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Abstract 
We develop statistical inferences for a non-probability two-phase survey sample when 
relevant auxiliary information is available from a probability survey sample. To reduce 
selection bias and gain efficiency, both selection probabilities of Phase 1 and Phase 2 are 
estimated, and two-phase calibration is implemented. We discuss both analytical plug-in 

and pseudo-population bootstrap variance estimation methods that account for the 
effects of using estimated selection probabilities and calibrated weights. The proposed 
method is assessed by simulation studies and used to analyze a non-probability two phase 
payment survey. 
 

Topics: Bank notes; Econometric and statistical methods 
JEL codes: C, C8, C83 

Résumé 
Nous élaborons des inférences statistiques pour un échantillon non probabiliste à deux 
phases quand il est possible d’obtenir des informations auxiliaires pertinentes à partir 
d’un échantillon probabiliste. Afin de réduire le biais de sélection et de faire des gains 
d’efficience, nous estimons les probabilités de sélection des échantillons de la première 

et de la deuxième phases, et faisons un calage à deux phases. Nous examinons deux 
méthodes d’estimation de la variance qui tiennent compte des effets découlant de 
l’utilisation de probabilités de sélection estimées et de poids calés : la méthode de 
substitution analytique ainsi que la méthode d’autoamorçage à partir de pseudo-
populations. Nous évaluons la méthode proposée au moyen de simulations et l’utilisons 

pour analyser un échantillon non probabiliste à deux phases utilisé dans une enquête sur 
les paiements. 

Sujets : Billets de banque ; Méthodes économétriques et statistiques 
Codes JEL : C, C8, C83 



1 Introduction

A two-phase sampling design is useful when we lack auxiliary information from the original

sampling frame to reach the target population effectively. In the first phase, we select a sam-

ple from the original frame and collect data on variables related to study variables. Then,

we use the extra information collected to build a pseudo-sampling frame. According to this

new frame, we collect the second-phase sample from the first-phase sample. In practice,

this sampling design helps survey hard-to-reach or rare populations. For instance, Statistics

Canada employs a two-phase design in the Aboriginal Peoples Survey (Cloutier and Langlet,

2014) to gather information about the Indigenous population.

A two-phase sampling design can also serve as a conceptual framework for addressing

unit nonresponse. Specifically, we can view respondents who finish every survey task as a

second-phase sample. Payment surveys under this setup include Henry et al. (2022) and

Welte and Wu (2023). Consumers and merchants are asked to complete two survey instru-

ments on two different dates in these applications. Those who complete both instruments

constitute the second-phase sample. Since Neyman’s seminal work on design-based infer-

ence, probability sampling designs have become the standard for most two-phase surveys.

Therefore, a vast body of literature explores the theoretical foundations of probability-based

two-phase sampling (e.g., Kim and Kim (2007), Beaumont et al. (2015), Kim et al. (2006),

Binder et al. (2000), Hidiroglou and Särndal (1998)).

In recent years, however, non-probability sampling has emerged as a convenient and im-

portant tool due to its efficient recruitment process, quick responses and low maintenance

expenses. It has been used to sample first-phase respondents. Unlike probability sampling,

the probabilities of being selected into the first phase are unknown. Poor estimates of these

unknown selection probabilities can lead to substantial selection bias. In this paper, we

develop statistical inferences for non-probability two-phase survey samples by estimating
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selection probabilities of Phase 1 when relevant auxiliary information is available from a

probability survey sample. In addition, we integrate the estimation of Phase 2 selection

probabilities and two-phase calibration into the construction of Phase 2 weights, which we

employ to estimate various finite population parameters, such as totals, means, medians and

other quantiles.

It is not enough just to produce (asymptotically) unbiased estimates; it is also important

to provide indicators of the quality of those estimates. We discuss both analytical plug-in

and pseudo-population bootstrap variance estimation methods that account for the effects of

using estimated selection probabilities. In order to flexibly extend to other finite population

parameters (i.e., median) and allow for calibration adjustment, we suggest using a pseudo-

population bootstrap approach adapted to our non-probability two-phase setup, where we

resample indicators of Phase 1 respondents from the pseudo-population but retain indica-

tors of Phase 2 selections from the original sample. This is related to the simplified variance

estimator of Beaumont et al. (2015) where Phase 2 selection indicators are treated as fixed.

The literature on estimating unknown selection probabilities from non-probability sur-

vey sampling has focused on single-phase samples (Nevo, 2003, Chen et al., 2020, Rao, 2021,

Yang and Kim, 2020, Wu, 2022, Elliot, 2009, Wang et al., 2021). So far, researchers have

paid less attention to the problem of statistical inferences for two-phase designs. Our paper

tries to fill this gap. We use simulation studies to assess our proposed method in terms

of biases and variances. We then use our method to analyze a non-probability two-phase

payment survey collected by the Bank of Canada during COVID-19 (the November 2020

Cash Alternative Survey), based on auxiliary information from Statistics Canada’s proba-

bility survey Canadian Perspectives Survey Series 5 (CPSS 5).

The organization of this paper is as follows. Section 2 derives two weighting schemes
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for the non-probability two-phase sample: one without calibration, and the other with cal-

ibration. Section 3 presents analytical plug-in and pseudo-population bootstrap variance

estimators. Section 4 studies the performance of our proposed method via simulation stud-

ies. In Section 5, we apply our approach to the non-probability two-phase diary survey.

Section 6 concludes. The Appendix provides proofs of theoretical results in this paper.

2 Weighting Non-probability Two-phase Sampling

For two-phase sampling, we first select a Phase 1 sample from a finite population U =

{1, 2, . . . , N} of size N and then select a sub-sample, called Phase 2 sample, from Phase 1.

Let I1 = [I11, I12, . . . , I1N ] be the vector of first-phase sample selection indicators such that

I1k = 1 if k is selected in Phase 1, and I1k = 0 otherwise, and let I2k be the Phase 2 selection

indicator such that I2k = 1 if k is selected in Phase 2, and I2k = 0 otherwise. For unit k,

the inclusion probability into the Phase 1 sample is π1k := Pr[I1k = 1], and the inclusion

probability in Phase 2 conditional on Phase 1 sample is π2k(I1) := Pr[I2k = 1 | I1].

When the first-phase sample is selected through probability sampling, the probability π1k

is known. If π2k(I1) is also known, we can use weights d∗k := [π1kπ2k(I1)]
−1 for each Phase 2

sampled unit k to estimate finite population parameters. In the case of a population total,

the weights d∗k lead to the double expansion (DE) estimator. On the other hand, if π2k(I1) is

unknown, we can replace π2k(I1) with an estimate π̂2k(I1) and create the alternative weight

d̂∗k := [π1kπ̂2k(I1)]
−1 for each Phase 2 sampled unit k. This is common in the treatment of

unit non-response; see, e.g., Kim and Kim (2007). In the case of a population total, the

weights d̂∗k lead to the so-called empirical double expansion (EDE) estimator (Haziza and

Beaumont, 2007).

However, under non-probability two-phase sampling, the probability of being selected into
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the Phase 1 sample, π1k, is unknown. Since π1k cannot be estimated from the non-probability

sample alone, information on the rest of the finite population is required. Suppose there exists

an additional probability sample. Then, we can apply the data integration approach from

Chen et al. (2020) and Wu (2022) to estimate π1k. Based on the estimated π̂1k, we propose

two weighting schemes for each Phase 2 sampled unit:

• The first one is a non-probability two-phase weightwithout calibration, that is, ŵ∗
2k :=

[π̂1kπ̂2k(I1)]
−1.

