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Abstract 
Central bankers argue that programmable digital currencies may compromise the 
uniformity of money. We explore this in a stylized model where programmable money 
arises endogenously, and differently programmed monies have varying liquidity. 
Programmability provides private value by easing commitment frictions but imposes 

social costs under informational frictions. Preserving uniformity is not necessarily socially 
beneficial. Banning programmable money lowers welfare when informational frictions are 
mild but improves it when commitment frictions are low. These insights suggest 
programmable money could be more beneficial on permissionless blockchains. 

Topics: Digital currencies and fintech, payment clearing and settlement systems  

JEL codes: E50, E58 

Résumé 
Les banquiers centraux affirment que les monnaies numériques programmables peuvent 
compromettre l’uniformité de la monnaie. Nous étudions cette question dans un modèle 
stylisé où la monnaie programmable apparaît de manière endogène et où les monnaies 
assujetties à différents programmes ont un niveau de liquidité variable. La 
programmabilité atténue les frictions liées à l’engagement et apporte ainsi une valeur 

privée, mais elle impose des coûts sociaux en raison de frictions informationnelles. En 
somme, il n’est pas nécessairement socialement bénéfique de préserver l’uniformité de la 
masse monétaire. Interdire la monnaie programmable réduit le bien-être lorsque les 
frictions informationnelles sont faibles ou que les frictions liées à l’engagement sont 
fortes, mais l’augmente dans le cas contraire. Ces observations donnent à penser que la 

monnaie programmable pourrait être plus bénéfique sur les chaînes de blocs sans 
permission. 

Sujets : Monnaies numériques et technologies financières; Systèmes de compensation et de 
règlement des paiements 
Codes JEL : E50, E58 

 

 

 



"Should the lack of a uniform medium of exchange be a concern? Should Congress, as it did in the

past, intervene to ensure a uniform medium of exchange? I do not think that economic history provides

answers. To address these questions, economists need to develop models that can explain both why

money is used and what form it should take."

– Arthur Rolnick (1999)

1 Introduction

Many researchers and practitioners believe that a key feature of digital money, compared to traditional

money, is programmability. This characteristic allows software programs to be embedded into digital

money, automatically enforcing pre-specified rules when certain conditions are met and eliminating the

need for human intervention or intermediaries. Today, programmable money is often implemented via

blockchain-based smart contracts that execute state-dependent transactions recorded on a distributed

ledger. For example, a smart contract can execute or block a payment based on pre-defined condi-

tions, without a trusted party. Kahn, van Oordt, and Zhu (2021) even argue that it may be optimal

to program an expiry date, after which digital currency becomes non-transferable and loses its value.

Proponents argue that programmable money can revolutionize financial transactions by addressing com-

mitment problems, automating processes, and enhancing efficiency.1 Some central banks also incorporate

programmability into the design of their central bank digital currencies (CBDCs).2

However, money balances that are programmed differently may hold distinct market values, reflecting

differences in transferability, maturity, contractibility, and risk. For instance, unlike traditional payment

services (e.g., PayPal), blockchain-based cryptocurrencies bundle programmability with the digital rep-

resentation of money (Lee, 2021). As a result, differently programmed cryptocurrencies cannot share a

fungible digital representation.3 This non-fungibility could undermine the uniformity (or singleness) of
1Very primitive forms of programmable paper money already exist—such as food stamps—but programmable digital

money is easier to design and implement. For example, in initial coin offerings (ICOs), investors can use programmable

money to restrict how start-ups spend raised funds. In daily life, parents can control when and how children spend pocket

money. Stablecoin issuers can also pre-specify conditions for token redemption.
2For example, Banco Central do Brasil’s Digital Real guidelines emphasize smart contracts and programmable money,

while China’s e-CNY project allows self-executing payments to support business model innovation. See Lee et al. (2021)

for how tokenization and smart contracts address commitment problems.
3As highlighted in Kahn and van Oordt (2022), programmable money is fundamentally different from programmable

payments, which apply pre-specified rules to otherwise fungible money balances. For instance, bank accounts allow users to

arrange pre-authorized payments, but these still require intermediaries to move fungible balances on the account holder’s
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the money stock, where each unit of money should retain the same value and purchasing power as any

other unit of the same denomination.

This is an important consideration for the design of digital money. Some central bankers have voiced

concerns that programmable money could undermine the singleness of money. For example, Norges

Bank Governor Ida Wolden Bache highlighted this risk in a recent speech (Bache 2023):4

"If programmability becomes a highly desired feature of money, and its supply is freely de-

veloped, it could jeopardize the singleness of money. This might lead to the use of multiple

units of account in parallel within a country, or to a more fragile parity between different

representations of the same unit of account."

This concern stems from the historical experience that discounts in privately issued banknotes in the free

banking era led to the loss of uniformity of money (e.g., Weber 2015; Fung, Hendry, and Weber 2017;

Gorton and Zhang 2023). However, it is unclear how relevant this history is for future monetary systems

because of new digital technologies. Given the innovative potential of programmability and its profound

implications on the singleness of money, fundamental research is required to guide policy decisions, as

suggested by Rolnick’s comment cited in the epigraph to this paper, and to answer questions such as:

• Is programmable money beneficial?

• Is the singleness/uniformity of money desirable?

• When does programmability conflict with singleness?

• Should programmability be restricted to preserve singleness?

This paper addresses these questions by developing a microfounded model of programmable money.

Our objective is to provide a simple framework that: i) captures the potential benefits of introducing

programmable tokens and maintaining the singleness of money, and ii) allows us to understand how the

desirability of programmability depends on the fundamental trade-off between underlying information

and commitment frictions. To sharpen these economic insights, we develop a highly stylized model that

behalf (e.g., monthly rent payments). In contrast, programmable money relies on no trusted third party. Moreover,

differently programmed tokens are intrinsically distinct from one another and therefore non-fungible. See Section 3 for

further discussion.
4Relatedly, Carolyn A. Wilkins, external member of Bank of England Financial Policy Committee, argued that “pro-

gramming could also undermine the uniformity of money which is required to provide a safe base to the financial system.”

The 2023 Consultation Paper by the Bank of England and HM Treasury reinforces this view. The BIS report by Garratt

and Shin (2023) highlights the importance of singleness.
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emphasizes transparency and clarity. The model features agents facing a lack of double coincidence of

wants, creating demand for a means of payment. Smart contracts act as bankers, issuing money that

can be programmed with varying degrees of liquidity. Agents cannot commit to certain future actions,

which drives the endogenous creation of programmable money to restrict future choices. However,

programmability also limits the flexibility of future holders. In equilibrium, programmed money has lower

purchasing power than unprogrammed money, resulting in a loss of singleness. Nevertheless, banning

programmable money is not necessarily optimal. When different monies are perfectly recognizable, prices

adjust to reflect differences, enabling efficient outcomes. Indeed, from first principles, it is optimal to

price distinct assets differently. However, when recognizability is imperfect, prices fail to fully adjust,

which leads to welfare losses. As a result, the optimal policy governing programmability depends on

the underlying balance between commitment frictions (which favor programmability) and information

frictions (which favor uniformity).

Our model is the first to endogenize both the creation of programmable money and the liquidity

values of differently programmed tokens (i.e., the degree of singleness). It highlights three key economic

insights. First, singleness is neither necessary nor sufficient for maximum welfare—imposing par trading

can trigger Gresham’s Law. Second, programmability is more beneficial when commitment frictions are

severe but recognizability is high, resembling a permissionless blockchain. Third, historical lessons from

free banking may not apply directly, given evolving frictions and technologies.

Our paper contributes to the rapidly expanding literature on digital currencies, which can be divided

into three main areas. The first area examines the design and operation of cryptocurrencies and utility

tokens.5 The second area focuses on stablecoins, particularly their price stability and regulatory issues.6

The third area focuses on the macro and banking implications of central bank digital currencies.7 Our

paper uniquely examines the interaction between programmability and monetary singleness, filling an

important gap in this literature. Our new insights can inform the design of digital currencies in all three

areas.

