

functions when necessary. Appendix C offers a more detailed discussion.  

The set of parameters 𝛽𝛽𝑀𝑀,𝑚𝑚 is the choice variable for the debt portfolio manager. By 
choosing a fixed set of 𝛽𝛽 values, the debt manager will be able to vary the composition 

of issuances according to the state of the financial, fiscal or macroeconomic 
environment. For example, the portfolio manager can adjust the issuances of short- 
versus long-term bonds, depending on the steepness of the yield curve, expectations of 
increasing or decreasing rate levels, etc. 

This 𝛽𝛽 choice variable here contrasts with the direct weights (𝑤𝑤𝑚𝑚,∞) choice variable in the 

deterministic model. 

Note that the deterministic issuance strategy is simply a restricted form of the dynamic 
issuance strategy where 𝑁𝑁 =  1 (i.e., no state variables besides constant term). Thus, a 
dynamic strategy will never be worse than a deterministic strategy in terms of the 

defined objective function. 

 

 
19 It is possible to use other mappings. We find this form works with our data and objectives. 
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3.4. Cost and risk functions 
Both the cost and risk functions here are functions of the simulated debt costs 𝐶𝐶𝑝𝑝,𝑡𝑡, 

which implicitly are functions of the parameters of the issuance strategy. To make the 
notation more concise, we remove that dependence from the notation. 

Here the cost function is simply defined as the average debt cost over all paths and 
timesteps without discounting: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝜃𝜃) = 1
𝑇𝑇𝑇𝑇
∑ 𝐶𝐶𝑝𝑝,𝑡𝑡𝑡𝑡,𝑝𝑝 . 

 
(12) 

Conditional cost volatility is the risk function used in our examples. It represents the 
volatility of the conditional surprise in debt costs. It is defined by the variance of the 
residual of a regression of 𝐶𝐶𝑝𝑝,𝑡𝑡 on 𝐶𝐶𝑝𝑝,𝑡𝑡−1 and a constant. Technically, this can be written 

as: 

𝑅𝑅𝑖𝑖𝐶𝐶𝑅𝑅(𝜃𝜃) = min
𝑎𝑎,𝑏𝑏

1
(𝑇𝑇−1)𝑇𝑇

∑ �𝐶𝐶𝑝𝑝,𝑡𝑡 − �𝑎𝑎 − 𝑏𝑏 𝐶𝐶𝑝𝑝,𝑡𝑡−1��
2

𝑡𝑡,𝑝𝑝 . 

 
(13) 

The estimators for (𝑎𝑎, 𝑏𝑏) can be obtained through OLS. 

3.4.1. Alternative formulations of the cost and risk functions 
The framework we present in this paper can accommodate other definitions of the 
objective function. For example, the alternative definitions of costs and risks used in 
Belton et al. (2018) can be used in our framework, such as defining costs in terms of the 
cost-to-GDP ratio: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐺𝐺𝐺𝐺𝑇𝑇(𝜃𝜃) = 1
𝑇𝑇𝑇𝑇
∑ 𝐶𝐶𝑝𝑝,𝑡𝑡

𝐺𝐺𝐺𝐺𝑇𝑇𝑝𝑝,𝑡𝑡
𝑡𝑡,𝑝𝑝 . 

 
(14) 

The definition of risk can also be modified in a similar way to obtain risks in terms of 

costs over GDP: 

𝑅𝑅𝑖𝑖𝐶𝐶𝑅𝑅𝐺𝐺𝐺𝐺𝑇𝑇(𝜃𝜃) = min
𝑎𝑎,𝑏𝑏

1
(𝑇𝑇−1)𝑇𝑇

∑ � 𝐶𝐶𝑝𝑝,𝑡𝑡
𝐺𝐺𝐺𝐺𝑇𝑇𝑝𝑝,𝑡𝑡

− �𝑎𝑎 − 𝑏𝑏 𝐶𝐶𝑝𝑝,𝑡𝑡−1
𝐺𝐺𝐺𝐺𝑇𝑇𝑝𝑝,𝑡𝑡−1

��
2

𝑡𝑡,𝑝𝑝 . 

 

(15) 

The value of 𝐺𝐺𝐷𝐷𝑃𝑃𝑝𝑝,𝑡𝑡 can be obtained by integrating the GDP growth produced by the 

simulation engine. A similar specification would be to consider debt costs in real terms 
by discounting them using the simulated price level index, which can be obtained by 

integrating the simulated inflation along each path.  



13 

One specific variation for the objective function could be to measure risks not in terms 
of the volatility of debt costs but instead in terms of the volatility of the total deficit, 
which is 𝐶𝐶𝑝𝑝,𝑡𝑡 + 𝐷𝐷𝑝𝑝,𝑡𝑡. This definition is interesting for two reasons:  

• First, the risk measure will be dependent on the correlation between costs and 
the primary deficit. Because states with high growth are generally associated 
with both higher yields and a lower primary deficit, we should expect a negative 

correlation between 𝐶𝐶𝑝𝑝,𝑡𝑡 and 𝐷𝐷𝑝𝑝,𝑡𝑡, which will be stronger when more short-term 

debt is issued, as noted in Belton et al. (2018). Consequently, this formulation will 

highlight the importance of short-term issuances when the debt manager is 
concerned with the total fiscal volatility.  

• Second, since this risk measure focuses on minimizing volatility, it is more 
consistent with the idea of government tax smoothing. See Blommestein and 
Hubig (2012) for details. 

