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Abstract 
We study how the transmission of monetary policy innovations is affected by the 

endogenous response of the central bank to macroeconomic aggregates in a two-agent 

New Keynesian model. We focus on how the stance of monetary policy and the fraction 

of savers in the economy affect transmission. We show that the indirect effect of an 

innovation is negative when the indirect real rate effect exceeds the indirect income effect. 

The relative magnitude of the indirect real rate effect increases with the share of savers 

and the strength of the central bank’s response and decreases with the horizon of the 

innovation. 

Topics: Economic models; Interest rates; Monetary policy; Monetary policy transmission 

JEL codes: C61, C63, C68, E31, E52 

Résumé 
Nous étudions comment la transmission des chocs de politique monétaire est influencée 

par la réaction endogène de la banque centrale aux agrégats macroéconomiques dans un 

modèle néo-keynésien à deux agents. Nous nous concentrons sur la manière dont 

l’orientation de la politique monétaire et la proportion d’épargnants dans l’économie 

influent sur la transmission. Nous montrons que l’effet indirect d’un choc est négatif 

lorsque l’effet indirect du taux réel dépasse l’effet indirect du revenu. L’ampleur relative 

de l’effet indirect du taux réel augmente avec la proportion d’épargnants et la force de la 

réponse de la banque centrale, et diminue avec l’horizon du choc. 

Sujets : Modèles économiques; Taux d’intérêt; Politique monétaire; Transmission de la politique 

monétaire 

Codes JEL : C61, C63, C68, E31, E52 



1 Introduction

A notable failure of the textbook representative agent New Keynesian (RANK) model is its lack of Keynesian

mechanisms in the transmission of contemporaneous changes in real interest rates. As Kaplan, Moll, and

Violante (2018) highlight, monetary policy in RANK models works almost exclusively through intertemporal

substitution. In the literature, this channel is often referred to as the direct effect channel. The conventional

Keynesian explanation, however, emphasizes the role of changes in income in monetary policy transmission.

The first round change in consumption due to intertemporal substitution, the argument goes, generates a

change in income, which leads to additional changes in consumption.

In the paper, we study how the transmission of monetary policy innovations is affected by the endogenous

response of the central bank to standard macroeconomic aggregates in a two-agent New Keynesian model

(TANK) similar to that used in Bilbiie (2008) and Debortoli and Gaĺı (2018). We focus on how the stance

of monetary policy and the fraction of savers in the economy jointly affect the transmission. We consider

both contemporaneous and future monetary policy innovations. In both cases, we assume that the agents

learn about the innovation in the current period. One can view this exercise as studying the transmission of

monetary policy “news shocks” during a period of conventional monetary policy in which the central bank

follows a standard Taylor rule.1

The literature has largely focused on monetary policy innovations that generate one-for-one changes

in the real interest rate (Bilbiie 2019 and Kaplan, Moll, and Violante 2018 Section I). A central bank can

implement this by following a Taylor rule that fully offsets changes in expected inflation and does not respond

to any other macroeconomic variables. By focusing on innovations that generate one-for-one changes in the

real interest rate, one can split the response of consumption to the innovation into a direct, price effect and

an indirect, income effect. With a standard Taylor rule (i.e., one that more than offsets changes in expected

inflation or responds to other macroeconomic variables), a one-unit innovation in the monetary policy shock

does not necessarily generate a one-unit change in the real interest rate. In our analysis, we define the direct

effect of a monetary policy innovation as the part of the consumption response attributable to the innovation

holding endogenous variables, such as income and inflation, constant. The indirect effect, therefore, captures

the part of the response due to changes in income and changes in the real interest rate attributable to the

central bank’s endogenous response and the response of expected inflation.

When the central bank responds endogenously to macroeconomic variables, the indirect effect of a mon-

etary policy innovation can be either positive or negative. We show that the indirect effect is negative when

the response of the central bank is sufficiently strong. We provide an interpretation of this result by further

decomposing the indirect effect into an indirect income effect and an indirect real rate effect. The indirect

1. Maliar and Taylor (2024) consider monetary policy “news shocks” in a RANK model.
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real rate effect captures the response of consumption to changes in the real rate that are due to the central

bank’s response and changes in expected inflation, rather than to real interest rate changes that are due

directly to the innovation and the exogenous shock.

Following a monetary policy innovation, an increase in income, all else equal, works to increase con-

sumption and contributes positively to the indirect effect. Since the central bank responds to the increase

in inflation, however, with sticky prices, the real interest rate also increases. The (relatively) higher real

rate contributes negatively to the indirect effect. When the central bank’s response is sufficiently strong, the

latter effect dominates, leading to a negative indirect effect.

Only agents who have the ability to save respond to a change in the real interest rate. Therefore, for a

fixed monetary policy rule, the magnitude of the indirect real rate effect depends on the fraction of savers

in the economy. We show that the magnitude of the indirect real rate effect declines as the share of non-

savers increases. In other words, a certain parameterization of the central bank’s policy rule may generate

a negative indirect effect when many agents are forward-looking and have access to savings, but the same

parameterization of the rule may generate a positive indirect effect when few agents are forward-looking and

have access to savings.

The relative magnitudes of the two components of the indirect effect are also affected by the horizon of

the innovation. Specifically, the magnitude of the indirect real rate effect declines relative to the indirect

income effect as the horizon increases. Consequently, under a given parameterization, the indirect effect of a

contemporaneous innovation may be negative while the indirect effect of an innovation in the distant future

is positive.

Our objective is to demonstrate how monetary policy innovations transmit through a standard two-agent

New Keynesian model. Therefore, we use a conventional Taylor rule in our analysis. Conventional monetary

policy rules that respond contemporaneously to inflation, output and expected inflation tend to provide

sensible guidance in economies where changes in economic activity are driven by a variety of innovations.

Because of this, conventional Taylor rules have gained widespread adoption in the New Keynesian literature.

One potential critique of using a conventional Taylor rule in our analysis is that, by following the rule, the

central bank may partially offset the innovation. One may ask why the central bank would use a rule that

partially offsets its actions. It is important to keep in mind that the monetary policy rule is a prescription

for how to respond to changes in economic activity caused by any type of innovation. As Woodford (2011)

notes, “[a]fter all, it is only the existence of real disturbances (i.e., disturbances other than those originating

from randomness in monetary policy itself) that gives rise to nontrivial questions about monetary policy.” If

one were to design a monetary policy rule to optimally respond to monetary policy innovations, one would

potentially arrive at something very different than a standard Taylor rule. Additionally, from a practical

perspective, one does not view the central bank as arbitrarily choosing the size of the innovation to the
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rule. Rather, the central bank chooses the size of the innovation so that macroeconomic variables, such as

inflation and output, reach the central bank’s desired levels after taking into account general equilibrium

feedback effects. Therefore, to achieve its desired allocation through changes in the nominal interest rate,

the innovation may need to be larger or smaller than the equilibrium change in the nominal rate.

Our results highlight the importance of estimating the monetary policy rule within a given model. The

same parameterization of the monetary policy rule used in two different models may generate qualitatively

different monetary policy transmission channels, especially in the presence of heterogeneity. Additionally,

the structure of the model alone does not provide sufficient information to determine the relative strengths

of the indirect income and indirect real rate effects. Two different parameterizations of the same monetary

policy rule within the same model may imply vastly different transmission channels. Finally, our results

suggest that the transmission of contemporaneous and future monetary policy innovations merits separate

analysis. For a given parameterization of the Taylor rule, the indirect real rate effect may dominate when

the innovation is contemporaneous, but the indirect income effect may dominate when the innovation is in

the distant future.

Related Literature

This paper contributes to the broader literature on how heterogeneity affects monetary policy transmis-

sion. One strand of the literature focuses on how heterogeneity can amplify or dampen the response of

macroeconomic aggregates to monetary policy shocks.

Auclert (2019) illuminates the importance of marginal propensity to consume heterogeneity in the trans-

mission of monetary policy. He decomposes the response of aggregate consumption to a monetary policy

shock into five channels. Two channels capture the standard, representative agent style substitution and

income effects. The remaining channels arise due to heterogeneity. If monetary policy redistributes in fa-

vor of households with high marginal propensities to consume, then the heterogeneity channels amplify the

response of macroeconomic aggregates relative to a representative agent model.

Luetticke (2021) examines the importance of heterogeneity in the marginal propensity to invest out of

liquid wealth. He shows that monetary policy contractions redistribute towards agents who have a high

marginal propensity to invest. In doing so, aggregate investment falls by less than it does in a representative

agent model. However, because households that have high marginal propensities to invest also tend to have

low marginal propensities to consume, aggregate consumption falls by more than it does in a representative

agent model.

Kekre and Lenel (2022) study how heterogeneity in the marginal propensity to bear risk affects the

propagation of monetary policy shocks. They show that monetary policy shocks redistribute wealth to-

wards households with a high marginal propensity to bear risk. This redistribution amplifies the effects of
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monetary policy because high marginal propensity to bear risk households increase investment following an

expansionary monetary policy shock. The increase in investment increases production and incomes of all

households, amplifying the initial effects.

Melcangi and Sterk (2024) emphasize the importance of stock market participation heterogeneity in

shaping the transmission channels and aggregate effects of monetary policy. They show that, following a

monetary policy contraction, stock market participants rebalance their portfolios away from stocks towards

bonds. The rebalancing lowers aggregate investment in productive assets and, as a result, reduces aggregate

income. The rebalancing channel and the income channel reinforce each other and amplify the response of

macroeconomic aggregates to monetary policy shocks.

Ma (2023) studies how heterogeneity in labor supply elasticities affects monetary policy transmission in a

model with an extensive margin of labor supply. In his model, wealth heterogeneity endogenously generates

labor supply elasticity heterogeneity. He shows that responses to monetary policy shocks are amplified in

a low wealth inequality economy relative to a high wealth inequality economy due to the relatively higher

aggregate labor supply elasticity in the former.

Our work is most closely related to the literature that focuses on the role of heterogeneity in shaping

the direct and indirect transmission of monetary policy. In this strand of the literature, the response of

consumption to a change in the real interest rate is split into a direct, partial equilibrium effect that captures

the response of consumption to a change in the real interest rate holding income fixed and an indirect,

general equilibrium effect that captures the response of consumption due to the induced change in income.

Using this decomposition, Kaplan, Moll, and Violante (2018) show that nearly all of the transmission

of a contemporaneous monetary policy innovation is due to the direct effect in a representative agent New

Keynesian model. In their TANK model, the proportion of the total response of consumption attributable

to the direct effect is roughly equal to the fraction of savers in the economy. In their quantitative model,

they define the direct effect as the response of consumption to a change in the real return on the liquid

asset. They show that the direct effect accounts for just under 20 percent of the total effect in their baseline

setup. The authors note that their definition of the direct effect could be further decomposed into a portion

directly attributable to the monetary policy innovation and a portion due to the response of inflation (see

their footnote 22). They claim that, since the change in the innovation is quantitatively similar to the change

in the real return on the liquid asset, one does not gain much from the additional level of disaggregation.

Our results show that the additional level of disaggregation provides insight into how heterogeneity and the

stance of monetary policy, as captured by its policy rule, interact in shaping the transmission of monetary

policy innovations.

Garćıa et al. (2024) decompose the response of consumption to a monetary policy shock into three

channels. The first channel, the real rate effect, is the same as the direct effect in Kaplan, Moll, and Violante
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(2018). Garćıa et al. (2024) further decompose the indirect effect into the average effect and the cross-

sectional effect. The decomposition is in the same spirit as the decomposition done in Patterson (2023)

for the marginal propensity to consume. The authors study how the decomposition is affected by the asset

market structure. In their one-asset heterogeneous agent New Keynesian model, the consumption response

to a monetary policy shock is largely driven through the cross-sectional effect. In their two-asset model,

however, the response to the return on the illiquid asset plays the predominant role. In both models, the

direct effect plays a small role.

Holm (2023) analyzes how perceived income risk affects monetary policy transmission. He shows that an

increase in perceived income risk makes households less responsive to changes in the real interest rate and

more responsive to changes in income. The weaker response to real interest rate changes dampens the direct

effect of monetary policy. The stronger response to changes in income, however, increases the strength of

the indirect effect. He shows that, in general equilibrium, an increase in perceived income risk generates a

quantitatively small reduction in the total effect of a monetary policy shock.

Bilbiie (2020) provides a decomposition between the direct and indirect effects of monetary policy in

an analytically tractable heterogeneous agent New Keynesian model with idiosyncratic risk (THANK). His

model nests RANK and TANK as special cases. He uses the model to derive an aggregate planned expenditure

curve where aggregate consumption is a function of current income and the current real interest rate. Similar

to Kaplan, Moll, and Violante (2018), he defines the direct effect as the response of consumption to a change

in the real interest rate holding income fixed. In his TANK model, he shows that the indirect effect share

of the total effect increases with the fraction of spenders in the economy. Additionally, for a given share

of spenders, the indirect effect share is increasing in the elasticity of spender income to total income. In

THANK, he shows that the share of the total response of consumption due to the indirect effect is amplified

when income risk is countercyclical. The opposite is true when income risk is procyclical.