This paper is organized as follows. Section 2 presents the model and defines programmability and

singleness. Sections 3 analyzes equilibrium with perfect recognizability. Section 4 studies imperfect

recognizability and the trade-off between commitment and information frictions. Section 5 examines
5Key studies include Biais et al. (2019), Choi and Rocheteau (2021), and Schilling and Uhlig (2019) for Bitcoin, and

Cong et al. (2021) and Gans and Halaburda (2015) for utility tokens.
6See, for example, Li and Mayer (2021), Bertsch (2023), and Carapella (2024).
7Related studies include Andolfatto (2020), Chiu et al. (2023), Keister and Sanches (2023), Schilling et al. (2024), Tinn

(2024), and Williamson (2022).
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over-creation of tokens via Gresham’s law. Section 6 concludes.

2 Environment

We consider a finite-horizon model with four consecutive periods.8 Agents trade numeraire goods y in

centralized markets (CM) in periods 1 and 4, and consumption goods q in decentralized markets (DM)

in periods 2 and 3. These periods are denoted CM1, DM1, DM2, and CM2.

As shown in Figure 1, there are buyers, sellers, and bankers. Buyers and bankers enter in CM1;

buyers exit after DM2, and bankers after CM2. Sellers enter in DM1 and DM2, exiting after CM2. The

discount factor between CM1 and DM1 is β. The timing and the size of discounting do not matter.

Buyers

In CM1, buyers produce the numeraire good y y at a linear utility cost. Buyers are either type i = L

or type i = H with Pr(i = L) = fL and Pr(i = H) = fH = 1 − fL. Each buyer receives a preference

shock determining whether they value consumption in DM1 or DM2. Let q1 be the consumption in DM1

and q2 the consumption in DM2. Then the preferences of buyer i is

Ui(q1, q2) = ηiu(q1) + (1− ηi)ui(q2),

where ηi ∈ {0, 1} is a stochastic variable that takes value 1 with probability σi and 0 otherwise, and

where

uL(q) = εq, with ε∈(0,1),

uH(q) = u(q),

u′(q) > 0, u′′(q) < 0, u′(0) = ∞.

Hence, L-buyers derive utility u(q1) from consumption in DM1 with probability σL, and derive utility

εq2 from consumption in DM2 with probability 1− σL. H-buyers derive utility u(q1) from consumption

in DM1 with probability σH , and derive utility u(q2) from consumption in DM2 with probability 1−σH .

Also, assume σL > σH . Therefore, L-buyers are more likely to consume early than H-buyers, but in case

they consume late, their marginal utility is (arbitrarily) low. It will become clear later that assuming

the special preference uL(q) is key for capturing the commitment problem, while having two types of

buyers is key for generating the information problem.

8The model could easily be extended to a standard infinite-horizon framework (e.g., Lagos and Wright 2005).
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Figure 1: Model Setup

Sellers

There are two types of sellers: Type 1 sellers enter the economy in DM1, and Type 2 sellers enter

in DM2. Type 1 sellers produce q1 with a linear cost function and face a consumption shock. With

probability αe, they are early (e) sellers who want to consume in DM2; with probability 1 − αe, they

are late (ℓ) sellers who want to consume in CM2. All sellers have linear utility. The consumption shock,

revealed after DM1, is crucial for generating the loss of singleness, as explained below. Type 2 sellers

produce q2 in DM2 with a linear cost function and want to consume in CM2. Sellers cannot observe the

buyers’ type. The terms-of-trade in both markets are determined by take-it-or-leave-it offers from the

buyers.

Bankers

Transactions in DM1 and DM2 are subject to informational frictions, preventing the use of credit.

Thus, buyers need a means of payment, giving rise to a token-in-advance constraint. Bankers create

and sell tokens in CM1 for ϕ numeraire goods and have a storage technology to keep reserve of the

numeraire good to redeem tokens in CM2. Reserves yields a return of 1/β, so that the token-in-advance

constraint does not distort consumption.9 Tokens are programmable so that they are either transferable

or not in DM2, denoted by p ∈ {0, 1}. The banker sells tokens at a price ϕp, which depends on their
9We can easily relax this to make the token-in-advance constraint distortionary. We abstract from this as it is already

well understood and is not the focus of the paper.
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programmability. All tokens can be transferred in DM1. However, they are either programmed (p = 1)

to be non-transferable in DM2, or unprogrammed (p = 0) and remain transferable in DM2. The banker

commits to redeeming each token for one unit of numeraire goods in the next CM, subject to a balance-

budget constraint ensuring sufficient reserves. This commitment is credible because bankers act as

passive smart contracts, automatically issuing tokens when reserves are locked and releasing reserves

upon redemption. As automated protocols, smart contracts face no incentive problems, similar to how

stablecoins are issued in the crypto space. Buyers of type i purchase portfolios (mi0,mi1) constituted of

p = 0 tokens and p = 1 tokens, respectively.

First best benchmark

It is straightforward to compute the first-best allocation. In DM1, all buyers should consume q∗,

solving u′(q∗) = 1. In DM2, H-buyers should consume q∗, while L-buyers should not consume since

their marginal utility is always below the marginal cost of production. All other consumption levels are

indeterminate.

We define singleness and programmability as follows. Let Mi denote the set of tokens held by buyer

i in equilibrium, where Mi ⊂ {{0, 1}, {0}, {1}}. For example, MH = {0, 1} means H-buyers hold both

token types while ML = {1} means L-buyers only hold p = 1 tokens.

Definition 1. The degree of singleness, S, measures the fraction of DM meetings where all balances

created in equilibrium, ML ∪MH , are valued the same.10 The degree of programmability, P, measures

the fraction of balances created in equilibrium with p = 1:

P =
fLmL1 + fHmH1∑

p=0,1 fLmLp + fHmHp
.

3 Equilibrium Characterization with Perfect Recognizability

We first examine the case where the sellers can perfectly recognize token types p. In DM1, with proba-

bility αe, the seller wants to consume in DM2; with probability 1 − αe, the seller wants to consume in

CM2. The seller’s type is only revealed ex-post, after the DM1 transaction. A portfolio mi = (mi0,mi1)

induces the seller to sell qi1 = mi1(1 − αe) + mi0. We first derive exchange values of tokens in each

market. In DM2, each token p can buy 1 − p units of q2. Since p = 1 tokens are not transferable, they

cannot buy anything in DM2. In DM1, each token p can buy 1−αe+αe(1− p) units of q1. This reflects

the loss of singleness as tokens have different exchange values.
10Here, we follow Garratt and Shin (2023) to define the concept of singleness in terms of the purchasing power of tokens

when they are used as a means of payment, that is, in DM1 and DM2 transactions.
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The demand for p-tokens Let vi(m) denote the value function of type i buyers holding a portfolio

m. The marginal value of a token p to a type L buyer in DM1 is

∂vL(mL)

∂mLp
= σLu

′(q1L)[1− αe + αe(1− p)] + (1− σL)ε(1− p),

where the buyer buys 1−αe+αe(1−p) units from a seller in DM1 with probability σL, and buys (1−p)

units from a seller in DM2 with probability 1−σL to derive marginal utility ε. In CM1, given the token

price ϕp, a L-buyer’s FOC with respect to the quantity mLp is

−ϕp +
∂vL(mL)

∂mLp
≤ 0.

Similarly, the marginal value of a token p to a type H is

∂vH(mH)

∂mHp
= σHu′(q1H)[1− αe + αe(1− p)] + (1− σH)u′(q2H)(1− p).

In CM1, the H-buyer’s FOC is

−ϕp +
∂vH(mH)

∂mHp
≤ 0.