3.5. Issuance strategy optimization 
The issuance strategy optimization is assumed to be of the mean-variance type, where 
expected costs are minimized over the choice variables of the issuance strategy, subject 
to a given risk measure being lower than some maximum threshold. The set of all 
optimum expected costs for any level of maximum threshold risk form the efficient 
frontier. 

The choice variables of the strategy are denoted 𝜌𝜌, which are: 

• 𝑤𝑤𝑚𝑚,∞ when optimizing over deterministic issuance strategies 
• 𝛽𝛽𝑀𝑀,𝑚𝑚 when optimizing over dynamic strategies  

The debt manager optimization problem can be written as: 

𝜌𝜌∗(𝑅𝑅) = argmin
𝜌𝜌

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡(𝜌𝜌)  𝐶𝐶. 𝑡𝑡.𝑅𝑅𝑖𝑖𝐶𝐶𝑅𝑅(𝜌𝜌) ≤ 𝑅𝑅. 

 
(16) 

The efficient frontier is simply the parametric curve �𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡�𝜌𝜌∗(𝑅𝑅)�,𝑅𝑅𝑖𝑖𝐶𝐶𝑅𝑅�𝜌𝜌∗(𝑅𝑅)��, with 𝑅𝑅 

spanning a broad set of possible risk levels.  

Note that the issuance strategy optimization is numerically complicated due to having 
multiple degrees of freedom. In practice, the robustness of the optimization results 
strongly relies on the soundness of the initial guess. As part of this model, we propose a 
novel idea of iterative random search around non-dominated data points to generate 
the initial guess for the gradient-descent-based algorithm of optimization. Appendix C 

presents the details of our implementation.    
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3.6. Choosing the issuance basis for dynamic 
strategies 

The choice of issuance basis affects the performance of dynamic strategies. In theory, all 
variables forming a Markovian state-space representation of the system describing 

economic and portfolio-related variables should be part of the set �𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡�𝑀𝑀=1
𝑁𝑁

 of state 

variables informing the issuance decisions.20 This would include the variables generated 
by the simulation engine as well as the structure of the bond portfolio. 

We choose to use a small number of variables produced by the simulation engine. To 
remain parsimonious in the specification of the model and to improve the tractability of 
the issuance function, we normally try several combinations of those variables, and for 
each of those combinations we compute the efficient frontier. We continue adding new 
variables until the efficient frontier is no longer materially improved by the addition of 
new variables. 

4. Results 
This section presents preliminary results obtained from the issuance strategy 
optimization procedure presented above to showcase how this dynamic framework can 
be applied.  

We use the following set-up, based on some Canada-specific settings and inputs, for this 
test: 

• The simulation engine is estimated over data from 1996Q1 to 2024Q1. The private 
sector forecasts used for conditioning the simulation output are from 2024Q1. 

• The initial debt portfolio is the actual Canadian domestic debt portfolio from 
2024Q1.21  

• The simulation engine generates 4,000 paths and uses a 15-year horizon. 
• The issuance basis variables that we test are level and slope.22 All issuance 

strategies that we use are described in sections 3.3.2 and 3.3.3, with the 
deterministic strategy having a constant as its only issuance basis variable. The 
possible combinations are therefore deterministic, level, slope, and level and 
slope. 

 
20 In our case, it can be shown that this would be the last 𝐿𝐿 values of the state variables from the simulation 

engine, plus all the future cashflows from the already-issued debt. 

21 Note that it does include real return bonds, which are not part of this issuance strategy optimization analysis 
but are nevertheless included with their CPI-adjusted costs properly taken into account, as in Bolder and 
Deeley (2011). 

22 Several other variables were also tested. It appears that in all tests, the level variable carries the most 
importance in terms of its capacity to improve the efficient frontier. Inflation also has some importance, 
albeit to a much lesser extent. 
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4.1. Comparing deterministic and dynamic efficient 
frontiers 

The first step in analyzing the impact of the choice of issuance basis variables is to 
compute the associated efficient frontiers (Chart 1).  

Chart 1: Efficient frontiers for deterministic and dynamic issuance strategies 

 

Note: Dollar amounts are per year. Conditional cost volatility is used for the risk function. 

Because the various combinations of issuance basis form a set of embedded models, we 
find that adding variables to the set of issuance basis variables reduces the expected 
costs for all levels of risk. For example, the deterministic issuance strategy is dominated 
by all dynamic strategies, while the level and slope strategies are dominated by the level 
and slope strategy. 

4.2. Interpretation of the results 
In this section, we offer some insights on the results from the previous section. Namely, 

we explore why the level variable provides most of the improvement in the efficient 
frontier.  

We find that the level correlates with the realized term premium and therefore informs 
the trade-off between the various terms of issuance. This follows from the assumption 
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of a stationary and mean-reverting process for rates: high rates today imply decreasing 
rates in the future, making it advantageous to issue short-term debt.  

We also investigate an alternative set-up for the simulation engine where rates are non-
stationary. We find an increased importance of the slope variable for predicting the 

realized term premium. This coincides with our finding that slope brings the most 
improvement to the issuance strategy in terms of efficient frontier.  

4.2.1. Interpretation under stationary rates 
Under the standard assumption of stationary, mean-reverting interest rates (an l(0) 
process), the level factor in a dynamic issuance strategy provides the single largest 
improvement. This indicates that of all state variables investigated so far (level, slope, 

GDP growth and inflation), level has the greatest predictive power for how well a decision 
will turn out. 