The present paper complements the existing literature by focusing on the direct and indirect effects

of monetary policy innovations, as opposed to the direct and indirect effects of real interest rate changes.

When the central bank follows a standard Taylor rule, part of the change in the real interest rate following a

monetary policy innovation is due to the endogenous response of the central bank. Our analysis separates the

response of consumption to these changes from the response of consumption directly due to the innovation and

exogenous shock. Quantitative two-agent and heterogeneous agent New Keynesian models typically assume

that the central bank follows a standard Taylor rule. Our decomposition provides a simple, structured

approach that can be used by those working with quantitative models to gain further insight into how

monetary policy innovations propagate through their models. The simple structure of the decomposition

allows for ease of comparison across models. Using the additional insight gained from our decomposition, one

can better align the narrative one tells about monetary policy transmission with monetary policy transmission
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in the model.

Outline

The remainder of the paper is as follows. In Section 2, we present the linearized model. In Section 3, we

present our decomposition of responses to monetary policy innovations. In Section 4, we analyze the case of

a contemporaneous Phillips curve. In Section 5, we consider a forward-looking Phillips curve. In Section 6,

we conclude. In Appendix 7, we present the non-linear model and derivations.

2 Model

The model is a standard TANK model with sticky prices and flexible wages as in Bilbiie (2008) and Debortoli

and Gaĺı (2018). There is a unit mass of agents. The share of non-savers, spenders or constrained agents is

given by λ. These agents do not hold any assets either because they are not permitted to trade assets by

assumption or because they are fully myopic. The share of savers or unconstrained agents is then given by

1 − λ. These agents are forward-looking and are permitted to trade in all asset markets. Both household

types derive flow utility from consumption and dis-utility from supplying labor. The government taxes labor

income (paid by both agents) and profit income (paid only by savers) and redistributes the tax revenue via

transfers back to the households. The remaining details of the non-linear model are relegated to Appendix

7.1. In Appendix 7.2, we log-linearize the equilibrium conditions of the non-linear model. Throughout the

remainder of the paper, we work with the log-linearized model. Table 1 in Appendix 7.1.8 includes the values

of the structural parameters we use to generate our figures.

Denote the output gap as yt, consumption as ct, the net inflation rate as πt, the net nominal interest rate

as it, the monetary policy shock as vt and the innovation to the monetary policy shock as εvt . The future

sequence of innovations,
{
εvt+τ

}∞
τ=0

, is revealed to agents in period t and is deterministic. The linearized

model is characterized by an IS curve, a Taylor rule, a goods market clearing condition, a law of motion for

the monetary policy shock and a Phillips curve. The first four equations are given by

[IS Curve] ct = Et [ct+1]−
1

σ (1− Φ)
(it − Et [πt+1]) (1)

[Taylor Rule] it = ϕππt + ϕEπEt [πt+1] + ϕyyt + vt (2)

[Goods Market Clearing] ct = yt (3)

[Monetary Policy Shock] vt = ρvvt−1 + εvt (4)

Household heterogeneity is captured by two terms in the linearized model: Φ and κ. Denote the Frisch

labor supply elasticity as φ, the steady-state difference between unconstrained consumption and constrained
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consumption relative to unconstrained consumption as Γ2, the scaling factor of the price adjustment cost as

ξ, the elasticity of substitution between intermediate goods as ε and the steady-state markup as M. The

definitions of Φ and κ are given by

Φ ≜
λ (σ + φ) θ1θ2

1− λΓ
(5)

κ ≜
ε

ξM
(σ + φ) θ2 (6)

where θ1 and θ2 are functions of the model’s structural parameters. The definitions of θ1 and θ2 are given

by equations 195 and equation 196 in Appendix 7, respectively.

The term 1
(1−Φ) that multiplies the elasticity of intertemporal substitution, 1

σ , in the IS curve is the

elasticity of aggregate consumption to consumption of the unconstrained agent. The term Φ increases as

λ increases. Figure 4 in Appendix 7.6.1 plots the relationship between Φ and λ. When all agents are

unconstrained, Φ = 0. We limit our attention to parameterizations where Φ < 1. Bilbiie (2008) refers to

the case when Φ > 1 as the “inverted aggregate demand” case.3 Given the restriction of Φ < 1, increasing

the share of constrained agents, all else equal, makes aggregate consumption more responsive to a change in

unconstrained consumption.

The slope of the Phillips curve, κ, is also affected by household heterogeneity as the two types of house-

holds may make different labor supply decisions. The parameter κ may either increase or decrease with the

share of constrained agents, λ. With log utility (i.e., σ = 1), κ is increasing in λ. At lower levels of the

elasticity of intertemporal substitution (i.e., higher values of σ), κ is decreasing in the share of constrained

agents. Figure 5 in Appendix 7.6.2 plots κ as a function of λ for σ = 1. Figure 6 repeats the exercise

with σ = 2. When consumption is not easily substitutable across periods, prices become less responsive to

changes in demand as the share of constrained agents increases.

The particular specification of the Phillips curve depends on the details of the price adjustment frictions

firms face. We consider two alternatives. Both alternatives assume that the firms discount future dividends

using the stochastic discount factor of the unconstrained household. The rate of time preference of the

unconstrained household is given by β. The slope of the Phillips curve is the same in both alternatives.

In the first alternative, each firm faces a Rotemberg (1982) price adjustment cost where the cost depends

on the price that a firm sets today relative to the aggregate price level from the previous period which the

firm treats as exogenous. This specification was previously used in Bilbiie (2019). Under this assumption,

as shown in Appendix 7.1.4, the Phillips curve is given by equation 7a. In the second alternative, the price

adjustment cost depends on the price a firm chooses today relative to the price the firm set in the previous

period. As shown in Appendix 7.1.5, this setup results in the Phillips curve given in equation 7b which is

2. See equation 99 for the mathematical definition of Γt. Γ is the steady-state version of Γt.

3. In the inverted aggregate demand case, an increase in the real interest rate generates an increase in consumption.
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the textbook New Keynesian Phillips curve (Gaĺı 2015).{
πt = κyt (7a)

πt = βEt [πt+1] + κyt (7b)

We refer to the Phillips curve given by equation 7a as the “contemporaneous Phillips curve”. We label the

Phillips curve given by equation 7b the “forward-looking Phillips curve”.

3 Decomposing the Response

In this section, we start by decomposing the response of consumption to a monetary policy innovation into

a direct effect and an indirect effect. We then provide a further decomposition of the indirect effect. We

use this additional decomposition to explain why the indirect effect may be negative when the central bank

responds endogenously to macroeconomic aggregates as it does when following a conventional Taylor rule.

3.1 Direct and Indirect Effects

We begin by decomposing the response of consumption to a monetary policy innovation into two parts.

The first part is what we call the direct effect, which is the response of consumption to an innovation in

the monetary policy shock holding all endogenous variables fixed.4 Consider an innovation to the monetary

policy shock occurring T ≥ 0 periods in the future (i.e., at time t + T ). If the persistence of the monetary

policy shock is zero, then the direct effect is computed as the partial derivative of consumption in period t

with respect to the innovation to the monetary policy shock in period t+T , ∂ct
∂εvt+T

. If the shock is persistent,

then the direct effect also captures the response of consumption to the shock in periods following the period

in which the innovation to the shock occurs. That is, for an innovation T periods in the future, we include(
∂ct

∂vt+T+τ

)(
dvt+T+τ

dεvt+T

)
for τ ≥ 0 as part of the direct effect. Denote the steady-state output gap as y∗ and

the steady-state net inflation rate as π∗. The direct effect is given by dct
dεvt+T

∣∣∣∣
{yt+τ=y∗}∞

τ=0,{πt+τ=π∗}∞
τ=0

. We

denote this as dct
dεvt+T

∣∣∣∣
y∗,π∗

.

The second component of the response is the indirect effect. The indirect effect is the portion of the total

effect, dct
dεvt+T

, that is not due to the direct effect. The indirect effect captures the response of consumption

to changes in income as well as the response to changes in the real interest rate due to the central bank’s

endogenous response to macroeconomic variables and changes in expected inflation. Using the direct effect

4. We thank an anonymous referee for suggesting this decomposition.
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and total effect, we compute the direct effect share ϑDE
T and the indirect effect share ϑIET .

ϑDE
T ≜

(
dct

dεvt+T

∣∣∣∣
y∗,π∗

)
(

dct
dεvt+T

) (8)

ϑIET ≜ 1−

(
dct

dεvt+T

∣∣∣∣
y∗,π∗

)
(

dct
dεvt+T

) (9)

Consider a one-time positive innovation to the monetary policy shock occurring T periods in the future.

The persistence of the monetary policy shock is given by ρv. The share of the aggregate consumption response

in the log-linearized model apportioned to the consumption response of constrained agents is denoted by

ζ ∈ (0, 1). The direct effect of the innovation, as shown in Appendix 7.3.2, is given by

dct
dεvt+T

∣∣∣∣
y∗,π∗

= −
[
1

σ
β (1− ζ)

]
×
[

1

1− [(1− Φ) (1− ζ)β] ρv

]
︸ ︷︷ ︸

persistence

× [(1− Φ) (1− ζ)β]
T︸ ︷︷ ︸

anticipation

(10)

From equation 10, one sees that the direct effect is always negative. This follows from the fact that both Φ

and ζ are positive and less than unity. Additionally, the size of the direct effect decreases with the horizon

of the innovation and converges to zero in the limit. Note that the term in square brackets raised to the

power T , labeled “anticipation”, arises due to anticipatory factors. If the innovation is contemporaneous,

the term evaluates to unity since T = 0. The term labeled “persistence” arises due to the persistence of the

monetary policy shock. If the shock is purely transitory (i.e. ρv = 0), this term evaluates to unity.

The direct effect is a partial equilibrium effect. Therefore, the size of the direct effect is independent of

the pricing frictions firms face. Additionally, the direct effect does not depend on the responsiveness of the

central bank to macroeconomic aggregates.

Unlike the level of the direct effect, however, the direct effect share does depend on the other aspects

of the model. In general, the direct effect share may be less than or greater than unity. A direct effect

share greater than unity implies that the indirect effect is negative. In Section 3.2, we further decompose the

indirect effect to show how the central bank’s response to macroeconomic variables can generate a negative

indirect effect.

3.2 Indirect Income and Indirect Real Rate Effects

Using the planned expenditure curve, one can see what drives a negative indirect effect. The planned expen-

diture curve expresses consumption as a function of income, yt, and the real interest rate, (it − E [πt+1]).

Denote the forward operator as F . For any variable xt, we have Fxt = xt+1. As shown in Appendix 7.3,
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the planned expenditure curve can be written as

ct =

[
1− (1− Φ) (1− ζ)β

1− (1− Φ) (1− ζ)βF

]
yt −

[ 1
σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
(it − Et [πt+1]) (11)

=

Indirect Income︷ ︸︸ ︷[
1− (1− Φ) (1− ζ)β

1− (1− Φ) (1− ζ)βF

]
yt

Indirect Real Rate︷ ︸︸ ︷
−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
([it − vt]− Et [πt+1])︸ ︷︷ ︸

Indirect

+

(
−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
vt

)
︸ ︷︷ ︸

Direct

(12)

In equation 12, we split the indirect effect into an indirect income effect and an indirect real rate effect. The

indirect income effect captures the portion of the indirect effect due to changes in income absent changes in

the real interest rate. The indirect real rate effect captures the portion of the indirect effect due to changes

in the real interest rate absent changes in income. The above decomposition shows that the indirect effect

is negative when the magnitude of the indirect real rate effect exceeds the magnitude of the indirect income

effect.

In the model with a contemporaneous Phillips curve, we can use the decomposition to analytically

characterize the threshold level of the central bank’s response to inflation that generates a negative indirect

effect if the innovation is contemporaneous or in the distant future. We consider these cases in Section 4.1

and Section 4.2, respectively. With a forward-looking Phillips curve, the decomposition permits an analytical

characterization only in the case of a contemporaneous innovation, which we consider in Section 5.1. For all

other cases, we rely on numerical results.