The bank supply of p-tokens Being risk-neutral, competitive bankers supply any amount of p-

tokens as long as they break even. The token price, ϕp, represents the revenue from selling a p-token in

numeraire goods. To back each token, the banker invests x units of numeraire, generating x/β units in

CM2. This revenue must cover the banker’s commitment to redeem tokens. The zero-profit condition

then determines the price of each p-token as a function of expected redemptions. Then, the zero-profit

condition of the banker gives

ϕp = β[σi(1− αe + αe(1− p)) + (1− σi)(1− p)], (1)

where the term in [.] is the expected redemption if a p-token is held solely by type i buyers. Otherwise,

if a p-token is held by both types, then the zero-profit condition of the banker is given by

ϕp = β
1

fLmLp + fHmHp

∑
i=L,H

fimip[σi(1− αe + αe(1− p)) + (1− σi)(1− p)]. (2)

Proposition 1. With ε < 1 and σL > σH , the unique equilibrium with perfect recognizability is such

that L-buyers only hold p = 1-tokens and H-buyers only hold p = 0-tokens. The equilibrium allocation

does not depend on the value of αe.
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With perfect recognizability, sellers know which token type they are receiving. As a result, sellers

produce more for p = 0-tokens than for p = 1-tokens. This would induce L-buyers to hold p = 0-tokens.

However, when purchasing from the bank, p = 0-tokens are more expensive because they are redeemed

more often. Since L-buyers derive low utility in DM2 (ε < 1) and rarely consume there (σL > σH), they

prefer the cheaper p = 1-tokens, which better match their expected consumption needs. Interestingly,

the equilibrium allocation does not depend on αe. Each p = 1-token can buy 1−αe units of DM1 goods.

As αe goes up, the p = 1-tokens are discounted more—but they are also cheaper to create, since they are

redeemed less often. This encourages buyers to bring more p = 1-tokens to maintain their consumption.

Programmability mitigates commitment problems

Our model captures how token programmability helps mitigate commitment problems. For a L-buyer,

consuming in DM2 is inefficient because their marginal utility is lower than the marginal production

cost. However, without alternative uses, the buyer will spend all tokens in DM2, making it impossible

to credibly commit to not spending them. This commitment problem raises the cost of acquiring tokens,

as the banker needs to keep more reserves for redemption. Programmed tokens allow buyers to commit

to not spending in DM2, lowering acquisition costs and improving welfare by enabling more efficient use

of tokens in DM1.

Prohibition of programmable money

Next, motivated by the policy debate discussed in the introduction, we evaluate whether the regulator

should prohibit programmable money. In that case, there are only tokens with p = 0, which function

like traditional bank deposits that can be transferred at will. The equilibrium conditions for L- and H-

buyers and the banker are given respectively by

ϕ0 = βσLu
′(q1L) + β(1− σL)ε,

ϕ0 = βu′(q1H),

ϕ0 = β.

Since ε < 1, these conditions then imply that u′(q1H) = 1 < u′(q1L). L-sellers find these p = 0-tokens

too expensive. Hence, they do not acquire as many and, as a result, they reduce their consumption.

Therefore the equilibrium allocation without programmability cannot be optimal. We summarize the

results as follows.
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Proposition 2. With perfect recognizability, S = 0 and P = fL
fL+fH(1−αe)

and the first-best allocation

is supported. Prohibiting programmability makes L-buyers worse off, which reduces social welfare, even

though it can fully restore the singleness of money. In this sense, programmability is essential.

Prohibiting programmable money makes the tokens used by L-buyers more liquid. But they would

not benefit from being able to spend it in DM2 (relative to programmed tokens). The reason is that

they can no longer pre-commit to not consuming in DM2. Bankers anticipate that all their tokens will

be redeemed and they respond by increasing the price (ϕ0). As a consequence, L-buyers are worse off,

since that price is too high relative to their marginal value of consumption in DM2. Hence, we have the

following corollary.

Corollary 1. Singleness is neither necessary nor sufficient for achieving efficiency.

Discussion of various model features

Before proceeding, we briefly discuss key assumptions and features of the model to clarify their roles

in generating the main results. The objective is to provide a simple model that: (i) captures the

benefits of programmable tokens and monetary singleness, and (ii) highlights how the desirability of

programmability depends on the trade-off between information and commitment frictions. To focus on

these aspects, we use a stylized model that prioritizes transparency at the cost of abstracting from less

essential considerations.

• Finite life: We study the commitment problem of L-buyers who, in DM2, do not care about their

future. For simplicity, buyers have finite lives, but the model could be extended to infinite-lived

agents facing exit shocks, which generate the same commitment problem.

• Buyers’ preference shocks: The preference shock parameter σL captures the severity of the commit-

ment problem. The problem is more acute when σL falls. We assume σH < σL so that programmed

tokens are cheaper for banks to create. This assumption underpins the welfare-improving role of

programmability. The condition ε < 1 helps generate L-buyers’ incentive to over-consume in DM2

in the simplest way possible.

• Sellers’ linear preference: Assuming sellers have linear utility in DM2 leads to the result that

the first-best allocation can be supported when tokens are perfectly recognizable. Without this,

programmability can disrupt sellers’ consumption smoothing. See an example in the Appendix

where sellers have a trade surplus in DM2. Note that the main result of the paper is robust:
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programmability remains welfare-improving, and there is still a trade-off between commitment

and information frictions.

• Storage technology: We assume a return rate of 1/β to support first-best allocations. Without

this, standard cash-in-advance distortions would appear, which we abstract from to focus on pro-

grammability and singleness.

• Programmable payments: The commitment-singleness trade-off could be avoided if buyers used

programmable payments instead of programmable money. If transfer restrictions disappeared once

balances reached sellers, sellers would not discount programmed tokens. However, buyers could

exploit the system by first transferring funds to a secret wallet. This highlights that the trade-off

arises only if programmability constrains not only the original users but also future users.

• Flexibility in modeling programmability: We capture programmability via time-dependent tokens,

but similar results would hold under good-dependent, recipient-dependent, or state-dependent

designs.

4 Imperfect Recognizability

In this section, we consider the case where tokens can be programmed, but a fraction π of DM1 sellers

cannot observe the token type p. These uninformed sellers might want to infer buyer through contractual

terms, but this is infeasible because all buyers active in DM1 derive the same marginal utility from

consumption and have identical continuation values from holding tokens. For simplicity, we also assume

that trade size cannot be used to separate types, as each buyer purchases a fixed quantity from many

different sellers.11 When sellers face unknown tokens, they naturally value them based on the population

average. Specifically, a unit of unknown token can induce an uninformed seller to sell qπ1 = (1 − αe) +

αe(1− p̃) units of DM1 goods. This reflects the expected payoffs of consuming a unit in CM2 plus the

expected payoff of consuming in DM2, given that the fraction of transferable tokens is

1− p̃ = 1− P =
fLmL0 + fHmH0∑

p=0,1 fLmLp + fHmHp
.

11In the Appendix, we relax this assumption and allow trade size to signal buyer types, introducing a signaling game

between buyers and uninformed sellers. Under certain conditions, a separating equilibrium exists where H-buyers use

unprogrammed money and over-consume, while L-buyers use programmed money and consume efficiently. As with the

pooling equilibrium, imperfect recognizability leads to inefficiency.
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Then, the marginal value of a token p to a L-buyer in the DMs is

∂vL(mL)

∂mLp
= σLu

′(q1L)(1− π) [1− αe + αe(1− p)]

+σLu
′(qπ1L)π [1− αe + αe(1− p̃)] + (1− σL)ε(1− p).

In CM1, given the price of token p, ϕp, a L-buyer’s FOC with respect to the quantity of mLp is

−ϕp +
∂vL(mL)

∂mLp
≤ 0.