Since the debt manager’s decision is basically about issuing short-term versus long-term 
debt, a good proxy for success (or failure) of each decision is the realized term 
premium—how much more costly it is to issue a long bond versus issuing a series of 
short bonds for that same period.  

Thus, to test if level is the most significant factor, we look at the relationship between 
each state variable 𝑉𝑉(𝑡𝑡) at 𝑡𝑡 and the realized term premium (RTP) for 10-year bonds at 
𝑡𝑡 + 𝑛𝑛 , which is defined as:  

𝑅𝑅𝑇𝑇𝑃𝑃𝑝𝑝,𝑀𝑀,𝑡𝑡 =  𝑦𝑦𝑝𝑝,𝑀𝑀,𝑡𝑡 −
1
𝑀𝑀
∑ 𝑦𝑦𝑝𝑝,1,𝑡𝑡+𝑖𝑖
𝑀𝑀−1
𝑖𝑖=0 , 

where 𝑛𝑛 = 40 quarters (or 10 years). Chart 2 shows the RTP for 𝑡𝑡 = 20. The RTP broadly 
reflects the additional costs of issuing a 10-year bond versus issuing 3-month bills (and 
continuously refinancing) for those 10 years. In general, a higher RTP means that issuing 

short was a good decision; lower means it was bad. A state variable 𝑉𝑉(𝑡𝑡0) with good 
predictive power should thus have a higher absolute correlation—positive or negative—
with the RTP.   
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Chart 2: The relationship between state variables and the average term premium, 
with stationary interest rates 

 

Note: Panels show the relationship between each variable and the 10-year average term premium. The state 
variable scenarios use an I(0) process and assume interest rates are stationary and mean-reverting. 

 

As Chart 2 shows, the level variable tends to have higher correlation with RTP, which is 
consistent with it having the largest cost-risk performance gain in the efficient frontier 
(Chart 1). Conversely, GDP growth and inflation are less correlated and do not provide 
much improvement.  

4.2.2. Interpretation under non-stationary rates 
Under a different simulation engine assumption, level may not necessarily be the most 
informative state variable. In an alternative formulation for the simulation model, we 

assume that the first difference of level is stationary, instead of the variable itself being 
stationary. With this assumption, our experimental results seem to indicate that the 
slope variable brings the most important improvement to the efficient frontier (Chart 3). 
This is consistent with the slightly higher correlation to RTP that we have observed, 
which is shown in Chart 4.  
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Chart 3: Efficient frontiers for deterministic and dynamic strategies with non-
stationary interest rates 

 

Note: Dollar amounts are per year. Conditional cost volatility is used for the risk function. We use an I(1) 
process for the level variable. 

Chart 4: The relationship between state variables and the average term premium, 
with non-stationary interest rates 

 

Note: Panels show the relationship between each variable and the 10-year average term premium. The state 
variable scenarios use an I(1) process for the level variable and assume interest rates are non-stationary. 
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Since the issuance allocations from a dynamic model are directly a product of simulation 
engine assumptions, it is important that the engine be carefully set up in a way that 
reflects the policy-makers’ view of market and economic dynamics.  

4.3. Analyzing dynamic issuance strategies 
Dynamic issuance strategies are more complex to visualize than those that are static, 

which have a single weight for each sector. A dynamic issuance strategy can be visually 
represented in two ways. One is through a cross-section view of the issuance strategy, 
which shows how issuance allocation changes across a range of state variable values for 
each risk level. Another is through a time series view of the issuance strategy, which 
shows that at each time point, the average issuance of a dynamic strategy differs from 

the corresponding deterministic issuance for each risk level. 

4.3.1. Cross-section view of the issuance strategies 
By studying how issuance in short (bill) and long varies based on the prevailing values of 
our two main state variables (level and slope) at different points on the efficient frontier 
in Chart 5, several observations can be made.  

Chart 5: Issuances of short and long bonds when level and slope vary 

   

Note: Short bonds are bills with a term of up to one year; long bonds are those with 10- and 30-year terms. 
Percentiles of distribution are as follows: inverted slope, 10%–20%; regular slope, 45%–55%; steep slope, 80%–
90%. Dollar amounts are per year. Conditional cost volatility is used for the risk function. 
 

First, regardless of the steepness (slope) of the yield curve, bill issuance increases 
monotonically with the increase of interest rate levels, while long bond issuance 
decreases in a similar manner. This is consistent with our finding noted in section 4.1 
that higher level tends to predict a higher RTP, which favours shorter issuance. 
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Thus, the debt manager might consider dynamically adjusting issuance based on the 
change of yield environments. For example, they might consider long-biased issuance in 
low-yield environments and issuing more bills in high-yield environments. 

Second, a steeper curve is better for short issuance and worse for long issuance, and 

vice-versa. However, in line with the results discussed in section 4.1, in our standard l(0) 
simulation, slope appears to have a smaller overall impact than level in determining the 
issuance.  

These results are robust to different risk levels. All else being equal, a higher risk level 
means more bill issuance (more cost volatility from refinancing, but a lower point on the 

yield curve), while a lower risk level means more long bond issuance (the opposite). 

4.3.2. Time series view of the issuance strategies 
Chart 6 shows expected issuances over time for both the deterministic strategy and the 
dynamic strategy with level and slope. The low, mid- and high-risk strategies of the 
deterministic and dynamic strategies are for the same level of risk. 