• The second one is a non-probability two-phase weight with calibration, that is, w̃2k =

ŵ∗
2kg1kg2k where g1k and g2k are calibration factors for Phase 1 and Phase 2, respec-

tively.1

2.1 Non-probability two-phase weight without calibration

Under the data integration scenario of Chen et al. (2020), a probability sample SP ⊂ U is

available. For each unit k ∈ SP, the auxiliary variables x1k and survey weights dk are ob-

served, but the variables of interest are missing in the probability sample. Thus, the dataset

for SP of size nP is {(x1k, dk) : k ∈ SP}. Now let us consider the non-probability two-phase

sample: Phase 1 sample SNP,1 of size n1 is selected from a finite population, and then Phase

2 sample SNP,2 of size n2 is selected from Phase 1 (SNP,2 ⊂ SNP,1). For Phase 1, the dataset

for SNP,1 is {(x1k, z1k,y1k, I2k) : k ∈ SNP,1}. Here, x1k is a vector of auxiliary variables that

SP and SNP,1 share together for estimating Phase 1 selection probabilities, z1k is a vector

of auxiliary variables used for Phase 1 calibration, and y1k is a vector of study variables in

Phase 1. Note that the probability of being selected into Phase 1, π1k := Pr[I1k = 1], is

not observed in SNP,1. Next, the dataset for SNP,2 is {(x2k, z2k,y2k) : k ∈ SNP,2}. Here x2k

is a vector of auxiliary variables for estimating Phase 2 selection probabilities, and z2k is

1Notice that we follow Hidiroglou and Särndal (1998) and Cohen et al. (2017) to use the superscript “*”
to denote overall weights, i.e., weights taking all phases into account, and use the superimposed symbol “∼”
to denote calibrated weights.
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a vector of auxiliary variables used for Phase 2 calibration, and y2k is a vector of Phase 2

study variables. Notice that both x2k and z2k could contain a subset of variables from SNP,1,

which could be common between the two.2

To estimate the probabilities π1k = Pr[I1k = 1 | x1k,y1k] and π2k(I1) = Pr[I2k =

1 | I1,x2k,y2k], we make the following assumptions:

• A1: In each phase, selection indicators and study variables are independent, condi-

tional on auxiliary variables. i.e., I1k ⊥ y1k | x1k and I2k ⊥ y2k | x2k.

• A2: π1k > 0 and π2k(I1) > 0 for all k.

• A3: Selection indicators at each phase are independent. i.e., I1j ⊥ I1k and I2j ⊥ I2k

for all j ̸= k.

• A4: The probability sample SP and non-probability Phase 1 sample SNP,1 are inde-

pendent.

Under Assumption A1 with both probabilities being the form of logistic regressions, we

have

π1k = Pr[I1k = 1 | x1k,y1k] = Pr[I1k = 1 | x1k] =: π1(α;x1k) and

π2k(I1) = Pr[I2k = 1 | I1,x2k,y2k] = Pr[I2k = 1 | I1,x2k] =: π2(β; I1,x2k),

where α and β are vectors of regression coefficients of the logistic regressions. Under As-

sumptions A2, A3 and A4, we construct the joint pseudo-likelihood function for both non-

probability samples SNP,1 and SNP,2, with the help of the probability sample SP to replace

2Notationally, in this paper, we use the letter x to denote auxiliary information for estimating selection
probabilities. The letter z represents auxiliary variables used for calibration, and the letter y is used for
study variables.
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unknown quantities:

 ∑
k∈SNP,1

log

[
π1(α;x1k)

1− π1(α;x1k)

]
+
∑
k∈SP

dk log [1− π1(α;x1k)]

+

 ∑
k∈SNP,1

I2k log [π2(β; I1,x2k)] +
∑

k∈SNP,1

(1− I2k) log [1− π2(β; I1,x2k)]

 . (1)

In (1), the first line corresponds to π1(α;x1k), while the second line corresponds to π2(β; I1,x2k).

Note that the second term in the first line follows Chen et al. (2020) where we use the Horvitz-

Thompson (HT) estimator (Horvitz and Thompson, 1952)
∑

k∈SP
dk log [1− π1(α;x1k)] from

the probability sample SP to replace the unknown population quantity
∑

k∈U log [1− π1(α;x1k)].

The second line in (1) is related to Kim and Kim (2007) where they estimate the response

probabilities of Phase 2 conditional on Phase 1 sample. The score equations from (1) are



∑
k∈SNP,1

x⊺
1k =

∑
k∈SP

dkπ1(α;x1k)x
⊺
1k

∑
k∈SNP,2

x⊺
2k =

∑
k∈SNP,1

π2k(β; I1,x2k)x
⊺
2k.

(2)

Solutions α̂ and β̂ to (2) lead to π̂1k := π1(α̂;x1k) and π̂2k(I1) := π2(β̂; I1,x2k). Un-

der inverse probability weighting, weights for non-probability Phase 1 sample are {ŵ1k :=

π̂−1
1k : k ∈ SNP,1}. Furthermore, weights for non-probability Phase 2 sample are {ŵ∗

2k :=

[π̂1kπ̂2k(I1)]
−1 = ŵ1kŵ2k : k ∈ SNP,2} where ŵ2k := π̂2(I1)

−1.

2.2 Non-probability two-phase weight with calibration

This section discusses calibration in the context of the non-probability two-phase sampling

design. The advantages of calibrations are two-fold (Hidiroglou and Särndal, 1998): one is

to ensure external and internal consistency, and the other is to improve the efficiency when

there is a strong correlation between calibration variables and variables of interest. Building
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upon ŵ1k and ŵ∗
2k, we employ calibrations to both Phase 1 and Phase 2, respectively.

(a) First-phase Calibration The first calibration uses Phase 1 weights {ŵ1k := π̂−1
1k :

k ∈ SNP,1} as initial weights and adjusts it to match known population totals
∑

k∈U z1k.

We denote the calibrated weight as {w̃1k := ŵ1kg1k : k ∈ SNP,1}. The calibration factor is

g1k = exp (z⊺
1kλ̂1), where the Lagrange multiplier λ̂1 comes from the following minimization

problem:

min
∑

k∈SNP,1

ŵ1kG(w̃1k/ŵ1k) subject to
∑

k∈SNP,1

w̃1kz1k =
∑
k∈U

z1k, (3)

where the function G(w̃/ŵ) = (w̃/ŵ) log (w̃/ŵ) − (w̃/ŵ) + 1 is the Kullback-Leibler infor-

mation distance.

(b) Second-phase Calibration The initial weights for the second-phase calibration are

{w̃1kŵ2k : k ∈ SNP,2}, and we adjust them to match totals
∑

k∈SNP,1
w̃1kz2k available up

to Phase 1 when auxiliary information is available at the population level or at both the

population and the first-phase levels. Thus the calibrated weights for the Phase 2 sample are

denoted by w̃2 := {w̃2k = w̃1kŵ2kg2k : k ∈ SNP,2}. The calibration factor is g2k = exp (z⊺
2kλ̂2),

where the Lagrange multiplier λ̂2 comes from the following minimization problem:

min
∑

k∈SNP,2

[w̃1kŵ2k]G(w̃2k/[w̃1kŵ2k]) subject to
∑

k∈SNP,2

w̃2kz2k =
∑

k∈SNP,1

w̃1kz2k. (4)

2.3 Weighted Finite Population Estimates for Phase 2

From the above two weighting systems, we can estimate t2 :=
∑

k∈U y2k, the total of a (scalar)

Phase 2 variable of interest y2, respectively, by

t̂∗2 =
∑

k∈SNP,2

ŵ∗
2ky2k and t̃2 =

∑
k∈SNP,2

w̃2ky2k. (5)
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The Hájek estimators (Hájek, 1971) for the population mean of y2 are

µ̂∗
2 =

t̂∗2∑
k∈SNP,2

ŵ∗
2k

and µ̃2 =
t̃2∑

k∈SNP,2
w̃2k

(6)

Estimated median for y2 can be computed as

m̂∗
2 =

{
y2k, k ∈ Ṡ :

k−1∑
i=1

ẇ∗
i ≤

1

2
and

n∑
i=k+1

ẇ∗
i ≤

1

2

}
and m̃2 =

{
y2k, k ∈ Ṡ :

k−1∑
i=1

˙̃wi ≤
1

2
and

n∑
i=k+1

˙̃wi ≤
1

2

}
,

(7)

where Ṡ is SNP,2 in a non-decreasing order of y2, ẇ∗
i := ŵ∗

2i/
∑

j∈Ṡ ŵ
∗
2j for i ∈ Ṡ and

˙̃wi := w̃2i/
∑

j∈Ṡ w̃2j for i ∈ Ṡ. Similarly, we can estimate other functionals of the above

estimators, such as a ratio of totals.