The marginal value of a token p to a H-buyer in the DMs is

∂vH(mH)

∂mHp
= σHu′(q1H)(1− π) [1− αe + αe(1− p)]

+σHu′(qπ1H)π [1− αe + αe(1− p̃)] + (1− σH)u′(q2H)(1− p).

In CM1, given the price of token p, ϕp, a H-buyer’s FOC with respect to the quantity of mHp is

−ϕp +
∂vH(mH)

∂mHp
≤ 0.

Comparing these conditions with those in the previous section, we notice that the information problem

tends to increase the marginal value of a programmed token and decrease the marginal value of an

unprogrammed token. In other words, issuing an unprogrammed token “cross-subsidizes” the use of a

programmed token when there are uninformed sellers who want to consume early. This effect distorts

consumption in DM1 and token creation in CM1. Next, we show that it is still an equilibrium that

L-buyers only hold p = 1-tokens and H-buyers only hold p = 0-tokens.

Proposition 3. By continuity, for π not too big, MH = {0}, ML = {1} is an equilibrium of the

economy with imperfect recognizability.

The result in Proposition 3 is intuitive. If the adverse selection problem in DM1 is not too severe (π

is small), the expected price of a token will not differ too much from the price of the same token in the

equilibrium with perfect recognizability. Therefore, the incentives of H- and L-buyers to only hold one

type of token are preserved.

Given that the information problem distorts consumption in DM1, it may be socially optimal to

restrict the use of programmed tokens under certain conditions. Focusing on this equilibrium, we examine

how the welfare impacts of prohibiting programmability depends on the degree of information frictions

(captured by π) and commitment frictions (captured by σL).

Proposition 4. In the equilibrium with MH = {0} and ML = {1}, prohibiting programmability reduces

welfare for π small enough, but increases welfare for σL large enough.
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Intuitively, it is optimal to allow programming when tokens are easy to recognize and when users can-

not easily commit to future actions. One may argue that this is the case for a permissionless blockchain

where digital tokens can be readily verified and priced on chain while anonymous users can hardly make

binding promises.

5 Gresham’s Law: Over-creation of Programmed Tokens

In Section 4, we focus on the case where buyers’ equilibrium token sets remain unchanged. In this

section, we examine the general case and further explore how informational frictions can distort buyers’

incentives and induce them to over-create programmed tokens. We focus on the case of log utility in

order to obtain analytical results. We show in the Appendix that the equilibrium portfolio choices must

be characterized by one of the following two cases:

• separating equilibrium: MH = {0}, ML = {1}

• mixing equilibrium: MH = {0, 1}, ML = {1}

In the separating case, buyers specialize in their token holdings as before, while in the mixing case,

H-buyers choose to hold both programmed and unprogrammed tokens. This shows the following result.

Proposition 5. When

π ≤ π̄ ≡ (σL − σH)(1− αe)

αeσH
,

the unique equilibrium is “separating”: MH = {0}, ML = {1}. When π > π̄, the unique equilibrium is

“mixing”: MH = {0, 1}, ML = {1}.

Interestingly, when information frictions are sufficiently severe, H-buyers are induced to hold pro-

grammed tokens even though they have no commitment problems. They do so to exploit the lack

of information and pool their tokens with others. This mechanism resembles a version of Gresham’s

law, where agents over-create tokens with inflated value. With imperfect recognizability, the degree of

singleness, S, is given by π, while programmability is given by p̃.

To illustrate the equilibrium effects of changing π, Figure 2 presents a numerical example. For

π ∈ (0, 0.1), a separating equilibrium emerges where token prices remain constant as π rises (plots i

and ii). Here, H-buyers cross-subsidize L-buyers in uninformed meetings, leading to H-buyers’ under-

consumption and L-buyers’ over-consumption (plots vii and xi), which reduces overall welfare (plot

iv).
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For π ∈ (0.1, 1), a mixing equilibrium occurs, where H-buyers shift their portfolios towards more

programmed tokens, consistent with Gresham’s law (plots viii and ix). This results in under-consumption

by H-sellers in DM2 meetings (plot xii). As σH < σL, the portfolio change reduces ϕ1 (plot i), inducing

L-buyers to acquire more programmed tokens and over-consume in informed DM1 meetings (plot vi).

Welfare eventually falls below the level without programmability (plot iv, dash line).

This example highlights that prohibiting programmability to preserve monetary singleness is not

always optimal. Such policy improves welfare only when information frictions dominate commitment

frictions.

6 Conclusion

This paper studies an economy where programmable tokens arise endogenously to mitigate commitment

problems. While programmability may threaten monetary singleness, its social desirability depends

on the trade-off between commitment and information frictions. We show that singleness is neither

necessary nor sufficient for efficiency. Programmability is optimal when tokens are easily recognized and

users cannot commit to future actions—a setting resembling permissionless blockchains. More broadly,

our findings caution policymakers against relying on lessons from the free banking era when designing

future monetary systems, given the fundamentally different technologies and frictions involved.
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Figure 2: Equilibrium Effects of π (αe = 0.2, σL = 0.41, σH = 0.4, β = 0.9, fL = 0.5, ε = 0.995)
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Appendix

A. Proof of Proposition 1:

Proof. Since Mi = {0},{1}, or {0, 1} for i = H,L, there are potentially nine equilibrium outcomes.

Obviously, H-buyers holding only p1 is not an equilibrium because q2H = 0 and, for any finite ϕ0, H-

buyers have an incentive to hold some p0. If there are initially no p0 tokens, bankers can make a profit

by creating some. Hence, we only need to consider six remaining cases.

Case (i): MH = {0}, ML = {1}

The equilibrium conditions for L- and H- buyers and the banker are given by

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe).

Since q1H = q2H ≡ qH , we have ϕ0 = βu′(qH) or u′(qH) = 1. H-buyers do not hold p1 if σL > σH . Also,

L-buyers do not hold p0if 1 > ε.

ϕ0 > βσLu
′(q1L) + β(1− σL)ε

Hence, this is an equilibrium.

Case (ii): MH = {0}, ML = {0}

The equilibrium conditions are

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

q1H = q2H ≡ qH .

Hence we have

1 = u′(qH) = σLu
′(q1L) + (1− σL)ε.

We now check the incentives to offer p1 to serve type L only. L-buyers hold it if

ϕ1 ≤ β(1− (1− σL)ε)(1− αe).
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H-buyers do not hold it if

ϕ1 > βσHu′(qH)(1− αe) = βσH(1− αe).

And the banker makes non-zero profit if

ϕ1 > βσL(1− αe).

Since σL > σH , it is profitable to introduce p1 iff 1 > ε. Since the proposed equilibrium can be disturbed,

this is not an equilibrium.

Case (iii): MH = {0}, ML = {0, 1}

The equilibrium conditions are

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe).

These conditions imply that

1 = σL + (1− σL)ε,

which contracts with the assumption that ε < 1. So this is not an equilibrium.

Case (iv): MH = {0, 1}, ML = {1}

The equilibrium conditions are

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H) =
ϕ1

(1− αe)
+ β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
fLmLσL + fHmHσH

fLmL + fHmH
(1− αe).

Note that the last condition implies that

ϕ1 > βσH(1− αe),
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which, together with the second FOC above, imply that

u′(q1H) > 1.

But the third FOC above also implies that

u′(q2H) < 1.

This contradicts with the fact that

q1H ≥ q2H .

So this is not an equilibrium.

Case (v): MH = {0, 1}, ML = {0}

The equilibrium conditions are

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H) =
ϕ1

(1− αe)
+ β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσH(1− αe).

The last three conditions imply that

u′(q2H) = 1.

The first FOC implies that

u′(q1L) > 1.

Finally, the fact that L-buyers do not hold p1 requires that

1 >
σH

σL
> u′(q1L),

but this contradicts with the condition above. So this is not an equilibrium.