Chart 6: Expected issuance weights versus time 

 

 

Note: Short bonds are bills with a term of up to one year; long bonds are those with 10- and 30-year terms. 
Dollar amounts are per year. Conditional cost volatility is used for the risk function. 
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At each risk level, the average issuance from the dynamic strategy differs from the 
corresponding deterministic issuance, and this difference is greater the further out in 
the simulation. This shows that deterministic strategies cannot be thought of as a first-
order approximation of dynamic strategies (see Appendix C for details). This also 

suggests that only the ability to react to changing state variables in the future affects the 
relative favourability between sectors. 

5. Conclusion 
We propose an enhanced debt strategy modelling framework that gives the debt 
portfolio manager flexibility to dynamically adjust their issuance strategy according to 
the changing macroeconomic and interest rate environments. Analyzing the optimal 

dynamic reaction functions for issuance strategy on an issuance basis can provide 
insightful guidance for the decision-making process of debt issuance. Applying this 
framework to Canada’s case, we find that the level of interest rates currently provides 
the most relevant information for optimal dynamic issuance strategies; however, 
incorporating the slope of the yield curve adds further but diminishing improvement. 
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Appendix A: Simulation conditioning 
This section broadly follows Jarociński (2010) with the addition of a method for applying 
“soft conditioning.”  

Starting from a vector autoregression (VAR) model with “L” lags: 

 𝑦𝑦𝑡𝑡 = 𝑐𝑐 + ∑ 𝛷𝛷𝑙𝑙  𝑦𝑦𝑡𝑡−𝑙𝑙𝐿𝐿
𝑙𝑙=1 + 𝐶𝐶 𝜀𝜀𝑡𝑡. 

 
(17) 

Here, 𝑦𝑦𝑡𝑡  has size 𝑁𝑁 and is stationary, 𝜀𝜀𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0, 𝐼𝐼𝐾𝐾) and Ω = 𝐶𝐶𝐶𝐶′ is the covariance matrix 
of the VAR innovation. In general, 𝐶𝐶𝐶𝐶′ is the Cholesky decomposition of Ω, with 𝐶𝐶 being a 
lower triangular with real and positive diagonal entries. 

Centring the model and rewriting it in terms of 𝑧𝑧𝑡𝑡 = 𝑦𝑦𝑡𝑡 − 𝜇𝜇, with 𝜇𝜇 = 𝐸𝐸[𝑦𝑦𝑡𝑡] =
(𝐼𝐼𝐾𝐾 − ∑ Φ𝑙𝑙𝑙𝑙 )−1𝑐𝑐, we have: 

 𝑧𝑧𝑡𝑡 = ∑ 𝛷𝛷𝑙𝑙  𝑧𝑧𝑡𝑡−𝑙𝑙𝐿𝐿
𝑙𝑙=1 + 𝐶𝐶 𝜀𝜀𝑡𝑡. (18) 

We can write the companion form of the VAR model as: 

 �̃�𝑧𝑡𝑡 = 𝐹𝐹�̃�𝑧𝑡𝑡−1 + 𝐺𝐺𝜀𝜀�̃�𝑡, (19) 

where 𝑧𝑧𝑡𝑡� = (𝑧𝑧𝑡𝑡′ … 𝑧𝑧𝑡𝑡−𝐿𝐿+1′ )′, 𝐹𝐹 = �
Φ1 … Φ𝐿𝐿

𝐼𝐼(𝐿𝐿−1)𝑁𝑁  0(𝐿𝐿−1)𝑁𝑁,𝑁𝑁
�, 𝐺𝐺 = �

𝐶𝐶 0𝑁𝑁,(𝐿𝐿−1)𝑁𝑁
0(𝐿𝐿−1)𝑁𝑁,𝑁𝑁 0𝑁𝑁,𝑁𝑁

� and 

𝜀𝜀�̃�𝑡 = (𝜀𝜀𝑡𝑡′ 0𝑁𝑁,(𝐿𝐿−1)𝑁𝑁)′. 

A1.1 Conditioning 
Assume that we know the parameters of the VAR. We want to simulate its state variables 
over [1 …𝑇𝑇], conditional on some starting point 𝑧𝑧0. First, write the VAR in “impulse 

response” for 𝑧𝑧𝑡𝑡: 

 𝑧𝑧𝑡𝑡 = 𝐹𝐹(1:𝑁𝑁,:)
𝑡𝑡 �̃�𝑧0 + 𝐶𝐶𝜀𝜀𝑡𝑡 + Ψ1𝐶𝐶𝜀𝜀𝑡𝑡−1 + ⋯+ Ψ𝑡𝑡−1𝐶𝐶𝜀𝜀1. (20) 

Here, we have Ψ𝑖𝑖 = 𝐹𝐹(1:𝑁𝑁,1:𝑁𝑁)
𝑖𝑖 , which is the 𝑁𝑁 × 𝑁𝑁 left-upper block of 𝐹𝐹 raised to its 𝑖𝑖𝑡𝑡ℎ 

power, while 𝐹𝐹(1:𝑁𝑁,:)
𝑡𝑡  is the first 𝑁𝑁 rows of 𝐹𝐹𝑡𝑡.  