Remark on consistency: The consistency of the weighted total and mean are derived by

accounting for unknown π̂1k and π̂2k(I1) via the linearization. For example, Theorem 1 in

Section 3 establishes the consistency of t̂∗2 for the population total of Phase 2. The proof of

the design consistency of the weighted median is derived in a similar fashion as Proposition

2 of Huber (2014) by using the quantile implicit function.

3 Variance Estimation

We now discuss variance estimation for the six weighted finite population estimates described

in Section 2.3. This includes two weighting schemes—one with calibration and one with-

out—combined with three parameters of interest: total, mean and median. We focus on the

asymptotic variance of t̂∗2, the estimated total of (non-probability) Phase 2, based on non-

calibrated weights ŵ∗
2k. In total, we examine three different variance estimators for Var[t̂∗2]:

The first is a plug-in estimator that utilizes the joint randomization of I1 and I2. The second

is another plug-in estimator, but it treats I2 as fixed despite being a random vector. Lastly,
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the third estimator employs the pseudo-population bootstrap, also treating I2 as fixed.3

We further discuss the choice among three variance estimators and recommend the third

option: a pseudo-population bootstrap (PPB) approach. In this approach, we treat I2 as

fixed, even though it is random. The primary reason for favouring PPB over these plug-

in methods is that this resampling-based technique is easier to extend to different finite

population parameters, such as total, mean, median and some other complex statistics.

Additionally, it allows for the inclusion of other weight adjustments, like calibration discussed

in Section 2.2. In contrast, the plug-in options require the derivation of first-order Taylor

expansions, which makes it more involved. As for why we treat I2 as fixed, the motivation

comes from the work of Beaumont et al. (2015). In the probability two-phase setup, they

propose a simplified variance estimator. Their approach aims to avoid the need for specialized

software for two-phase sampling and the joint inclusion probabilities of the second phase. We

adapt this idea to our framework of non-probability two-phase sampling, where the selection

probabilities for both Phase 1 and Phase 2 (conditional) are unknown.

3.1 Asymptotic Variance of t̂∗2 and Two Plug-in Estimators

We follow the asymptotic framework from Chen et al. (2020) and Kim and Kim (2007) to

derive the asymptotic variance of the estimator t̂∗2 =
∑

k∈SNP,2
ŵ∗

2ky2k.

Theorem 1. Under Assumptions A1 – A4 and regularity conditions C1 – C4 in the Ap-

pendix, if π1k and π2k(I1) assume the form of logistic regressions, we have t̂∗2 = t2 +

3In addition to the joint randomization of I1 and I2, we also take the sampling design of the probability
sample SP into account.
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Op(Nn
−1/2
1 ), Var[t̂∗2] = VarL[t̂∗2] + o(N2n−1

1 ) with

VarL[t̂∗2] =
∑
k∈U

(1− π1k)π1k

(
y2k
π1k

− b⊺1x1k

)2

+ b⊺1Db1,

+
∑
k∈U

(1− π2k(I1))π2k(I1)π1k

(
y2k

π1kπ2k(I1)
− c⊺2x2k

)2

, (8)

where b⊺1 =
[
N−1

∑
i∈U(1− π1i)y2ix

⊺
1i

] [
N−1

∑
i∈U π1i(1− π1i)x1ix

⊺
1i

]−1
and c⊺2 =

[
N−1

∑
i∈U(1− π2i(I1))

y2ix
⊺
2i]
[
N−1

∑
i∈U π1iπ2i(I1)(1− π2i(I1))x2ix

⊺
2i

]−1
, and D = Varp

[∑
i∈SP diπ1ix1i

]
where

Varp denotes the variance under the sampling design of SP.

Remark on Theorem 1: The first line in (8) is identical to Equation (9) in Chen et al.

(2020). The second line in (8) captures the variability arising from the non-probability

two-phase sample. Based on (8), we obtain a plug-in variance estimator:

V̂ar
L
[t̂∗2] =

∑
k∈SNP,2

(1− π̂1k)

π̂2k(I1)

(
y2k
π̂1k

− b̂⊺1x1k

)2

+ b̂⊺1D̂b̂1

+
∑

k∈SNP,2

(1− π̂2k(I1))

(
y2k

π̂1kπ̂2|1k
− ĉ⊺2x2k

)2

, (9)

where b̂⊺1 =

[∑
i∈SNP,2

(1− π̂1i)

π̂1iπ̂2i(I1)
y2ix

⊺
1i

] [∑
i∈SP

diπ̂1i(1− π̂1i)x
⊺
1ix1i

]−1
, D̂ = V̂arp

[∑
i∈SP diπ̂1ix1i

]
and ĉ⊺2 =

[∑
i∈SNP,1

1− π̂2i(I1)

π̂1iπ̂2i(I1)
y2ix

⊺
2i

] [∑
i∈SNP,2

(1− π̂2i(I1))x2ix
⊺
2i

]−1

.

As Beaumont et al. (2015) discuss, the plug-in variance estimator suffers from two draw-

backs: its computation requires specialized software designed for two-phase sampling, and

the plug-in depends on the second-phase joint inclusion probabilities, which may be difficult

to obtain. To overcome these drawbacks, they suggest the simplified plug-in variance estima-

tor by treating I2 as fixed when, in fact, I2 is random and construct the usual design-biased

variance estimator for the single-phase sampling design. Here, we adopt the framework of

Beaumont et al. (2015) from their probability two-phase to our non-probability two-phase
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survey sample, and we impose Assumption A5 where the first-phase sampling fraction is

negligible.4

• A5: The Phase 1 sampling fraction n1/N is negligible.

Proposition 2. Under Assumptions A1 – A4 and regularity conditions C1 – C4 in the

Appendix, and if π1k and π2k(I1) assume the form of logistic regressions.

(i) We have the Taylor linearization of

t̂∗2 =

 ∑
k∈SNP,1

1

π1k

ak + b⊺1
∑
k∈SP

dkπ1kx1k

+ op(Nn
−1/2
1 ), (10)

where ak :=
y2kI2k
π2k(I1)

− π1kb
T
1x1k − π1kI2kc

T
2x2k + π1kπ2k(I1)c

T
2x2k.