4 Contemporaneous Phillips Curve

Unlike the direct effect of a monetary policy innovation, the total effect incorporates general equilibrium

feedback effects. Therefore, the total effect depends on the pricing frictions, the systematic component of

monetary policy as captured by the parameters of the Taylor rule and all other model features. In this

section, we consider the case when the Rotemberg (1982) adjustment cost that a firm faces when resetting

its price depends on the aggregate price level in the previous period which the firm takes as given as in

Bilbiie (2019). In this case, the linearized Phillips curve, as shown in Appendix 7.1.4, is given by equation

7a and restated here

π = κyt (13)
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In this section, we restrict our attention to a Taylor rule that only responds to inflation5,6

it = ϕππt + vt (14)

As shown in Appendix 7.4, the total effect of an innovation occurring T periods in the future is

dct
dεvt+T

= − 1

σ

[
1

1
σκϕπ + (1− Φ)

]
×

 1

1−
[

1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

ρv

]


︸ ︷︷ ︸
persistence

×
[ 1

σκ+ (1− Φ)
1
σκϕπ + (1− Φ)

]T
︸ ︷︷ ︸

anticipation

(15)

Similar to the labeling we do for the direct effect in equation 10, we identify which part of the total effect

is due to anticipation and which part is due to persistence of the monetary policy shock. The total effect

of the innovation converges to zero as T → ∞ so long as ϕπ > 1. As seen in equation 15, the speed of

convergence is determined by the central bank’s response to inflation. Finally, the total effect is always

negative. Consequently, positive monetary policy innovations are contractionary, and negative monetary

policy innovations are expansionary, as would be expected.

The direct effect share, ϑDE
T , is given by the ratio of the direct effect (equation 10) to the total effect

(equation 15).

ϑDE
T =


[β (1− ζ)]

[
1

1−[(1−Φ)(1−ζ)β]ρv

]
[

1
1
σκϕπ+(1−Φ)

] 1

1−
[

1
σ

κ+(1−Φ)

1
σ

κϕπ+(1−Φ)
ρv

]


×

 (1− Φ) (1− ζ)β(
1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

)
T

(16)

From equation 16, one sees that the direct effect share depends on the share of constrained agents, through

Φ, ζ and κ; the stance of monetary policy, through ϕπ and the horizon of the innovation, through T . The

remainder of the paper analyzes how the direct effect share and, consequently, the sign of the indirect effect

depend on these three dimensions.7

4.1 Contemporaneous Innovation

In this section and Section 4.2, we assume that we can interchange differentiation and the application of the

forward operator. In Section 4.3 we provide additional discussion of when this assumption is justified and

when it leads to erroneous conclusions.

5. Given our assumption about the price adjustment cost in this section, the assumption that the central bank does not

respond to output deviations is without loss of generality.

6. Our results are qualitatively unchanged if we instead assume that the central bank only responds to inflation with a

one-period lag: it = ϕππt−1 + vt. Details of the analysis are available upon request. We thank an anonymous referee for

suggesting this variation of the Taylor rule.

7. In Appendix 7.6.4 we analyze how the direct effect share depends on the tax redistribution parameters, τ and τW .
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Proposition 1. Assume there is a contemporaneous innovation (i.e. T=0). The indirect effect is negative

if ϕ > ϕNIE
π (0) where ϕNIE

π (0) is given by:

ϕNIE
π (0) ≜

σ

κ

[
1− (1− Φ) (1− ζ)β

β (1− ζ)

]
+ ρv (17)

Proof. Consider a contemporaneous innovation (i.e. T = 0). Using market clearing, ct = yt, the Taylor rule,

the Phillips curve and the fact that, in response to a contemporaneous innovation, dct+1

dεvt
= ρv

dct
dεvt

, equation

12 can be written as

ct =

[
1

1− (1− Φ) (1− ζ)βF

]
Indirect Income︷ ︸︸ ︷

[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

]
(ϕπκ− ρvκ)

 yt
︸ ︷︷ ︸

Indirect

−
[ 1

σβ (1− ζ)

1− (1− Φ) (1− ζ)βF

]
vt︸ ︷︷ ︸

Direct

(18)

The indirect effect is negative when the indirect real rate effect dominates the indirect income effect

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

]
(ϕπκ− ρvκ) < 0 (19)

The inequality is satisfied if the central bank’s response to inflation, ϕπ, is sufficiently strong. Define the

threshold level as ϕNIE
π (T ) so that ϕπ > ϕNIE

π (T ) results in a negative indirect effect when the innovation

occurs T periods in the future. The formula for ϕNIE
π (0), derived from inequality 19, is given by 17.

There is a positive relationship between the share of constrained agents, λ, and ϕNIE
π (0) as shown in

Figure 1. The figure partitions (λ, ϕπ) space into regions of positive indirect effects, negative indirect effects

and indeterminacy.8 The boundary between the positive indirect effect region and negative indirect effect

region is determined by tracing out ϕNIE
π (0) as a function of λ. The orange-shaded region consists of (λ, ϕπ)

combinations where the indirect effect is negative (the direct effect share exceeds unity). The blue-shaded

region is the region of the space where the indirect effect is positive (the direct effect share is less than unity).

The green-shaded region contains the parameter combinations where the solution is indeterminate.

8. By indeterminate, we mean that the number of eigenvalues in the linearized system inside the unit disk exceeds the number

of state variables. When this is the case, there is a continuum of non-explosive solutions.
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Figure 1: Contemporaneous Phillips Curve, Contemporaneous Innovation Indirect Effect Regions

Notes: The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into regions of positive indirect effects,

negative indirect effects and indeterminacy. The orange-shaded region corresponds to λ and ϕπ combinations where

the indirect effect is negative. The blue-shaded region corresponds to λ and ϕπ combinations where the indirect effect

is positive. The green-shaded region corresponds to λ and ϕπ combinations where the solution is indeterminate.

To understand why ϕNIE
π (0) increases with the share of constrained agents, λ, consider a negative

monetary policy innovation. The direct effect of the innovation works to increase the consumption of the

(non-myopic) unconstrained agents. To meet the higher level of desired consumption, hours worked and

output both increase. These increases result in higher income and, therefore, higher consumption for both

unconstrained and constrained agents. This is the indirect income effect. The central bank’s endogenous

response, which works to increase the real interest rate, however, has a countervailing effect, working to

reduce desired consumption for the unconstrained agents. This effect is the indirect real rate effect. The

question then becomes, “Which effect dominates?” With few constrained agents and many unconstrained

agents (i.e. a low value of λ), many agents adjust their consumption following the central bank’s endogenous

response. The desire to increase consumption due to higher income is smaller in magnitude than the desire to

decrease consumption due to the higher real interest rate. Therefore, the indirect real rate effect dominates,

and the indirect effect is negative.

As the share of constrained agents increases (i.e. λ increases), fewer agents respond to the central

bank’s endogenous increase in the real interest rate. A larger increase in the interest rate is needed for the

13



consumption response to the endogenous increase in the interest rate to more than offset the consumption

response due to higher income. In other words, the central bank needs to more aggressively respond to

increases in inflation in order to achieve a negative indirect effect. Consequently, ϕNIE
π (0) increases with λ.

This can be seen in Figure 1 by comparing the point (λ = 0.05, ϕπ = 3.0), denoted by the green circle, with

the point (λ = 0.21, ϕπ = 3.0), which is denoted by the red square. In both economies, the central bank’s

response to inflation is the same. When only 5% of the population is constrained, the direct effect share

exceeds unity which is why the green circle is in the orange, negative indirect effect region. On the other

hand, when 21% of the population is constrained, the direct effect share is less than unity and the indirect

effect is positive (i.e. the red square is in the blue, positive indirect effect region).

It is important to note that a negative indirect effect does not imply that the real interest rate falls

following a positive monetary policy innovation.9 Recall that the indirect real rate effect does not include

the portion of the change in the real interest rate directly attributable to the monetary policy shocks.

Therefore, the changes in the model’s endogenous variables may generate a decline in the real rate, but,

when the change in the exogenous variable is taken into account, the overall change in the real rate is

positive. Mathematically, the following sequence of inequalities is possible.

d

dεvt+T

([it − vt]− Et [πt+1]) < 0 <
d

dεvt+T

(it − Et [πt+1]) (20)

Figure 7 in Appendix 7.6.3 shows that the inequalities tend to hold. That is, positive contemporaneous

monetary policy innovations generate real interest rate increases even when the indirect effect is negative.

Note that we can directly use ϑDE
T

∣∣
T=0

to derive ϕNIE
π (0). This approach allows us to verify that

interchanging differentiation and application of the forward operator is permissible for a given Phillips curve

(contemporaneous versus forward-looking) and innovation horizon. The direct effect share, ϑDE
T , is given

by the ratio of the direct effect (equation 10) to the total effect (equation 15). When the innovation is

contemporaneous, the direct effect, total effect and direct effect share are given by

dct
dεvt+T

∣∣∣∣
y∗,π∗,T=0

= −
1
σβ (1− ζ)

1− [(1− Φ) (1− ζ)β] ρv
(21)

dct
dεvt+T

∣∣∣∣
T=0

= − 1

σ

[
1

1
σκ (ϕπ − ρv) + (1− Φ) (1− ρv)

]
(22)

ϑDE
T

∣∣∣∣
T=0

=
β (1− ζ)

[
1
σκ (ϕπ − ρv) + (1− Φ) (1− ρv)

]
1− [(1− Φ) (1− ζ)β] ρv

(23)

By setting equation 23 equal to unity and solving for ϕπ, we arrive at the same bound derived previously,

ϕNIE
π (0).

9. We thank an anonymous referee for bringing this point to our attention.
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4.2 Innovation in the Distant Future

We now consider the case of an innovation occurring at time T with T ∗ < T <∞ where T ∗ ≫ 0.10

Proposition 2. Assume there is an innovation in the distant future (i.e. T ≫ 0). The indirect effect is

negative if ϕ > ϕNIE
π (∞) where ϕNIE

π (∞) is given by:

ϕNIE
π (∞) ≜

σ

κ

[
1− (1− Φ) (1− ζ)β

β (1− ζ)

]
+

1

(1− Φ) (1− ζ)β
(24)

Proof. When the innovation occurs T > 1 periods in the future, the relationship between consumption today

and consumption next period is given by

dct+1

dεvt+T

=

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
dct
dεvt+T

(25)

Using this relationship, the Taylor rule, the Phillips curve and the market clearing condition in equation 12,

we see that the indirect effect is negative when the following inequality is satisfied.

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

](
ϕπκ−

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
κ

)
< 0 (26)

Again, we can rearrange the inequality and solve for the threshold level for the central bank’s response to

inflation that leads to a negative indirect effect. Denote the threshold level as ϕNIE
π (∞). The formula for

ϕNIE
π (∞) is given by 24.

As shown in Figure 8 in Appendix 7.6, ϕNIE
π (∞) is increasing in λ. Additionally, ϕNIE

π (∞) > ϕNIE
π (0)

for all values of λ. Note that, unlike in the case of a contemporaneous innovation, when the innovation

is in the distant future, the persistence of the shock, ρv, does not affect the bound. The reason why the

shock persistence appears in the formula for ϕNIE
π (T ) when the innovation is contemporaneous is that the

persistence determines the relationship between consumption in consecutive time periods (i.e. dct+1

dεvt
= ρv

dct
dεvt

).

When the innovation occurs T > T ∗ periods in the future, the relationship between consumption today and

consumption next period is given by equation 25 which does not depend on ρv.

One can alternatively use the direct effect share, ϑDE
T

∣∣
T>T∗ , to derive the threshold. In equation 16, we

write the direct effect share as the product of two terms. The second term is raised to the power of T while

the first term is independent of T . Therefore, the direct effect share of an innovation in the distant future is

determined by the second term.

ϑDE
T

∣∣∣∣
T>T∗

∝

 (1− Φ) (1− ζ)β(
1
σκ+(1−Φ)

1
σκϕπ+(1−Φ)

)
T

(27)

10. One can think of this as something similar to the limit case of taking T to infinity. In the analysis, we rely on there being a

well defined relationship between consumption in consecutive periods. In much of the analysis, innovations in the infinite future

have no effect on consumption today (i.e. dct
dεv

t+T
|T→∞ = 0). Therefore, the relationship between consumption in consecutive

periods is not well defined in this case as ct+1 = act for any a ∈ R.
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This term is the ratio of the “anticipation” component of the direct effect, given in equation 10, to the

“anticipation” component of the total effect, given in equation 15. If the anticipation component of the

direct effect is large relative to the anticipation component of the total effect, the direct effect share exceeds

unity, and the indirect effect is negative. This occurs if the central bank responds aggressively to inflation.

By responding aggressively, the central bank weakens the anticipatory component of the total effect as agents

know that, following an increase in consumption and inflation, there will be a large increase in the interest

rate which puts downward pressure on consumption demand. If one sets the term in brackets equal to unity

and solves for ϕπ, one arrives at the same bound for ϕNIE
π (∞) given in equation 24.