Case (vi): MH = {0, 1}, ML = {0, 1}
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The equilibrium conditions are

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ1 = βσHu′(q1H)(1− αe)

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
fLmLσL + fHmHσH

fLmL + fHmH
(1− αe).

The first four conditions imply that

1 > u′(q2H) ≥ u′(q1H),

but this contradicts with the condition that

β = ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H).

So this is not an equilibrium.

In conclusion, the unique equilibrium portfolio is Case (i): MH = {0}, ML = {1}. Since u′(q1H) =

u′(q1L) = u′(q2H) = 1 and q2L = 0, the first-best allocation is achieved.
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B. Proof of Proposition 3

Proof. Consider an equilibrium with MH = {0}, ML = {1}. The equilibrium conditions are

ϕ1 = βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π [1− αe + αe(1− p̃)] ,

ϕ0 = βσHu′(q1H)(1− π) + βσHu′(qπ1H)π [1− αe + αe(1− p̃)] + β(1− σH)u′(q2H),

ϕ0 = β,

ϕ1 = βσL(1− αe),

1− p̃ =
fHmH0

fLmL1 + fHmH0
.

Since H-buyers only hold p = 0-tokens, q1H = q2H ≡ qH . Since they hold mH0 units of p = 0-

tokens, qH = mH0. However, when they meet an uninformed seller in DM1, they can only obtain

mH0 [1− αe + αe(1− p̃)] units of consumption. Therefore,

q1H = q2H =
qπ1H

1− αe + αe(1− p̃)
> qπ1H .

In contrast, L-buyers only hold p = 1-tokens. Their consumption in DM1 is higher when they meet

an uninformed seller (relative to when they meet an informed one) because the uninformed seller values

the token at the average value. Therefore,

q1L = mL1(1− αe) < mL1(1− αe + αe(1− p̃)) = qπ1L.

To verify that this is an equilibrium, we need to check that the FOCs are satisfied. First, L-buyers

do not hold p = 0-tokens:

1 > σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) + (1− σL)ε. (3)

Note that the FOC of L-buyers given ϕ1 implies that

σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃))

=σL(1− αe) + αeσLu
′(q1L)(1− π).

Using this result, inequality (3) becomes

1 > σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε. (4)

Also, from the low type’s FOC, we know that

1 > u′(q1L)(1− π).
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Therefore we can bound the RHS of(4),

σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε

<σL(1− αe) + αeσL + (1− σL)ε

=σL + (1− σL)ε

<1.

This shows that (4) and therefore (3) always hold. Hence L-buyers have no incentives to hold p = 0-

tokens. Next, we also need to show that H-buyers have no incentive to hold p = 1-tokens. This is the

case if π is low enough so that

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)).
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C. Proof of Proposition 4

Proof. When π = 0, the first-best allocation is supported with programmability and is not supported

without it. By the continuing existence of MH = {0}, ML = {1} equilibrium with imperfect recog-

nizability when π is not too large, welfare with programmability is close to the first best welfare with

π = 0. In particular, prohibiting programmability would create a first order loss in informed meetings

by moving away from the first allocations in those meetings. It would generate only a second order gain

by shifting the allocation in uninformed meetings, because there are few uninformed meetings when π

is small. We now examine the effect of σL in this equilibrium. When there is no programmability, the

social welfare is

W̃ = fL[σLW1L + (1− σL)W2L] + fH [σHW1H + (1− σH)W2H ],

where

W1L = u(q1L)− q1L,

W2L = q2L(ε− 1),

W1H = u(q1H)− q1H ,

W2H = u(q2H)− q2H .

The equilibrium conditions imply

ϕ0 = βσLu
′(q1L) + β(1− σL)ε,

ϕ0 = βσHu′(q1H) + β(1− σH)u′(q2H),

ϕ0 = β.

Hence, we have

1 = u′(q1H) = u′(q2H) = σLu
′(q1L) + (1− σL)ε,

implying that q1H = q∗H and q1L is arbitrarily close to q∗1L as σL → 1. As a result, W̃ approaches its

first-best level as σL → 1.

When σL = 1, the welfare with programmability is

W̄ = fL[(1− π)W1L + πWπ
1L] + fH [σH(1− π)W1H + σHπWπ

1H + (1− σH)W2H ],
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with

W1L = u(q1L)− q1L,

Wπ
1L = u(qπ1L)− qπ1L,

W1H = u(q1H)− q1H ,

Wπ
1H = u(qπ1H)− (qπ1H),

W2H = u(q2H)− q2H .

Note that

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃)),

implying that

qπ1L = q1L
1− αe + αe(1− p̃)

1− αe

qπ1H = q1H(1− αe + αe(1− p̃)) = q2H(1− αe + αe(1− p̃)).

Hence, whenever p̃ < 1, some quantities are not at their first-best levels. Therefore, W̄ is lower than its

first-best level when σL = 1. By continuity, this is true for σLclose to 1.
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D. Proof of Proposition 5

Proof. Step 1: We first show that, with imperfect recognizability and CRRA preferences,

Cases (i) and (iv) are equilibrium portfolio choices.

CASE (i) : Consider an equilibrium with MH = {0}, ML = {1}

The consumption levels are then

q1H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q2L = 0.

The equilibrium conditions for L- and H-buyers and the banker are given by

ϕ1 = βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃))

ϕ0 = βσHu′(q1H)(1− π) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0
.

Since mH0 = q1H and (1− αe + αe(1− p̃))mH0 = qπ1H , we have

q1H =
qπ1H

1− αe + αe(1− p̃)
.

Since q1H = q2H ≡ qH , we have

q1H = q2H =
qπ1H

1− αe + αe(1− p̃)
.

First, L-buyers have no incentives to hold p0:

ϕ0 > βσLu
′(q1L)(1− π) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃)) + β(1− σL)ε

or

1 > σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) + (1− σL)ε
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Note that the FOC of the low type given ϕ1 implies that (setting p = 0):

−ϕp + βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(qπ1L)π(1− αe + αe(1− p̃)) = 0

−σL(1− αe) + σLu
′(q1L)(1− π)(1− αe) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) = 0,

so

σLu
′(q1L)(1− π)(1− αe) + σLu

′(qπ1L)π(1− αe + αe(1− p̃)) = σL(1− αe)

σLu
′(q1L)(1− π) + σLu

′(qπ1L)π(1− αe + αe(1− p̃))

=σL(1− αe) + αeσLu
′(q1L)(1− π).

Using this result, the above condition becomes

1 > σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε.

Also, from the low type’s FOC, we know that

βσL(1− αe) > βσLu
′(q1L)(1− π)(1− αe)

⇒ 1 > u′(q1L)(1− π).

Therefore, the RHS of the above condition is

σL(1− αe) + αeσLu
′(q1L)(1− π) + (1− σL)ε

<σL(1− αe) + αeσL + (1− σL)ε

=σL + (1− σL)ε

<1.

Hence, the low type has no incentives to hold p0.

Next, H-buyers have no incentives to hold p1 if

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)).

This requires

βσL(1− αe) > βσHu′(q1H)(1− π)(1− αe) + βσHu′(qπ1H)π(1− αe + αe(1− p̃))︸ ︷︷ ︸
=ϕ0−β(1−σH)u′(q2H)

σL(1− αe) + (1− σH)u′(q2H) > 1
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Notice that (FOC H):

1 = u′(q2H)− πσH [u′(q2H)− u′(qπ1H)(1− αe + αe(1− p̃))]

1 = u′(q2H)− πσH [u′(q2H)− u′(q2H(1− αe + αe(1− p̃)))(1− αe + αe(1− p̃))]

1 = u′(q2H)− πσH

q2H
[u′(q2H)q2H − u′(q2H(1− αe + αe(1− p̃)))q2H(1− αe + αe(1− p̃))]

1 = u′(q1H)− πσH [u′(q2H)− u′(qπ1H)(1− αe + αe(1− p̃))]

1 = u′(q1H)
[
1− πσH + πσH(1− αe + αe(1− p̃))k

]
Since u is concave, u′′(q) < 0 for all q. Suppose the coefficient of relative risk aversion is less than 1.

