

Staff Discussion Paper/Document d’analyse du personnel—2025-9

Last updated: June 13, 2025

A Retail CBDC Design for
Basic Payments: Feasibility
Study
Ram Darbha
Banking and Payments Department
Bank of Canada
SDarbha@bankofcanada.ca

Cyrus Minwalla
Information Technology Services
Department
Bank of Canada
CMinwalla@bankofcanada.ca

Rakesh Arora
Banking and Payments Department
Bank of Canada
RakeshArora@bankofcanada.ca

Dinesh Shah
Banking and Payments Department
Bank of Canada
dshah@bankofcanada.ca

Bank of Canada staff discussion papers are completed staff research studies on a wide variety
of subjects relevant to central bank policy, produced independently from the Bank’s
Governing Council. This research may support or challenge prevailing policy orthodoxy.
Therefore, the views expressed in this paper are solely those of the authors and may differ
from official Bank of Canada views. No responsibility for them should be attributed to the
Bank.

DOI: https://doi.org/10.34989/sdp-2025-9 | ISSN 1914-0568 © 2025 Bank of Canada

mailto:SDarbha@bankofcanada.ca
mailto:CMinwalla@bankofcanada.ca
mailto:RakeshArora@bankofcanada.ca
mailto:dshah@bankofcanada.ca

i

Acknowledgements
We are grateful for the technical advice from Sam Stuewe and other colleagues at the
Massachusetts Institute of Technology Digital Currency Initiative (MIT DCI), with whom the
Bank of Canada has conducted collaborative research into digital assets and fintech over
the past two years.

ii

Abstract
We frame the wide spectrum of possible system architectures for an online retail central
bank digital currency (CBDC) and identify a promising architecture well-suited for basic
payments. We select OpenCBDC 2PC, a representative system design that fits this
architecture and analyze it using a range of criteria to assess the feasibility of such system
designs. Our analysis, augmented with lab experiments, focuses on retail payment
systems with two-tier deployment and includes a detailed assessment of non-repudiation,
integrity of the monetary supply, privacy, compliance, scalability of performance and
resilience of the system state. It suggests that such system designs can be fast and cheap
for basic payments, with high privacy, although some areas such as integration with retail
payments systems, performance of auditing and resilience of the core system state
require further investigation. Our framing highlights other promising architectures for an
online retail CBDC, whose analysis we leave as an area for further exploration.

Topics: Central bank research, Digital currencies and fintech
JEL codes: E, E4, E42, E5, E51, O, O3

Résumé
Nous répertorions le large éventail d’architectures de système possibles pour une
monnaie numérique de banque centrale de détail utilisable en ligne et cernons une
architecture prometteuse qui serait adaptée pour les paiements de base. Nous
choisissons le système OpenCBDC avec validation à deux phases, qui correspond bien à
l’architecture recherchée, et l’analysons en utilisant une série de critères pour évaluer la
faisabilité d’un tel système. Notre analyse, qui inclut des expériences en laboratoire, porte
principalement sur les systèmes de paiement de détail avec un protocole de validation à
deux phases et comprend une évaluation détaillée de la non-répudiation, de l’intégrité de
l’offre de monnaie, de la confidentialité, de la conformité, de l’extensibilité et de la
résilience du système. Il en ressort que ce genre de système peut effectuer des paiements
de base rapidement et à faible coût et offrir une grande confidentialité. Toutefois, certains
aspects, comme l’intégration avec les systèmes de paiement de détail, la vérification de
l’offre de monnaie et la résilience du système de base, doivent faire l’objet d’un examen
plus poussé. Nous mettons aussi en lumière d’autres architectures prometteuses pour
une monnaie numérique de banque centrale de détail, qui devront être examinées plus à
fond.

Sujets : Recherches menées par les banques centrales; Monnaies numériques et technologies
financières
Codes JEL : E, E4, E42, E5, E51, O, O3

1

Executive summary
Darbha (2022) develops five archetypes, or common system design patterns, for retail CBDC:
the centralized, the leaderless, the micro- and macro-partitioned, and the direct. In this paper,
we analyze combinations of the archetypes with three funds models, or representations of
money, to identify one system architecture that is, in our opinion, well-suited for basic
payments in an online retail CBDC system. This is a micro-partitioned system based on an
unspent transaction output (UTXO) funds model.

We select a representative system design, OpenCBDC 2PC (Massachusetts Institute of
Technology Digital Currency Initiative 2022), that fits this architecture for basic payments and
analyze it using a range of criteria to assess the feasibility of such system designs for an online
retail CBDC. From our findings, summarized below, we do not anticipate serious obstacles to
achieving feasibility, although some areas require further investigation.

Designs like OpenCBDC 2PC align well with a two-tier system, allowing a separation of central
bank (CB) and intermediary functions. We define three types of wallets and show they can
coexist in a single system, enabling both user custody and institutional custody of funds as well
as payments to users who are either present or non-present.

A key attribute of micro-partitioned designs like OpenCBDC 2PC is that a transaction involves
two legs—a core system update and a wallet-to-wallet transfer—making it more complex than
a transaction in a traditional account-based system, which involves only one leg. We describe
a payment flow and necessary system functions that would enable the system to confirm the
completion of both legs and thereby achieve strong non-repudiation guarantees. Further, the
current retail payments ecosystem is underpinned by account-based systems. The additional
complexity and different funds model of designs such as OpenCBDC 2PC mean that design
effort is needed to integrate such systems into the retail payments ecosystem. We note this as
an open area for further exploration.

We assess two variants of OpenCBDC 2PC, both with and without privacy-preserving
techniques, to audit the money supply, i.e., to aggregate the supply and detect discrepancies.
Our assessment indicates that these mechanisms can feasibly be used to detect a discrepancy
in the CBDC supply. The performance impact of auditing needs to be investigated for a
production-size supply, especially for the privacy-preserving variant that is compute-intensive.
Further, a production system must not only be capable of detecting a discrepancy but also
identifying the root cause and reversing it. The complexity and performance impact of reversal
mechanisms are unknown, especially for a monetary supply of national size, the investigation
of which we leave for further exploration.

Our scalability experiments with three variants of OpenCBDC 2PC—the baseline and two
auditability variants—suggest that the performance of the baseline scales efficiently, with low
response times suitable for retail use. The two auditability variants do not scale as efficiently,
although they can likely be improved over time. Nevertheless, our observations highlight the
efficiency of such system designs as even the least performant configurations demonstrate
throughput in excess of 10,000 transactions per second.

Micro-partitioned systems such as OpenCBDC 2PC that support user custody naturally support
high levels of privacy from the CB and, optionally, from intermediate institutions too. A user
could be non-registered or keep custody of their own funds to achieve high privacy. These
ideas could be combined with the use of privacy-enhancing technologies to hide amounts even

2

from the settlement system, to achieve a very high level of privacy exceeding what is available
in today’s electronic payment systems.

Compliance in systems such as OpenCBDC 2PC would be the responsibility of intermediaries,
in alignment with the two-tier model. Both rule-based and principle-based compliance would
be feasible for registered users that operate wallets in the custody of intermediaries. The system
would have to impose controls (e.g., a transaction amount) to prevent illicit usage for non-
registered users or users that have custody of their own funds, should those options be
permitted by policy-makers.

The core system state of a system such as OpenCBDC 2PC constitutes its “crown jewels” and
must never be lost. Hence, the resilience of the core state is critical, and its recovery must be
guaranteed, even in the event of a total system outage. While this is theoretically feasible,
engineering effort is needed to make it efficient and practical. We outline the enhancements
needed to achieve recovery of the core state in such a system. We leave to future work how to
achieve these goals, which would depend heavily on the state replication mechanisms and
database technologies used. The resilience of wallets would be the responsibility of wallet
custodians such as money services businesses (MSBs) and wallet providers.1 We note that
institutional backup and recovery mechanisms are widely used by enterprises already. Further,
technical solutions already exist for mobile content backup and recovery targeted to end users,
which could be employed by providers of CBDC wallets.

From the above, some possible areas of future work within micro-partitioned systems such as
OpenCBDC 2PC include integration with the retail payments ecosystem; auditability of a
production-size monetary supply, while preserving privacy; identification of the root-causes
and reversal of monetary supply discrepancies; preservation of scalability with auditability; and
resilience and timely recovery of the core system state from persistent storage.

Our framing highlights other promising architectures for an online retail CBDC. For example,
the centralized or leaderless archetypes combined with the account model would support
arbitrarily complex, full-featured programmable arrangements while providing a strong
coherence guarantee. These arrangements arguably would be well-suited for contingent
payments. The feasibility analysis of alternative architectures remains an open area for further
exploration.

1 Money services businesses are regulated institutions authorized to provide CBDC services to end users. These

businesses include deposit-taking banks but could also include other entities, such as financial technology
businesses (fintechs).

3

Section 1: Introduction
A wide variety of technology designs have been, and continue to be, proposed to underpin
retail central bank digital currency (CBDC) systems. By considering the fundamental perspective
of how information, or state, related to a CBDC instrument is organized among participating
entities, Darbha (2022) develops five archetypes, or common patterns, that recur in system
designs. He then analyzes them using a range of criteria such as privacy, compliance, scalability,
resilience and offline payments. Given the variety of possible system designs for a retail CBDC,
these archetypes provide a common framework and terminology to analyze and evaluate
technical designs, independent of vendor, platform and technology.

In this discussion paper, we extend our analysis by combining the archetypes (how the state is
organized) with three funds models (what the state is) and analyze the resulting architectures
for their relative trade-offs. Among them, we identify one architecture for basic payments that
is a promising candidate for further analysis and experimentation. We provide a detailed
analysis of that architecture.

It is useful to clarify the purpose of this work. Firstly, this should not be interpreted as a
recommendation to issue a retail CBDC, now or sometime later. That decision is outside the
scope of this analysis. It is also not a recommendation in favour of a particular technical system,
product or vendor. Instead, we assess the feasibility of a set of design ideas that are, in our
opinion, well-suited for basic payments and have been realized in a functioning research
system. This analysis is a step in the iterative refinement of technical design options for a retail
CBDC. We anticipate that, should a future phase of CBDC development be undertaken, similar
analyses of other promising architectures would be conducted before identifying optimal
technical architectures that meet the policy goals of a retail CBDC in a particular jurisdiction.

The rest of this paper is organized as follows:

In Section 2, we present a brief background on retail CBDC archetypes and funds models and
discuss their combinations to identify a promising architecture for basic payments.

In Section 3, we analyze this architecture using a set of core requirements and applying these
to OpenCBDC, a leading system design from the Massachusetts Institute of Technology’s (MIT)
Digital Currency Initiative (DCI), as a representative example. We augment our analysis with
experimental observations where applicable.

In Section 4, we conclude with a summary of findings and lessons learned on how well such
system designs for basic payments align with the core requirements for an online retail CBDC
system.

We present a proposed transaction flow in Appendix A and details of the scalability test results
in Appendix B.

4

Section 2: Background on archetypes and funds models

2.1 Funds models
We follow the organization of funds models—the way in which funds are represented—
described by the Eesti Pank and Guardtime (Buldas et al. 2021) as three properties of value,
ownership and identity.2 Each property may be fixed or variable, as outlined in Table 1.

As Buldas et al. (2021) show, there are eight possible enumerations, of which some are
unfeasible, leading to three primary funds models: account, unspent transaction output (UTXO)
and bill (Table 2).

Table 1: Three properties of funds models, each with two flavours

Property

Fixed Variable

Value The monetary value is unchanged over
many transactions.

The monetary value can change on every
transaction.

Ownership Owner of the instrument doesn’t
change across transactions.

Owner changes on each transaction.

Identity The instrument preserves its identity
across transactions, i.e., it is long-lived.

The instrument changes its identity, e.g.,
on every transaction, i.e., it is short-lived.

Table 2: Three feasible funds models and their properties

Property
Funds model

Value Ownership Identity

Account Variable Fixed Fixed
Unspent transaction
output3

Variable Variable Variable

Bill Fixed Variable Fixed

An account is long-lived and has a fixed owner, while its value or balance changes over time.
A bill is long-lived and has a fixed value, while its owner changes over time. A UTXO has a value
and an owner, but its distinguishing feature is that it is short-lived. It is created as an output of
a transaction with a fixed owner and value, and only exists until it is spent as an input of a
subsequent transaction, which creates other outputs, and so on.

Among the three funds models, the UTXO and bill models are often considered more scalable
than the account model since their processing is more easily parallelizable. This is because a
single user can make multiple payments independently when using bills or UTXOs, while
payments from their account must be serialized. However, Buterin (2016) and George, Dryja

2 Buldas et al. (2021) use the term money scheme, while we use the term funds model.
3 Value is variable because, in the set of UTXOs, values are not preserved across a transaction. Ownership is variable

because a UTXO’s owner changes from one before the transaction to zero after it. Identity is variable because there
is no identification number, serial number or account number that can be traced across multiple transactions.