The previous equation shows that all 𝑧𝑧𝑡𝑡 are linear functions of (𝜀𝜀1 … 𝜀𝜀𝑡𝑡) and are therefore 
jointly Gaussian. We can write all (future) timesteps (and variables) as: 

 
�
𝑧𝑧1
…
𝑧𝑧𝑇𝑇
� = �

𝐹𝐹(1:𝑁𝑁,:)
1

…
𝐹𝐹(1:𝑁𝑁,:)
𝑇𝑇

� �̃�𝑧0 + �
𝐶𝐶 0 0
⋮ ⋱ ⋮

𝛹𝛹𝑇𝑇−1𝐶𝐶 …𝛹𝛹1𝐶𝐶 …𝐶𝐶
��

𝜀𝜀1
…
𝜀𝜀𝑇𝑇
�, 

 

(21) 

or in short form: 

 𝑧𝑧 = 𝐻𝐻�̃�𝑧0 + 𝑅𝑅𝜀𝜀. (22) 
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We want to simulate 𝑃𝑃 paths for 𝑧𝑧: 

 𝑧𝑧(𝑝𝑝) = 𝐻𝐻�̃�𝑧0 + 𝑅𝑅𝜀𝜀(𝑝𝑝). 

 

 

(23) 

We need to choose the correct distribution for  𝜀𝜀(𝑝𝑝), which is conditional on  

 𝐴𝐴𝑧𝑧(𝑝𝑝) = 𝑏𝑏(𝑝𝑝), 

 
(24) 

where 𝐴𝐴 is a 𝑞𝑞 × 𝑇𝑇𝑇𝑇 array, 𝑏𝑏(𝑝𝑝) is a 𝑞𝑞 × 1 random vector drawn from some random 
distribution. Using equation (23), the condition in equation (24) can be written as 
𝐴𝐴𝑅𝑅𝜀𝜀(𝑝𝑝) = 𝑏𝑏(𝑝𝑝) − 𝐴𝐴𝐻𝐻�̃�𝑧0 or 𝑅𝑅�𝜀𝜀(𝑝𝑝) = 𝑟𝑟(𝑝𝑝), where 𝑅𝑅� = 𝐴𝐴𝑅𝑅 and 𝑟𝑟(𝑝𝑝) = 𝑏𝑏(𝑝𝑝) − 𝐴𝐴𝐻𝐻�̃�𝑧𝑆𝑆. Given that the 
joint distribution of 𝜀𝜀(𝑝𝑝) and 𝑅𝑅�𝜀𝜀(𝑝𝑝) is: 

 � 𝜀𝜀
(𝑝𝑝)

𝑅𝑅�𝜀𝜀(𝑝𝑝)�~𝑁𝑁 ��0
0� , �𝐼𝐼 𝑅𝑅�′

𝑅𝑅� 𝑅𝑅�𝑅𝑅�′
��, 

 

(25) 

we therefore have: 

 �𝜀𝜀(𝑝𝑝)�𝑅𝑅�𝜀𝜀(𝑝𝑝) = 𝑟𝑟(𝑝𝑝)�~𝑁𝑁 �𝑅𝑅�′�𝑅𝑅�𝑅𝑅�′�−1𝑟𝑟(𝑝𝑝), 𝐼𝐼 − 𝑅𝑅�′�𝑅𝑅�𝑅𝑅�′�−1𝑅𝑅��. 

 
(26) 

We can therefore simulate with equation (23) while imposing equation (24) by drawing 
from the conditional distribution for 𝜀𝜀(𝑝𝑝) from equation (26). 

A1.2  Numerical considerations 
It is numerically more efficient to simulate 𝜀𝜀(𝑝𝑝) by first applying the singular value 
decomposition23 to 𝑅𝑅� = 𝑈𝑈�𝐷𝐷 0𝑞𝑞×(𝑇𝑇−𝑞𝑞)�(𝑉𝑉1 𝑉𝑉2)′ where 𝐷𝐷 is a 𝑞𝑞 × 𝑞𝑞 diagonal array of singular 

values of 𝑅𝑅� , 𝑈𝑈′𝑈𝑈 = 𝑈𝑈𝑈𝑈′ = 𝐼𝐼𝑞𝑞×𝑞𝑞, (𝑉𝑉1𝑉𝑉2)′(𝑉𝑉1𝑉𝑉2) = (𝑉𝑉1𝑉𝑉2)(𝑉𝑉1𝑉𝑉2)′ = 𝐼𝐼𝑁𝑁𝑇𝑇×𝑁𝑁𝑇𝑇, where 𝑉𝑉1 is the first 𝑞𝑞 

right singular vectors, and 𝑉𝑉2 is the (𝑁𝑁𝑇𝑇 − 𝑞𝑞) orthogonal vectors. It is possible to show 
that we can generate the conditional distribution of �𝜀𝜀(𝑝𝑝)�𝑅𝑅�𝜀𝜀(𝑝𝑝) = 𝑟𝑟(𝑝𝑝)� by setting: 

 �𝜀𝜀(𝑝𝑝)�𝑅𝑅�𝜀𝜀(𝑝𝑝) = 𝑟𝑟(𝑝𝑝)� = 𝑉𝑉1𝐷𝐷−1𝑈𝑈′𝑟𝑟 + 𝑉𝑉2𝜂𝜂. (27) 

A1.3 Soft conditioning 
If only the expected value of 𝑏𝑏(𝑝𝑝) is known, i.e., 𝐸𝐸�𝑏𝑏(𝑝𝑝)� = 𝜇𝜇𝑏𝑏 (for example: when imposing 

that the expected rates, GDP growth, inflation, etc., as simulated by the conditioned 

 
23 See, for example, Press et al. (1992). 
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model must match an exogenously provided expected value, such as one coming from a 
survey), one can impose that the covariance structure from the conditioned model be 
the same as the covariance structure of the conditional model. 