(ii) With the additional assumption A5, V̂ar
Alt

[t̂∗2] is an alternative estimator of Var[t̂∗2]:

V̂ar
Alt

[t̂∗2] =
∑

k∈SNP,1

1− π̂1k

π̂2
1k

â2k + b̂⊺1D̂b̂1, (11)

where

âk :=
y2kI2k
π̂2k(I1)

− π̂1kb̂
⊺
1x1k − π̂1kI2kĉ

⊺
2x2k + π̂1kπ̂2k(I1)ĉ

⊺
2x2k. (12)

Remark on Part (i) of Proposition 2: Note that the first sum of our linearized version

in t̂∗2 is over SNP,1 instead of over SNP,2, which helps construct a simplified variance estimator

for single-phase sampling design. Moreover, let us compare the linearization form of our

Proposition 2 to Theorem 1 in Kim and Kim (2007). Rearranging the right-hand side of

(10), we have

4Similar to Beaumont et al. (2015), we do not require the two-phase sampling design to be invariant
(Beaumont and Haziza, 2016).
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t̂∗2 =
∑

k∈SNP,1

1

π1k

[
π1kπ2k(I1)c

T
2x2k +

I2k
π2k(I1)

(
y2k − π1kπ2k(I1)c

T
2x2k

)]

+ b⊺1

∑
k∈SP

dk(π1kx1k)−
∑

k∈SNP,1

1

π1k

(π1kx1k)

+ op(Nn
−1/2
1 ). (13)

In (13), the first line matches Theorem 1 in Kim and Kim (2007). In their study, they base

the linearization on a probability two-phase sample in which the inclusion probabilities for

Phase 1 are known, but those for Phase 2 are unknown. In contrast, all Phase 1 selection

probabilities are unknown in our non-probability two-phase framework. Consequently, the

second line introduces an additional term that results from employing the data integration

approach to estimating the unknown Phase 1 selection probabilities by combining both SNP,1

and SP.

Remark on Part (ii) of Proposition 2: When the second phase is Poisson sampling

(Assumptions A1–A4) and the first-phase sampling fraction is negligible (Assumption A5),

our simplified plug-in variance estimator V̂ar
Alt

[t̂∗2] provides a good approximation of the total

variance of t̂∗2 (still design-biased, though). Because non-response can be viewed as a special

second phase, our V̂ar
Alt

[t̂∗2] is also useful under the single-phase non-probability survey when

treating unit non-response. Furthermore, we can compare (11) to Equation (7) in Beaumont

et al. (2015). Under Poisson sampling at the second phase, Equation (7) in Beaumont et al.

(2015) reduces to
∑
k∈S1

1− π1k

π2
1k

[
y2kI2k
π2k(I1)

]
. As shown, the main differences are that: (i) our

V̂ar
Alt

[t̂∗2] is using estimated π̂1k and π̂2k(I1) rather than π1k and π2k(I1) in Beaumont et al.

(2015); (ii) our âk in (12) has extra terms −π̂1kb̂
⊺
1x1k− π̂1kI2kĉ

⊺
2x2k+ π̂1kπ̂2k(I1)ĉ

⊺
2x2k arising

from the first-order Taylor-expansions of π̂1k and π̂2k(I1); (iii) in the end, our V̂ar
Alt

[t̂∗2] has

an extra term b̂⊺1D̂b̂1 from the data-integration approach to estimate π1 (Chen et al., 2020),

which borrows the strength from the probability sample SP to facilitate the estimation.
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3.2 Pseudo-Population Bootstrap for Estimating Var[t̂∗2]

Although the plug-in variance estimator V̂ar
Alt

[t̂∗2] simplifies variance estimation by fixing I2,

its underlying linearization lacks flexibility. If we have other finite population parameters,

such as the median and other functionals of totals, or if we apply additional weight adjust-

ments, we need to derive the variance estimator again. As such, we require new computation

procedures in these cases. To address this concern, we propose a pseudo-population boot-

strap (PPB) approach as a third option. Our proposed method is a resampling approach

that follows the spirit of V̂ar
Alt

[t̂∗2] to treat I2 as fixed. We incorporate this idea into the

creation of bootstrap non-probability Phase 2 samples.5 To illustrate the procedure for the

PPB, we focus on estimating the variance of t̂∗2.

The pseudo-population bootstrap (PPB) allows the first two moments of the HT-estimator

to be consistently estimated for sampling designs with large entropy, such as Poisson sam-

pling. A typical PPB approach to variance estimation involves a few key steps (Mashreghi

et al., 2016). First, we use each sampled unit’s (non-negative) weight to create pseudo-

populations. Next, according to the original sampling design, we draw B bootstrap samples

from the pseudo-population. Then, we repeat all estimation steps for each bootstrap sample,

including the estimation of selection probabilities and calibration, to compute the bootstrap

estimate. In the end, we use all B bootstrap estimates to compute the estimated variance.

Our proposed variance estimation procedure for Phase 2 follows this general framework. The

following is a high-level overview of our approach.

5The idea of not bootstrapping Phase 2 selection in our PPB is similar to the multi-stage resampling-
based variance estimation from Bessonneau et al. (2021), where indicators of the second-stage sampling and
non-response step after the first stage remain fixed in the with-replacement bootstrap. This idea is also
analogous to Kim et al. (2006)’s probability two-phase replicated variance estimation, where indicators of
second-phase sampling are treated as fixed in their jackknife approach. For the case of the probability two-
stage sampling, Beaumont et al. (2015) show that treating I2 fixed (when, in fact, it is random) will lead to
a simplified plug-in variance estimator.
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High-Level Overview of the Pseudo-Population Bootstrap for Estimating Var[t̂∗2]

Step 1: Create a pseudo-population UP from SP and another pseudo-population UNP from

SNP,1

Step 2: Draw B bootstrap samples from UP and then draw another B bootstrap samples

from UNP. Pair up each bootstrap sample from these two sets to form a set

Ω = {Ω1, . . . ,ΩC} of size C = B2, where the cth pair in Ω is Ωc =
(
S
(c)
P , S

(c)
NP,1

)
,

and S
(c)
P and S

(c)
NP,1 are the bootstrap samples from UP and UNP, respectively.

Construct S
(c)
NP,2 from units whose I2k = 1 in S

(c)
NP,1.

Step 3: For each c = 1, 2, . . . , C, calculate the bootstrap two-phase weights ŵ
∗(c)
2 and

bootstrap estimate t̂
∗(c)
2 from

(
S
(c)
P , S

(c)
NP,1, S

(c)
NP,2

)
.

Step 4: Apply the simulation-based variance estimator based on Step 3.

The remainder of this section discusses each step in detail. Steps 1 and 2 reproduce the

sampling design. Step 3 reproduces the estimation steps (estimation of selection probabilities

and calibration).

Step 1: Create Pseudo-populations UP and UNP

The weight is the number of duplications the sampled unit recreates in the pseudo-population.

• For each unit k ∈ SP, we replicate ⌊dk⌋ times for the pseudo-population UP = {1, 2, . . . , NP}

where NP =
∑

k∈SP
⌊dk⌋.

• For each unit k ∈ SNP,1, we replicate ⌊ŵ1k⌋ times for the pseudo-population UNP =

{1, 2, . . . , NNP} where NNP =
∑

k∈SNP,1
⌊ŵ1k⌋.

If both sampling fractions of SNP,1 and SP are negligible, we can ignore fractional parts of

weights dk and ŵ1k when creating UP and UNP. Otherwise, we could complete the “fixed” part

of the pseudo-populations following Chen et al. (2019) and account for bootstrap randomness
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induced by completing these pseudo-populations via Monte Carlo approximation.

Step 2: Draw Bootstrap Samples from UP and UNP

This step creates bootstrap probability samples and bootstrap non-probability Phase 1 and

Phase 2 samples.

• Creation of bootstrap probability sample: From UP, we draw B bootstrap sam-

ples according to the original sampling design of SP. If the sampling design of SP is

unavailable, we assume Poisson sampling (Beaumont and Patak, 2012). Under Poisson

sampling, each unit k ∈ UP is independently selected into a bootstrap sample with

inclusion probability d−1
k .