5

and Narula (2023) suggest the account model can better express complex contingent payment
arrangements than UTXO and bill models.

2.2 Archetypes of a retail central bank digital currency
Darbha (2022) develops five archetypes, or common patterns, that recur in system designs: the
centralized, the leaderless, the micro- and macro-partitioned, and the direct (Figure 1). He
analyzes them using a range of criteria such as privacy, compliance, scalability, resilience and
offline payments. These archetypes are general enough to collectively cover a wide range of
possible CBDC designs.

Briefly, in centralized systems, one entity stores and controls the system state. In leaderless
systems, the system state is replicated to multiple identical entities without a leader. An update
changes all replicas the same way. The crowd of replicas provides oversight by collectively
approving the update. In macro- and micro-partitioned systems, the system state is divided
into partitions where no single partition represents the total system state. In macro-partitioned
systems, partitions are large and owned and operated by institutions, while in micro-partitioned
systems, they are small and owned by end users. An update changes only some partitions and
is overseen by a trusted authority. In direct systems, the system state is divided into partitions
that transact directly with each other without involving other parties. An update involving two
parties does not require approval by a third party. The centralized, leaderless and macro-
partitioned archetypes represent systems in which only institutions—the central bank (CB) and
private entities—maintain state. The micro-partitioned and direct archetypes represent
systems in which some state information about funds is maintained in, and transferred
between, end-user devices.

Figure 1: Archetypes of a central bank digital currency

User

User

User

User

Centralized Leaderless

Macro-partitioned Micro-partitioned Direct

UserUser

`

User

User

User

User

Note: Each oval represents a CBDC system. Each dot is a distinct entity that stores the system state,
partially or fully. Dots with the same colour denote replicas of the same state information, while dots
coloured differently differ in the information they hold. The red dot denotes an authority (entity or
protocol) that has the power to approve or deny a state change such as a transaction. Solid lines show
the entities involved in finalizing one state change, e.g., settling a transaction. Users outside the CBDC
system hold no state (their access is shown with dotted lines), while those inside hold some state.

The progression from centralized to partitioned and finally to direct systems can be visualized
as a migration of the system state outward from the core. At one end of this continuum, the

6

state is fully in the centre, solely in the CB’s control; then, some of the state moves outward to
non-CB entities. Finally, it resides entirely in the periphery, having migrated away from the CB.

2.3 Combinations of archetypes and funds models
We consider a system architecture as a combination of an archetype and a funds model. Our
goal is to identify system architectures that have particular strengths and are likely to be
optimal choices for a retail CBDC.

We can make five key inferences about the combinations of these archetypes and funds models
(summarized in Table 3):

• No archetype scores highly across all criteria, so a design based on a single archetype
is not likely to satisfy all policy goals (Darbha 2022).

• Only system designs based on the direct archetype are capable of offline settlement,
i.e., a settlement between two parties that doesn’t involve a third party. However, the
lack of third-party oversight presents risks that make such designs sub-optimal for an
online CBDC.4

• The ability to access and reason over the full global state permits contingent payments
that are more expressive (George, Dryja and Narula 2023). The two archetypes that
present a global state, the centralized and leaderless, are best suited for complex
contingent payments.

• Leaderless systems appear to offer a weak fit for governance since they involve multiple
parties sharing authority, while a retail CBDC is issued by and is the liability of a single
authority.5 Further, these systems’ high overhead inhibits their ability to scale, arguably
making them sub-optimal for a retail CBDC, as is the case for designs aligned closely
with cryptocurrency systems such as Bitcoin and Ethereum.6

• Of the two partitioned archetypes, the micro and the macro, the micro has two
advantages. Firstly, it is more private than the macro-partitioned since it allows end
users to keep custody of their funds, if they choose, while the macro archetype permits
only institutional custody. Secondly, it is more flexible than the macro-partitioned since
every system designed for users to have custody of their funds can also support
institutional custody, while the reverse is not necessarily true.

4 The authority, a third party, would have no visibility into transactions at the time of settlement. Even if the system

permits an authority to learn transaction details at a later time, it cannot stop fraudulent transactions before they
are settled. This is a serious, and arguably unnecessary, risk in an online system.

5 The argument regarding a weak governance fit applies to a retail CBDC system operating within a jurisdiction where
a single authority (the CB) oversees the fiat currency instrument. If, however, a system is intended to span several
jurisdictions, say a cross-border system involving multiple CBDCs, then sharing authority as per the leaderless
archetype could be a strength and, indeed, a necessity.

6 Some leaderless system designs claim to achieve throughput in thousands of transactions per second (TPS). While
they may satisfy retail CBDC needs in some jurisdictions, they are, nevertheless, generally incapable of linear scaling,
i.e., achieving higher throughput by adding more capacity.

7

Table 3: Conceivable system architectures for an online retail central bank digital
currency

Funds model
Archetype

Account

UTXO

Bill7

Centralized

The account model fits
well with centralized
systems.

Leaderless

Leaderless systems have a weak governance fit to the central bank’s role
and lack the ability to scale for an online CBDC.

Macro-partitioned

Macro-partitioned systems are less flexible than micro-partitioned systems
because they do not support custody by end users.

Micro-partitioned

 Micro-partitioned
systems based on
UTXO are well-suited
for basic payments.

Direct

Direct systems offer the central bank limited visibility for an online CBDC.

Note: UTXO means unspent transaction output. The shaded architecture is a promising candidate for an
online retail CBDC system and the subject of the analysis in this report.

Among the combinations, we highlight one that is a promising candidate for an online retail
CBDC since it is well-suited for basic payments (shown as the shaded box in Table 3). It is based
on the UTXO funds model combined with the micro-partitioned archetype. Micro-partitioned
systems can be scalable if designed to minimize the core state and optimize updates to it. We
expect such systems to be fast and cheap for basic payments, with high privacy. Further, they
could evolve to support micropayments, should such novel uses experience uptake in the
future. 8 These systems, however, would have limited, if any, support for complex contingent
payments.

In Section 3, we select a representative research system design that fits the architecture for
basic payments and analyze it using a range of criteria.

First, we assess how the architecture would fit in a two-tier model where the CB would be
responsible for issuance, validation and settlement functions and money services businesses
(MSBs) for providing customer-facing functions such as know-your-customer (KYC) and
account management. We then analyze how a retail payment flow could be realized with such
an architecture and how it would differ from today’s typical retail payment flow. We discuss
how such an architecture could provide guarantees for non-repudiation to resolve questions
about a disputed payment. We discuss experimental results on the ability of such a system to
scale throughput (the number of transactions settled, measuring the speed of core system
updates) as demand increases. We assess the level of privacy users would have from the CB
and non-CB entities in such a system, and how legal obligations related to compliance could

7 Other differences exist between the UTXO and bill models. Anecdotally, UTXOs are used more widely in online

systems, while bills appear more in offline store-of-value systems. This may be because UTXOs require proving only
validity, while bills require proving both validity and uniqueness. We leave investigation of these models’ relative
trade-offs for future work.

8 Micropayments are payments of low value (less than a dollar) and high volume.

8

be satisfied. Lastly, we assess how the system could guarantee the integrity of the supply,
maintain the resilience of the system state, and recover funds in case of loss.

Note that our framing as in Table 3 suggests there are other promising architectures to be
explored. For example, the centralized and leaderless archetypes that permit access and
reasoning over a global system state, when combined with the account model, would support
arbitrarily complex, full-featured arrangements for contingent payments with a strong
coherence guarantee (George, Dryja and Narula 2023). They would also support basic
payments, of course, although probably at a higher cost owing to the overhead of a
programmable platform. We leave the analysis of other architectures to future work.

Section 3: Analysis of a system for basic payments

3.1 Choice of system design
We know of several system designs that would fit the micro-partitioned archetype based on a
UTXO-like funds model. Two such examples are OpenCBDC (MIT Digital Currency Initiative
2022) and TODA (Gravitis, Goh and Toliver 2019). For our analysis, we choose the OpenCBDC
platform for a few reasons. Firstly, it is purpose-built from first principles for a retail CBDC
application, with design choices to optimize the system for that purpose. Secondly, it has a
strong research focus, which allows us to consider and explore design ideas with the MIT DCI
team in a way that might not have been possible in a production-ready system. Lastly, despite
being an experimental research system, OpenCBDC comes with a flexible and powerful test
framework that enables its deployment at scale and collection of performance metrics in a
public cloud environment.

Two OpenCBDC architectures are based on the UTXO model: two-phase commit (2PC) and
Atomizer. Briefly, Atomizer is built to materialize a global transaction order, while 2PC isn’t. We
choose the 2PC architecture for our analysis and experiments since it is not clear that a global
transaction order is necessary for a retail CBDC intended for basic payments.9 By relaxing that
requirement, 2PC achieves higher performance. See Figure 2.

9 Several researchers have shown that a global ordering isn’t necessary for basic asset transfers as with UTXOs (Baudet,

Danezis and Sonnino 2020; Guerraoui et al. 2019). However, if the account funds model is used, then an ordering
becomes important. For example, two transaction orderings may differ in whether a balance drops below some
threshold, incurring a charge. Also, if conditional logic is employed, as in contingent payments, a transaction order
may be needed to achieve guarantees.

9

Figure 2: OpenCBDC system diagram for the two-phase commit architecture

Note: This figure is reprinted from Figure 3 in the Project Hamilton paper presented in 20th USENIX
Symposium on Networked Systems Design and Implementation.
Source: Lovejoy et al. (2023)

The OpenCBDC 2PC architecture consists of three system components, each deployed in a
variable number of instances. Sentinels act as the entry points to the system, accepting
transactions submitted by wallets and validating them. Sentinels are stateless.10 A coordinator
takes a validated transaction, determines what changes must be performed to the system state
to settle it and ensures that those changes are done atomically (i.e., they all happen, or none
of them do) across a set of shards. Each shard maintains and updates some subset of the system
state (known as the UTXO hash set, or UHS), as directed by coordinators. The set of all shards
form the core of the system.11

We deploy the OpenCBDC test framework in an Amazon Web Services (AWS) environment:

 The core components of shards, coordinators and sentinels are deployed across three
geographically dispersed AWS regions, so as to closely reproduce the network distances in
a production deployment of a national system.

 Shards are configured with a replication factor of 3, i.e., each logical shard’s information is
replicated in real time across three replicas, one in each region. This too is chosen to mimic
the extent of replication in a production system.

 All servers are set up as eight virtual central processing units (vCPUs), for uniformity and
ease of testing. In a production system, the number of vCPUs would be adjusted up or
down based on the processing load of each server type.

10 Sentinels do not maintain information related to the monetary supply. As implemented, however, they do maintain

some short-lived information for efficiency, such as open connections to wallets and recently seen transaction IDs.
11 Some familiarity with OpenCBDC system design and transaction format is assumed for the following subsections of

this paper.

10

 Traffic between data centres uses the default connectivity of the cloud provider that is
shared with other customers. A production system could likely improve on this by using
dedicated links.

3.2 Two-tier model
In a two-tier model, the CB would be responsible for issuance, validation and settlement
functions, while MSBs would provide customer-facing functions such as KYC and account
management.

Figure 3 presents one possible system design built around OpenCBDC 2PC. The core
transaction processor comprising the shards, coordinators and sentinels would be owned solely
by the CB.12 It would combine the validation and settlement engine as well as the core system
state. The CB would provide access to the core through an application programming interface
(API) that presents capabilities for basic payments to end-user wallets.

We describe below a few other components that would be necessary in a two-tier retail CBDC
system.

Figure 3: A possible two-tier system design with OpenCBDC 2PC

MSB-2MSB-1

Transaction processor (2PC sentinels, coordinators, shards)

Transaction
state archive

Type-M
wallet PII DBPII DB

Registry
for R & NR wallets
(independent of

architecture)

Gatekeeper for R & NR wallets (independent of architecture)

New component

Basic transaction API

Transaction validation
and execution

System
state

Type-U
wallet

Type-K
wallet

Type-K
wallet

CB

CB and
partners

Intermediaries

Users

Peer alias
service

Funds
receiver
service

Note: 2PC is two-phase commit, and CB means central bank. R means registered and NR means
unregistered. Type-U wallets are fully in the user’s custody, type-M wallets are fully in the money
services business’s (MSB’s) custody. Type-K wallets keep keys in user custody and funds in MSB custody.
API is application programming interface, and PII is personally identifiable information.

12 One variation explored by the MIT DCI team is sentinels being operated by non-CB regulated entities, which is useful

if their number is large (Stuewe et al. 2024). Such a design would have to contend with compromised sentinels
outside the CB trust zone performing fraudulent validations. We assume in this analysis that sentinels are operated
solely by the CB.