Then, u′(x)x is increasing. Therefore, u′(αq)αq < u′(q)q for all α < 1. In this case (or in the homothetic

case),

u′(q2H) ≥ 1.

Hence H has no incentive to hold p1 whenever

βσL(1− αe) > βσHu′(q1H)
[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

]
σL(1− αe)

σH
>

[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

]
[1− πσH + πσH(1− αe + αe(1− p̃))k]

Since p̃ < 1 and does not go to 1 as αe → 1 (if anything p̃ → 0 in that case), the inequality above shows

the conjecture that for αe sufficiently high, this equilibrium no longer exists because ϕ1 becomes so low

that H-buyers choose to hold some p1 tokens.

CASE (ii) : Consider an equilibrium with MH = {0}, ML = {0}

The consumption levels are then

q1H = qπ1H = q2H = mH0

q1L = qπ1L = q2L = mL0.

The equilibrium conditions for L- and H-buyers and the banker are given by

ϕ0 = βσLu
′(q1L) + β(1− σL)ε

ϕ0 = βu′(q1H)

ϕ0 = β

p̃ = 0.
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We now check the incentives to offer p1 to serve L-buyers. They have an incentive to hold if

ϕ1 ≤ βσLu
′(q1L)(1− π)(1− αe) + βσLu

′(q1L)π(1− αe + αe(1− p̃)).

So,

ϕ1 ≤ βσLu
′(q1L) [(1− αe) + παe(1− p̃)]

⇒ ϕ1 ≤ β(1− (1− σL)ε) [(1− αe) + παe(1− p̃)] .

H-buyers have no incentives to hold if

ϕ1 > βσHu′(q1H)(1− π)(1− αe) + βσHu′(q1H)π(1− αe + αe(1− p̃))

> βσHu′(q1H) [(1− αe) + παe(1− p̃))] .

And the banker makes non-zero profit if

ϕ1 > βσL(1− αe).

It is profitable to introduce p1 iff

β(1− (1− σL)ε) [(1− αe) + παe(1− p̃)] > βσL(1− αe)

(1− ε+ σLε) [(1− αe) + παe(1− p̃)] > σL(1− αe).

In the worst case scenario p̃ = 1, then it is profitable to introduce p1 whenever

1 ≥ ε,

which is always the case. So MH = {0}, ML = {0} cannot be an equilibrium.

CASE (iii): Consider an equilibrium with MH = {0}, ML = {0, 1}

The consumption levels are then

q1H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

q1L = mL0 +mL1(1− αe)

qπ1L = (mL0 +mL1) (1− αe + αe(1− p̃))

q2L = mL0.
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The equilibrium conditions for L- and H- buyers and the banker are given by

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHu′(qπ1H)π(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0 + fLmL0

fLmL1 + fLmL0 + fHmH0
> 0.

Notice (important for below) that the second FOC implies

1 > (1− π)u′(q1L).

This implies

1 = σL [(1− π)u′(q1L) + πu′(qπ1L)(1− αe + αe(1− p̃))] + (1− σL)ε

σL(1− αe) = σL [(1− π)u′(q1L) + πu′(qπ1L)(1− αe + αe(1− p̃))]− σL(1− π)u′(q1L)αe,

and subtracting both equations,

1− σL(1− αe) = (1− σL)ε+ σL(1− π)u′(q1L)αe

1− σL + σLαe = (1− σL)ε+ σL(1− π)u′(q1L)αe.

Since 1 > (1−π)u′(q1L), this contradicts ε < 1. So, MH = {0}, ML = {0, 1} cannot be an equilibrium.

CASE (iv): Consider an equilibrium with MH = {0, 1}, ML = {1}

In this case, the consumption levels are

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q2L = 0

and

q1H = mH0 +mH1(1− αe) ≥ (mH0 +mH1) (1− αe) ≡ q̃H

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H .
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The equilibrium conditions are

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 > βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ0 = β

ϕ1 = β
σL (fLmL1) + σH (fHmH1)

fLmL1 + fHmH1
(1− αe) = βϕ̃(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0 + fHmH1
< 1.

This is an equilibrium condition whenever at mH1 = 0, the H-buyer wants to purchase p1. Define

q̃1H = mH0

q̃π1H = mH0(1− αe + αe(1− p̃))

q2H = mH0

Then H-buyer wants to buy p1 iff

ϕ1 < βσH(1− π)u′(q̃1H)(1− αe) + βσHπu′(q̃π1H)(1− αe + αe(1− p̃))

ϕ1 < βσH(1− π)u′(q2H)(1− αe) + βσHπu′(q2H)(1− αe + αe(1− p̃))k

ϕ1 <
[
βσH(1− π)(1− αe) + βσHπ(1− αe + αe(1− p̃))k

]
u′(q2H),

and we also have

ϕ0 ≤ βσH(1− π)u′(q2H) + βσHπu′(q2H)(1− αe + αe(1− p̃))k + β(1− σH)u′(q2H)

1 ≤
[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
u′(q2H).

Hence a necessary condition is

ϕ1 <

[
βσH(1− π)(1− αe) + βσHπ(1− αe + αe(1− p̃))k

]
[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

ϕ̃(1− αe) <
σH(1− π)(1− αe) + σHπ(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]
.

At the same time, it must be that L-buyers do not want to purchase p0. Use the FOC with respect

to p1, since

u′(q1L) =
ϕ̃(1− αe)

σL(1− π)(1− αe) + σLπ(1− αe + αe(1− p̃))k
.

28



The FOC with respect to p0 implies,

1 >
(1− π) + π(1− αe + αe(1− p̃))k

(1− π)(1− αe) + π(1− αe + αe(1− p̃))k
ϕ̃(1− αe) + (1− σL)ε.

Hence, MH = {0, 1}, ML = {1} is an equilibrium whenever

ϕ̃(1− αe) < [1− (1− σL)ε]
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k
,

and

ϕ̃(1− αe) < σH
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]
.

Which is the tighter upper-bound on ϕ̃(1− αe)?

[1− (1− σL)ε]
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k
< σH

(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]

[1− (1− σL)ε]
[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
< σH

[
(1− π) + π(1− αe + αe(1− p̃))k

]
1− σH − (1− σL)ε

[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
< 0

or
1− σH

1− σL
< ε

[
1− σHπ + σHπ(1− αe + αe(1− p̃))k

]
,

which cannot be. So the tighter constraint is

ϕ̃(1− αe) < σH
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

[1− σHπ + σHπ(1− αe + αe(1− p̃))k]
.

Therefore, that bounds is separating case (i) and (iv).

CASE (v) : Next, consider the equilibrium with MH = {0, 1}, ML = {0}

In this case, the consumption levels are

q1L = mL0

qπ1L = mL0(1− αe + αe(1− p̃)) ≤ q1L

q2L = mL0

and

q1H = mH0 +mH1(1− αe)

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H .

We want to show that this cannot be an equilibrium because L-buyers would want to purchase p1.
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The equilibrium conditions are

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 > βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 = β

ϕ1 = βσH(1− αe)

1− p̃ =
σLfLmL0 + σHfHmH0

fLmL0 + fHmH0 + fHmH1
< 1.