4.3 Innovation in the Intermediate Future

For intermediate values of T , we are unable to derive an analytical expression for the cutoff value of ϕπ

that results in a negative indirect effect, ϕNIE
π (T ). In Section 4.1 and Section 4.2, we assumed that we

could interchange differentiation and application of the forward operator. Performing this interchange is not

problematic when considering contemporaneous innovations because the relationship between consumption

in period t+ τ and consumption in period t+ 1+ τ is the same as the relationship between consumption in

period t and consumption in period t+ 1(
dct+1

dεvt

)
(

dct
dεvt

) =

(
dct+1+τ

dεvt

)
(

dct+τ

dεvt

) = ρv ∀ 0 ≤ τ <∞

When the innovation is in the future, the relationship between consumption in consecutive periods is not

constant. There is a constant relationship before the innovation and a constant, though different, relationship

following the innovation. If the innovation is sufficiently far in the future, as was the case considered in Section

4.2, the contribution from terms dated period t+T or later has a negligible effect. Therefore, we can directly

use the relationship presented in equation 25 in equation 12 and ignore the forward operator.

In the intermediate future, both the contribution from future income changes to future innovations and

the contribution from future income changes to past innovations have a non-negligible effect. In other words,

interchanging differentiation and application of the forward operator is both mathematically incorrect and

leads to incorrect conclusions. However, we can still numerically solve for the value of ϕπ that sets the direct

effect share equal to unity for T ∈ {1, ..., T ∗}. We rely on the numerical results to verify that the positive

relationship between the share of constrained agents, λ, and the cutoff level of the central bank’s response

to inflation, which generates a negative indirect effect, ϕNIE
π (T ), continues to hold when the innovation

is in the intermediate future. Figure 2 plots ϕNIE
π (T ) as a function of λ for T ∈ {1, 10, 50}. The blue

line is for T = 1, the orange line is for T = 10 and the green line is for T = 50. For a fixed value of T ,

(λ, ϕπ) combinations above the line corresponding to that value of T result in a negative indirect effect while

combinations below the line result in a positive indirect effect.
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Figure 2: Threshold Inflation Response for Intermediate Values of T

Notes: The figure plots ϕNIE
π (T ) as a function of λ for T ∈ {1, 10, 50}. The lines partition λ (horizontal axis), ϕπ

(vertical axis) space into regions of positive and negative indirect effects with each line corresponding to a different

innovation horizon, T . For a fixed value of λ, ϕπ values above a given line result in a negative indirect effect while

values of ϕπ below the line result in a positive indirect effect. The blue line is for an innovation one period in the

future (i.e. ϕNIE
π (1)). The orange line is for an innovation 10 periods in the future (i.e. ϕNIE

π (10)). The green line

is for an innovation 50 periods in the future (i.e. ϕNIE
π (50)).

From the figure, one sees that the positive relationship between λ and ϕNIE
π (T ) continues to hold.

Additionally, one sees that the threshold level for an innovation one period in the future, ϕNIE
π (1), lies

uniformly below the threshold level for an innovation 10 periods in the future, ϕNIE
π (10). In other words, for

a given share of constrained agents, the threshold level increases in T . This is consistent with the analysis

from Section 4.2. In that section, we noted that ϕNIE
π (∞) > ϕNIE

π (0).

The reason why the threshold increases in T is as follows. When the innovation is in the future, changes in

consumption increase in magnitude as one approaches the date of the innovation. Following the innovation,

changes in consumption decrease in magnitude.

dct+1+τ

dεvt+T

=



[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
︸ ︷︷ ︸

>1

dct+τ

dεvt+T
if τ < T

ρv︸︷︷︸
<1

dct+τ

dεvt+T
if τ ≥ T

(28)
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For concreteness, consider a monetary policy innovation that increases consumption. Since future inflation

is proportional to future consumption (see equation 13), all else equal, the real interest rate is lower in an

arbitrary period leading up to the innovation than it is in a period following the innovation.

it −

πt+1︷ ︸︸ ︷
κ

[ 1
σκϕπ + (1− Φ)
1
σκ+ (1− Φ)

]
ct < it −

πt+1︷ ︸︸ ︷
κρvct (29)

By construction, the number of periods leading up to the innovation increases with the horizon of the

innovation. Consequently, all else equal, the indirect real rate effect declines in magnitude with the horizon.

Therefore, to generate an indirect real rate effect large enough in magnitude to offset the indirect income

effect, the central bank needs to be more responsive to inflation as T increases. As a result, ϕNIE
π (T )

increases in the horizon of the innovation.

5 Forward-Looking Phillips Curve

We now consider the case when the Rotemberg (1982) cost that a firm faces when adjusting its price depends

on the price the firm set in the previous period. We present the price-setting problem in Appendix 7.1.5.

The linearized model generates the same Phillips curve as in the textbook New Keynesian model (Gaĺı 2015)

which we refer to as the “forward-looking Phillips curve”. The linearized Phillips curve is given by equation

7b, which we restate here

πt = βEt [πt+1] + κyt (30)

With a forward-looking Phillips curve, we can only characterize the regions of positive and negative indirect

effects analytically in the case of a contemporaneous innovation (i.e. T = 0). Following our analysis of a

contemporaneous innovation, we provide a brief commentary on future innovations.

5.1 Contemporaneous Innovation

We start by deriving the bound on the response to inflation that generates a negative indirect effect anal-

ogous to the bound we derived in Proposition 1. We use the superscript “FPC” to denote that the bound

corresponds to the model with the forward-looking Phillips curve.

Proposition 3. Assume there is a contemporaneous innovation (i.e. T=0). The indirect effect is negative

if ϕπ > ϕNIE,FPC
π (0) where ϕNIE,FPC

π (0) is given by

ϕNIE,FPC
π (0) ≜

σ

κ

[1− (1− Φ) (1− ζ)β] (1− βρv)

β (1− ζ)
− (ϕEπ − 1) ρv − ϕy

1

κ
(1− βρv) (31)

Proof. When the monetary policy innovation is contemporaneous, the relationship between the response of

inflation in period t and the response of inflation in period t+ 1 is given by
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dπt+1

dεvt
= ρv

dπt
dεvt

(32)

For the derivation, see Appendix 7.5. Using this relationship and the Phillips curve in equation 12, we see

that the indirect effect is negative when the following inequality is satisfied

Indirect Income︷ ︸︸ ︷
[1− (1− Φ) (1− ζ)β]

1

κ
(1− βρv)

Indirect Real Rate︷ ︸︸ ︷
−
[
1

σ
β (1− ζ)

](
ϕπ + (ϕEπ − 1) ρv + ϕy

1

κ
(1− βρv)

)
< 0 (33)

One can use the inequality to partition the parameter space into a region where a contemporaneous innovation

generates a positive indirect effect and a region where a contemporaneous innovation generates a negative

indirect effect. Rearranging the inequality to isolate ϕπ, one arrives at the bound given in 31.

If the central bank only responds to inflation (i.e., ϕEπ = ϕy = 0), as in Section 4, ϕNIE,FPC
π (0) can be

written as

ϕNIE,FPC
π (0) = ϕNIE

π (0)− σ

κ

[1− (1− Φ) (1− ζ)β]

β (1− ζ)
βρv (34)

From equation 34, we see that the threshold level that results in a negative indirect effect is lower in the

model with the forward-looking Phillips curve than in the model with the contemporaneous Phillips curve

so long as the monetary policy shock is persistent (i.e. ρv ̸= 0). The reason for this result is that, unlike in

the case of the contemporaneous Phillips curve, with the forward-looking Phillips curve, inflation today also

depends on inflation next period. If the monetary policy shock is purely transitory (i.e., ρv = 0), inflation

returns to steady state in the period following the innovation.

In Figure 3, we again partition (λ, ϕπ) space into three regions: a region where a contemporaneous

monetary policy innovation generates a positive indirect effect (blue region), a region where an innovation

generates a negative indirect effect (orange region) and an indeterminacy region (green region).
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Figure 3: Forward-looking Phillips Curve, Contemporaneous Innovation Indirect Effect Regions

Notes: The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into regions of positive indirect effects,

negative indirect effects and indeterminacy. The orange-shaded region corresponds to λ and ϕπ combinations where

the indirect effect is negative. The blue-shaded region corresponds to λ and ϕπ combinations where the indirect effect

is positive. The green-shaded region corresponds to λ and ϕπ combinations where the solution is indeterminate.

Figure 3 reflects the fact that the threshold in the model with the forward-looking Phillips curve,

ϕNIE,FPC
π (0), is shifted downward in (λ, ϕπ) space relative to the threshold in the model with the con-

temporaneous Phillips curve, ϕNIE
π (0). As indicated by the point denoted with a green circle in Figure 3,

with a forward-looking Phillips curve, a central bank that assigns a weight of 1.2 to inflation in its Tay-

lor rule generates a negative indirect effect when 5% of the population is constrained (i.e. λ = 0.05 and

ϕπ = 1.2). With a contemporaneous Phillips curve, this parameter combination resulted in a positive indi-

rect effect as can be seen in Figure 1. The general takeaway from Figure 3 is that conventional parameter

values for the central bank’s response to inflation generate negative indirect effects when the model features

a forward-looking Phillips curve.

In Figure 3, the responses of the central bank to expected inflation, ϕEπ, and output, ϕy, are set to zero.

From the definition of ϕNIE,FPC
π (0) given in 31, a positive weight on the response to expected inflation

or output in the policy rule reduces the threshold. In other words, by responding to expected inflation or

output, the central bank increases the negative indirect effect region of (λ, ϕπ) space (i.e. the upper bound

on the blue-shaded region in Figure 3 shifts downward). Larger values of ϕEπ and ϕy imply a stronger
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response of the central bank to changes in economic activity. All else equal, the nominal rate and, in turn,

the real rate, rise by more when the central bank responds to expected inflation and output than when

it does not respond to these two variables. The relatively higher real interest rate induces the savers to

consume relatively less. In other words, by responding to expected inflation or output, the central bank

increases the size of the indirect real rate effect relative to the indirect income effect. Therefore, the central

bank generates negative indirect effects at lower values of ϕπ when it has non-zero responses to expected

inflation and output than when it sets both response coefficients to zero.

5.2 A Comment on Future Innovations

With a forward-looking Phillips curve, a positive future monetary policy innovation (i.e. an innovation T > 0

periods in the future) no longer necessarily generates a negative total effect. In other words, positive monetary

policy innovations can be expansionary, and negative monetary policy innovations can be contractionary. By

responding to macroeconomic variables, the central bank undoes the effect of the initial innovation. Given

the empirical implausibility of this result, we do not consider this case any further.

6 Conclusion

In this paper, we study monetary policy transmission in a standard two-agent New Keynesian model. We

decompose the response of consumption to a monetary policy innovation into a direct and indirect effect.

We show that the direct effect share of a monetary policy innovation may exceed unity, leading to a negative

indirect effect. Our decomposition of the indirect effect shows that a negative indirect effect arises when

the indirect real rate effect is larger in magnitude than the indirect income effect. The relative magnitude

of the indirect real rate effect increases with the strength of the central bank’s response to macroeconomic

aggregates and the share of unconstrained agents. In the model with a contemporaneous Phillips curve, the

magnitude of the indirect real rate effect decreases with the horizon of the innovation. In the model with

a forward-looking Phillips curve, conventional values for the central bank’s response to inflation and output

result in a negative indirect effect following a contemporaneous monetary policy innovation.

References

Auclert, Adrien. 2019. “Monetary Policy and the Redistribution Channel.” American Economic Review 109,

no. 6 (June): 2333–67. doi:10.1257/aer.20160137. https://www.aeaweb.org/articles?id=10.1257/aer.

20160137.

21

http://dx.doi.org/10.1257/aer.20160137
https://www.aeaweb.org/articles?id=10.1257/aer.20160137
https://www.aeaweb.org/articles?id=10.1257/aer.20160137


Bilbiie, Florin O. 2008. “Limited Asset Markets Participation, Monetary Policy and (Inverted) Aggregate

Demand Logic.” Journal of Economic Theory 140 (1): 162–196. issn: 0022-0531. doi:https://doi.org/

10.1016/j.jet.2007.07.008. https://www.sciencedirect.com/science/article/pii/S0022053107001159.

. 2019. “Monetary Policy and Heterogeneity: An Analytical Framework,” no. 178, https://ideas.repec.

org/p/red/sed019/178.html.

. 2020. “The New Keynesian Cross.” Journal of Monetary Economics 114:90–108. issn: 0304-3932.

doi:https://doi.org/10.1016/j.jmoneco.2019.03.003. https://www.sciencedirect.com/science/article/

pii/S0304393219300492.
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7 Appendix

7.1 Non-Linear Model

In this appendix, we present the non-linear model. In the model, time is discrete. The problems of the

various agents are all formulated sequentially. We start with a discussion of the household block of the

model. We then discuss how the government implements taxes and transfers. Next, we discuss the firm side
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of the model. We finish with a discussion of monetary policy and a summary of the model’s equilibrium

conditions. Throughout, we assume that the steady-state net inflation rate is equal to zero.