11

Wallets. We posit three types of end-user wallets, U, M and K, based on their custody
arrangements for the spending keys and funds.13 We then discuss how the wallets relate to
registered (R), non-registered (NR) and semi-registered (SR) users (Table 4).14

Table 4: Wallet types

Wallet
type

Spending
keys

Funds Transaction
history

R user NR/SR
user

U User User User *
M MSB MSB MSB * *
K User MSB MSB * *

A type-U wallet is fully in the custody of a user device. It stores the user’s spending keys and
funds, so it has enough information to spend those funds. But if the device is lost, the funds
are lost. Being outside an MSB’s control or visibility, this wallet offers the highest privacy of the
three types but is only suitable for NR/SR users since an R user is, by definition, known to an
MSB.

A type-M wallet is fully in the MSB’s custody. It too stores the user’s spending keys and funds,
so it can spend those funds. The user accesses it through an interface provided by the MSB. If
a user loses their device, their funds and keys are protected (owing to the MSB’s enterprise-
grade safe storage, backup and recovery of wallet contents). But they must trust the MSB to
not spend the funds without their approval since the MSB has custody of spending keys and
funds.

A Type-K wallet is split into two parts—the user has custody of spending keys, while the MSB
has custody of funds. To spend the funds, both entities must cooperate since neither has
enough information to act alone. The user’s funds are protected if they lose their device.
However, the user retains authority over spending.15

All three wallet types could be supported in a feasible system design based on such an
architecture. Regardless of the type, it is the wallet custodian’s responsibility to maintain the
necessary information about the wallet and its owner, such as the funds, full transaction history,
etc., to allow the custodian to serve the owner’s needs and satisfy any legal obligations.

Type-K and M wallets are suitable for R users because an MSB can perform compliance checks
on them. But an MSB may offer those wallets to NR/SR users, too, by charging them fees despite
not knowing their identities, as long as there are no compliance-related obligations.16

13 In OpenCBDC 2PC, funds are the UTXO pre-images, while spending keys are cryptographic secrets to which funds

are encumbered. An entity that has possession of both the funds and their spending keys can spend the funds.
14 A registered user is one who has onboarded via a KYC process of the MSB, so their identity is fully known to the

MSB; A non-registered user has onboarded anonymously, so their identity is not known; A semi-registered user
has onboarded with minimal identity information, such as an email address or phone number.

15 If a user loses their spending keys, funds encumbered to those keys would become unspendable. To recover them,
the MSB could provide the funds to the CB, who would delete the corresponding UHS entries, mint new funds of
equal value encumbered to the user’s new keys, provide them to the MSB, and add their entries to the UHS.

16 For example, an MSB could pay itself a monthly fee from a type-M wallet’s funds, much like traditional banks
automatically deduct fees, or lock a type-K wallet’s funds until a monthly fee is paid by the owner.

12

Transaction status archive. We posit that the CB could maintain and publish an anonymous
transaction status archive (TS-archive) through an API. The TS-archive would keep the
transaction status by transaction identification (ID), but no other details, such as transacting
endpoints, keys, amount, etc. Its sole purpose would be to allow queries for non-repudiation
(see Section 3.6). Note, the TS-archive would not know a particular user’s transaction history.
That would only be known to the user’s wallet custodian.

Gatekeeper and registry. We posit two services that are independent of the core architecture,
gatekeeper and registry, for protecting the system against invalid endpoints or wallets. Every
wallet, R or NR, would have its details (without personally identifiable information, or PII)
recorded in the registry at onboarding time. The registry could also store per-wallet limits such
as the number of transactions per day, maximum transaction value, etc. Transactions submitted
to the system would first reach the gatekeeper, which would check with the registry that the
wallet was onboarded and not blacklisted, and then apply limits, if any. More generally, the
gatekeeper could perform checks that a single MSB would not be able to do, such as detecting
fraud, preventing a single wallet operating from multiple MSBs, stopping distributed denial of
service attacks, etc.

Both these services could be operated by the CB or its trusted partners. If the gatekeeper
validates long-lived wallet credentials such as certificates, then ideally it would be operated by
a non-CB partner so that the CB could not create transaction graphs by associating that
credential with transactions.17 If transaction values are hidden from system components, the
ability to apply limits on amounts by the gatekeeper could be curtailed.

We note that the cost of the gatekeeper and registry components and the latency introduced
would impact all system designs equally, and similar front-end services are common in high-
throughput web-scale systems.

If architecture-specific checks are needed, e.g., limiting the number of UTXOs per transaction,
they could be implemented in an architecture-specific component, such as a 2PC sentinel.

Peer alias (PA) service.18 In a CBDC system, a sender must be able to determine a receiver’s
address. For example, the sender may provide an email or phone number of the receiver to get
back the latter’s public key or an address to make the payment to. The PA service would serve
this need, independent of core architecture, and could return ephemeral (one-time use) or
long-lived addresses. Its use would be optional since there can be alternate ways for a receiver
to share their information with a sender, e.g., a QR code.

A PA service must be hosted by non-CB entities so that PII about users is not visible to the CB.
Further, the service should ideally not be a centralized store because that would be an attractive
target for hackers. Lastly, queries should be as private as possible, since a query by Alice for
Bob’s address is an indication that Alice is likely planning to pay Bob and, combined with other
such queries, could probabilistically lead to the creation of a transaction graph, eroding privacy.

These goals can be achieved by partitioning a peer database between multiple MSBs, where
each MSB is responsible for information about its hosted wallets. Advanced techniques such as

17 The gatekeeper could validate anonymous credentials allowing users to prove that they are onboarded, without

divulging their public keys or other attributes.
18 The ideas paraphrased here are taken from a personal note shared by Sam Stuewe, “Payment Routing for CBDCs”

(2024). It is a discussion of peer discovery and FR services.

13

private information retrieval (PIR) can be employed on each shard, so that a shard doesn’t know
which receiver is being queried.

More work is needed to understand how privacy-preserving techniques like PIR would work
within a PA service that handles ephemeral information, e.g., single-use public keys.

Funds receiver (FR) services. In OpenCBDC 2PC, in addition to a settlement being recorded in
the UHS, a sender must communicate the UTXO pre-images out of band to the receiver. More
generally, funds information must be transferred wallet-to-wallet in micro-partitioned systems.
Hence, such systems must consider how a payment is completed when a receiver is not present.

An easy, if sub-optimal, approach is to require the receiver to always be present for a payment.
If the receiver is not present, payment cannot happen. This is overly restrictive and, as we
describe below, it is possible to do better.

A second approach is to queue the out-of-band information for an absent receiver, so that
when they are present later, they can retrieve the information and complete payment. The
drawback of queuing messages is that completion of a payment may be delayed for an arbitrary
period, awaiting an absent receiver. Further, a sender could use the same funds to issue
payments to multiple receivers and, even though the system would guarantee that only one
payment would succeed, it wouldn’t be known until much later which receiver got paid (and
which others saw their transactions fail). Hence, this approach doesn’t achieve real-time
settlement.

A third approach is for a receiver to designate an FR service in their absence to receive
payments on their behalf. The sender would send a full payment to the FR, who would verify it
and accept it on behalf of the receiver, completing the payment immediately. The receiver
would retrieve their funds from the FR when present later. However, this introduces a risk that
an FR could receive payments and then default on its obligation to a receiver. This risk is similar
to that of a type-M wallet custodian defaulting and could be mitigated by regulation. We
consider if and how an FR service relates to the three wallet types.

First, we note that it is incongruous for an NR user with a type-U (self-hosted) wallet to delegate
custody of their funds to another entity. Hence, a type-U receiver must be present to receive
payment.

A type-M receiver would be operated by an MSB with high availability, online except for
planned or unplanned outages. The receiver would have custody of all the keys and funds
needed to issue payments and receive funds, and hence wouldn’t need an FR service.

A type-K wallet would fit well with an FR service operated by an MSB. Indeed, multiple FR
services could be operated by multiple MSBs.

We note that there are similarities in a type-M hosted wallet and a type-K FR service. For
example, both would hold their customers’ funds and be highly available, so they could be
developed together while maximizing code reuse.19 But there are differences as well, so it is
useful to keep them distinct in case future policy decisions require one of them to be

19 One idea is to explore the FR service of each MSB acting as a fallback for other MSBs, increasing system resilience.

14

decommissioned without impacting the other. For example, a type-M wallet has to manage a
large number of keys while a type-K FR has to manage certificates to prove it is authorized.20

PII databases. Each MSB would maintain a database of PII about its retail customers. This
information would only be known to the MSB, not the CB. Importantly, this database would
include details of each user’s full transactions along with other information the MSB needs (e.g.,
dates, times, IP addresses and geo locations, as needed for fraud detection or other purposes)
to report on its customers for compliance purposes, and to provide them services such as their
transaction history. The design and contents of the PII database are outside the scope of the
CBDC system.

3.3 Payment flow and integration with retail payment systems
In this section we discuss a possible payment flow in a system such as OpenCBDC 2PC.

As noted earlier, in this type of micro-partitioned system, settlement requires two legs: (A), an
update to the system state, and (B), a transfer of funds from the sender wallet to the receiver
wallet. The wallet-to-wallet transfer, or leg B, is crucial since without it the receiver would not
have possession of funds. The OpenCBDC system design does not specify when leg B will occur
relative to leg A, only that it should happen out of band at some point (see Figure 4, panel a).
We propose an ordering that would require leg B to occur before leg A (see Figure 4, panel b).

Figure 4: Two legs of a transaction in a system such as OpenCBDC 2PC

Receiver or
delegate

CBDC
system

(A) Transaction submission

(B) Funds
transferSender

a. Original: Legs A & B are unordered

Receiver or
delegate

CBDC
system

(A) Transaction submission

(B) Funds
transferSender

b. Proposed: Leg B occurs before leg A

Note: CBDC is central bank digital currency. Leg A represents an update to the system state, and leg B is
a transfer of funds from the sender’s wallet to the receiver’s wallet.

With this ordering, the sender wallet would send the full transaction to the receiver wallet
instead of submitting it to the system. The receiver wallet (or a delegate acting on its behalf,
such as an FR service) would validate it, store the funds, sign it to prove receipt of funds and
submit it to the system for settlement.21 The rationale of this ordering is to achieve strong non-
repudiation guarantees, described later.

20 Keys and certificates are discussed in the context of non-repudiation in Appendix A.
21 A variation would be the receiver signing and returning the transaction to the sender to submit to the system. This

would satisfy the ordering we intend to achieve, i.e., leg B occurring before leg A.

15

Figure 5 depicts a possible payment flow with this ordering, at a high level, generalized to
type-K, type-M or type-U wallets from senders to receivers. Some steps below are applicable
only to some wallet types.

A type-U or type-M wallet has a single lifeline, labelled “sender” or “receiver.” A type-K wallet
has two lifelines labelled “device” and “FR,” the former being in the user’s custody and the
latter in the MSB’s custody.

First, consider the block labelled “Payment.” The sender wallet queries the PA service to
determine which public key to make the payment to. It then signs the funds to that key (a
type-K wallet has to first retrieve its funds stored remotely). The signed funds are sent in a full
transaction to the receiver wallet (or its delegate, such as an FR service), which validates the
details, stores the funds, and signs and submits the transaction for settlement to the system.
On settlement, the anonymous TS-archive is updated so that it can be queried later.

The block labelled “Set-up before payment” shows how the FR and PA services would be
prepared by the receiver, which could occur weeks or months prior to payment.

Finally, the “Query” block shows how an authorized entity could, at any time after settlement,
query the transaction status by its ID.

16

Figure 5: Payment flows from type-K, type-M and type-U sender wallets to type-K, type-M and type-U receiver wallets

Type-K
only

Type-K wallet
(sender device) Validation Transaction

status archive

Send full transaction to
receiver or delegate Sign full transaction with

certificate or private key

Submit full transaction
signed by sender and
receiver or delegate

Confirmation Update transaction record

Settlement

Settle transaction

Confirmation

Query transaction status

Transaction status

Type-K wallet
(sender FR)

Retrieve
funds
funds

Type-U
Receiver

Type-K wallet
(receiver FR)

Type-U
Receiver

Type-K wallet
(receiver device)

Publish
public keys

Generate keypairs
and certificates

Spend funds
to Pubkey-R

Type-U wallet
(receiver)

Type-U,M wallet
(sender)

Set-up
before

payment

Payment

Sender Receiver Transaction processor

Perform local validation (and verify
receiver or delegate signature)

Get public
key

Pubkey-R

Write transaction record

Peer alias
service

Publish
certificates

Type-M wallet
(receiver)

Publish public keys
Generate
keypairs

Query

Note: Type-U wallets are fully in the user’s custody; type-M wallets are fully in the custody of a money services business (MSB); and type-K wallets keep keys in user
custody and funds in MSB custody. FR is a funds receiver service.