• Creation of bootstrap non-probability Phase 1 sample: From UNP, we draw B

bootstrap samples by Poisson sampling with inclusion probability of each unit k ∈ UNP

being π̂1k.

• Creation of bootstrap non-probability Phase 2 sample: From each S
(c)
NP,1, we

construct S
(c)
NP,2 from k ∈ S

(c)
NP,1 whose I2k = 1. Notice that we create a bootstrap

non-probability Phase 2 sample by retaining the respondents of S
(c)
NP,1 with I2k = 1,

instead of resampling Phase 2 respondents from the bootstrap Phase 1 sample. This

is analogous to treating I2 fixed in the plug-in estimator V̂ar
Alt

[t̂∗2]. Unlike the vector

of first-phase sample selection indicators I1 being bootstrapped, every second-phase

sample selection indicator I2k remains fixed in the PPB process.

Then, we pair up bootstrap samples from UP and those from UNP into the set Ω :=

{Ω1, . . . ,ΩC} of size C = B2 and Ωc =
(
S
(c)
P , S

(c)
NP,1

)
. In the end, we append S

(c)
NP,2 to Ωc to

obtain the bootstrap samples
(
S
(c)
P , S

(c)
NP,1, S

(c)
NP,2

)
. For clarity, Steps 1 and 2 are illustrated

in the following example.
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Illustrative Example of Steps 1 and 2: Suppose the non-probability sample and the

probability sample are

Non-probability Sample Probability Sample

ID ŵ1 π̂1 = 1/ŵ1 y1 y2 x1 x2 I2 ID d π = 1/d x1

1 2.4 1/2.4 20 - 4 - 0 1 1.7 1/1.7 5

2 3.6 1/3.6 14 20 7 3 1 2 2.3 1/2.3 6

To create UNP from the non-probability sample, we repeat the row with ID = 1 twice

(⌊2.4⌋ = 2) and the row with ID = 2 three times (⌊3.6⌋ = 3). As for UP, we duplicate the

row with ID = 1 once (⌊1.7⌋ = 1) and the row with ID = 2 twice (⌊2.3⌋ = 2) from the

probability sample. Note that the weights dk are treated as an intrinsic variable of SP, so

that both dk and x1k are kept in the pseudo-population UP. The datasets for UNP and UP

are as follows (the output of Step 1).

UNP UP

ID ŵ1 π̂1 = 1/ŵ1 y1 y2 x1 x2 I2 ID d π = 1/d x1

1 2.4 1/2.4 20 - 4 - 0 1 1.7 1/1.7 5

1 2.4 1/2.4 20 - 4 - 0 2 2.3 1/2.3 6

2 3.6 1/3.6 14 20 7 3 1 2 2.3 1/2.3 6

2 3.6 1/3.6 14 20 7 3 1

2 3.6 1/3.6 14 20 7 3 1

To create bootstrap non-probability Phase 1 and probability samples, each row of UNP and

UP are selected according to Poisson sampling. Selections into S
(c)
NP,1 are based on the column

π̂1 of UNP, and selections into S
(c)
P are based on the column π of UP. Suppose the first, fourth

and fifth rows of UNP are selected, and this forms S
(c)
NP,1. At the same time, suppose the

first and second rows of UP are selected, and this forms S
(c)
P . Examples of S

(c)
NP,1 and S

(c)
P are

shown below.
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S
(c)
NP,1 S

(c)
P

ID y1 y2 x1 x2 I2 ID d π = 1/d x1

1 20 - 4 - 0 1 1.7 1/1.7 5

2 14 20 7 3 1 2 2.3 1/2.3 6

2 14 20 7 3 1

In the end, we create the bootstrap non-probability Phase 2 sample S
(c)
NP,2 by selecting rows

of S
(c)
NP,1 with I2k = 1. In the above example, blue rows correspond to S

(c)
NP,2. And this

concludes Step 2.

Step 3: Compute Bootstrap Weights and Estimates

This step is to compute bootstrap two-phase weights ŵ
∗(c)
2 and bootstrap estimates t̂

∗(c)
2 from(

S
(c)
P , S

(c)
NP,1, S

(c)
NP,2

)
for c = 1, 2, . . . , C.

• Creation of bootstrap two-phase weight ŵ
∗(c)
2 :

Based on (2) but applied to
(
S
(c)
P , S

(c)
NP,1, S

(c)
NP,2

)
, we have:



∑
k∈S(c)

NP,1

x⊺
1k =

∑
k∈S(c)

P

dkπ1(α
(c);x1k)x

⊺
1k

∑
k∈S(c)

NP,2

x⊺
2k =

∑
k∈S(c)

NP,1

π2(β
(c); I

(c)
1 ,x2k)x

⊺
2k

, (14)

where I
(c)
1 is an NNP-vector indicating Phase 1 selection based on S

(c)
NP,1. Vectors of

estimated coefficients α̂(c) and β̂(c) from (14) lead to Phase 1 weights ŵ
(c)
1 and Phase

2 weights ŵ
∗(c)
2 , respectively. In particular, we have ŵ

(c)
1 := {ŵ(c)

1k := π1(α̂
(c);x1k)

−1 :

k ∈ S
(c)
NP,1}, and ŵ

∗(c)
2 := {ŵ∗(c)

2k := ŵ
(c)
1k π2(β̂; I

(c)
1 ,x2k)

−1 : k ∈ S
(c)
NP,2}.
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• Creation of bootstrap estimate t̂
∗(c)
2 :

t̂
∗(c)
2 =

∑
k∈S(c)

NP,2

ŵ
∗(c)
2k y2k. (15)

Step 4: Simulation-based Variance Estimator

Given bootstrap estimates t̂
∗(1)
2 , . . . , t̂

∗(C)
2 from Step 3, the PPB version of the variance esti-

mator of t̂∗2 is

V̂ar
PPB

[t̂∗2] =
1

C − 1

C∑
c=1

[
t̂
∗(c)
2 −

(
1

C

C∑
c=1

t̂
∗(c)
2

)]2
.

Proposition 3. Under Assumptions A1 – A5 and regularity conditions C1 – C4 in the

Appendix, and if π1k and π2k(I1) assume the form of logistic regressions, V̂ar
PPB

[t̂∗2] is a

consistent estimator of Var[t̂∗2], for a large number of B bootstrap samples.

Remark on other resampling-based methods: Our paper presents a pseudo-population

bootstrap (PPB)6 method to estimate variance in a non-probability two-phase sampling de-

sign. Chen et al. (2020) use a with-replacement bootstrap in a non-probability single-phase

setup and show good results in simulations. Kim et al. (2006) also suggest a jackknife

method for two-phase probability sampling. Therefore, in the future, it would be interesting

to compare these methods to our PPB estimator.

3.3 Pseudo-Population Bootstrap for Estimating Variances of Other

Weighted Finite Population Parameters

When both models for π1 and π2(I1) are valid, Section 3.2 offers a detailed PPB procedure

to estimate the variance of weighted totals from non-calibrated Phase 2 weights ŵ∗
2. If, for

each bootstrap sample, we follow Section 2.2 to compute calibrated Phase 2 weights, PPB

6The PPB originates from Gross (1980) and has recently been extended to various complex sampling
designs by Wang et al. (2022).
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can be used to estimate the variance of weighted totals from calibrated Phase 2 weights w̃∗
2.

We can also use PPB for other weighted finite population parameters and complex statistics

presented in Section 2.3 (i.e., Hájek mean and median). In the next Section, we conduct a

series of simulation studies to support our suggested PPB approach.