In the unconditioned model: 

 𝐶𝐶𝐶𝐶𝐶𝐶�𝑏𝑏(𝑝𝑝)� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴𝑧𝑧(𝑝𝑝)� = 𝐶𝐶𝐶𝐶𝐶𝐶�𝐴𝐴(𝐻𝐻�̃�𝑧𝑆𝑆 + 𝑅𝑅𝜀𝜀)� = 𝐴𝐴𝑅𝑅𝑅𝑅′𝐴𝐴′ = 𝑅𝑅�𝑅𝑅�′. 

 
(28) 

One can therefore draw 𝑏𝑏(𝑝𝑝)~𝑁𝑁�𝜇𝜇𝑏𝑏 ,𝑅𝑅�𝑅𝑅�′�. 

Note that by preserving the estimated covariance structure of 𝑏𝑏(𝑝𝑝) = 𝐴𝐴𝑧𝑧(𝑝𝑝)  we are also 
preserving the covariance structure of 𝑧𝑧(𝑝𝑝): 

 𝐶𝐶𝐶𝐶𝐶𝐶�𝑧𝑧(𝑝𝑝)� = 𝐸𝐸�𝐶𝐶𝐶𝐶𝐶𝐶�𝑧𝑧(𝑝𝑝)�𝐴𝐴𝑧𝑧(𝑝𝑝) = 𝑏𝑏(𝑝𝑝)�� + 𝐶𝐶𝐶𝐶𝐶𝐶�𝐸𝐸�𝑧𝑧(𝑝𝑝)�𝐴𝐴𝑧𝑧(𝑝𝑝) = 𝑏𝑏(𝑝𝑝)�� 

= �𝑅𝑅𝑅𝑅′ − 𝑅𝑅𝑅𝑅�′�𝑅𝑅�𝑅𝑅�′�−1𝑅𝑅�𝑅𝑅′� + 𝑅𝑅𝑅𝑅�′�𝑅𝑅�𝑅𝑅�′�−1𝑅𝑅�𝑅𝑅�′�𝑅𝑅�𝑅𝑅�′�−1𝑅𝑅�𝑅𝑅′ 

= 𝑅𝑅𝑅𝑅′. 

(29) 

 

In simple terms, this means that assuming that 𝐶𝐶𝐶𝐶𝐶𝐶�𝑏𝑏(𝑝𝑝)� = 𝑅𝑅�𝑅𝑅�′ will preserve the 

covariance structure of 𝑧𝑧(𝑝𝑝), which means that the co-movements of the modelled 

variables are not affected by this assumption.  

For example, assume that in the sample data we observe that high inflation is positively 
correlated with higher rates. If we impose the view that inflation should be higher in the 
conditioned model than in the unconditional model, then we should also find that rates 
will be higher in the conditioned model than in the unconditioned model. In other 

words, views on one variable will affect other variables in a way that is consistent with 
the data. 
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Appendix B: Iterative random search 
optimization  
We develop a novel approach of generating good-quality initial guesses for the 
optimization problem. We find this approach is useful in practice to avoid being trapped 
by local minima, which is commonly encountered for multivariate optimization 
problems. The computational efficiency is also satisfactory compared with the global 

optimization approaches, e.g., genetic algorithm. The detailed approach is described as 
follows:  

• Step 1: Generate a set of initial guesses of issuance strategy and calculate the 
pairs of (costs, risks). Given the risk steps, find the corresponding non-/least-
dominated data points.  

• Step 2: Keep all the non-/least-dominated data points, and redo the random 
sampling around these data points. 

• Create the Delaunay mesh of the non-/least-dominated data points. 

• For each triangle in the Delaunay mesh, a user-specified number (e.g., 
50) of random samplings are generated as follows: 

• generate random weights (𝛼𝛼1,𝛼𝛼2,𝛼𝛼3) such that 0 ≤ 𝛼𝛼𝑖𝑖 ≤ 1 and 
∑ 𝛼𝛼𝑖𝑖𝑖𝑖 = 1,  thus the new point is  𝛼𝛼1𝛽𝛽1𝑖𝑖 + 𝛼𝛼2𝛽𝛽2𝑖𝑖 + 𝛼𝛼3𝛽𝛽3𝑖𝑖  

• apply the random noise adjustment to the new points; the 
covariance matrix of the noise is calculated based on the 
regression of 𝛽𝛽 (𝑌𝑌𝑀𝑀×𝑀𝑀𝛽𝛽) & (costs, risks)  (𝑋𝑋𝑀𝑀×2) of the non/least-
dominated data points (total number 𝑛𝑛 ):    

• 𝜖𝜖 = 𝑌𝑌 − 𝑋𝑋 × 𝐵𝐵,  𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐵𝐵 = (𝑋𝑋′𝑋𝑋)−1(𝑋𝑋′𝑌𝑌) 

• 𝐶𝐶𝐶𝐶𝐶𝐶𝜖𝜖 = 𝜖𝜖′𝜖𝜖
𝑀𝑀−2

 

• 𝑁𝑁𝐶𝐶𝑖𝑖𝐶𝐶𝑖𝑖 = 𝑁𝑁(0, 𝐶𝐶𝐶𝐶𝐶𝐶𝜖𝜖) 