17

Currently, in a typical retail payment scenario involving bank accounts, a funds transfer occurs
between banks in the back end, not between a user and a merchant device.22 In contrast, in a
system such as OpenCBDC 2PC, funds must be transferred from the sender wallet (e.g., a
smartphone) to the receiver wallet (e.g., the point-of-sale, or PoS, terminal or another entity),
which would have to receive and safeguard funds. This arrangement is much like a cash
register accepting and storing physical currency. This is more complex than how account-
based systems function and raises several questions that need investigation, e.g., how to
cancel and roll back a partially completed transfer.

It is certainly feasible to perform retail payments in a system based on wallet-to-wallet funds
transfers, as shown in the sequence in Figure 5. However, it would entail integration work with
payment service providers (PSPs), to update PoS terminals and entities in the payments flow
to transfer funds through standard messaging formats such as ISO20022, put them into
custody, and gracefully handle the boundary conditions, e.g., transaction timeouts,
cancellations, missed messages, etc. We leave investigation of PSP integration to future work.

3.4 Integrity

3.4.1 Integrity of funds and wallets
In a micro-partitioned system, a single copy of the funds exists locally in the user’s wallet
(regardless of custody). Moreover, the wallet is responsible for construction and submission of
a well-formed transaction to the core system. Since funds are sensitive assets and transactions
are sensitive processes, they require protection while at rest and during processing. Standard
techniques such as encryption and trusted execution environments can be employed. Use of
secure hardware can further bolster protections in smartphones and support debit-card-style
form factors.

Funds representation and transfer protocols rely heavily on cryptography and cryptographic
primitives for confidentiality and integrity. The following properties must be satisfied to secure
funds information at the periphery of a micro-partitioned system:

 Funds and transaction authenticity—Provided through digital signatures based on
asymmetric cryptography to ensure that only the appropriate party with authorization to
spend the funds can spend them.

 Channel security—Established through a combination of asymmetric and symmetric
cryptography to negotiate a session key that is unique to every interaction and used only
once.

 Message confidentiality—Provided through symmetric key algorithms to encrypt
messages so that other entities spying on the channel cannot observe the contents.

 Message integrity and tamper protection—Provided through cryptographic one-way
functions that generate hashes and message authentication codes so that the receiver can
detect if messages are modified, tampered or replaced.

22 For example, when a user taps their payment card or smartphone digital wallet at a point-of-sale (PoS) terminal,

only an authorization message originates at the user device and is routed to the user’s bank through the PoS device.

18

3.4.2 Integrity of the supply
A CBDC system requires a mechanism to ascertain the total amount of funds in circulation.
Ideally, such a mechanism could be triggered arbitrarily by the issuing authority to conduct an
on-demand audit of the currency. In the baseline OpenCBDC 2PC implementation, it was not
feasible to aggregate the supply, so MIT DCI subsequently implemented two variants to enable
it. We describe the variants below before summarizing the feasibility analysis.

Variants

Micro-partitioned systems can be based on a funds model of short-lived (e.g., UTXOs) or long-
lived (e.g., bills) objects. OpenCBDC 2PC relies on the UTXO model. Each transaction consists
of inputs and outputs. Inputs cease to exist once the transaction is settled. In this way, the
model is very similar to UTXOs in a blockchain. However, unlike a blockchain, the core tracks
only the set of valid outputs. With every transaction, new outputs are inserted and spent inputs
are deleted. Validity of a UTXO is defined by its existence in the UHS. Previous transaction
history or any other linkages between inputs and outputs are not stored in the core. In the
baseline variant of the implementation, each unspent output is minimally stored in the core as
a hash, with no other ancillary data such as its value.

Transactions in OpenCBDC 2PC are constructed by combining inputs and outputs. A full
transaction utilizes the following distinct primitives:

 Digital signatures prove ownership of funds and authorize the transfer.

 Asymmetric cryptography binds the recipient’s public key to their portion of the funds.

 Hashing has a dual role: It acts as the proof of a valid output that can be compared with
the inputs of a transaction, and it irretrievably masks the output values. The mechanism of
constructing the transaction injects randomness into the outputs, guaranteeing that all
hashes stored in the UHS are unique so there are no collisions, and so duplication of money
becomes impossible through cryptographic means.

Two variants improve system auditability and correctness, either of which would suffice for a
retail micro-partitioned CBDC (Figure 6). For every output in the UHS, in addition to the hash,
the following is also stored, depending on the variant selected:

 Variant-values—A hash representing a UTXO in the UHS is replaced with a <hash, value>
tuple. The first field is the UHS ID. The value (integer) is stored “in the clear.”

 Variant-PPA—PPA stands for privacy-preserving audit. A hash representing a UTXO in the
UHS is replaced with a <hash, Pederson commitment, range proof> tuple. The first field is
the UHS ID. The second is the Pedersen commitment (PC), constructed on the pre-image
to hide the value, while the third is the range proof (RP) computed against the commitment.
The purpose of the RP is to prevent a user from committing negative values, which would
lead to an unauthorized creation of money.23

23 The initial implementation used the BulletProof scheme to construct proofs. A later implementation used a

lightweight version called BulletProofs++ to reduce the proof size for efficiency.

19

Figure 6: Comparison of the baseline OpenCBDC with Variant 1 (values) and Variant 2
(privacy-preserving audit)

Note: This figure combines three figures from a working paper from the Massachusetts Institute of
Technology Digital Currency Initiative. The authors of that paper refer to the baseline OpenCBDC as
Original. UHS ID is the identification number for an unspent transaction output in the hash set.

Source: Stuewe et al. (2024)

Variant-values is lightweight and efficient but is less cash-like because amounts are known to
the system. Variant-PPA uses additional cryptographic operations to preserve privacy at the
expense of increased computation cost and storage space. Both approaches can be applied to
micro-partitioned solutions in general, as PCs are efficient cryptographic constructs and can be
implemented on lightweight wallets (such as smartcards) using existing technology.

In both variants, an audit logging process runs at periodic epochs system-wide to construct
the artifacts needed to calculate the total amount of money in circulation. The logging process
runs automatically per epoch (a fixed time interval) and generates a log independently on each
node. An out-of-band process would consume all logs generated in a specific audit to calculate
the total supply in circulation and match it to the sum of all minting and destruction requests.

Crucially, for an audit to play a critical role in system integrity, it must be interleaved with the
delete step. Hashes of spent outputs in a given epoch are only deleted from the UHS once the
audit for that epoch is successfully completed. A successful audit implies that the sum of all
valid outputs in circulation is equal to the predicted total, based on the list of issuance and
redemption requests. While a variant-values audit reveals the total amount in circulation, the
variant-PPA audit can only attest to a binary condition: whether the total matches the predicted,
or not. In both cases, an additional process is needed to identify the precise transaction

20

resulting in an audit failure, in case a discrepancy is found, for forensic investigation. The
introduction of a TS-archive (see Figure 3) could aid in tracing the faulty outputs to a unique
transaction and associated source (wallet or MSB), although this analysis does not work out the
details.

The frequency of audits represents a trade-off between security and performance, as spent
hashes are not deleted from the UHS unless they are verified by an audit. In a high-
throughput system such as OpenCBDC, spent hashes can quickly accumulate to saturate
available memory. Therefore, audits occur frequently at a default interval of 60 seconds.
However, each audit logging event materially impacts the system performance for a period of
2–5 seconds, during which transaction throughput is reduced to a fraction of its original
performance. As an example, Chart 1 depicts the system throughput from a test run on the
values-based UTXO. The periodic troughs and spikes of throughput align with the frequency of
the audit logging process. The system experiences a brief loss of throughput when the process
first starts and then surges to catch up once logging is completed.

Chart 1: System throughput during audit logging with the variant-values
implementation

Note: Throughput is given in transactions (TX) per second. Loadgens refers to the throughput as measured
at load generators, which submit transactions to the system and collect responses from the system.
5,000ms MA is the moving average of the throughput over five seconds.

Source: Bank of Canada calculations

Although not shown explicitly, the behaviour of a variant-PPA is observed to be similar. We
note that the logging process is memory-intensive and needs to be studied further to confirm
long-term operational stability.

3.4.3 Sentinel attestations
Since the core components and services of a micro-partitioned system would be operated by
trusted entities (as shown in Figure 3), standard security controls available to other centralized
infrastructure systems can be used without modification, including access control, firewalls and
threat-monitoring tools, among others.

21

OpenCBDC 2PC assumes a cash-like model, where minimal information is stored in the UHS.
The sentinel is the first point of interaction for a wallet and the only point in the system where
inputs and outputs are summed to generate an equal values proof. This approach imposes a
heavy burden on the integrity of the sentinel. If a sentinel were to be compromised, the system
would lack a secondary safety measure to detect the compromise, and it would become
possible to double-spend or mint money without permission. This violates a core security
principle around defence in depth, where two or more controls must safeguard a sensitive
operation (in this case, a transaction approval). The following are possible attack scenarios:

 A malicious sender modifies outputs, so that they do not match the outputs the recipient
is expecting, but the output total is still equal to the input total. We can consider this attack
a theft of funds. Note that this is not exactly an attack since the sender is choosing to send
the incorrect amount of funds to the recipient. However, the system has zero knowledge
of what the sender and recipient agreed to.

 A malicious user submits the same UTXO as input in two separate transactions.

 A sentinel modifies the output to send funds to an alternate address, one that the attacker
controls.

 A sentinel (either alone or in collusion with a malicious user) modifies the output address
and increases the output amounts to mint money, sending a portion to the amount that
the attacker controls.

The first risk scenario does not compromise the integrity of the system and, moreover, is
precluded if transaction legs are ordered, as per Figure 5. The second scenario is mitigated by
the fact that the shard checks the validity of the hash before updating the set. Since shards are
replicated, for this attack to succeed an entire shard cluster would have to be compromised,
which, if defence in depth is achieved properly, is difficult if not impossible. Therefore, our focus
is on the third and fourth scenarios. In both cases, the underlying attack is to compromise a
sentinel and make it behave maliciously.

The root cause stems from the fact that provenance is not established as a property of the
system. Specifically, this means that, given a set of UTXOs (the UHS), it is impossible to inspect
a UTXO and ascertain if it was created by, or is linked to, a valid minting operation at the CB.
This gap is by design, as sets of links between a valid UTXO and a minting UTXO can lead to
the creation of a transaction graph, eroding privacy. While provenance can provide strong
guarantees, the common way of achieving this property is to create a link to previous
transactions leading back to a minting operation, essentially a property that blockchains
possess. However, blockchains incur a severe performance penalty in achieving provenance.
What is desired here is a lightweight solution that achieves similar guarantees to consensus
while still performing well.

Sentinel attestation (SA) is a proposed control to solve the problem in a scalable fashion. SA
is a parameterized control, where n>0 represents the number of sentinels required to validate
the transaction. Each sentinel in the chain will sign the transaction attesting to its veracity. (The
final sentinel has the task of stripping out pre-images prior to forwarding the transaction to a
coordinator.) When n=1, only the sentinel receiving the transaction will validate and sign. For
n>1, additional sentinels will attest. The feature is disabled when n=0. If any one sentinel
detects a discrepancy, the transaction is aborted. The SA approach is horizontally scalable (one
need only add more sentinels). Note that the number of signatures that need to be checked is

22

tied to the attestation parameter, which may require an additional compute per coordinator
(or more coordinators).

For a retail CBDC, an attestation value of at least n=2 is needed to appropriately manage risks,
despite the impact of extra computing and communications on performance (more on this
later). To mitigate some of the performance impact, the attestations can be consumed by the
coordinators so that their validation in the shards can be turned off without incurring additional
risk.

3.5 Non-repudiation
Non-repudiation is commonly understood as the guarantee that a sender of a message cannot
later deny their involvement. In the context of a payment, we consider how a system such as
OpenCBDC can enable a receiver to prove that they received funds from a particular sender
and a sender to prove that they sent funds to a particular receiver.

We note that a system like OpenCBDC 2PC can prove these claims if it can satisfy four
guarantees, G1 to G4, at the time of settlement.

G1: The system should be able to detect an attempt by an MITM (man in the middle) to modify
the transaction that the sender constructed en route to the system.

G2: The system should be able to confirm that the receiver or another entity possesses funds
(i.e., pre-images of outputs).

G3: The receiver or their delegate should be able to confirm that the funds are encumbered to
the receiver (i.e., to keys belonging to the receiver).24

G4: The system should be able to confirm that the party who received the funds is authorized
to receive them, ideally on the receiver’s behalf.

If the two legs of a transaction are unordered (Figure 4, panel a), G1 is achievable but G2, G3
and G4 are not.25 This is because when a transaction is submitted by the sender, the system
can make no inference about what, if anything, a receiver or their delegate knows about it at
the time of submission.