4 Simulation Study

By simulation, this section showcases estimators for population totals, means and medians

from Section 2, as well as variance estimation methods from Section 3. We repeatedly draw

samples from a known finite population based on the mechanisms we set up. In total, we

conduct R = 12 000 repetitions. For population totals, from each repetition r = 1, 2, . . . , R,

we estimate population totals in two ways: (1) t̂
∗(r)
2 from the non-probability two-phase

weighting system without calibration and (2) t̃
(r)
2 from the calibrated version. Then, we

evaluate the performance of t̂ ∗
2 and t̃2 by

• the Monte Carlo relative biases (in percent):

%RB(t̂ ∗
2 ) =

1

R

R∑
r=1

t̂
∗(r)
2 − t2

t2
× 100% and %RB(t̃2) =

1

R

R∑
r=1

t̃
(r)
2 − t2
t2

× 100%;

• the Monte Carlo relative efficiency:

RE(t̂ ∗
2 ) =

MSEMC[t̂
∗
2]

MSEMC[t̃2]
× 100 =

1
R

∑R
r=1

[
t̂

∗(r)
2 − t2

]2
1
R

∑R
r=1

[
t̃

(r)
2 − t2

]2 × 100 and RE(t̃2) = 100,

where MSEMC denotes the Monte Carlo mean squared error (MSE).

To assess the performance of variance estimators of t̂ ∗
2 , we compute the relative bias and

the coverage probability. In particular,
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• the Monte Carlo relative biases (in percent):

%RB(V̂ar
L
[t̂ ∗
2 ]) =

1

R

R∑
r=1

V̂ar
L
[t̂ ∗
2 ](r) − VarMC[t̂

∗
2 ]

VarMC[t̂ ∗
2 ]

× 100%,

%RB(V̂ar
Alt

[t̂ ∗
2 ]) =

1

R

R∑
r=1

V̂ar
Alt

[t̂ ∗
2 ](r) − VarMC[t̂

∗
2 ]

VarMC[t̂ ∗
2 ]

× 100%,

%RB(V̂ar
PPB

[t̂ ∗
2 ]) =

1

R

R∑
r=1

V̂ar
PPB

[t̂ ∗
2 ](r) − VarMC[t̂

∗
2 ]

VarMC[t̂ ∗
2 ]

× 100%,

where the Monte Carlo variance of t̂ ∗
2 is

VarMC[t̂
∗
2 ] =

1

R

R∑
r=1

[
t̂

∗(r)
2 −

(
1

R

R∑
r=1

t̂
∗(r)
2

)]2
.

• the Monte Carlo coverage probabilities (in percent):

%CPL(t̂ ∗
2 ) =

1

R

R∑
r=1

I

[
t2 ∈

(
t̂

∗(r)
2 ± 1.96

√
V̂ar

L
[t̂ ∗
2 ](r)

)]
× 100%,

%CPAlt(t̂ ∗
2 ) =

1

R

R∑
r=1

I

[
t2 ∈

(
t̂

∗(r)
2 ± 1.96

√
V̂ar

Alt
[t̂ ∗
2 ](r)

)]
× 100%,

%CPPPB(t̂ ∗
2 ) =

1

R

R∑
r=1

I

[
t2 ∈

(
t̂

∗(r)
2 ± 1.96

√
V̂ar

PPB
[t̂ ∗
2 ](r)

)]
× 100%.

Similarly, we also measure these Monte Carlo statistics for V̂ar
PPB

[t̃2], estimated means and

their PPB variance estimators, and estimated medians and their PPB variance estimators.

4.1 Simulation Set-up

The finite population U = {1, 2, . . . , N} for this simulation contains N = 20 000 population

units. Each population unit k ∈ U has survey variables y1k for Phase 1 and y2k for Phase

2 and a set of auxiliary variables a1k, a2k and a3k. The following regression models relate
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these two types of variables.

y1k = 800+a1k+5a2k+10a3k+ϵ1k and y2k = 20+a1k+0.2a2k+0.5a3k+0.0025y1k+ϵ2k for k ∈ U,

where a1k = γ1k(v1k + v2k), a2k = γ1kv3k + γ2kv1k and a3k = γ2k(v2k + v3k), γ1k = I[u1k <

0.29]u1k and γ2k = I[u1k ≥ 0.29] and v1k = I[u2k = 1]Exponential(1), v2k = I[u2k =

2]Exponential(1/2) and v3k = 40I[u2k = 3], u1k ∼ lognormal(10, 1)/100 000, u2k follows a

discrete uniform distribution of {1, 2, 3}. As a note, the 60th percentile of u1 is 0.29. Each

ϵ1k is independently and identically (iid) distributed as Normal (0, 300). Each ϵ2k is iid and

follow Normal (0, 15). Errors in both phases (ϵ1k and ϵ2k) are mutually independent. Vari-

ances of ϵ1k and ϵ2k are set to control the correlations between the study variable and its

linear predictor in Phases 1 and 2 to about 0.68 and 0.74, respectively.

In Phase 1, the non-probability sample SNP,1 is selected by Poisson sampling with the true

selection probability model π1k = {1 + exp [− (η1 + 0.08a1k + 0.05a2k + 0.05a3k)]}−1. We use

η1 = −3.5 in π1k to control the expected Phase 1 sampling fraction to be 5%. As for the

probability sample SP, each population unit is selected according to the Bernoulli sampling

with a constant inclusion probability of 5%.

In Phase 2, we consider two different selection mechanisms π2k(I1) under Poisson sam-

pling. In Scenario 1, the true π2k(I1) is {1 + exp [− (−0.2 + 0.25a1k + 0.05a2k − 0.05a3k + 0.00025y1k)]}−1.

In Scenario 2, the true π2k(I1) is {1 + exp [− (−1.5 + 100r1k + 100r2k + 100r3k + 100r4k)]}−1

where r1k = a1k/
∑

j∈U a1jI1j, r2k = a1k/
∑

j∈U a2jI1j, r3k = a1k/
∑

j∈U a3jI1j and r4k =

|y1k|/
∑

j∈U |y1j|I1j. Scenarios 1 and 2 differ in whether Phase 2 selection depends on Phase

1 selection (Beaumont and Haziza, 2016). In Scenario 1 (invariance), Phase 2 selection is

independent of Phase 1 selection, while in Scenario 2 (non-invariance), Phase 2 selection de-

pends on Phase 1 selection. Across all R = 12 000 repetitions, the average Phase 2 response
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rate in Scenario 1 is around 35%. As for Scenario 2, around 25% of Phase 1 units respond

to Phase 2.

In each repetition of the simulation, we use auxiliary variables x1k = (a1k, a2k, a3k) to

estimate parameters for π1 and x2k = (a1k, a2k, a3k, y1k) to estimate π2(I1). Under the

non-probability two-phase weighting with calibration, we use the known population size N

and population totals of auxiliary variables a1, a2 and a3 for the first-phase calibration,

where z1k = (1, a1k, a2k, a3k). The calibration at the end of Phase 2 matches the four totals

from Phase 1 calibration and the estimated total of the Phase 1 study variable y1, where

z2k = (1, a1k, a2k, a3k, y1k). In the end, we use B = 32 for the pseudo-population bootstrap,

equivalent to C = B2 = 1 024 different pairs of bootstrap samples in each R = 12 000

repetitions.

4.2 Result and Discussion

Table 1 summarizes the simulation results for estimated totals, means and medians. As

expected, the biases of all these estimators are quite small across the two scenarios. In

terms of efficiency, we find that the mean squared errors (MSEs) are lower when using the

weighting system with calibration, as the calibration variables are correlated with y2. This

observation aligns with the findings of Särndal (2007). However, our improvement is based

on the non-probability two-phase setup.