• Step 3: Repeat Step 1 and Step 2 until the cost difference of all non-dominated 
data points of the given risk steps converges to the preset tolerance. The 
progress of the iterative random searches is shown in Chart B-1 as an example. 
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Chart B-1: The progress of iterative random searches around non-dominated data 
points 

 

Note: Dollar amounts are per year. Conditional cost volatility is used for the risk function. 
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Appendix C: Extending to a nonlinear issuance 
strategy 
Recall the definition of issuance weights from equation (5): 

𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡 = 𝐺𝐺𝑝𝑝,𝑚𝑚,𝑡𝑡
∑ 𝐺𝐺𝑝𝑝,𝑙𝑙,𝑡𝑡
𝑀𝑀
𝑙𝑙=1

. 

We can perform the following transformation on the weights and define: 

𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡 = ln �𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡
𝑤𝑤𝑝𝑝,𝑀𝑀,𝑡𝑡

�. 

This transformation can be inverted as follows: 

𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡 = exp�𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡�
∑ exp�𝑥𝑥𝑝𝑝,𝑙𝑙,𝑡𝑡�𝑀𝑀
𝑙𝑙=1

. 

Since the transformation between �𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡�𝑚𝑚=1
𝑀𝑀

 and �𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡�𝑚𝑚=1
𝑀𝑀

 is bijective, one can think of 

an issuance strategy as a mapping from the model’s state variables toward �𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡�𝑚𝑚=1
𝑀𝑀

, 

or equivalently as a mapping from the model’s state variables toward �𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡�𝑚𝑚=1
𝑀𝑀

. In this 

section, we follow the latter formalism. 

Let’s assume that an optimal mapping 𝑓𝑓∗:𝒱𝒱 → 𝒳𝒳 exists from the set of all possible values 
for state variables 𝒱𝒱 and the set of all possible values for our issuance weights 𝒳𝒳. We 

write the mth element of 𝑓𝑓∗ as 𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡 = 𝑓𝑓𝑚𝑚∗�𝑉𝑉𝑝𝑝,𝑡𝑡� for 𝑉𝑉𝑝𝑝,𝑡𝑡 = �𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡�𝑀𝑀=1
𝑁𝑁 ∈ 𝒱𝒱.  

C1.1 The deterministic issuance strategy 
Let’s take a zero-degree Taylor expansion of 𝑓𝑓∗ around 0, leading to the approximated 
reaction function 𝑓𝑓(0): 

𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡
(0) = 𝑓𝑓𝑚𝑚

(0)�𝑉𝑉𝑝𝑝,𝑡𝑡� = 𝑓𝑓𝑚𝑚∗(0). 

This means that we have 𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡
(0) = exp�𝑓𝑓𝑚𝑚∗ (0)�

∑ exp�𝑓𝑓𝑙𝑙
∗(0)�𝑀𝑀

𝑙𝑙=1
. If we write 𝛽𝛽𝑚𝑚

(0) = 𝑓𝑓𝑚𝑚∗(0) we have: 

𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡
0 =

exp�𝛽𝛽𝑚𝑚
(0)�

∑ exp�𝛽𝛽𝑙𝑙
(0)�𝑀𝑀

𝑙𝑙=1
. 

This corresponds to the weights used in the deterministic model from section 3.3. 

C1.2 The linear dynamic issuance strategy 
Taking a first-degree Taylor expansion of 𝑓𝑓∗: 

𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡
(1) = 𝑓𝑓𝑚𝑚

(1)�𝑉𝑉𝑝𝑝,𝑡𝑡� = 𝑓𝑓𝑚𝑚∗(0) + ∑ 𝑉𝑉𝑀𝑀  𝜕𝜕𝑓𝑓𝑚𝑚
∗

𝜕𝜕𝑉𝑉𝑛𝑛
(0)𝑁𝑁

𝑀𝑀=1 . 

Let’s write 𝛽𝛽𝑚𝑚
(1) = 𝑓𝑓𝑚𝑚∗(0) as before. We add the parameters 𝛽𝛽𝑀𝑀,𝑚𝑚

(1) = 𝜕𝜕𝑓𝑓𝑚𝑚∗

𝜕𝜕𝑉𝑉𝑛𝑛
(0). This means that 

we have: 
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𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡
(1) =

exp�𝛽𝛽𝑚𝑚
(1)+∑ 𝑉𝑉𝑝𝑝,𝑛𝑛,𝑡𝑡 𝛽𝛽𝑛𝑛,𝑚𝑚

(1)𝑁𝑁
𝑛𝑛=1 �

∑ exp�𝛽𝛽𝑙𝑙
(1)+∑ 𝑉𝑉𝑝𝑝,𝑛𝑛,𝑡𝑡 𝛽𝛽𝑛𝑛,𝑙𝑙

(1)𝑁𝑁
𝑛𝑛=1 �𝑀𝑀

𝑙𝑙=1
, 

which corresponds to the reaction function defined in section 3.3. 