Instead, if the two legs are ordered (Figure 4, panel b), then G1 to G4 are all achievable for both
RP (receiver present, type-U and type-M wallets) and RNP (receiver not present, type-K wallets)
cases (see Appendix A for details). Wallets may use ephemeral or long-lived keys to receive
payments. The former offer higher privacy but lead to higher demands being placed on some
system components such as FR and PA services. We show that the four guarantees are feasible
using ephemeral keys, so it follows that they are feasible using long-lived keys as well.26

24 This is easily proven if the receiver themself receives the funds. But if a delegate receives them, this should be

provable without divulging the receiver’s spending credentials to the delegate.
25 G1 can be achieved by the sender signing an artifact that covers the entire transaction. In OpenCBDC 2PC, the sender

signs the transaction identification (TxID) with the spending key of each input. Hence, any change to the transaction
inputs or outputs would invalidate the sender’s signatures and be discoverable.

26 How wallets manage their keys involves many choices. Keys can be ephemeral or long-lived, generated randomly or
deterministically, etc. We don’t assume one choice or the other (wallets being outside the core system, designed by
the private sector) except to note that to enable non-repudiation, wallet custodians would need to store sufficient
data to associate their users with the public keys used in payments, regardless of how keys are generated.

23

We briefly outline how the two non-repudiation claims can be proven.

A sender can prove that they sent funds to a particular receiver. Suppose that Alice claims
she paid Bob, but Bob disputes it. Alice would present the full transaction of the payment from
her wallet, compute its transaction identification number (TxID) and query the TS-archive for
its status. Assuming the status says “settled,” it would prove that both legs of the transaction
had been completed and that the receiver or a delegate confirmed receipt of funds for the
transaction amount. If a delegate received the funds, it would also prove that the receiver had
authorized that delegate to act on their behalf.27 To confirm that the receiver was Bob, Alice
would examine the transaction to find the public keys to which outputs were encumbered and
provide them to Bob’s MSB, who could check if those keys belong to a wallet associated with
Bob.28

A receiver can prove that they received funds from a particular sender. Suppose that Bob
claims that he was paid by Alice, but Alice disputes it.29 As above, Bob would present the full
transaction, compute its TxID and query the TS-archive for its status. Assuming the status says
“settled,” it would prove that both legs of the transaction had been completed and, importantly,
that the transaction as constructed by the sender wasn’t modified en route to the system. To
confirm that the sender was Alice, Bob would examine the transaction to find the public keys
to which the spent inputs had been encumbered and provide them to Alice’s MSB, who could
check that those keys belong to a wallet associated with Alice.

In summary, non-repudiation is feasible in systems such as OpenCBDC 2PC. As in traditional
account-based systems, it would require MSBs to maintain detailed transaction records that
are not known to the CB’s settlement system. However, unlike in traditional systems, the CBDC
system would need to prove claims about not only the core system update, but also the wallet-
to-wallet transfer, which adds complexity. These ideas would be useful to investigate in
collaboration with private-sector parties in a future phase.

3.6 Scalability
The user base of a CBDC system would likely be in the tens of millions, covering the national
population, but could go into billions if future payments trends such as internet of things and
micropayments materialize, and devices act as autonomous transaction endpoints. The
throughput requirement (in transactions per second, or TPS) would likely be a few thousand
TPS at the lower end, matching existing electronic payments networks.30 However, use cases
for emerging payments and high adoption could push this into the hundreds of thousands or
millions of TPS. The latency needed (i.e., the time from submission to settlement for one

27 By receiver, we don’t mean a particular identity or person, but rather the entity that holds the private key

corresponding to the public key to which funds are encumbered.
28 A claim is provable only if the party being investigated (e.g., the receiver Bob in this claim or the sender Alice in

the second claim) operates a type-K or type-M wallet, since an MSB has visibility only to those wallet records. It is
not possible to prove claims about parties who operate type-U wallets because their records are not visible to any
MSB.

29 For example, a party could deny being the sender of a payment related to illegal activity.
30 Several electronic payment networks in use today clear in real time, with settlement being deferred. In contrast,

CBDC designs are in most cases envisioned as supporting real-time settlement.

24

transaction) would be in the order of seconds to be suitable for retail PoS payments.31 Hence,
the ability to scale the system up to handle users and throughput at these ranges while
preserving latency suitable for retail use—at a reasonable cost point—is foundational to a
CBDC technical design.

Scalability testing assesses the ability of a UTXO-based, micro-partitioned architecture to scale
linearly using OpenCBDC 2PC as a representative example.32 We note that not all micro-
partitioned systems are alike and, even in similar systems, particular design choices can lead to
marked differences in performance. Nevertheless, observations on OpenCBDC 2PC are useful
to gauge the scalability achievable in systems where sound design choices are combined with
the key idea of micro-partitioned systems, i.e., to minimize the state in the system core by
pushing it to entities at the system periphery and optimize how that core state is updated to
maximize efficiency.

We experiment with three variants of OpenCBDC 2PC, the baseline and two auditability variants
(Stuewe et al. 2024):

• Baseline—Records only hashes in the UHS. It is expected to be the best performer.
• Variant-values—Provides auditability with values in the clear. It is less performant than the

baseline because it increases the workload on shards to run the periodic audit procedure
to aggregate the supply.

• Variant-PPA—Implements privacy-preserving audits, so that values are hidden from the
settlement system. It is the least performant of the three, due to the cryptographic work
during validation and aggregation and to a larger transaction size.

We set the UHS size (i.e., size of monetary supply) to 50 million UTXOs for the baseline, 10
million for variant-values and 0.5 million for variant-PPA, all tested with one to eight logical
shards. Note that a production system would almost certainly have to support a larger CBDC
supply.33 The baseline and variant-values implementations could scale up to a larger supply by
using more logical shards (say, 256) or by vertically scaling shards (from 8 to 32 or 64 vCPUs).
It is unclear how far up the variant-PPA implementation can scale.

We do not implement the TS-archive as posited in the two-tier model for testing. This would,
when implemented, add overhead to the latency, although it could be minimized by using a
distributed key-value store that supports very fast write speeds.

3.6.1 Comparison of three variants
We experiment with three variants of the system design by measuring throughput (in TPS) and
latency (in milliseconds). Throughput is the number of transactions settled, measuring how fast
core system updates can be completed. Latency measures the time from the submission to the
confirmation of a transaction.

31 For our experiments, we measure only the latency of a core system update, i.e., the UHS update. Since a wallet-to-

wallet transfer is not implemented, we do not measure its latency.
32 Linear scalability means that when the system capacity (e.g., compute) is increased by a factor ”c,” its throughput

will increase by a constant multiple of c. Within limits, such a system can be scaled up to any desired throughput
by adding capacity.

33 For comparison, there are approximately 3 billion physical currency bills in circulation in Canada (Bank of Canada
2023).

25

Chart 2 shows the throughput for the three variants, scaling from one to eight logical shards.
The baseline variant scales linearly to approximately 250,000 TPS.34 The two auditability
variants, owing to additional computation work, achieve lower absolute throughputs and also
lower factors of scaling. In particular, variant-PPA is observed to struggle to scale, despite using
a smaller UHS size.

Chart 2: Throughput of the three variants

3.6.2 Assessment of sentinel attestations
As described earlier, SA are a way to counter threats that arise from a compromise of sentinels.
The SA feature is a good example of the additional computational burden that could be placed
on the core system as it evolves to meet future requirements.

We test this feature by setting SA=2 for the baseline and variant-values implementations,
summarized in Chart 3. We observe that throughput is markedly lower for SA=2 than for SA=0,
and the degree of scalability is also affected. It is not clear if linearity is affected; this requires
investigation.

34 This variant scales much higher, beyond 1 million TPS, for larger configurations, as described in the original

OpenCBDC white paper by Lovejoy et al. (2023).

26

Chart 3: Throughput with sentinel attestations

We summarize our observations about system scalability:

 The baseline variant demonstrates linear scalability. The baseline throughput scales
linearly as capacity is increased from one to eight shards, without significant degradation
of latency.

 The degree of scalability is impacted by supply audits. Auditing the supply entails
increased storage and computational overhead in the core compared with the baseline,
leading to a predictable performance impact. Variant-values scales linearly or close to it,
although at a lower rate than the baseline, if SAs are disabled.

 Scalability of auditing with privacy-preserving commitments remains unproven.
Auditability with commitments is a compelling idea, as it would allow the system to detect
discrepancies in the supply without knowing the amounts in circulation. However, it
struggles to scale linearly, evidently due to the burden of cryptography. These are
preliminary results, so optimizations would likely improve performance. However, they
point to the trade-off that packing more functionality into the core system would likely
render it less scalable.

 The size of the monetary supply impacts auditing performance. The auditability variants
periodically aggregate the entire supply. During this process (called audit logging), we
observe a latency degradation in our testing.35 By varying UHS size in the range of 1 million
to 50 million UTXOs for the variant-values implementation, we confirm that a smaller UHS
results in less severe latency spikes. In a production system with a larger UHS, audit logging
would have to be tuned carefully, so latency is kept within required limits.36 We are not

35 With an audit interval of 60 seconds, we observe that latency spikes last around 10 seconds or less, with peaks of 3–

4 seconds. This means that, in those 10 seconds, latency could be as high as 3–4 seconds, although on average it is
10% of that (around 400 milliseconds).

36 In a production system, other ways to optimize the CBDC supply could be explored. For example, wallets could
autonomously consolidate small-value UTXOs during off-peak hours.

27

able to test variant-PPA with a UHS larger than 500 thousand UTXOs, so it remains to be
shown that it can support a production-size UHS.

 Determining the optimal deployment footprint requires continual tuning. In a distributed
system composed of instances of several components (such as shard, coordinator and
sentinel), the number of instances and their relative ratios need to be established through
careful monitoring and analysis. With every change in the system, behaviour needs to be
assessed to understand if bottlenecks in the system have shifted and relative ratios have
changed, to adjust capacity.

3.7 Privacy
A retail CBDC system will involve the collection of users’ PII to comply with legal requirements,
such as anti–money laundering (AML) and anti-terrorist finance (ATF) laws. PII related to a CBDC
falls into three key categories: identity data for KYC purposes, transaction data for settlements
and metadata to detect suspicious activities. Collection and management of PII data will play a
key role in the level of privacy offered to users. In general, CBDC archetypes that allow end
users rather than institutions to hold information (e.g., the direct and micro-partitioned) can
more easily achieve higher privacy than the other archetypes. However, it is crucial to adopt a
privacy-by-design approach to safeguard the privacy of end users throughout the design and
development of an end-to-end retail CBDC system.

3.7.1 Privacy design
In designing a micro-partitioned and UTXO-based, end-to-end retail CBDC system, we
introduce several key privacy-focused design features of OpenCBDC 2PC and additional
components. These features are:

Identity decoupled from transactions—User identities are separated from transactional data
using unique cryptographic identifiers. This prevents linkage to individuals, enhancing
anonymity and protecting personal information. In our two-tier design, PII is managed
exclusively by the MSBs (acting as wallet custodians) or the end user in the case of a self-
custody wallet.

Minimal data retention for core transaction processors—The core transaction processor
components (sentinels, coordinators and shards) have access to only the non-PII data (e.g.,
transaction hashes), enabling the CB to settle transactions without accessing end users’ PII.
This ensures a high level of privacy for end users from the CB.

Ephemeral keys for transaction signatures—Transaction signing keys are generated
dynamically for each specific transaction, offering enhanced privacy compared with long-
term keys. This approach ensures k-anonymity, where k represents the set of wallets
actively participating in the system at any given time.

Self-custody wallets (type-U)—The micro-partitioned architecture inherently supports self-
custody wallets, allowing users to maintain direct control over their funds and keys. This
setup ensures a high level of privacy, particularly for NR users.

Privacy-preserving transactions—MIT DCI proposes and implements variant-PPA, based on
Pedersen commitments and zero-knowledge range proofs, to hide transaction amounts
from core settlement processor, while maintaining auditability. This solution improves
privacy beyond the level offered by the baseline OpenCBDC 2PC design.

28

Privacy-by-design in supporting components—The design of additional components such
as the TS-archive, gatekeepers and registry adheres to privacy-by-design principles by
minimizing the collection and retention of PII. This is achieved through a careful analysis of
data flows and models, ensuring that only the data essential for core functionality are
collected and stored. In our design and analysis, we design these components to minimize
data exposure while maintaining the operational integrity of the end-to-end CBDC system.

3.7.2 Privacy analysis
We also conduct a thorough privacy analysis of various design options, using rating-based
techniques (Arora and Darbha 2020) from the following two perspectives:

Visibility of holdings and transaction data—This perspective encompasses information such
as the sender address, receiver address and transaction amount. Examining who can access
this data during transaction processing is crucial for ensuring privacy. Table 5 presents the
privacy rating for this solution. A rating of 3 indicates the entity has no visibility and stores
no data, rating 2 indicates the entity has visibility but has no storage requirement and rating
1 indicates both visibility and storage are required.