Table 2 compares variance estimators from Section 3. A key observation is that all

variance estimators and the associated confidence intervals perform excellently. The biases

of the variance estimators are all small. The coverage probabilities of the 95% confidence

intervals are close to the nominal value. Among the three variance estimators of t̂∗2, V̂ar
L
[t̂∗2]

has a smaller bias than V̂ar
Alt

[t̂∗2] and V̂ar
PPB

[t̂∗2] across the two scenarios (Panel (A) of Table
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Table 1: Summary of Simulation Results, Estimated Totals, Means and Medians for Phase
2, Non-Probability Two-Phase Weighting without (ŵ∗

2) and with Calibration (w̃2)

Total Mean Median

Without
Calibration

With
Calibration

Without
Calibration

With
Calibration

Without
Calibration

With
Calibration

%RB RE %RB RE %RB RE %RB RE %RB RE %RB RE

Scenario 1: Invariance 0.04 343 0.01 100 -0.01 161 0.01 100 -0.44 115 -0.46 100

Scenario 2: Non-Invariance 0.07 427 0.01 100 0.01 251 0.01 100 -0.59 132 -0.65 100

2). This observation is expected because V̂ar
Alt

[t̂∗2] and V̂ar
PPB

[t̂∗2] have ignored the extra

sampling variability from the Phase 2 selection I2. In Panel (B) of Table 2, we focus solely

on the PPB variance estimators for mean and median. This is because we do not need to

derive the Taylor linearizations for mean, median and calibration adjustment. Once again,

these PPB variance estimators perform well: low biases and coverage probabilities near 95%.

Table 2: Summary of Simulation Results, Estimated Variances of Estimated Totals, Means
and Medians for Phase 2, Non-Probability Two-Phase Weighting without (ŵ∗

2) and with
Calibration (w̃2)

Panel (A): Variance Estimation for Estimated Totals

Without Calibration With Calibration

V̂ar
L
[t̂∗2] V̂ar

Alt
[t̂∗2] V̂ar

PPB
[t̂∗2] V̂ar

PPB
[t̃2]

%RB %CP %RB %CP %RB %CP %RB %CP

Scenario 1: Invariance -1.96 94.69 -2.56 94.59 -3.45 94.67 -1.93 94.86

Scenario 2: Non-Invariance 3.97 95.55 -4.81 94.58 -4.03 94.66 -1.93 94.86

Panel (B): Pseudo-Population Bootstrap Variance Estimation for Means and Medians

Mean Median

Without
Calibration

With
Calibration

Without
Calibration

With
Calibration

V̂ar
PPB

[µ̂∗
2] V̂ar

PPB
[µ̃2] V̂ar

PPB
[m̂∗

2] V̂ar
PPB

[m̃2]

%RB %CP %RB %CP %RB %CP %RB %CP

Scenario 1: Invariance -2.44 94.91 -1.93 94.86 -0.87 94.62 -0.28 94.76

Scenario 2: Non-Invariance -5.24 94.35 -1.93 94.86 0.04 95.42 2.35 95.55
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5 An Application to the 2020 November Cash Alter-

native Survey of the Bank of Canada

In this section, we apply our proposed method to the Bank of Canada 2020 November Cash

Alternative Survey (Chen et al., 2021). This survey is a non-probability two-phase sample,

which consists of a survey questionnaire (SQ) as Phase 1 (n1 = 3, 893) and a three-day diary

survey instrument (DSI) as Phase 2 (n2 = 2, 084). Key questions from Phase 1 address

respondents’ cash holdings and ownership of various payment instruments. Phase 2 is a

payment diary in which respondents record their purchase information (i.e., the payment

method used and the amount of each purchase) over three days. For the individual-level

probability sample, we chose the Canadian Perspectives Survey Series 5 (CPSS 5), adminis-

tered by Statistics Canada, for the following reasons. First, the CPSS sample (nP = 3, 961)

comes from rotation groups of the Labour Force Survey (LFS), a reliable social probability

survey. Second, CPSS 5 was collected from September 14, 2020, to September 20, 2020,

similar to our non-probability survey’s field operation period. In the end, both CPSS 5 and

the Bank of Canada 2020 November Cash Alternative Survey were conducted in the online

mode.7

We estimate the population cash volume share based on the Phase 2 cash and non-cash

transactions. For each k ∈ SNP,2, let y
cash
2k and ynon−cash

2k be the numbers of cash usage and

non-cash usage in the three-day diary, respectively. Thus, the estimated cash volume share

is the ratio of the total estimated cash usage to the total estimated transactions (the sum of

cash and non-cash transactions). The volume share of cash transactions can be computed

7Kim et al. (2021) discuss the importance of survey mode in explaining gaps between non-probability and
probability samples’ estimates.
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using either non-calibrated Phase 2 weights ŵ∗
2k from Section 2.1:

τ̂ ∗2 :=

∑
k∈SNP,2

ŵ∗
2ky

cash
2k∑

k∈SNP,2
ŵ∗

2k(y
cash
2k + ynon−cash

2k )
,

or calibrated Phase 2 weights w̃2k from Section 2.2:

τ̃2 :=

∑
k∈SNP,2

w̃2ky
cash
2k∑

k∈SNP,2
w̃2k(ycash2k + ynon−cash

2k )
.

Besides the estimated cash volume across the entire population, we also compute disaggre-

gated estimates for three age groups: the 18–34, the 35–54 and the 55+. Results of point

estimates and standard errors are reported in Table 3.

The following is a list of auxiliary variables x1k and x2k used to estimate selection prob-

abilities π1k = π1(α;x1k) and π2k(I1) = π2(β; I1,x2k), and calibration variables z1k for the

SQ (Phase 1) and z2k for the DSI (Phase 2):

• x1k: sex/gender, age group, household size, marital status, highest education attain-

ment and whether the respondent has shopped online during COVID-19;

• x2k: x1k plus Phase 1 variables, such as cash on hand and other cash holdings at three

age groups;

• z1k: population size, sex/gender and age group;

• z2k: z1k plus Phase 1 variables, such as cash on hand and other cash holdings at three

age groups.

The estimated overall cash volume share is 23.6 percent without using calibrated weights,

or 23.5 percent with calibrated weights. Estimates τ̂ ∗2 and τ̃2 at each age group are also close.

Consistent with Chen et al. (2021), people in each age group use cash to pay for at least 20

percent of their purchases. Similarly, older people use relatively more cash than the younger
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groups. For example, the cash volume share of the 55+ group estimated from uncalibrated

Phase 2 weights is 26.4 percent, about 5 percentage points higher than the 18–34 group.

Table 3: Cash Volume Share (percentage) Estimated from Non-Probability Two-Phase
Weighting without calibration (ŵ∗

2) and with Calibration (w̃2)

Cash Volume Share

Without
Calibration

With
Calibration

Overall 23.6 (1.17) 23.5 (1.17)
18–34 21.0 (2.75) 21.2 (2.69)
35–54 21.5 (2.05) 21.6 (2.03)
55+ 26.4 (1.70) 26.4 (1.69)

Note: The standard error of each estimate is in brackets. All of them are estimated from the PPB approach
outlined in Section 3.2 with B = 120 (C = 14 400 pairs of bootstrap samples in total). We approximate the
multistage sampling of CPSS 5 with the Poisson sampling design to avoid computing second-order
inclusion probabilities.