7.1.1 Households

The model is a variant of the TANK models studied in Bilbiie (2008) and Debortoli and Gaĺı (2018). In

the model, there is a continuum of agents uniformly distributed over the unit interval. Let j ∈ [0, 1] denote

the name of an agent. A fraction of agents, denoted by λ, are myopic or otherwise excluded from the asset

markets. We call these agents, with names j ∈ [0, λ], “constrained agents”, “spenders” or “non-savers”,

and, when needed, we denote their choices with a superscript K. Those agents with names j ∈ (λ, 1] are

non-myopic and participate in asset markets. We call these agents “unconstrained agents” or “savers” and

denote their choices with a superscript U .

Both agent types are infinitely lived. Agents have additively separable utility defined over composite

consumption, C•
t , and hours worked, N•

t . Composite consumption is composed of a continuum of differenti-

ated goods that are combined using a Dixit and Stiglitz (1977) aggregator with the elasticity of substitution

given by ε.

C•
t =

(∫ 1

0

(C•
t (i))

ε−1
ε di

) ε
ε−1

(35)

The price of one unit of composite consumption is denoted by Pt. The utility function for consumption and

dis-utility function for hours worked are both of the power form. The inverse elasticity of intertemporal

substitution is given by σ. The Frisch labor supply elasticity is given by φ.

The unconstrained household discounts the future at a rate β ∈ (0, 1). The household receives income

from supplying labor in the market. Nominal wages are denoted by Wt. Labor income is subject to a

linear tax with the tax rate given by δW . The household also derives income from its two types of assets:

one-period nominal bonds, BU
t−1, and shares of a mutual fund, FU

t−1. Nominal bonds pay a risk-free (gross)

nominal interest rate of Rt−1. The mutual fund owns all the equity in the goods-producing firms. The real

price of a share in the mutual fund is denoted by Qt. Ownership of a share in the mutual fund entitles the

household to a dividend payment of Dt. Dividend income is subject to a linear tax with the tax rate given

by δ. The household receives transfers denoted by TU
D,t and TU

W,t. The former transfer is funded by taxes

on dividends while the latter transfer is funded by taxes on labor income. Note that only the unconstrained

agent pays the former tax while both agents pay the latter tax. The unconstrained household uses its

resources to purchase consumption, nominal bonds and mutual fund shares. The unconstrained household

chooses sequences of consumption, labor, bonds and shares to maximize expected discounted utility subject

to its budget constraint, initial bond holdings, initial shareholdings and initial nominal interest rate. The

problem of the household is given by equations 36, 37 and 38. In equation 36, E0 denotes the expectation
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conditional on the information set available at time 0.

max
{CU

t ,NU
t ,BU

t ,FU
t }∞

t=0

E0

∞∑
t=0

βt

[(
CU

t

)1−σ − 1

1− σ
−
(
NU

t

)1+φ

1 + φ

]
(36)

CU
t +

BU
t

Pt
+QtF

U
t =

BU
t−1Rt−1

Pt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t (37){

BU
−1, F

U
−1, R−1

}
given (38)

Denote the Lagrange multiplier on the budget constraint as ΛU
t . The unconstrained household’s first-order

conditions are

[
CU

t

]
:

(
CU

t

)−σ − ΛU
t = 0 (39)[

FU
t

]
: −ΛU

t Qt + βEt

[
ΛU
t+1 [Qt+1 + (1− δ)Dt+1]

]
= 0 (40)[

BU
t

]
: −ΛU

t

1

Pt
+ βRtEt

[
ΛU
t+1

1

Pt+1

]
= 0 (41)

[
NU

t

]
: −

(
NU

t

)φ
+ ΛU

t

(
1− δW

) Wt

Pt
= 0 (42)

[
ΛU
t

]
:

BU
t−1Rt−1

Pt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t−[

CU
t +

BU
t

Pt
+QtF

U
t

]
= 0 (43)

As mentioned previously, the constrained household is myopic or lacks access to asset markets. Therefore,

the constrained household solves a static problem each period. The constrained household receives labor

income which is subject to the same tax rate that unconstrained households face. The only other income the

constrained household receives is from transfers, TK
D,t and TK

W,t. The constrained household uses its entire

income to purchase consumption. The problem of the constrained household is to choose consumption and

hours worked in the present period to maximize utility subject to its budget constraint. The constrained

household’s objective function is given in equation 44 and the budget constraint in real terms is given in

equation 45.

max
{CK

t ,NK
t }∞

t=0

[(
CK

t

)1−σ − 1

1− σ
−
(
NK

t

)1+φ

1 + φ

]
(44)

CK
t =

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t (45)

Denote the Lagrange multiplier on the constrained household’s budget constraint as ΛK
t . The constrained

household’s first-order conditions are

[
CK

t

]
:

(
CK

t

)−σ − ΛK
t = 0 (46)[

NK
t

]
: −

(
NK

t

)φ
+ ΛK

t

(
1− δW

) Wt

Pt
= 0 (47)[

ΛK
t

]
:

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t − CK
t = 0 (48)
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7.1.2 Government

The government uses taxes on dividends and labor income to fund its transfers. The amount of redistribution

is determined by the tax sharing parameters, τ and τW . The dividend tax sharing parameter τ is restricted

to the interval [0, 1]. When τ = 1, all dividend taxes are transferred to the unconstrained household. When

τ = 0, all agents receive an equal transfer of δDt. We view the case of τ < 1 as redistribution in favor of

the constrained household as the constrained household receives more in transfers funded by dividend taxes

than it contributes in dividend taxes.

For the labor income tax sharing parameter τW , we restrict it to the interval
[
− 1−λ

λ , 1
]
. As is the

case with transfers of dividend taxes, when τW = 1, all labor income tax revenue is transferred to the

unconstrained household. At the opposite end of the interval, when τW = − 1−λ
λ , the constrained household

receives all of the labor income tax revenue. When τ = 0, both households receive the same amount in

transfers. Due to potential differences in labor supply, the amount received in transfers when τ = 0 may

differ from the amount the household pays in taxes.

The transfer rules for dividend tax revenues are given by equations 49 and 50. The transfer rules for

labor income tax revenues are given by equations 51 and 52.

[U Dividend Transfer] TU
D,t =

(
1 +

τλ

1− λ

)
δDt (49)

[K Dividend Transfer] TK
D,t = (1− τ) δDt (50)

[U Labor Income Transfer] TU
W,t =

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt (51)

[K Labor Income Transfer] TK
W,t =

(
1− τW

)
δW

Wt

Pt
Nt (52)

7.1.3 Firms

There is a continuum of goods-producing firms indexed by i ∈ [0, 1]. The outputs produced by the different

firms are imperfect substitutes. Denote firm i’s output as Yt (i) and aggregate output as Yt. The demand

function for firm i’s output, derived from the cost minimization problem of households in Appendix 7.1.1, is

given by

Yt (i) =

(
Pt (i)

Pt

)−ε

Yt (53)

Each firm has a constant returns-to-scale production technology that uses labor to produce output. Denote

labor demand of firm i as Nd
t (i). Firm i’s output is given by

Yt (i) = Nd
t (i) (54)

A firm hires labor at a nominal wage rate of Wt. Each firm is able to reset its price in every period subject

to a Rotemberg (1982) price adjustment cost. The elasticity of the adjustment cost with respect to the net
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inflation rate is given by ξ. We consider two variants of the price adjustment cost which we discuss in detail

in Appendix 7.1.4 and Appendix 7.1.5. Firms remit their profits to the mutual fund. Denote the real profits

of firm i as Dt (i) and the fraction of output going towards price adjustment costs as Ξt (i)Pt. Profits are

given by

Dt (i) =Yt (i) (1− Ξt (i))−
Wt

Pt
Nd

t (i) (55)

7.1.4 Contemporaneous Phillips Curve

In this section, we derive the contemporaneous Phillips curve. Following Bilbiie (2019), we assume that the

adjustment cost depends on the previous period’s aggregate price level, Pt−1, instead of the price chosen

by firm i in the previous period. In equilibrium, all firms choose the same price. Therefore, the aggregate

price level is the same as the price level chosen by firm i. However, firm i treats the aggregate price level

as exogenous when setting its price. Under this assumption, the price adjustment cost, denoted by Ξt (i), is

given by

Ξt (i) ≜
ξ

2

(
Pt (i)

Pt−1
− 1

)2

PtYt (56)

Firm i chooses its price to maximize the present discounted value of profits. The firm discounts using the

stochastic discount factor of the unconstrained household, which we denote by ΛU
t,τ . Denote firm i’s real

marginal cost as mct. The profit maximization problem of firm i is given by

Pt (i) = argmax
P̂t(i)

∞∑
τ=t

ΛU
t,τ

P̂t (i)Yt (i)− PtmctYt (i)−
ξ

2

(
P̂t (i)

Pt−1
− 1

)2

PtYt

 (57)

Yt (i) = Yt

(
P̂t (i)

Pt

)−ε

(58)

Given the assumption that the adjustment cost depends on the previous period’s aggregate price level Pt−1

and not firm i’s price level, the optimization problem reduces to the following static optimization problem

Pt (i) = argmax
P̂t(i)

P̂t (i)Yt

(
P̂t (i)

Pt

)−ε

− PtmctYt

(
P̂t (i)

Pt

)−ε

− ξ

2

(
P̂t (i)

Pt−1
− 1

)2

PtYt

 (59)

Note that we have made the substitution for Yt (i). The first order condition with respect to P̂t (i) is

(1− ε)Yt

(
Pt (i)

Pt

)−ε

+ εmctYt

(
Pt (i)

Pt

)−1−ε

−
[
ξ

(
Pt (i)

Pt−1
− 1

)
Pt

Pt−1
Yt

]
= 0 (60)

Substituting out Yt

(
Pt(i)
Pt

)−ε

for Yt (i) one obtains

(1− ε)Yt (i) + εmctYt (i)
Pt

Pt (i)
−
[
ξ

(
Pt (i)

Pt−1
− 1

)
Pt

Pt−1
Yt

]
= 0 (61)
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In a symmetric equilibrium, Pt (i) = Pt and Yt (i) = Yt. Denote the real markup as Mt, the steady-state

real markup as M and the gross inflation rate as Πt. The Phillips curve, equation 61, can be written as

Πt (Πt − 1) =
ε

ξ

(
mct −

ε− 1

ε

)
=
ε

ξ

(
1

Mt
− 1

M

)
(62)

Denoting the net inflation rate as πt and the log deviation of the markup from the steady-state markup as

µt, a first-order Taylor expansion yields

πt = − ε

ξM
µt (63)

7.1.5 Forward-Looking Phillips Curve

In this section, we derive the forward-looking Phillips curve. We assume that the adjustment cost depends

on the price chosen by firm i in the previous period. Under this assumption, the price adjustment cost,

denoted by Ξt (i), is given by

Ξt (i) ≜
ξ

2

(
Pt (i)

Pt−1 (i)
− 1

)2

PtYt (64)

The profit maximization problem of firm i is given by

Pt (i) = argmax
P̂t(i)

∞∑
τ=t

ΛU
t,τ

P̂t (i)Yt (i)− PtmctYt (i)−
ξ

2

(
P̂t (i)

Pt−1 (i)
− 1

)2

PtYt

 (65)

Yt (i) = Yt

(
P̂t (i)

Pt

)−ε

(66)

After substituting the constraint into the objective, we can write the optimization problem as

Pt (i) = argmax
P̂t(i)

∞∑
τ=t

ΛU
t,τ

P̂t (i)Yt

(
P̂t (i)

Pt

)−ε

− PtmctYt

(
P̂t (i)

Pt

)−ε

− ξ

2

(
P̂t (i)

P̂t−1 (i)
− 1

)2

PtYt

 (67)

The first order condition with respect to P̂t (i) is

(1− ε)Yt

(
Pt (i)

Pt

)−ε

+ εmctYt

(
Pt (i)

Pt

)−1−ε

−
[
ξ

(
Pt (i)

Pt−1 (i)
− 1

)
Pt

Pt−1 (i)
Yt

]
+[

ΛU
t,t+1ξ

(
Pt+1 (i)

Pt (i)
− 1

)(
Pt+1

Pt (i)

)2

Yt+1

]
= 0 (68)

Note that the factor used to discount profits from period t+ 1 to t is given by

ΛU
t,t+1 ≜ β

((
CU

t+1

)−σ(
CU

t

)−σ

)(
Pt

Pt+1

)
(69)
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Substituting out Yt

(
Pt(i)
Pt

)−ε

for Yt (i) and ΛU
t,t+1 for β

(
(CU

t+1)
−σ

(CU
t )

−σ

)(
Pt

Pt+1

)
one obtains

(1− ε)Yt (i) + εmctYt (i)
Pt

Pt (i)
−
[
ξ

(
Pt (i)

Pt−1 (i)
− 1

)
Pt

Pt−1
Yt

]
+[

βξ

((
CU

t+1

)−σ(
CU

t

)−σ

)(
Pt+1 (i)

Pt (i)
− 1

)(
Pt+1

Pt (i)

)
Yt+1

]
= 0 (70)

In a symmetric equilibrium, Pt (i) = Pt and Yt (i) = Yt. As in the case of the contemporaneous Phillips

curve, we denote the real markup as Mt, the steady-state real markup as M and the gross inflation rate as

Πt. Under the symmetric equilibrium assumption, the Phillips curve, equation 70, can be written as

Πt (Πt − 1) =
ε

ξ

(
mct −

ε− 1

ε

)
+ Et

[
β

((
CU

t+1

)−σ(
CU

t

)−σ

)
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]

=
ε

ξ

(
1

Mt
− 1

M

)
+ Et

[
β

((
CU

t+1

)−σ(
CU

t

)−σ

)
Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
(71)

A first-order Taylor expansion yields

πt = − ε

ξM
µt + βEt [πt+1] (72)

7.1.6 Monetary Policy

To close the model, we assume that the central bank sets the nominal interest rate according to a Taylor rule.