Table 5: OpenCBDC 2PC visibility ratings for the three variants and cash

Note: MSB is money services business. H means users’ holdings, and T means transactions. O is the
owner, B is the balance, S is the sender, R is the receiver and A is the data amount. A rating of 3
indicates the entity has no visibility and stores no data, rating 2 indicates the entity has visibility but has
no storage requirement and rating 1 indicates both visibility and storage are required.

We make the following key observations based on these ratings:

 The CB has no access to information about users’ holdings, such as their identities and total
balances. This approach ensures a high degree of privacy from the CB, though not
necessarily from intermediaries.

 The CB does not have access to transaction or holdings data for any type of wallet. The
choice of wallets (type-U, type-K or type-M) has a big impact on users’ privacy from
intermediaries, but it has no impact on privacy from the CB.

 The CB, running sentinels, has access to the sender and receiver addresses and the value
of the transaction. Sender and receiver addresses are only needed by the sentinels to verify
the correctness of the transaction at the time of processing, and they don’t need to store
this information.

O B S R A O B S R A O B S R A
U 3 3 2 2 2 3 3 3 3 3 3 3 3 3 3

K/M 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1
U 3 3 2 2 1 3 3 3 3 3 3 3 3 3 3

K/M 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1
U 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3

K/M 3 3 2 2 3 1 1 1 1 1 1 1 1 1 1
Cash 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Payee MSB

H T H T H

OpenCBDC Variant-values

OpenCBDC Variant-PPA

T
Wallet

type

OpenCBDC 2PC baseline variant

Solution
Central bank Payer MSB

29

 OpenCBDC variant-values stores the transaction amount to support an operation to audit
the supply, i.e., aggregating all values in each shard to determine the total currency in
circulation. However, this variant reveals the values of individual UTXOs to the core, which
weakens privacy. Note that this variant does not affect user privacy with respect to
intermediaries; it impacts privacy only in relation to the CB.

 OpenCBDC variant-PPA is intended to strengthen privacy while allowing the supply to be
audited. Instead of sending values in the clear to sentinels, cryptographic commitments to
the value are sent instead (a Pederson commitment and a range proof). These
commitments, instead of plain values, are validated and stored in the core. The
commitments can be added to arrive at a cryptographically hidden value that represents
the aggregate currency in circulation and can be compared with an expected aggregate
value, while keeping values hidden from the core. Importantly, values are also hidden from
sentinels, so they can no longer see amounts. This provides a very high level of privacy to
the users from the CB.

 Transaction and holding data for NR users with type-U wallets are inaccessible to any entity,
ensuring an exceptionally high level of privacy for these users.

Ability to generate spending profiles—This perspective focuses on the potential to link users
to individual transactions and establish connections between multiple transactions. By
understanding this capability, we can assess the risk of creating detailed spending profiles,
which may compromise user privacy. Table 6 present the privacy ratings for this solution,
based on the criteria in Figure 7.

Figure 7: Criteria for the spending profile ratings

Table 6: Spending profile rating for variant-PPA

Note: PPA means privacy-preserving audit, and MSB means money services business. Tx is transaction, R
users are registered and NR users are unregistered. U, K and M are type-U, type-K and type-M wallets,
respectively.

Link tx to
NR and R
users

Tx graph

User
profiling
– R and

NR users

Link tx to
R users

Link tx to
NR users

Tx graph

User
profiling
– NR
users

U 2 2 2 NA 3 3 3
K 2 2 2 1 1 2 1
M 2 2 2 1 1 2 1
U 3 3 3 NA 3 3 3
K 3 3 3 1 1 2 1
M 3 3 3 1 1 2 1

Solution

MSB

OpenCBDC 2PC
baseline variant

Central bank

OpenCBDC 2PC
Variant-PPA with
ephemeral keys

30

We make the following key observations, based on the above ratings:

 Sentinels operated by the CB have access to transaction data and the ability to store them.
However, they are not required to retain these data after processing. The use of ephemeral
keys ensures that the CB cannot easily link transactions to specific users and doesn’t have
the ability to build user spending profiles.

• MSBs have access to the transaction history of R users with type-K and type-M wallets,
enabling those MSBs to link transactions to users and build spending profiles. The CB,
however, does not have this capability for any user.

 From the user profiling perspective, the choice of wallet type (U, K or M) has a big impact
on users’ privacy from MSBs but has no impact on privacy from the CB. This observation is
similar to the visibility analysis of transactions and holdings, above.

3.8 Compliance
The micro-partitioned CBDC based on the OpenCBDC two-tier architecture solution involves
various datasets managed by multiple entities. These include intermediaries responsible for
user onboarding and managing customer transaction history. Each intermediary maintains data
for their own users and is responsible for ensuring compliance with AML and ATF laws.

3.8.1 User onboarding
The CBDC system would encompass several onboarding processes tailored to meet diverse
user needs and business objectives. These processes range from onboarding procedures done
entirely online to in-person interactions. KYC procedures during onboarding are a fundamental
component of AML and ATF laws. Under these laws, financial institutions and other regulated
entities must verify the identities of their customers and keep records of the relevant
information.

For the two-tier CBDC systems, it would be up to the individual intermediaries to design the
KYC solution for their R users. These intermediaries would have several options, ranging from
developing a custom solution to utilizing KYC as a service. Intermediaries can leverage this
opportunity to attract new customers by offering convenient onboarding techniques. In this
setup, intermediaries are fully responsible for ensuring compliance, with the CB not involved in
this process. The architecture supports this model by providing intermediaries access to the
necessary data, enabling them to fulfill their compliance obligations.

For NR users with type-U wallets, onboarding would involve obtaining the wallet without
providing any identity information or needing to interact with an intermediary.

3.8.2 Rule-based compliance
Rule-based compliance, also known as prescriptive or specific compliance, relies on a set of
explicit, detailed rules, guidelines and regulations that dictate specific behaviours and actions
to follow. For example, any transaction above $10,000 must be reported to the regulatory
authority.

In this solution, for R users with type-M and type-K wallets (both senders and receivers),
intermediaries have full visibility into the transactions and identities of their users. The CB does
not have access to this data. Therefore, intermediaries are responsible for applying the
necessary rules and reporting any violations to the appropriate authorities.

31

For NR users, potential rules to prevent illicit usage (e.g., transaction limits) are enforced by the
gatekeeper component before the transaction is submitted to the transaction processor (i.e.,
the sentinel for OpenCBDC) for settlement. The gatekeeper would reject any transaction that
violates these rules.

3.8.3 Principle-based compliance
Principle-based compliance, also known as outcome-based compliance, emphasizes broad
objectives that guide behaviour and decision-making without dictating specific processes or
procedures.

In this solution, intermediaries bear the responsibility for implementing compliance measures
for their users. Intermediaries can deploy the latest techniques, such as machine learning
models, to detect suspicious transactions based on patterns and anomalies. These technologies
can enhance the effectiveness of compliance operations by identifying potential risks and
fraudulent activities in real time, allowing for prompt and appropriate action. Historical
transaction data managed by intermediaries can also be used for in-depth analysis to detect
suspicious activities over time. The data can help uncover trends and patterns that might
indicate illicit behaviour.

For NR users with type-U wallets, principle-based compliance is not applied. These wallets are
designed to function similarly to cash, where transactions can occur without the need to verify
identity or adhere to compliance principles.

In summary, two-tier systems such as OpenCBDC 2PC allow intermediaries to handle
compliance activities for R users by utilizing customer data (KYC, transaction and meta data),
much like in traditional account-based systems. They can adopt custom-built compliance
frameworks or leverage third-party compliance-as-a-service solutions to fulfill regulatory
requirements effectively. This flexibility allows intermediaries to enhance user experiences and
attract new customers through convenient onboarding processes. For NR users, the system
allows the implementation of appropriate controls to minimize illicit activities.

3.9 Resilience
The total system state in OpenCBDC 2PC exists in two parts: in the core system, as contents of
the UHS, and in the system periphery, as funds information in wallets. The core system state is
in the CB’s or operator’s control, while the wallet state is in the end user’s control, typical of
how the state is organized in micro-partitioned systems. We discuss how the system state can
be made resilient, i.e., protected against loss in the event of a system failure.

3.9.1 Resilience of funds and wallets
The part of the system state pertaining to the supply is stored in the form of UTXO pre-images
in end-user wallets.37 This state is in the control of wallet owners and, if lost, results in a loss of
funds for the owners since the funds do not exist elsewhere in the system. However, the loss of
one user’s funds does not impact other users’ funds or the integrity of the supply.

37 End-user wallets would contain other information that is not system state, e.g., credentials such as spending keys,

records of transaction history and so on.

32

If a wallet is type-M or type-K, an MSB would have custody over its funds. The MSB would
presumably use institutional backup and recovery mechanisms that enterprises already employ
for critical systems they operate, to safeguard the contents of their customers’ wallets.

If a wallet is type-U, then its funds would be in the custody of the user, on whom the onus
would rest to prevent a loss. Vendors of smartphone wallet software could feasibly build backup
and recovery mechanisms into their apps to allow regular backups of funds to the user’s cloud
account. These mechanisms could be designed to minimize the risk of funds being stolen by
encrypting backups at rest and ensuring that spending keys are not backed up with funds.

In an open and competitive ecosystem, users would have a choice of many wallet types from
vendors. A privacy-conscious user might choose a type-U wallet that provides backup and
recovery capability that they deem as adequate for their needs. Another user might opt for a
type-M or type-K wallet, giving up some privacy in return for enterprise-grade institutional
backup and recovery of their funds.

Hence, resilience of funds in user wallets is certainly feasible from a technical standpoint, but
the exact form in which it is realized would depend on the ecosystem and market factors.

3.9.2 Resilience of the core UHS state
We consider how the core system state can be made resilient, so that it is preserved and
recoverable without loss of data in the event of an outage. The core system state comprises
information about unspent funds in the supply and is the crown jewel of the system. A data
loss would be catastrophic since it would manifest as users being unable to spend their funds,
which would have been incorrectly deemed by the system to be invalid.

In the OpenCBDC 2PC design, the UHS is maintained in memory on each shard instance, rather
than in a persistent store. This makes UHS updates fast. The UHS is partitioned between several
logical shards, each of which stores a part of the UHS. A logical shard cluster contains multiple
physical shards that replicate its UHS state among themselves. The physical shard designated
as the leader produces and distributes state update messages to follower shards who consume
and apply them, serving as up-to-date replicas of the shard state. A state replication protocol
(Raft) propagates state updates across a cluster.

In our experiments, we deployed three physical shards per logical shard, i.e., the UHS of each
logical shard was replicated 3x across the three data centres (DCs).

Figure 8 shows the sequence of steps for a UHS state update to be applied by the leader and
propagated to followers in a logical shard cluster.

Figure 8: Steps to record a UHS state update in a logical shard cluster

Shard
UHS in memory Raft log LevelDB

Raft log

DiskPersistDB
write

UHS
updateLeader

Followers LevelDB DiskPersistDB
write

RAFT replication

Shard
UHS in memory

UHS
update

Note: UHS is the hash set of all unspent transaction outputs. Raft is a replication protocol, and LevelDB
is a database.

33

First, the leader writes the UHS update to both its in-memory UHS and its Raft log. This update
is Raft-replicated to all followers in the cluster (in the figure, only one follower is shown, for
clarity). Each shard writes the update to its local LevelDB (Google Inc. n.d.) database as a new
Raft log entry.38 The database instance saves entries periodically to a disk at a cadence specified
in its configuration.

To settle a transaction, the leader shard writes the update to its in-memory UHS and its local
Raft log, which is replicated to the Raft logs of followers. It then marks the transaction as
complete via a reply to the coordinators. At this point, the update is available in the in-memory
UHS of both the leader and followers, and the transaction is considered settled.

We consider two failure scenarios—a partial outage and a total outage—and discuss the
recovery time objective (RTO) and recovery point objective (RPO) achievable in each case. RTO
is the time after an outage needed to restore full service. Ideally, this should be in the order of
a few hours at most, e.g., two hours, since users will see the system as unavailable during this
time. RPO is the amount of time leading up to the outage for which data has been lost. For a
feasible design, this should be zero. In other words, once a transaction has been confirmed as
settled, its data should always be recoverable from persistent storage. If the RPO is non-zero,
say 30 seconds, then transactions already declared as settled in that 30-second interval would
appear after recovery to not have been settled.

Recovery from a partial system outage

We consider a partial outage as an outage of one or more DCs, so that at least one replica of
each logical shard remains operational.

First, we consider the RPO. A transaction’s state is replicated to all followers before it is
confirmed as settled. So, as long as at least one replica in a cluster remains operational, the
state of settled transactions would be available in the in-memory UHS of that replica. The
leader, even if newly elected, would possess the UHS state of all settled transactions. Hence,
the system could recover from a partial system outage with an RPO of zero, i.e., without loss of
state.