C1.3 Higher-order issuance strategies 
We can simply extend the technique above and take a second-degree Taylor expansion 

of 𝑓𝑓∗: 

𝑥𝑥𝑝𝑝,𝑚𝑚,𝑡𝑡
(2) = 𝑓𝑓𝑚𝑚

(2)�𝑉𝑉𝑝𝑝,𝑡𝑡� = 𝑓𝑓𝑚𝑚∗(0) + ∑ 𝑉𝑉𝑝𝑝,𝑀𝑀,𝑡𝑡  𝜕𝜕𝑓𝑓𝑚𝑚
∗

𝜕𝜕𝑉𝑉𝑛𝑛
(0)𝑁𝑁

𝑀𝑀=1 + 1
2
∑ ∑ 𝑉𝑉𝑀𝑀𝑉𝑉𝑙𝑙  𝜕𝜕2𝑓𝑓𝑚𝑚∗

𝜕𝜕𝑉𝑉𝑛𝑛𝜕𝜕𝑉𝑉𝑙𝑙
(0)𝑁𝑁

𝑙𝑙=1
𝑁𝑁
𝑀𝑀=1 . 

Defining 𝛽𝛽𝑚𝑚
(2) = 𝑓𝑓𝑚𝑚∗(0), 𝛽𝛽𝑀𝑀,𝑚𝑚

(2) = 𝜕𝜕𝑓𝑓𝑚𝑚∗

𝜕𝜕𝑉𝑉𝑛𝑛
(0) and 𝛽𝛽𝑀𝑀,𝑙𝑙,𝑚𝑚

(2) = 1
2

𝜕𝜕2𝑓𝑓𝑚𝑚∗

𝜕𝜕𝑉𝑉𝑛𝑛𝜕𝜕𝑉𝑉𝑙𝑙
(0) we have: 

𝑤𝑤𝑝𝑝,𝑚𝑚,𝑡𝑡
(2) =

exp�𝛽𝛽𝑚𝑚
(2)+∑ 𝑉𝑉𝑛𝑛 𝛽𝛽𝑛𝑛,𝑚𝑚

(2)𝑁𝑁
𝑛𝑛=1 +∑ ∑ 𝑉𝑉𝑛𝑛𝑉𝑉𝑙𝑙 𝛽𝛽𝑛𝑛,𝑙𝑙,𝑚𝑚

(2)𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑛𝑛=1 �

∑ exp�𝛽𝛽𝑗𝑗
(2)+∑ 𝑉𝑉𝑛𝑛 𝛽𝛽𝑛𝑛,𝑗𝑗

(2)𝑁𝑁
𝑛𝑛=1 +∑ ∑ 𝑉𝑉𝑛𝑛𝑉𝑉𝑙𝑙 𝛽𝛽𝑛𝑛,𝑙𝑙,𝑗𝑗

(2)𝑁𝑁
𝑙𝑙=1

𝑁𝑁
𝑛𝑛=1 �𝑀𝑀

𝑗𝑗=1
, 

which is a quadratic extension of the previous reaction function. 

Note that in the linear dynamic issuance strategy, the issuance basis variables are: 

𝑉𝑉𝑝𝑝,𝑡𝑡 = (1 𝑉𝑉𝑝𝑝,1,𝑡𝑡 ⋯ 𝑉𝑉𝑝𝑝,𝑁𝑁,𝑡𝑡). 

The quadratic issuance strategy can be obtained simply by adding new issuance basis 
variables: 

𝑉𝑉𝑝𝑝,𝑡𝑡 = �1 𝑉𝑉𝑝𝑝,1,𝑡𝑡 ⋯ 𝑉𝑉𝑝𝑝,𝑁𝑁,𝑡𝑡 𝑉𝑉𝑝𝑝,1,𝑡𝑡
2 𝑉𝑉𝑝𝑝,1,𝑡𝑡𝑉𝑉𝑝𝑝,2,𝑡𝑡 ⋯ 𝑉𝑉𝑝𝑝,𝑁𝑁,𝑡𝑡

2 �. 

C1.4 Setting the order of expansion for the issuance 
strategy 
Assuming that 𝑓𝑓∗ respects the conditions for convergence for the Taylor series, higher 
orders to the expansion should take successive approximations closer to 𝑓𝑓∗. One could 
determine an appropriate expansion order by computing the associated efficient 
frontier. Since the optimization problem associated with a lower order of expansion is 
constrained versions of the optimization problem associated with a higher order of 

expansion, it is guaranteed that the efficient frontier for higher orders of expansion will 
dominate. One can therefore increase the order of expansion up to the point where the 
improvement of the efficient frontier becomes negligible. 

In Chart C-1 we show the efficient frontiers associated with orders of expansion ranging 
from 0 (deterministic) to 3 for the state variables level and slope. One can clearly observe 

that successive orders of expansion improve the cost and risk trade-offs, as each 
successive order of expansion dominates the previous one.  
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Chart C-1: Efficient frontiers with and without the expansion of state variables 

 

 

Note: L is level; S is slope. Dollar amounts are per year. Conditional cost volatility is used for the risk function. 
 

Also, adding an extra order of expansion seems to have a diminishing effect on the 
improvement of the efficient frontier. The main improvement appears to be between 
the orders 1 and 0. Moreover, we can see that the difference between linear and 
quadratic is fairly small, while the difference between quadratic and cubic is practically 
null. This suggests that an issuance strategy based on a quadratic expansion of the state 

variables would constitute a good approximation of the optimal issuance strategy.  

Note that the convergence of the efficient frontier tends to show that using a more 
complex functional form for the issuance strategy (for example, based on an artificial 
neural network) or using a functional form based on the Taylor expansion other than the 
one used in this section is unlikely to bring any significant improvement when compared 
with the one from the quadratic issuance strategy. 
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