We have from the FOC of the L-buyer with respect to p0,

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

1 =
[
(1− π) + π(1− αe + αe(1− p̃))k

]
σLu

′(q1L) + (1− σL)ε

1− (1− σL)ε

σL [(1− π) + π(1− αe + αe(1− p̃))k]
= u′(q1L)

and we need

ϕ1 > βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

σH(1− αe) >
[
σL(1− π)(1− αe) + σLπ(1− αe + αe(1− p̃))k

]
u′(q1L)

σH(1− αe) >

[
(1− π)(1− αe) + π(1− αe + αe(1− p̃))k

(1− π) + π(1− αe + αe(1− p̃))k

]
(1− (1− σL)ε)

or

σH

(1− αe)
[
(1− π) + π(1− αe + αe(1− p̃))k

]
[(1− π)(1− αe) + π(1− αe + αe(1− p̃))k]

> (1− (1− σL)ε).

Or rearranging,

(1− σL)ε > 1− σH

(1− αe)
[
(1− π) + π(1− αe + αe(1− p̃))k

]
[(1− π)(1− αe) + π(1− αe + αe(1− p̃))k]

= 1−AσH ,

since A < 1 and

AσH < σH < σL.

While ε < 1, the inequality above can never be satisfied.

Hence MH = {0, 1}, ML = {1} cannot be an equilibrium.

CASE (vi): Consider an equilibrium with MH = {0, 1}, ML = {0, 1}
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In this case, the consumption levels are

q1L = mL0 +mL1(1− αe)

qπ1L = (mL0 +mL1) (1− αe + αe(1− p̃))

q2L = mL0

and

q1H = mH0 +mH1(1− αe)

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))

q2H = mH0 ≤ q1H .

The equilibrium conditions are

ϕ0 = βσL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + β(1− σL)ε

ϕ1 = βσL(1− π)u′(q1L)(1− αe) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃))

ϕ0 = βσH(1− π)u′(q1H) + βσHπu′(qπ1H)(1− αe + αe(1− p̃)) + β(1− σH)u′(q2H)

ϕ1 = βσH(1− π)u′(q1H)(1− αe) + βσHπu′(qπ1H)(1− αe + αe(1− p̃))

ϕ0 = β

ϕ1 = β
σL (fLmL1) + σH (fHmH1)

fLmL1 + fHmH1
(1− αe) = βϕ̃(1− αe)

1− p̃ =
fHmH0 + fLmL0

fLmL1 + fLmL0 + fHmH0 + fHmH1
< 1.

Hence,

1 = σL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

and using that expression to get rid of u′(qπ1L) in the FOC with respect to p1,

ϕ̃(1− αe) = σL(1− π)u′(q1L)(1− αe) + [1− σL(1− π)u′(q1L)− (1− σL)ε]

ϕ̃(1− αe) = 1− (1− σL)ε− αeσL(1− π)u′(q1L)

u′(q1L) =

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αeσL(1− π)

.
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Now solve for u′(qπ1L) using FOC with respect to p0,

1 = σL(1− π)u′(q1L) + βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

1 = σL(1− π)

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αeσL(1− π)

+ βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

1 =

[
1− ϕ̃(1− αe)− (1− σL)ε

]
αe

+ βσLπu
′(qπ1L)(1− αe + αe(1− p̃)) + (1− σL)ε

αe =
[
1− ϕ̃(1− αe)− (1− αe)(1− σL)ε

]
+ αeβσLπu

′(qπ1L)(1− αe + αe(1− p̃))[
ϕ̃+ (1− σL)ε− 1

]
(1− αe) = αeβσLπu

′(qπ1L)(1− αe + αe(1− p̃)) > 0.

This requires

1 < ϕ̃+ (1− σL)ε,

however, since ϕ̃ < σL this contradicts ε < 1.

Therefore, MH = {0, 1},ML = {0, 1} cannot be an equilibrium.

Step 2: We now derive the threshold value π̄ for the log-utility case.

Case (i) MH = {0}, ML = {1}

The equilibrium conditions for L- and H-buyers and the banker are given by

ϕ1 = βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃))

ϕ0 = βσH
(1− π)

q1H
+ βσH

π

qπ1H
(1− αe + αe(1− p̃)) + β

(1− σH)

q2H

ϕ0 = β

ϕ1 = βσL(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0
.

Equilibrium quantities and prices are given by

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃))

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃))
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mL1 =
1

1− αe

mH0 = 1

1− p̃ =
fH

fL
1−αe

+ fH

ϕ0 = β

ϕ1 = βσL(1− αe).

Type H has no incentives to hold p = 1-tokens if

σL(1− αe) > σH(1− π)(1− αe) + σHπ.

σL(1− αe) > σH(1− αe) + σHπ(1− (1− αe)).

(σL − σH) (1− αe)

σHαe
> π.

Case (iv) MH = {0, 1}, ML = {1}

The equilibrium conditions for L- and H-buyers and the bank are given by

ϕ1 = βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃))

ϕ1 = βσH
(1− π)

q1H
(1− αe) + βσH

π

qπ1H
(1− αe + αe(1− p̃))

ϕ0 = βσH
(1− π)

q1H
+ βσH

π

qπ1H
(1− αe + αe(1− p̃)) + β

(1− σH)

q2H

ϕ0 = β

ϕ1 = β
σLfLmL1 + σHfHmH1

fLmL1 + fHmH1
(1− αe)

1− p̃ =
fHmH0

fLmL1 + fHmH0 + fHmH1
.

Equilibrium quantities are given by

q1L = mL1(1− αe)

qπ1L = mL1(1− αe + αe(1− p̃)) =
q1L

1− αe
(1− αe + αe(1− p̃))

q1H = mH0 +mH1(1− αe)

q2H = mH0

qπ1H = (mH0 +mH1)(1− αe + αe(1− p̃))
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ϕ0 = β

ϕ1 = βσL
(1− αe)

q1L
.

L-buyers have no incentives to hold p = 0-tokens whenever

ϕ0 > βσL
(1− π)

q1L
(1− αe) + βσL

π

qπ1L
(1− αe + αe(1− p̃)) + β(1− σL)ε

1 >
σLfLmL1 + σHfHmH1

fLmL1 + fHmH1
(1− αe) + (1− σL)ε.

Since σLfLmL1+σHfHmH1

fLmL1+fHmH1
∈ (σH , σL), this condition holds whenever

1 > σL(1− αe) + (1− σL)ε,

which is always satisfied since αe > 0 and ε < 1. We now verify conditions such that, at the given prices,

H-buyers want to acquire type p = 1-tokens. Suppose a H-buyer does not acquire p = 1-tokens, but

only p = 0-tokens. Then they consume

q1H = mH0

q2H = mH0

qπ1H = mH0(1− αe + αe(1− p̃)),

where mH0 is given by

ϕ0 = βσH
(1− π)

mH0
+ βσH

π

mH0
+ β

(1− σH)

mH0

and so mH0 = 1. Then q1H = q2H = 1 and qπ1H = 1 − αe + αe(1 − p̃). The first order condition with

respect to p = 1-tokens is

−ϕ1 + βσH
(1− π)

q1H
(1− αe) + βσH

π

qπ1H
(1− αe + αe(1− p̃)) =

−ϕ1 + βσH(1− π)(1− αe) + βσHπ

and since

ϕ1 ∈ (β(1− αe)σH , β(1− αe)σL),

the H-buyer will prefer to acquire p = 1-tokens if

β(1− αe)σL < βσH(1− π)(1− αe) + βσHπ
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or

(1− αe) (σL − σH)

σHαe
< π.
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E. An Example Where Buyers Play a Signaling Game When Tokens Are

Imperfectly Recognizable

Below, we consider a signaling game and show that for low α and high σH , a separating equilibrium exists:

H-buyers hold M unprogrammed tokens and consume too much, while L-buyers hold 1/(1 − α) < M

programmed tokens and consume efficiently.