Next, we consider the RTO. On a failure event, the Raft protocol discovers the outage and, if
needed, elects a new leader for affected clusters. We observed these steps occurring in 10–20
seconds, during which time some transactions that are in flight may fail to settle. They can be
resubmitted to the system a short time later for settlement, after the leader election. Hence, an
RTO in the order of seconds or minutes is feasible with a similar state replication mechanism.

Recovery from a total system outage

We consider a total system outage as an operational loss of all replicas of a logical shard, e.g.,
due to a widespread power outage.

Recovery from a total outage would require reconstituting the UHS state from the persistent
store. The only persistent store related to the UHS state is the set of Raft logs containing the
events recorded since the start of the log. On a restart, a shard reads and replays its Raft logs
to recreate the state as recorded in those logs.

First, we consider the RPO. To achieve a zero RPO, the system would need to guarantee not
only that a transaction’s state has been replicated across a cluster, but also that it has been

38 The OpenCBDC design uses a local LevelDB instance on each physical shard, so that the LevelDB instances in a

cluster are independent and disconnected.

34

written to the persistent store in all shards of the cluster, before it is confirmed as settled. We
are unable to confirm this in our testing. Depending on the database technology and
configuration, it may be theoretically possible in a system design that a small-time window
exists during which this guarantee isn't met. If so, data loss and a non-zero RPO could result,
especially if the transaction volume is large. It would be vital in a production system to confirm
this. If design changes are needed to achieve this guarantee, their performance impact would
depend heavily on the replication protocol and the database technology.

Next, we consider the RTO. In the current design, Raft logs grow unbounded, so the time to
replay them, and hence the RTO, is theoretically unbounded. This would be unacceptable in a
production system. To make state recovery from the persistent store feasible and practical, one
possible idea is to snapshot the UHS state periodically, say, every few hours, and keep only Raft
logs subsequent to the latest snapshot. It may be possible to incorporate snapshotting into the
audit log process since both tasks entail walking the contents of the UHS periodically, although
the performance impact of such a change is unknown. Recovery would involve first reading the
latest snapshot to create an instance of a UHS corresponding to it, then applying updates from
subsequent Raft logs to the UHS.39 The frequency of snapshots would need to be tuned, while
considering the time to replay events from Raft logs, to achieve an RTO of no more than a few
hours.

Section 4: Lessons Learned
We summarize the key lessons learned regarding feasibility of micro-partitioned architectures
such as OpenCBDC 2PC for an online retail CBDC system.

A design like OpenCBDC 2PC aligns well with a two-tier system. The design allows a clean
separation of CB functions (minting, validation and settlement) from MSB functions (KYC, wallet
management and compliance). We posit three types of wallets and show that they can coexist,
supporting both user custody and institutional custody of funds in one system. We describe
other necessary components such as a peer alias service for peer discovery, a funds receiver
service to enable receiver-not-present payments, etc., and show how they could operate within
a two-tier system.

Achieving strong non-repudiation guarantees requires the system to be able to confirm both
legs of a transaction. A key attribute of micro-partitioned designs such as OpenCBDC 2PC is
that a transaction involves two legs, a core update and a wallet-to-wallet transfer. We describe
a modified payment flow that enables the system to establish completion of the inter-wallet
transfer along with the core update. We demonstrate its feasibility for transactions from any
wallet type to any wallet type. We show that this modified flow, supported by the CB’s
transaction status archive and MSBs’ PII databases, can enable the system to achieve strong
non-repudiation guarantees to resolve payment disputes between senders and receivers. In
other words, a sender can prove that they paid a specific receiver, and a receiver can prove they
were paid by a specific sender.

The use of a system such as OpenCBDC 2PC for retail payments would require enhancements
in the payments ecosystem to accommodate complex payment flows. The current retail

39 Raft logs would also contain other entries, e.g., protocol messages of leader and follower designations. All entries

would need to be replayed in sequence to update a node to the latest state as known in Raft logs.

35

payments ecosystem is based on funds being represented in account balances at institutions
and a transaction resulting in balance updates. To use a micro-partitioned system like
OpenCBDC 2PC for retail payments, the ecosystem would have to adapt to a more complex
model of funds residing in end-user wallets and a transaction involving an inter-wallet transfer
in addition to a system update. This would entail technical enhancements across the ecosystem
to support the new funds model and integrate with a more complex payment flow while
handling novel boundary conditions, e.g., aborting a transaction when one of two legs has been
completed.

It is functionally feasible to audit the monetary supply, although its performance on a
production-size supply needs further investigation. Mechanisms to fix discrepancies also
require investigation. Our assessment of two variants of OpenCBDC 2PC for auditability
indicates that mechanisms similar to either of them would be feasible functionally to audit the
supply and detect a discrepancy, i.e., furnish a binary yes/no answer to the question “Did
tampering occur?” The auditing process has a latency impact, and ways to mitigate it would
need to be investigated for a production-size supply via optimizations and operational controls
such as audit frequency, size of the monetary supply and core system capacity.

Further, a production system must not only be capable of detecting a discrepancy, but also of
reversing it. This would require the system to maintain and compare historical audit logging
and transaction information. The functional complexity and performance impact of reversal
mechanisms are unknown, and we leave their investigation to future work.

Although linear scalability of throughput is achievable with systems such as OpenCBDC 2PC,
the addition of enhancements like auditability would require careful design to preserve it to
achieve throughput and latency goals. Our experiments with the baseline and two auditability
extensions suggest that the baseline variant scales throughput linearly, while preserving latency
in a range suitable for retail payments.40 The two auditability variants, being more compute-
intensive, do not scale as efficiently, the variant-PPA implementation in particular facing
challenges. These early-stage observations can likely be improved with design optimizations.
Further investigation is needed to assess feasibility for production UHS sizes. Our findings point
to an important trade-off: the more information that is packed into the core state and the more
intensive the process to update that state, the less scalable the resulting system is. Nevertheless,
they speak to the efficiency of such systems that even the least performing configurations could
achieve throughput in excess of 10,000 TPS.

Micro-partitioned systems such as OpenCBDC 2PC that support user custody of funds
naturally support high levels of privacy from the CB and, optionally, from MSBs too. This
system achieves high privacy from the CB by hiding from it the owner’s identity, holdings and
transactions. By choosing to be non-registered and with a type-U wallet, if permitted, a user
can increase their privacy from MSBs as well. These ideas could be combined with the use of
privacy-enhancing technologies to hide amounts even from the settlement system. This
achieves a very high level of privacy that would exceed the privacy available in electronic
payment systems today. We also observe that system enhancements must be carefully
designed to avoid storing PII data, ensuring that the privacy provided by the system remains
intact.

40 Our experiments do not include wallet-to-wallet transfers, which when implemented could add to the latency

experienced by users in some payments use cases.

36

Compliance in systems such as OpenCBDC 2PC relies on MSBs to maintain the necessary
data. The CB and core system have no personal data about user identities, funds and
transactions. Hence, rule-based and principle-based compliance are the sole responsibility of
MSBs. They are feasible for registered users that operate type-M and type-K wallets, assuming
that MSBs maintain the necessary data about those wallets and their owners, such as full
transactions and history. This type of compliance is unfeasible for non-registered users,
especially those with type-U wallets, since MSBs would not have data about them. However,
controls (e.g., transaction limits) can be implemented in the system to prevent illicit usage.
Policy-makers would need to balance compliance and privacy when determining which wallet
and registration types to allow in a production system.

Guaranteeing the resilience of the core system state is feasible, but it requires engineering
effort. Achieving resilience of the wallet state is also feasible. The core state (the UHS in
OpenCBDC 2PC) constitutes the crown jewel of the system and hence must never be lost, even
in the event of a total system outage. That is, the state of the UHS up to the last settled
transaction must always be recoverable with zero data loss. This is theoretically feasible for
systems like OpenCBDC 2PC, but it would require engineering effort to realize in a practical
and efficient manner. We outline the enhancements needed—periodic persistent snapshots of
the core state, persistent logs of subsequent updates and a recovery process to reconstitute
the core state from the persistent store. Further, recovery must be timely, regardless of factors
such as the time of last failure and the transaction volume. We leave to future work the
investigation of how to achieve these goals, which would depend heavily on the state
replication mechanisms and database technologies used.

The resilience of wallet contents would be the responsibility of wallet custodians such as MSBs
and end users. We note that institutional backup and recovery mechanisms are already widely
used by enterprises, and end users have access to a range of solutions to back up the contents
of their devices, which could be employed for CBDC wallets.

37

Appendix A: Proposed transaction flow
We consider a payment from Alice to Bob in OpenCBDC 2PC. Table A-1 shows the original
transaction flow on the left and the proposed flow on the right. Our proposed flow achieves all
four guarantees (G1 to G4) needed for non-repudiation (see Section 3.5), while the original flow
achieves only G1.

Table A-1: OpenCBDC transaction flows to achieve non-repudiation

 Original flow Proposed flow
a Bob generates many (say, in the 1,000s) ephemeral

public and private keys. Bob generates an equal
number of certificates for an FR service by signing
the latter’s public key with his ephemeral private
keys. Bob publishes the public keys to a PA
service.41 Bob also publishes public keys and
corresponding certificates to his FR service.

b Alice queries the PA service for Bob’s public key.
The PA serves a public key and, if ephemeral,
deletes it from its store.

1 Alice creates a full-tx by signing witnesses
for inputs being spent and generating
outputs encumbered to Bob’s public
key.42

(Same as in Original flow)

2 Alice submits the full-tx to the system. Alice sends the full-tx (with the ephemeral public
key) to Bob or his FR service.

3a (If the receiver is present)
Bob verifies that each output is encumbered to a
public key that corresponds to one of his private
keys (G3). OR

3b (If the receiver is not present)
The FR computes a witness commitment from the
input and Bob’s public key and matches it to the
witness commitment in the full-tx, hence verifying
that output is encumbered to a public key that Bob
published (G3).

4 Bob or the FR retrieves and stores outputs from
the full-tx.
Bob or the FR may store the full-tx for non-
repudiation.

41 Alternately, Bob could publish only a long-lived key to the peer alias (PA) service, which Alice could query. Alice

would then compute an ephemeral key by choosing a random nonce and including that nonce in the full transaction
she sends to Bob. There is no risk of another party intercepting the full transaction and stealing the outputs because,
even with the nonce, they cannot constitute Bob’s ephemeral private key without knowing his long-lived private
key. Bob can, from the nonce, compute the ephemeral private key.

42 This analysis can easily be extended to multiple public keys belonging to Bob. It could also be extended to multiple
receivers in one transaction, who would need to communicate out of band to construct the transaction before
submission. We exclude such transactions without loss of generality. However, an important case is when two
receivers are involved, one of whom is Alice receiving change. That is a straightforward extension of the single
receiver case already discussed, as Alice can append a transaction identification number (TxID) with her signature to
the full transaction before sending it to Bob.

38

 Original flow Proposed flow
5a (If the receiver is present)

Bob adds a TxID to the full-tx, one per output,
signed by the private key that corresponds to his
public key that the output is encumbered to (G1).
OR

5b (If the receiver is not present)
TheFR adds a TxID to the full-tx, one per output,
signed by its certificate that is signed using Bob’s
private key that corresponds to the public key the
output is encumbered to.43

6 The receiver or FR submits the enhanced full-tx to
a sentinel.

7 The system (sentinel) verifies the witness
for each input. This proves inputs have
been signed by a legitimate owner and
that outputs have not been tampered
with (G1).44

(Same as in Original flow)

8a (If the receiver is present)
The system (sentinel) verifies TxIDs are signed by a
private key that corresponds to the public key to
which outputs are encumbered, hence confirming
that output pre-images are known to the entity to
whom they are encumbered (G2; G4 is trivially
true). OR

8b (If the receiver is not present)
The system (sentinel) verifies that the FR certificate
is signed by the private key that corresponds to
the public key to which outputs are encumbered. 45
This confirms that output pre-images are known to
the FR (G2) that is authorized to act on behalf of
the entity to whom outputs are encumbered
(G4).46

9 System progresses transaction to core
components for settlement.

(Same as in Original flow)

Note: FR is a funds receiver service, and PA is a peer alias service. Tx is a transaction, and TxID is a
transaction identification number.

43 Note that this does not require the funds receiver (FR) service to know Bob’s private key. A simpler alternative could

be for the FR to use a certificate signed by the central bank (CB). This would be more efficient but a weaker guarantee
since, while it proves that the FR is authorized by the CB, it does not prove it is authorized to act on Bob’s behalf.

44 Each witness is a signature on the TxID computed over all inputs and outputs. Thus, if a man in the middle (MITM)
attempts to tamper with outputs, it would change the TxID, invalidating witness signatures over the original TxID.
Hence, validation of witnesses also confirms that an MITM did not tamper with outputs.

45 Though these extra validation checks will impact performance, they are expected to preserve linear scalability, i.e.,
adding more validation capacity (at sentinels) for the same traffic would meet the throughput and latency targets.