The central bank responds to deviations of inflation and expected one-period ahead inflation from target

inflation and the deviation of output from its steady-state level. The strength of the central bank’s responses

to the deviations are given by ϕπ, ϕEπ
and ϕy, respectively. Denote the steady-state nominal interest rate

as R∗ and the steady-state level of output as Y ∗. We assume that the target net inflation rate is zero. The

monetary policy rule is subject to a shock, vt, that follows an AR (1) process. The persistence of the shock

is given by ρv. The innovation to the shock is denoted by εvt . The Taylor rule and the law of motion for the

monetary policy shock are given by

Rt = R∗ (Πt)
ϕπ (Et [Πt+1])

ϕEπ

(
Yt
Y ∗

)ϕy

evt (73)

vt = ρvvt−1 + εvt (74)

The linearized Taylor rule is given by

it =ϕππt + ϕEπ
Et [πt+1] + ϕyyt + vt (75)

7.1.7 Equilibrium Conditions

The model features 20 endogenous variables.{
CU

t , F
U
t , B

U
t , N

U
t ,Λ

U
t , T

U
D,t, T

U
W,t, C

K
t , N

K
t ,Λ

K
t , T

K
D,t, T

K
W,t, Dt, Qt,Πt, Rt, Yt,Mt, N

d
t ,
Wt

Pt

}
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The 21 equilibrium conditions, including a redundant market clearing condition, are

[
CU

t

]
:

(
CU

t

)−σ − ΛU
t = 0 (76)[

FU
t

]
: −ΛU

t Qt + βEt

[
ΛU
t+1 [Qt+1 + (1− δ)Dt+1]

]
= 0 (77)[

BU
t

]
: −ΛU

t + βRtEt

[
ΛU
t+1

1

Πt+1

]
= 0 (78)

[
NU

t

]
: −

(
NU

t

)φ
+ ΛU

t

(
1− δW

) Wt

Pt
= 0 (79)

[
ΛU
t

]
:

BU
t−1Rt−1

Πt
+
(
1− δW

) Wt

Pt
NU

t + [Qt + (1− δ)Dt]F
U
t−1 + TU

D,t + TU
W,t−[

CU
t +BU

t +QtF
U
t

]
= 0 (80)[

CK
t

]
:

(
CK

t

)−σ − ΛK
t = 0 (81)[

NK
t

]
: −

(
NK

t

)φ
+ ΛK

t

(
1− δW

) Wt

Pt
= 0 (82)[

ΛK
t

]
:

(
1− δW

) Wt

Pt
NK

t + TK
D,t + TK

W,t − CK
t = 0 (83)

[
TU
D,t

]
TU
D,t −

(
1 +

τλ

1− λ

)
δDt = 0 (84)

[
TK
D,t

]
TK
D,t − (1− τ) δDt = 0 (85)[

TU
W,t

]
TU
W,t −

(
1 +

τWλ

1− λ

)
δW

Wt

Pt
Nt = 0 (86)

[
TK
W,t

]
TK
W,t −

(
1− τW

)
δW

Wt

Pt
Nt = 0 (87)[

Nd
t

]
:

1

Mt
− Wt

Pt
= 0 (88)

[Phillips Curve]

ε

ξ

(
1

Mt
− 1

M

)
−Πt (Πt − 1)

ε

ξ

(
1

Mt
− 1

M

)
+ Et

[
ΛU
t,t+1

Yt+1

Yt
Πt+1 (Πt+1 − 1)

]
−Πt (Πt − 1)

 = 0 (89)

[Goods] λCU
t + (1− λ)CK

t − Yt

(
1− ξ

2
(Πt − 1)

2

)
= 0 (90)

[Labor] λNK
t + (1− λ)NU

t −Nd
t = 0 (91)

[Taylor Rule] Rt −R∗ (Πt)
ϕπ (Et [Πt+1])

ϕEπ

(
Yt
Y ∗

)ϕy

evt = 0 (92)

[Bond] BU
t = 0 (93)

[Shares] Ft − 1 = 0 (94)

[Dividends] Yt

(
1− ξ

2
(Πt − 1)

2

)
− Wt

Pt
Nd

t −Dt = 0 (95)

[Production] Y −Nd = 0 (96)
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Aggregate consumption demand, Ct, and aggregate labor supply, Nt, are given by

Ct ≜ λCU
t + (1− λ)CK

t (97)

Nt ≜ λNU
t + (1− λ)NK

t (98)

When log-linearizing the model in Appendix 7.2, we work with two auxiliary variables that are helpful in

reducing the model to three equations. The first is the consumption gap, Γt.

Γt ≜ 1− CK
t

CU
t

(99)

The second is the labor gap, Ωt.

Ωt ≜ 1− NK
t

NU
t

(100)

With this notation, aggregate consumption demand and aggregate labor supply can be written as

Ct = (1− λΓt)C
U
t (101)

Nt = (1− λΩt)N
U
t (102)

In Appendix 7.7, we reduce the consumption gap to

Γt =
N0,t

D0,t
(103)

where N0,t and D0,t are given by

N0,t =τ
W δW+

[1− (1− τ) δ] [(1− Ξt)Mt − 1] [1− λΩt] +[
(1− λ) (1− δw)− λτW δW

]
Ωt (104)

D0,t =
[
(1− λ)

(
1− δW

)
+
(
1− λ+ τWλ

)
δW
]
+

[1− δ (1− τ)λ] [(1− Ξt)Mt − 1] [1− λΩt]−[
1 +

(
τW − 1

)
λ
]
δWλΩt (105)

7.1.8 Model Parameterization

We use the following parameter values when generating the numerical results. The values are standard values

used in the literature.
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Table 1: Parameter Values

Parameter Value Source/Target

β 0.975 Annual interest rate of 2.6%

ξ 105 Average price duration of one year (Debortoli and Gaĺı 2018)

σ 1 Standard

φ 1 Standard

ε 10 Profit share of 10% (Debortoli and Gaĺı 2018)

ρv 0.9 Half life of 6.5 periods

τ 1 All profits are transferred to unconstrained agents

δ 0.92 Debortoli and Gaĺı 2018

τW 0.0 Equal transfers to constrained and unconstrained agents

δW 0.15 15% income tax share on pre-tax income

7.2 Log-linear Equations

In this appendix, we present the log-linearized model. Lower-case variables indicate percentage deviations

from the steady-state unless otherwise noted. That is, for any variableXt whose steady-state value is denoted

as X, we have

xt ≜
Xt −X

X

We start with the market clearing condition, equation 90. To a first-order approximation, Ξt is equal to

zero. Therefore, using the definition of aggregate consumption given in equation 97, the log-linearized market

clearing condition is given by

yt = ct (106)

Using the first-order conditions for consumption and labor for the two types of households (equations 39 and

42 for the unconstrained agent and equations 46 and 47 for the constrained agent), we arrive at the following

relationship between the consumption gap and the labor gap

(1− Γt)
−σ

= (1− Ωt)
φ

(107)

The consumption gap and labor gap are already in percentage terms. Therefore, we approximate the gaps

in level deviations. Denote the approximate consumption gap as γt and the approximate labor gap as ωt

γt ≜ (Γt − Γ) (108)

ωt ≜ (Ωt − Ω) (109)

32



Log-linearizing equation 107 gives us

σ

1− Γ
γt = − φ

1− Ω
ωt (110)

Log-linearizing equation 103 after using equation 107 to eliminate the labor gap, Ωt, we arrive at the result

that the consumption gap is proportional to the markup. The constant of proportionality, θ1, is given in

equation 195.

γt = θ1µt (111)

The log-linearized labor first-order conditions for the two households are given by

wt =σc
U
t + φnUt (112)

wt =σc
K
t + φnKt (113)

Log-linearizing equation 102 gives us the following relationship between the labor supply of the unconstrained

households, aggregate labor and the labor gap.

nUt = nt +
λ

1− λΩ
ωt (114)

Similarly, we log-linearize equation 101 to drive a relationship between unconstrained consumption, aggregate

consumption and the consumption gap.

cUt = ct +
λ

1− λΓ
γt (115)

Using equation 114 to replace nUt and equation 115 to replace cUt in the unconstrained households log-

linearized first-order condition for labor (equation 112), we arrive at the following equation relating the wage

to aggregate consumption, the consumption gap, aggregate labor and the labor gap.

wt = σct +
σλ

1− λΓ
γt + φnt +

φλ

1− λΩ
ωt (116)

The production function in log-linear form is

yt = nt (117)

Log-linearizing equation 88 gives us

µt = −wt (118)

Combining equations 106, 116, 117 and 118 we arrive at

µt = − (σ + φ) yt −
σλ

1− λΓ
γt −

φλ

1− λΩ
ωt (119)
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Using the relationship between the consumption gap and labor gap given by equation 110 in equation 119

to eliminate ωt, we have

µt = − (σ + φ) yt + σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

λ

1− λΓ

)]
γt (120)

Next, we substitute for the consumption gap, γt, using equation 111. After rearranging, we arrive at the

following relationship between the markup and output

µt = −
[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

λ

1− λΓ

)]
θ1

]−1

(σ + φ) yt (121)

We denote the constant multiplying [− (σ + φ) yt] as θ2

θ2 ≜

[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

σλ

1− λΓ

)]
θ1

]−1

(122)

The log-linearized Phillips curve is given by

πt = − ε

ξM
µt (123)

Using equation 121 and the definition of θ2 in equation 123, we can write the Phillips curve as

πt = κyt (124)

where

κ ≜
ε

ξM
(σ + φ) θ2 (125)

The log-linearized bond Euler equation for the unconstrained household is given by

cUt = Et

[
cUt+1

]
− 1

σ
(it − Et [πt+1]) (126)

Combining equations 101, 111 and 106, we have the following relationship between consumption of the

unconstrained agent and aggregate consumption

cUt = (1− Φ) ct (127)

where Φ is defined as

Φ ≜
λ (σ + φ) θ1θ2

1− λΓ
(128)

Using equation 127 in equation 126 we arrive at the following aggregate Euler equation.

ct = Et [ct+1]−
1

σ (1− Φ)
(it − E [πt+1]) (129)
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7.3 Planned Expenditure Curve

In this appendix, we derive an expression for aggregate consumption as a function of aggregate income,

the nominal interest rate and expected inflation. We use this representation to compute the direct effect of

an innovation to the monetary policy shock. Additionally, this representation allows us to decompose the

indirect effect into the indirect income effect and the indirect real rate effect. The derivation follows the

presentation provided in the appendix of Bilbiie (2020).