Suppose in CM1, a fraction π of buyers learn in advance that, if they trade in the DM1, the sellers

will be uninformed. When an uninformed seller is offered m tokens in a match, the seller’s belief is that

all the m tokens offered are NOT programmed whenever

m ≥ M,

otherwise the belief is that they are all programmed. Suppose u(q) = log q. We conjecture that in

equilibrium, p0 = 1 and p1 = σL(1 − α). That is, buyers separate in their portfolio choice. L-buyers

hold less than M p = 1-tokens and H-buyers hold more than M p = 0-tokens. We will verify that these

are the equilibrium prices.

Define

1M = 1 iff m0 +m1 ≥ M.

The problem of a type i buyer is

max
mi0,mi1

σiu(q
π
i1) + (1− σi)ui(qi2)− p0m0 − p1m1,

where

qπi1 = (mi0 +mi1)(1− α) + 1M (mi0 +mi1)α

qi2 = mi0

uL(q2) = εq2

uH(q2) = u(q2).

First, consider L-buyers: Suppose 1M = 0, then

max
mL0,mL1

σLu((mL0 +mL1)(1− α)) + (1− σL)εmL0 −mL0 − σL(1− α)mL1 + λM [M − (mL0 +mL1)]

The FOCs are

mL0 : σL
1

(mL0 +mL1)
+ (1− σL)ε− 1− λM ≤ 0

mL1 : σL
1

(mL0 +mL1)
− σL(1− α)− λM ≤ 0
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with ε small enough, mL0 = 0. Then either mL0 = 1/(1− α) < M or mL0 = M .

Hence, the solution is

mL1 = min{ 1

1− α
,M},

mL0 = 0.

Suppose 1M = 1, then:

max
mL0+mL1≥M

σLu((mL0 +mL1)) + (1− σL)εmL0 −mL0 − σL(1− α)mL1

Hence, the solution is

mL1 = max{ 1

1− α
,M}

mL0 = 0.

Then the buyer chooses between (i) revealing the true token type

mL1 = min{ 1

1− α
,M},

with a payoff

σL log((1− α)min{ 1

1− α
,M})− σL(1− α)min{ 1

1− α
,M}

or (ii) pretending to hold programmed tokens by choosing

mL1 = mH0 ≥ M

with a payoff

σL{logmH0 − (1− α)mH0}.

Option (i) is better if

log((1− α)min{ 1

1− α
,M})− σL(1− α)min{ 1

1− α
,M} > logmH0 − (1− α)mH0. (5)

Second, consider H-buyers: suppose 1M = 0, then

max
mH0+mH1<M

σHu((mH0+mH1)(1−α))+(1−σH)u(mH0)−mH0−σL(1−α)mH1+λM [M − (mH0 +mH1)]

FOC:

mH0 :σH
1

mH0 +mH1
+ (1− σH)

1

mH0
− 1− λM = 0

mH1 :σH
1

mH0 +mH1
− σL(1− α)− λM ≤ 0
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If mH1 > 0 and λM = 0, then we have

σH

σL(1− α)
= mH0 +mH1 < M

and

mH0 =
1− σH

1− σL(1− α)
.

Otherwise, mH1 = 0 and λM = 0, then

mH0 = 1 < M,

which is consistent with mH1 = 0 iff σH < σL(1− α).

If λM > 0, then mH0 +mH1 = M and if mH1 > 0, then

σH
1

mH0 +mH1
+ (1− σH)

1

mH0
− 1−

(
σH

1

mH0 +mH1
− σL(1− α)

)
= 0

(1− σH)
1

mH0
− 1 + σL(1− α) = 0,

so that

mH0 =
(1− σH)

1− σL(1− α)
.

If mH1 = 0, then mH0 = M , which is consistent with mH1 = 0 iff

σH
1

M
− σL(1− α)− λM ≤ 0

σH
1

M
− σL(1− α)−

[
σH

1

M
+ (1− σH)

1

M
− 1

]
≤ 0

−σL(1− α)− (1− σH)
1

M
+ 1 ≤ 0

or

M <
(1− σH)

1− σL(1− α)
.

Notice that none of this is not consistent with the seller’s beliefs that all payment below M is done with

programmed money. Suppose 1M = 1, then

max
mH0+mH1>M

σHu((mH0 +mH1)) + (1− σH)u(mH0)−mH0 − σL(1− α)mH1 + λM [mH0 +mH1 −M ]

FOC:

mH0 :σH
1

mH0 +mH1
+ (1− σH)

1

mH0
− 1 + λM = 0

mH1 :σH
1

mH0 +mH1
− σL(1− α) + λM ≤ 0
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If mH1 > 0, then we have

mH0 +mH1 =
σH

σL(1− α)
> M

or

mH0 +mH1 = M >
σH

σL(1− α)

and

mH0 =
1− σH

1− σL(1− α)
.

Otherwise, mH1 = 0 and (with M > 1),

mH0 = M > 1,

which is consistent with mH1 = 0 iff

σH
1

mH0
− σL(1− α) ≤ 0

σH

σL(1− α)
≤ M.

Overall, if

M >max

{
1,

σH

σL(1− α)

}
, (6)

then conditional on 1M = 1, it is optimal to choose

mH1 = 0,mH0 = M

with a payoff

σH logM −M

and conditional on 1M = 0, if σH

σL(1−α) < 1,

mH1 = 0,mH0 = 1

with a payoff

σH log(1− α)− 1.

Hence, H-buyers choose mH0 = M to reveal the true type of tokens iff

σH logM −M ≥ σH log(1− α)− 1.
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Under this condition, mH0 = M and going back to the choice of L-buyers, option (i) is better if

log((1− α)min{ 1

1− α
,M})− σL(1− α)min{ 1

1− α
,M} > logmH0 − (1− α)mH0 (7)

log((1− α)min{ 1

1− α
,M})− σL(1− α)min{ 1

1− α
,M} > logM − (1− α)M (8)

We require M > 1/(1 − α) so that L-buyers choose mL1 = 1/(1 − α) and H-buyers choose mH0 = M .

So this signaling equilibrium exists iff σH < σL(1− α) and

M > max

{
1,

σH

σL(1− α)

}
= 1

σH logM −M ≥ σH log(1− α)− 1

−σL > logM − (1− α)M.
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F. An Example Where Sellers Have Trade Surplus in DM2

Suppose the utility function of sellers in DM2 is given as

us(q2s) = (1 + γ)min{1, q2s}.

The first-best allocation requires the consumption of sellers in DM2 to be q2s = 1. Then the marginal

value of a token to a L-buyer is

σLu
′(q1L)[1− αe + αe(1− p)(1 + γ))] + (1− σL)ε(1− p),

and the marginal value to a H-buyer is

σHu′(q1H)[1− αe + αe(1− p)(1 + γ))] + (1− σH)u′(q2H).

When MH = {0}, ML = {1}, the equilibrium conditions for L- and H-buyers and the banker are

given by

ϕ1 = βσLu
′(q1L)(1− αe)

ϕ1 = βσL(1− αe)

ϕ0 = βσHu′(q1H)(1 + αeγ) + β(1− σH)u′(q2H)

ϕ0 = β.

Assume u(q) = log(q). Then, the first two conditions imply that

q1L = 1 = mL(1− αe).

The last two conditions above imply that

mH = 1

q1H = 1 + αeγ > 1 = q2H .

H-buyers have no incentive to hold p1 if

ϕ1 > βσHu′(qH)(1− αe)

or

σL >
σH

1 + αeγ
,
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which is satisfied. Finally, L-buyers have no incentive to hold p0 if

ϕ0 > βσLu
′(q1L)(1 + αeγ) + β(1− σL)ε

or

1 >
αeγ

1− σL
+ ε.

So, for γ not too big, this is an equilibrium. However, the allocation is

q1L = 1, q2L = 0

q1H = 1 + αeγ > 1, q2H = 1,

q2s =
fHσH

fHσH + fLσL
< 1.

Hence, the sellers under-consume in DM2 while H-buyers over-consume in DM1.
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