46 Note that nowhere in this construction is it necessary to communicate long-lived keys to the system. The system
only knows Alice’s and Bob’s ephemeral keys and cannot create transaction graphs linking them over time.

39

Appendix B: Details of scalability test results

The configurations of tests listed below are as follows:

• #shards, #coordinators, #sentinels: Given as “x3” to reflect the number of instances of
these components in each data centre (DC) and the total number across three DCs.

• Pre-seeds: Size of the hash set of unspent transaction outputs (UHS) at start of test. All
tests use 2in:2out transactions, so the UHS size does not change for the duration of
the test.

• Block size: Size of a block, i.e., a distributed transaction that coordinators send to
shards, in #transactions. It is larger for the baseline and variant-values and smaller for
the variant-PPA since transaction size is larger in a latter variant.

• Throughput: Transactions per second (TPS) settled and recorded in the UHS. This does
not include the time for a wallet-to-wallet transfer, which is not implemented.

• Latency: Measured from the traffic generator back to itself, the average and 99-
percentile (99p) latency figures in milliseconds. The 99p latency means that 99% of the
transactions are completed in this time. For auditability variants, there is a latency spike
during the audit logging process. Its duration and peak (in seconds) are also recorded.
We consider only those tests whose average latency is under 1 second and the 99p is
under 5 seconds, the audit spike time is under 10 seconds out of 60 seconds, and the
peak spike is under 5 seconds.

• Server size: All server types are eight virtual central processing units (vCPUs), except
load generators at 2 vCPUs.

• SA (sentinel attestations): The #attestations that each transaction must have to be
accepted by the system and the #attestations that are validated by sentinels. If SA=0,
it means attestations are disabled.

• Audit interval: In seconds, the period of audit logging process in the two auditability
variants. The default is 60 seconds, so the total money in circulation is aggregated every
minute.

Comparison of three architecture variants

Baseline
Baseline tests use 50 million pre-seeds and a block size of 100,000 (Table B-1).

Table B-1: Average throughput and latency (baseline, sentinel attestations=0)

Test ID Shards Coords Sentinels Avg.
TPS

Avg. (99p)
latency
(ms)

4b6c0a8453e4 1x3 2x3 4x3 88,576 466 (661)

13cd512f643b 2x3 4x3 8x3 116,426 477 (689)
f98ad6ae6bdc 4x3 8x3 16x3 154,520 528 (839)

9e73b87d46b7 8x3 16x3 32x3 245,337 547 (844)

Source: Bank of Canada calculations

40

Variant-values
Variant-values tests use 10 million pre-seeds and a block size of 100,000. The audit interval is
60 seconds (Table B-2).

Table B-2: Average throughput and latency (variant-values, sentinel attestations=0)

Test ID Shards Coords Sentinels Avg.
TPS

Avg. (99p)
latency (ms)

Audit
spike
peak
(s)

Audit
spike
time
(s)

2cdec15b51a1 1x3 2x3 4x3 16,223 406 (2,116) 2.4 6
3d0990d2e9e7 2x3 4x3 8x3 30,444 526 (3,162) 3.3 8
e11d933ddda5 4x3 8x3 16x3 58,344 569 (3,445) 4.5 10
81c389e1d589 8x3 16x3 32x3 104,511 586 (3,762) 4.5 10

Source: Bank of Canada calculations

Variant-PPA
Variant-PPA tests use 0.5 million pre-seeds and a block size of 4,000.

In the implementation of the default OpenCBDC 2PC variant-PPA, sentinels perform only
Pederson commitment (PC) checks on incoming transactions, deferring range proof (RP) checks
to the audit logging process in shards. That poses the risk that a transaction could be declared
settled, but its RP is later found to be invalid. To prevent this, we use a modified implementation
in which sentinels perform both the RP and PC checks at the time of transaction validation so
that RP checks are completed before a transaction is settled. This increases the burden on
sentinels (and hence more of them are needed, as in Table B-3, compared with the other
variants). Since RP checks are computationally expensive, one idea is to offload them to
specialized hardware alongside sentinels to improve performance in a production system (not
tested).

Table B-3: Average throughput and latency (variant-PPA, sentinel attestations=0)

Test ID Shards Coords Sentinels Avg.

TPS
Avg. (99p)
latency (ms)

Audit
spike
peak
(s)

Audit
spike
time
(s)

b0a36baa7f80 1x3 2x3 8x3 10,318 450 (1,810) 2.0 8
4ae962c4f597 2x3 4x3 16x3 18,657 517 (1,186) 1.0 6
267cead07d0d 4x3 8x3 32x3 24,669 537 (1,472) 1.2 7
49d19be32780 8x3 16x3 64x3 37,006 506 (1,211) 1.0 12

Source: Bank of Canada calculations

41

Sentinel attestations feature
Sentinel attestation (SA) tests are executed for only two variants, baseline and variant-values.
Variant-PPA is not tested since, even with the SA feature disabled, it scales quite slowly,
indicating that optimizations would be needed to execute it with the feature enabled.

Baseline
Baseline tests with SA=2 use 10 million pre-seeds and a block size of 100,000 (Table B-4).

Table B-4: Average throughput and latency (baseline, sentinel attestations=2)

Test ID Shards Coords Sentinels Avg.
TPS

Avg. (99p)
latency
(ms)

4434d00fa46e 1x3 2x3 4x3 54,689 443 (636)
1c9773c7f3c2 2x3 4x3 8x3 64,995 674 (2,009)
1f52045544a4 4x3 8x3 16x3 83,166 565 (1,464)
49a7301a5d3e 8x3 16x3 32x3 94,319 623 (2,369)

Source: Bank of Canada calculations

Variant-values
Baseline tests with SA=2 use 10 million pre-seeds and a block size of 100,000 (Table B-5).

Table B-5: Average throughput and latency (variant-values, sentinel attestations=2)

Test ID Shards Coords Sentinels Avg.
TPS

Avg. (99p)
latency (ms)

Audit
spike
peak
(s)

Audit
spike
time
(s)

2a1e7db314e8 1x3 2x3 4x3 17,483 658 (3,600) 4.0 8
160239f8f6f0 2x3 4x3 8x3 29,463 630 (3,299) 4.5 10
d98c500fda0e 4x3 8x3 16x3 49,310 740 (4,308) 4.0 15
3f0aca3b169a 8x3 16x3 32x3 62,069 599 (2,364) 3.5 7

Source: Bank of Canada calculations

Limitations
 Transient degradation: In variant-PPA tests spanning 5 or 10 minutes, we notice an

unexplained degraded performance in the first 200 seconds or so, which stabilizes
thereafter. We are unable to ascertain the root cause and surmise there may be initial start-
up issues to be resolved. We also notice that memory leaks would accumulate steadily in
all variants. Although the tests don’t run long enough to trigger out-of-memory conditions,
they indicate the presence of potential issues of unknown impact.

 Optimal inter-component associations: A sentinel communicates with a coordinator to
submit transactions for settlement. If their numbers are identical, e.g., eight sentinels and
eight coordinators, they get allocated 1-to-1. If not, e.g., if there are eight sentinels and six
coordinators, it is unlikely that the traffic from sentinels is uniformly distributed to the
coordinators in the current codebase. Another factor is their deployment across three DCs.
(For example, is a sentinel in DC-1 always guaranteed to find a coordinator in the same
DC?) Some of the tests have unequal numbers of instances, and we are unable to ascertain
if our configurations are sub-optimal.

42

 Optimal relative ratios of components: We establish the relative ratios of shards,
coordinators and sentinels for one shard. Then, as the shard count is doubled to 2, 4 and
8, the other components are doubled as well. A more in-depth approach would ascertain
optimal ratios at each of those shard numbers separately.

 Third-party changes: We observe early in our testing that throughput scales at a rate close
to 2.0, i.e., adding twice the capacity would also increase throughput by two times.
However, in later testing, after the compiler had been upgraded along with some libraries,
the rate of scaling dropped to lower than two times, even though these upgrades were
unrelated to the core logic. We are unable to find the cause of this degradation. It shows
how seemingly innocuous changes in large codebases that include third-party and open-
source contributions can have unforeseen impacts. This highlights the need for continual
monitoring and measurement of the system as it evolves over its life cycle.

43

References
Arora, R. and R. Darbha. 2020. "Privacy in CBDC Technology." Bank of Canada Staff Analytical

Note No. 2020-9. DOI: https://doi.org/10.34989/san-2020-9.

Bank of Canada. 2023. "Currency." Annual Report 2023.
https://www.bankofcanada.ca/publications/annual-reports-quarterly-financial-
reports/annual-report-2023/currency/.

Baudet, M., G. Danezis and A. Sonnino. 2020. "FastPay: High-Performance Byzantine Fault
Tolerant Settlement." ACM Conference on Advances in Financial Technologies (AFT):
163–177. ACM.

Buldas, A., M. Saarepera, J. Steiner, L. Ilves, R. Olt and T. Meidla. 2021. "A Formal Model of
Money Schemes and Their Implications for Central Bank Digital Currencies." Joint
research paper by Eesti Pank and Guardtime.
https://haldus.eestipank.ee/sites/default/files/2021-12/EP-
A_Formal_Model_of_Money_2021_eng.pdf.

Buterin, V. 2016. "Thoughts on UTXO." Medium. https://medium.com/@ConsenSys/thoughts-
on-utxo-by-vitalik-buterin-2bb782c67e53.

Darbha, R. 2022. "Archetypes for a Retail CBDC." Bank of Canada Staff Analytical Note
No. 2022-14. DOI: https://doi.org/10.34989/san-2022-14.

George, N., T. Dryja and N. Narula 2023. "A Framework for Programmability in Digital
Currency." Massachusetts Institute of Technology Digital Currency Initiative.
https://dci.mit.edu/s/Public-Copy-A-Framework-for-Programmability-in-Digital-
Currency-August-1st-2023-MIT-DCI.pdf.

Google Inc. n.d. "Level DB." https://github.com/google/leveldb.

Gravitis, A., N. Goh and D. Toliver. 2019. "TODA Primer." Report from TODAQ Holdings Inc.
https://engineering.todaq.net/TODA_Tech_Primer_v1.1.pdf

Guerraoui, R., P. Kuznetsov, M. Monti, M. Pavlovic and D.-A. Seredinschi. 2019. "The
Consensus Number of a Cryptocurrency." ACM Symposium on Principles of Distributed
Computing (PODC): 307–316. ACM.

Lovejoy, J., M. Virza, C. Fields, K. Karwaski, A. Brownworth and N. Narula. 2023. "Hamilton: A
High-Performance Transaction Processor for Central Bank Digital Currencies." 20th
USENIX Symposium on Networked Systems Design and Implementation (NSDI '23):
901–915. Boston, MA: USENIX Association.

Massachusetts Institute of Technology Digital Currency Initiative. 2022. "OpenCBDC."
https://dci.mit.edu/opencbdc.

Stuewe, S. “Payment Routing for CBDCs.” Personal note shared May 30, 2024.

44

Stuewe, S., M. Virza, M. Maurer, J. Lovejoy, R. Bohme and N. Narula. 2024. "Beware the Weak
Sentinel: Making OpenCBDC Auditable Without Compromising Privacy."
Massachusetts Institute of Technology Digital Currency Initiative working paper.
https://dci.mit.edu/beware-the-weak-sentinel-making-opencbdc-auditable-with-out-
compromising-privacy.

	2589 Darbha et al_research paper template.pdf
	Acknowledgements
	Abstract
	Résumé

	2589 - Darbha et al SDP.pdf
	Executive summary
	Section 1: Introduction
	Section 2: Background on archetypes and funds models
	2.1 Funds models
	2.2 Archetypes of a retail central bank digital currency
	2.3 Combinations of archetypes and funds models

	Section 3: Analysis of a system for basic payments
	3.1 Choice of system design
	3.2 Two-tier model
	3.3 Payment flow and integration with retail payment systems
	3.4 Integrity
	3.4.1 Integrity of funds and wallets
	3.4.2 Integrity of the supply
	3.4.3 Sentinel attestations
	3.5 Non-repudiation
	3.6 Scalability
	3.6.1 Comparison of three variants
	3.6.2 Assessment of sentinel attestations
	3.7 Privacy
	3.7.1 Privacy design
	3.7.2 Privacy analysis
	3.8 Compliance
	3.8.1 User onboarding
	3.8.2 Rule-based compliance
	3.8.3 Principle-based compliance
	3.9 Resilience
	3.9.1 Resilience of funds and wallets
	3.9.2 Resilience of the core UHS state

	Section 4: Lessons Learned
	Appendix A: Proposed transaction flow
	Appendix B: Details of scalability test results
	Comparison of three architecture variants
	Baseline
	Variant-values
	Variant-PPA
	Sentinel attestations feature
	Baseline
	Variant-values
	Limitations

	References