7.3.1 Derivation

We start with the intertemporal budget constraint of the unconstrained household. Denote the income of

the unconstrained household as Y U
t . The household’s lifetime budget constraint is given by

Et

[ ∞∑
i=0

ΛU
t,t+iY

U
t+i

]
= Et

[ ∞∑
i=0

ΛU
t,t+iC

U
t+i

]
(130)

Denote the log deviation of the unconstrained household’s stochastic discount factor from steady-state as

Λ̂t,t+i and the log deviation of the unconstrained household’s income from steady-state income as yUt . Log-

linearizing the lifetime budget constraint gives us

Et

[ ∞∑
i=0

βi
(
Λ̂U
t,t+i + yUt+i

)]
= Et

[ ∞∑
i=0

βi
(
Λ̂U
t,t+i + cUt+i

)]
(131)

The linearized stochastic discount factor is given by

Λ̂U
t,t+i = −σ

(
cUt+i − cUt

)
(132)

Adding
(
1
σ − 1

)
Et

[∑∞
t=0 β

iΛ̂t,t+i

]
to both sides of equation 131, one obtains

Et

[ ∞∑
i=0

βi

(
1

σ
Λ̂U
t,t+i + yUt+i

)]
= Et

[ ∞∑
i=0

βi

(
1

σ
Λ̂U
t,t+i + cUt+i

)]
(133)

Using the Euler equation of the unconstrained agent, the right-hand side becomes 1
1−β c

U
t . Noting that

Λ̂U
t,t = 0, we can rewrite equation 133 as

Et

[ ∞∑
i=1

βi

(
1

σ
Λ̂U
t,t+i + yUt+i

)]
+ yUt =

1

1− β
cUt (134)

From the first order condition for bonds, we have

Et

[
Λ̂t,t+i

]
= −Et

[
i−1∑
k=0

(it+k − πt+1+k)

]
(135)

Using this result, we have

∞∑
i=0

βiEt

[
Λ̂t,t+i

]
= −

∞∑
i=1

βiEt

[
i−1∑
k=0

(it+k − πt+1+k)

]
= − β

1− β
Et

[ ∞∑
i=0

βi (it+i − πt+1+i)

]
(136)
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Combining the latter two results gives us

1

1− β
cUt = − 1

σ

(
β

1− β

)
Et

[ ∞∑
i=0

βi (it+i − πt+1+i)

]
+ Et

[ ∞∑
i=0

βiyUt+i

]
(137)

Multiplying both sides by 1− β and removing the i = 0 variables from the summations, we have

cUt =(1− β) yUt − 1

σ
β (it − E [πt+1])− β

1

σ
Et

[ ∞∑
i=0

βi (it+1+i − πt+2+i)

]
+

(1− β)Et

[ ∞∑
i=0

βiyUt+1+i

]
(138)

Finally, noting that

βcUt+1 = −β 1

σ
Et

[ ∞∑
i=0

βi (it+1+i − πt+2+i)

]
+ (1− β)Et

[ ∞∑
i=0

βiyUt+1+i

]
(139)

we obtain unconstrained consumption as a function of income, the real interest rate and expected future

consumption.

cUt = (1− β) yUt − 1

σ
β (it − Et [πt+1]) + βEt

[
cUt+1

]
(140)

The constrained agent consumes all of his or her income each period. Denote the log deviation of constrained

income from steady-state as yKt . Therefore, we have the following

cKt = yKt (141)

Log-linearizing equation 97 gives us the following relationship between aggregate consumption and consump-

tion of the two types of households

ct = (1− ζ) cUt + ζcKt (142)

where ζ is defined as

ζ ≜
λ (1− Γ)

(1− λ) + λ (1− Γ)
(143)

Finally, aggregating consumption across the two types of agents gives us

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) (it − Et [πt+1]) + (1− Φ) (1− ζ)βEt [ct+1] (144)

Replacing ct+1 with Fct and rearranging gives us equation 11 in the main text.
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7.3.2 Direct Effect

We now use equation 144 to derive the direct effect of an innovation occurring T periods in the future.

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) [it − Et [πt+1]] + (1− Φ) (1− ζ)βE [ct+1] (145)

= [1− (1− Φ) (1− ζ)β]

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [yt+τ ]−

1

σ
β (1− ζ)

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [it+τ − πt+1+τ ] (146)

= [1− (1− Φ) (1− ζ)β]

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [yt+τ ]−

1

σ
β (1− ζ)

∞∑
τ=0

[(1− Φ) (1− ζ)β]
τ
E [(ϕEπ − 1)πt+1+τ + ϕyyt+τ + ϕππt+τ + vt+τ ] (147)

Assuming the persistence of the shock is ρv, the direct effect of an innovation happening T periods from now

(in period t+ T ) is given by

dct
dεvt+T

∣∣∣∣
y∗,π∗

= − 1

σ
β (1− ζ)

∞∑
τ=T

[(1− Φ) (1− ζ)β]
τ
ρτ−T
v

= − 1

σ
β (1− ζ) [(1− Φ) (1− ζ)β]

T
∞∑

τ=T

[(1− Φ) (1− ζ)β]
τ−T

ρτ−T
v

= −
1
σβ (1− ζ) [(1− Φ) (1− ζ)β]

T

1− [(1− Φ) (1− ζ)β] ρv
(148)

7.4 Contemporaneous Phillips Curve: Total Effect

In this appendix, we derive the total effect of a monetary policy innovation when firms face the price setting

problem presented in Appendix 7.1.4. The linearized model is characterized by the following equilibrium

conditions

πt = κct (149)

it = ϕπt + vt (150)

ct = [1− (1− Φ) (1− ζ)β] yt −
1

σ
β (1− ζ) [it − Et [πt+1]] + (1− Φ) (1− ζ)βE [ct+1] (151)

ct = yt (152)

Denote the forward shift operator as F . For any variable xt, we have Fxt = xt+1. After substituting the

Phillips curve, Taylor rule and market clearing condition into equation 151 and rearranging, one arrives at
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the following equation for consumption as a function of the sequence of exogenous variables {vt+τ}∞τ=0.

ct

{
1− [1− (1− Φ) (1− ζ)β] +

1

σ
β (1− ζ)κϕ−

[
1

σ
β (1− ζ)κ+ (1− Φ) (1− ζ)β

]
F
}

=

− 1

σ
β (1− ζ) vt

ct

{
(1− Φ) (1− ζ)β +

1

σ
β (1− ζ)κϕ−

[
1

σ
β (1− ζ)κ+ (1− Φ) (1− ζ)β

]
F
}

=

− 1

σ
β (1− ζ) vt

ct

{
(1− Φ) +

1

σ
κϕ−

[
1

σ
κ+ (1− Φ)

]
F
}

= − 1

σ
vt

ct

{
1−

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]
F
}

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

]
vt

ct = − 1

σ

[
1

1
σκϕ+ (1− Φ)

] ∞∑
τ=0

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]τ
vt+τ

Under the assumption that the monetary policy shock follows an AR (1) process with persistence ρv, the

total response of consumption to an innovation T ≥ 0 periods in the future is

dct
dεvt+T

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] ∞∑
τ=T

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]τ
ρτ−T
v (153)

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] [ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]T ∞∑
τ=T

[ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

ρv

]τ−T

(154)

= − 1

σ

[
1

1
σκϕ+ (1− Φ)

] [ 1
σκ+ (1− Φ)
1
σκϕ+ (1− Φ)

]T  1

1−
[

1
σκ+(1−Φ)
1
σκϕ+(1−Φ)

ρv

]
 (155)

Rearranging equation 155 gives us equation 15.

7.5 Forward-Looking Phillips Curve: Total Effect

We now derive the total effect in the model with the forward-looking Phillips curve. The model reduces

to a linear second-order difference equation with constant coefficients. The solutions to linear second-order

difference equations are well known from the time series econometrics literature (see, for example, Sargent

1975). Denote the forward shift operator as F . For any variable xt, we have Fxt = xt+1. Combining the

Euler equation, Phillips curve and Taylor rule, the model can be written as(
F2 +ϖ2F +ϖ1

)
πt = −ṽt (156)

where

ϖ1 ≜

[
1

β
+

ϕπκ+ ϕy
βσ (1− Φ)

]
(157)

ϖ2 ≜

[
−1− 1

β
+

1

βσ (1− Φ)
(ϕEπκ− βϕy − κ)

]
(158)

ṽt ≜
κ

βσ (1− Φ)
vt (159)
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Denote the roots of the characteristic equation from equation 156 as m1 and m2. The formula for inflation

is given by

πt =− 1

(F −m1) (F −m2)
ṽt (160)

=

(
1

m1 −m2

)(
1

m1

)(
1

1− 1
m1

F

)
ṽt −

(
1

m1 −m2

)(
1

m2

)(
1

1− 1
m2

F

)
ṽt (161)

If both roots are real and greater than unity in absolute value (i.e. |m1| > 1 and |m2| > 1) or the roots are

complex with magnitude greater than unity, we can rewrite this as

πt =

(
1

m1 −m2

)(
1

m1

) ∞∑
s=0

(m1)
−s
ṽt+s −

(
1

m1 −m2

)(
1

m2

) ∞∑
s=0

(m2)
−s
ṽt+s (162)

=

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(163)

7.5.1 Real Roots

The formula for inflation is given by

πt =

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(164)

If an innovation occurs in period t + T and the shock has persistence ρv, the response of inflation to the

innovation is

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

](
1

m1 −m2

)[(
1

m1 − ρv

)
m−T

1 −
(

1

m2 − ρv

)
m−T

2

]
(165)

In Section 5.1 we consider contemporaneous innovations to the monetary policy shock (i.e. T = 0). To

compute the total effect of the innovation, we need the response of πt+1 to an innovation in period t. That

is, we need the response of inflation to an innovation that occurred in the past. Under the maintained

assumption that the shock follows an AR (1) process with persistence ρv, the response of inflation in period

t+ τ to an innovation in period t is

dπt+τ

dεvt
=

[
κ

βσ (1− Φ)

](
1

m1 −m2

)[(
1

m1 − ρv

)
−
(

1

m2 − ρv

)]
ρτv = ρτv

dπt
dεvt

(166)

7.5.2 Complex Roots

If the roots are complex, then m1 = mr + imc = reiw and m2 = mr − imc = re−iw where mr is the real

part and mc is the imaginary part of m1 and m2. Denote the magnitude of m1 as r and the argument as w.

r ≜
√
m2

r +m2
c (167)

w ≜ arctan

(
mc

mr

)
(168)
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The formula for inflation can be rewritten as follows

πt =

(
1

m1 −m2

)[(
1

m1

) ∞∑
s=t

mt−s
1 ṽs −

(
1

m2

) ∞∑
s=t

mt−s
2 ṽs

]
(169)

=

(
1

m1 −m2

)[ ∞∑
s=t

m
t−(s+1)
1 ṽs −

∞∑
s=t

m
t−(s+1)
2 ṽs

]
(170)

=

(
1

m1 −m2

)[ ∞∑
s=t

(
m

t−(s+1)
1 −m

t−(s+1)
2

)
ṽs

]
(171)

=

(
1

m1 −m2

)[ ∞∑
s=t

rt−(s+1)
[(
eiw
)t−(s+1) −

(
e−iw

)t−(s+1)
]
ṽs

]
(172)

=

(
1

m1 −m2

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(173)

=

(
1

r (eiw − e−iw)

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(174)

=

(
1

r2i sin (w)

)[ ∞∑
s=t

rt−(s+1)2i sin [w (t− (s+ 1))] ṽs

]
(175)

=

(
1

r sin (w)

)[ ∞∑
s=t

rt−(s+1) sin [w (t− (s+ 1))] ṽs

]
(176)

For an innovation T periods in the future, the response is

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

]
1

r sin (w)
r−1−T

∞∑
s=t+T

rt+T−sρs−(t+T )
v sin [w (t− 1− s)] (177)

Note that we can rewrite the sine term as follows

sin [w (t− 1− s)] =sin [w (T + t− s) + w (−1− T )] (178)

= sin [w (T + t− s)] cos [w (−1− T )] + cos [w (T + t− s)] sin [w (−1− T )] (179)

After substitution, we have

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

] [
cos [w (−1− T )]

1

r sin (w)
r−1−T

∞∑
s=t+T

(ρv
r

)s−(t+T )

sin [w (T + t− s)] +

sin [w (−1− T )]
1

r sin (w)
r−1−T

∞∑
s=t+T

(ρv
r

)s−(t+T )

cos [w (T + t− s)]

]
(180)

Using the properties of infinite geometric series, as shown in Appendix 7.8, we have

dπt
dεvt+T

=

[
κ

βσ (1− Φ)

] [
1

r sin (w)
r−1−T

] [
sin [w (−1− T )]

[
1− ρv

r cos (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
−

cos [w (−1− T )]

[
ρv

r sin (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]]
(181)

7.6 Additional Figures

We include additional figures in this appendix. Appendix 7.6.1 includes figures showing the relationship

between Φ and λ. Appendix 7.6.2 includes figures showing the relationship between κ and λ for two different
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values of σ. Appendix 7.6.3 includes additional figures for the model with the contemporaneous Phillips curve.

Appendix 7.6.4 includes figures showing the relationship between ϕNIE
π (·) and the transfer parameters, τ

and τW , for the model with the contemporaneous Phillips curve. Appendix 7.6.5 includes a figure for the

model with the forward-looking Phillips curve.

7.6.1 Relationship between Φ and λ

Figure 4: Relationship Between Φ and λ

Notes: The figure shows the relationship between λ and Φ. The value of λ is given on the horizontal axis. The value

of Φ is given on the vertical axis.
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7.6.2 Relationship between κ and λ

Figure 5: Relationship Between κ and λ for σ = 1

Notes: The figure shows the relationship between λ and κ. The value of λ is given on the horizontal axis. The value

of κ is given on the vertical axis.
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Figure 6: Relationship Between κ and λ for σ = 2

Notes: The figure shows the relationship between λ and κ. The value of λ is given on the horizontal axis. The value

of κ is given on the vertical axis.
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7.6.3 Contemporaneous Phillips Curve

Figure 7: Real Interest Rate Change: Contemporaneous Innovation

Notes: The figure shows the pass-through of a one-unit contemporaneous innovation to the monetary policy shock.

The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into a region where the solution is indeterminate

or the indirect effect is positive (grey region) and a region where the indirect effect is negative (colored region). The

colors of the different contours indicate the proportional pass-through of a one-unit monetary policy contemporaneous

monetary policy innovation to the real interest rate. For example, a value of 0.9 means that, following a one-unit

positive innovation, the real interest rate increases by 0.9 units.
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Figure 8: Indirect Effect Regions

Notes: The figure plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of λ. The lines partition λ (horizontal axis), ϕπ (vertical

axis) space into regions of positive and negative indirect effects with each line corresponding to a different innovation

horizon, T . For a fixed value of λ, ϕπ values above a given line result in a negative indirect effect while values of

ϕπ below the line result in a positive indirect effect. The blue line is for an innovation in the distant future (i.e.

ϕNIE
π (∞)). The orange line is for a contemporaneous innovation (i.e. ϕNIE

π (0)).

7.6.4 A Comment on transfer parameters, τ and τW

In this section, we analyze the relationship between the transfer parameters, τ and τW , and the boundary

separating the positive and negative indirect effect regions for the model with the contemporaneous Phillips

curve, ϕNIE
π (·).

Relationship between ϕNIE
π (·) and τ

Figure 9 plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of τ . The thresholds are increasing in τ . This

relationship implies that the size of the indirect income effect is increasing relative to the size of the real rate

effect as profit redistribution declines (i.e. τ increases). Monopolistic profits are countercyclical in response

to demand shocks in the baseline New Keynesian model. Therefore, in the model, the two sources of income,

wages and profits, move in opposite directions following an innovation. When there is no redistribution

(τ = 1), the constrained agents earn income only from wages and transfers funded by labor income taxes.

Therefore, if labor income increases, constrained agents experience only the increase in labor income and do
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not experience any of the decline in profit income. When there is redistribution (i.e. τ < 1), constrained

agents experience some of the decline in profit income following the innovation. Therefore, all else equal,

constrained income changes by less with redistribution than it would absent redistribution. The smaller

income change, together with the fact that these households have unit marginal propensities to consume,

results in the indirect income effect declining relative to the indirect real rate effect as redistribution increases

(i.e. τ decreases). Therefore, we see a positive relationship between ϕNIE
π (·) and τ .

Figure 9: Indirect Effect Regions

Notes: The figure plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of τ . The lines partition τ (horizontal axis), ϕπ (vertical

axis) space into regions of positive and negative indirect effects with each line corresponding to a different innovation

horizon, T . For a fixed value of τ , ϕπ values above a given line result in a negative indirect effect while values of

ϕπ below the line result in a positive indirect effect. The blue line is for an innovation in the distant future (i.e.

ϕNIE
π (∞)). The orange line is for a contemporaneous innovation (i.e. ϕNIE

π (0)).

Relationship between ϕNIE
π and τW

Figure 10 plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of τW . The thresholds are decreasing in τW .

The parameter τW governs how transfers funded by labor income taxes are redistributed. Increasing τW

increases the share of transfers funded by labor income taxes that go to the unconstrained household. Because

unconstrained agents have much lower marginal propensities to consume than constrained agents, a one-unit

income transfer from constrained to unconstrained agents reduces demand on the margin. This, in turn,

reduces income. Therefore, all else equal, a higher value of τW reduces the relative size of the indirect income
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effect. Therefore, there is a negative relationship between ϕNIE
π (·) and τW .

Figure 10: Indirect Effect Regions

Notes: The figure plots ϕNIE
π (∞) and ϕNIE

π (0) as functions of τW . The lines partition τW (horizontal axis), ϕπ

(vertical axis) space into regions of positive and negative indirect effects with each line corresponding to a different

innovation horizon, T . For a fixed value of τW , ϕπ values above a given line result in a negative indirect effect while

values of ϕπ below the line result in a positive indirect effect. The blue line is for an innovation in the distant future

(i.e. ϕNIE
π (∞)). The orange line is for a contemporaneous innovation (i.e. ϕNIE

π (0)).

47



7.6.5 Forward-Looking Phillips Curve

Figure 11: Real Interest Rate Change: Contemporaneous Innovation

Notes: The figure shows the pass-through of a one-unit contemporaneous innovation to the monetary policy shock.

The figure partitions λ (horizontal axis), ϕπ (vertical axis) space into a region where the solution is indeterminate

or the indirect effect is positive (grey region) and a region where the indirect effect is negative (colored region). The

colors of the different contours indicate the proportional pass-through of a one-unit monetary policy contemporaneous

monetary policy innovation to the real interest rate. For example, a value of 0.9 means that, following a one-unit

positive innovation, the real interest rate increases by 0.9 units.

7.7 Consumption Gap Derivation

Using the budget constraints of the two types of households, we can write the consumption gap, Γt, as

Γt =

(
1− δW

)
WtN

U
t + 1−δ

1−λDt + TU
D,t + TU

W,t −
(
1− δW

)
WtN

K
t − TK

D,t − TK
W,t

(1− δW )WtNU
t + 1−δ

1−λDt + TU
D,t + TU

W,t

(182)
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Next, use the definition of TK
D,t, T

K
W,t, T

U
D,t, T

U
W,t andDt and denote the numerator asN0,t and the denominator

as D0,t. Starting with the numerator, N0,t, we have

N0,t =
(
1− δW

)
WtN

U
t +

1− δ

1− λ
Dt +

(
1 +

τλ

1− λ

)
δDt +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δDt −

(
1− τW

)
δWWtNt (183)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
(Yt (1− Ξt)−WtNt)

+

(
1 +

τλ

1− λ

)
δ (Yt (1− Ξt)−WtNt) +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ (Yt (1− Ξt)−WtNt)−

(
1− τW

)
δWWtNt (184)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
(Nt (1− Ξt)−WtNt)

+

(
1 +

τλ

1− λ

)
δ (Nt (1− Ξt)−WtNt) +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ (Nt (1− Ξt)−WtNt)−

(
1− τW

)
δWWtNt (185)

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
((1− Ξt)−Wt)Nt

+

(
1 +

τλ

1− λ

)
δ ((1− Ξt)−Wt)Nt +

(
1 +

τWλ

1− λ

)
δWWtNt

−
(
1− δW

)
WtN

K
t − (1− τ) δ ((1− Ξt)−Wt)Nt −

(
1− τW

)
δWWtNt (186)

Divide by WtN
U
t

N0,t =
(
1− δW

)
+

1− δ

1− λ
((1− Ξt)Mt − 1) (1− λΩt)+(

1 +
τλ

1− λ

)
δ ((1− Ξt)Mt − 1) (1− λΩt) +

(
1 +

τWλ

1− λ

)
δW (1− λΩt)

−
(
1− δW

)
(1− Ωt)− (1− τ) δ ((1− Ξt)Mt − 1) (1− λΩt)−

(
1− τW

)
δW (1− λΩt) (187)

Multiply through by (1− λ)

N0,t = (1− λ)
(
1− δW

)
+ (1− δ) ((1− Ξt)Mt − 1) (1− λΩt)+

(1− λ+ τλ) δ ((1− Ξt)Mt − 1) (1− λΩt) +
(
1− λ+ τWλ

)
δW (1− λΩt)

− (1− λ)
(
1− δW

)
(1− Ωt)− (1− λ) (1− τ) δ ((1− Ξt)Mt − 1) (1− λΩt)

− (1− λ)
(
1− τW

)
δW (1− λΩt) (188)

Combining terms we have

N0,t =τ
W δW+

[1− (1− τ) δ] [(1− Ξt)Mt − 1] [1− λΩt] +[
(1− λ) (1− δw)− λτW δW

]
Ωt (189)

49



Now turn to the denominator, D0,t

D0,t =
(
1− δW

)
WtN

U
t +

1− δ

1− λ
Dt +

(
1 +

τλ

1− λ

)
δDt +

(
1 +

τWλ

1− λ

)
δWWtNt

=
(
1− δW

)
WtN

U
t +

1− δ

1− λ
((1− Ξt)−Wt)Nt+(

1 +
τλ

1− λ

)
δ ((1− Ξt)−Wt)Nt +

(
1 +

τWλ

1− λ

)
δWWtNt

=
(
1− δW

)
Wt +

1− δ

1− λ
((1− Ξt)−Wt) [λ (1− Ωt) + (1− λ)] +(

1 +
τλ

1− λ

)
δ ((1− Ξt)−Wt) [λ (1− Ωt) + (1− λ)] +(

1 +
τWλ

1− λ

)
δWWt [λ (1− Ωt) + (1− λ)]

Now divide through by WtN
U
t

D0,t =
(
1− δW

)
+

1− δ

1− λ
((1− Ξt)Mt − 1) (1− λΩt)

+

(
1 +

τλ

1− λ

)
δ ((1− Ξt)Mt − 1) (1− λΩt) +

(
1 +

τWλ

1− λ

)
δW (1− λΩt) (190)

Next, multiply through by (1− λ)

D0,t =(1− λ)
(
1− δW

)
+ (1− δ) ((1− Ξt)Mt − 1) (1− λΩt)+

(1− λ+ τλ) δ ((1− Ξt)Mt − 1) (1− λΩt) +
(
1− λ+ τWλ

)
δW (1− λΩt) (191)

Grouping together terms, we have

D0,t =
{
(1− λ)

(
1− δW

)
+
(
1− λ+ τWλ

)
δW
}
+

{1− δ (1− τ)λ} ((1− Ξt)Mt − 1) (1− λΩt)−{
1 +

(
τW − 1

)
λ
}
δWλΩt (192)

Constants/composite parameters

ψ1 ≜ D0 (1− (1− τ) δ)−N0 (1− δ (1− τ)λ) (193)

ψ2 ≜ D0

[
(1− λ)

(
1− δW

)
− λτW δW

]
+N0λ

(
1−

(
1− τW

)
λ
)
δW (194)

θ1 ≜

[
1 +

(
1− Ω

1− Γ

)(
σ

φ

)(
ψ2 − ψ1λ (M− 1)

D2
0

)]−1(
ψ1 (1− λΩ)

D2
0

)
(195)

θ2 ≜

[
1− σ

[(
λ

1− λΩ

)(
1− Ω

1− Γ

)
−
(

σλ

1− λΓ

)]
θ1

]−1

(196)
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7.8 Complex Roots Derivation

Geometric sum of sine terms

∞∑
k=0

(ρv
r

)k
sin (wk) =

1

2i

[ ∞∑
k=0

(ρv
r

)k
eiwk −

∞∑
k=0

(ρv
r

)k
e−iwk

]
(197)

=
1

2i

[
1

1−
(
ρv

r

)
eiw

− 1

1−
(
ρv

r

)
e−iw

]
(198)

=
1

2i

[
1−

(
ρv

r

)
e−iw −

(
1−

(
ρv

r

)
eiw
)(

1−
(
ρv

r

)
eiw
) (

1−
(
ρv

r

)
e−iw

) ] (199)

=
1

2i

[ (
ρv

r

) (
eiw − e−iw

)
1−

(
ρv

r

)
eiw −

(
ρv

r

)
e−iw +

(
ρv

r

)2
eiwe−iw

]
(200)

=

[ (
ρv

r

)
sin (w)

1 +
(
ρv

r

)2 − (ρv

r

)
(eiw + e−iw)

]
(201)

=

[ (
ρv

r

)
sin (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
(202)

Geometric sum of cosine terms

∞∑
k=0

(ρv
r

)k
cos (wk) =

1

2

[ ∞∑
k=0

(ρv
r

)k
eiwk +

∞∑
k=0

(ρv
r

)k
e−iwk

]
(203)

=
1

2

[
1

1−
(
ρv

r

)
eiw

+
1

1−
(
ρv

r

)
e−iw

]
(204)

=
1

2

[
1−

(
ρv

r

)
e−iw +

(
1−

(
ρv

r

)
eiw
)(

1−
(
ρv

r

)
eiw
) (

1−
(
ρv

r

)
e−iw

) ] (205)

=
1

2

[
2−

(
ρv

r

) (
eiw − e−iw

)
1−

(
ρv

r

)
eiw −

(
ρv

r

)
e−iw +

(
ρv

r

)2
eiwe−iw

]
(206)

=

[
1−

(
ρv

r

)
cos (w)

1 +
(
ρv

r

)2 − (ρv

r

)
(eiw + e−iw)

]
(207)

=

[
1−

(
ρv

r

)
cos (w)

1 +
(
ρv

r

)2 − 2
(
ρv

r

)
cos (w)

]
(208)
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