In terms of estimating standard errors, we compute them via the PPB approach outlined

in Section 3.2. As we have discussed, the edge of the resampling PPB approach over analyti-

cal plug-in methods is that PPB is straightforward to apply. In particular, we do not need to

derive the Taylor linearizations of complex statistics, the Hájek mean and calibration adjust-

ment. The uncertainty for both weighting schemes is quite small, with standard errors less

than 3 percent. Such small standard errors indicate the stability of our estimates, which can

provide enough statistical power to detect differences between groups. In the end, we only

observe a slight efficiency gain from using the calibrated weights over the uncalibrated ones,

especially in the 18–34 age group. This slim difference suggests that future research should

explore other calibration variables (i.e., z1 and z2) more strongly related to the variables of

interest.
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6 Conclusion

We have discussed how to make statistical inferences for two-phase survey samples whose

weights for Phase 1 and (conditional) Phase 2 are unknown. The starting point is to use the

pseudo maximum likelihood method for weight estimation. Each unit’s weight is the inverse

of the selection probability estimated from this method. For Phase 1, we rely on auxiliary

variables from a probability sample for estimation. This leads to a weighting system parallel

to the empirical double expansion (EDE) used in probability sampling for totals. As for

variance estimation, our preferred way is a pseudo-population bootstrap (PPB) approach

from Sections 3.2 and 3.3. This method can account for the estimation of probabilities from

both phases as well as calibrations.

Our approach is the same as mainstream survey literature in that it assumes the selec-

tion mechanisms for both phases are ignorable (Assumption A1) (Little and Rubin, 2019).

However, it may be worthwhile to revisit this assumption. For instance, methods that do not

rely on this assumption can help address concerns about bias from unobserved confounders.

One such method is the sensitivity analysis proposed by Hartman and Huang (2024).

A Appendix

We use the same setup for asymptotics as Chen et al. (2020), which adapts the framework

from Isaki and Fuller (1982) for non-probability sampling. In this framework, there is a

sequence τ of finite populations. Each population in this sequence has a Phase 1 non-

probability sample, a Phase 2 sample as a subsample of Phase 1 and a probability sample.

As the sequence τ → ∞, the population size and the sample sizes also approach infinity. In

this paper, we suppress the index τ and use the notion N → ∞ to indicate this limiting

process.
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A.1 Regularity Conditions

Regularity conditions for Phase 1 come from Chen et al. (2020). Those for Phase 2 condi-

tional on Phase 1 come from Kim and Kim (2007).

• C1: The population size N and the sample sizes n1 := |SNP,1|, n2 := |SNP,2| and nP =

|SP| satisfy n1 → ∞, n2 → ∞ and n2 ≤ n1 with lim
N→∞

n1

N
∈ [0, 1) and lim

N→∞

nP

N
∈ (0, 1).

• C2: The finite population and the sampling design for SP satisfy
1

N

∑
k∈SP

dkx1k −

1

N

∑
k∈U

x1k = Op(n
−1/2
P ).

• C3: There exists positive constants γ1 and γ2 such that 0 < γ1 ≤ Nπ1k

n1

≤ γ2,

0 < γ1 ≤
n1π2k(I1)

n2

≤ γ2 and 0 < γ1 ≤
N

dknP

≤ γ2 for all units k.

• C4: The finite population and the selection probabilities satisfy
1

N

∑
k∈U y22k = O(1),

1

N

∑
k∈U

||x1k||3 = O(1) and
1

N

∑
k∈U

||x2k||3 = O(1). Both
1

N

∑
k∈U

π1k(1− π1k)x1kx
⊺
1k and

1

N

∑
k∈U

π1kπ2k(I1)(1− π2k(I1))x2kx
⊺
2k are positive definite matrices.

C2 assumes that first moments of auxiliary variables x1k from SP and SNP,1 are asymp-

totically equivalent. C3 prevents extreme weights by restricting the probabilities of being

selected into SNP,1, SNP,2 and SP do not differ in terms of order of magnitude from simple

random sampling without replacement. C4 gives us finite moment conditions for valid Taylor

series expansions.

A.2 Proof for Theorem 1

For simplicity, we assume there is only one Phase 2 study variable. Suppose that η⊺ :=

[µ2 α⊺ β⊺]⊺ where µ2 := t2/N is the population mean of the Phase 2 study variable y2,

t2 :=
∑
k∈U

y2k is the population total of y2, α is a q-vector of the true parameters of the propen-

sity score model π1k := π1(α;x1k) for Phase 1 with a q-vector of auxiliary variables x1k and
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β is a r-vector of the true parameters of the propensity score model π2k(I1) := π2k(β; I1,x2k)

with an r-vector of auxiliary variables xxx2k. I
P
k is an indicator of selection into SP.

Let η̂ = (µ̂∗
2,N , α̂, β̂) be the solution to the following system of estimating equations:

Φn(η) =
1

N



∑
k∈U

(
I1kI2k

y2k
π1kπ2k(I1)

− µ2

)
∑
k∈U

(
I1kx1k − IPk dkπ1kx1k

)
∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)


= 0(1+q+r)×1, (16)

where IPk is an indicator of whether unit k ∈ U is selected into SP.

Under the joint randomization of the selection probability models for Phase 1 and (condi-

tional) Phase 2 and the sampling design of SP, we have E[Φn(η0)] = 0 because

E[Φn(η0)] = Ep {E1[E2(Φn(η) | I1)]} =
1

N



∑
k∈U

{
y2kE1

[
I1k
π1k

E2

(
I2k

π2k(I1)

∣∣∣∣ I1)]− µ2

}
∑
k∈U

{
x1kE1[I1k]− Ep[I

P
k ]dkπ1kx1k

}
∑
k∈U

{E1 [I1kE2(I2k | I1)]x2k − E1[I1k]π2k(I1)x2k}



=
1

N



∑
k∈U

[
y2k ·

π1k

π1k

· π2k(I1)

π2k(I1)
− µ2

]
∑
k∈U

{
x1kπ1k −

πP
k

πP
k

π1kx1k

}
∑
k∈U

{π1kπ2k(I1)x2k − π1kπ2k(I1)x2k}


=

1

N


t2 −Nµ2∑
k∈U

x1kπ1k −
∑
k∈U

x1kπ1k∑
k∈U

π1kπ2k(I1)x2k −
∑
k∈U

π1kπ2k(I1)x2k

 =


0

0q×1

0r×1



=0(1+q+r)×1,

where η0 = (µ2,α0,β0) and the design weight dk = 1/πP
k is the inverse of the inclusion

probability πP
k . Consistency of the estimator η̂ follows from Newey and McFadden (1994).
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Under regularity conditions C1 – C4, we have Φn(η̂) = 0 and Φn(η0) = Op(n
−1/2
1 ). By the

first-order Taylor series approximation of Φn(η̂) around η0 (Proposition 6.1.5 in Brockwell

(1991)), we have

η̂ − η0 = [ϕn(η̂0)]
−1Φn(η0) + op(n

−1/2
1 ) = [E(ϕn(η̂0))]

−1Φn(η0) + op(n
−1/2
1 ), (17)

where ϕn(η) is the Jacobian matrix of Φn(η):

ϕn(ηηη) =
1

N



−1 −
∑
k∈U

I1kI2k
y2k

π2k(I1)
· 1− π1k

π1k

xxx⊺
1k −

∑
k∈U

I1kI2k
y2k
π1k

· 1− π2k(I1)

π2k(I1)
xxx⊺
2k

000q×1

∑
k∈U

IPk dkπ1k(1− π1k)xxx1kxxx
⊺
1k 000q×r

000r×1 000r×q

∑
k∈U

I1kπ2k(I1)(1− π2k(I1))xxx2kxxx
⊺
2k


.

It follows that µ̂∗
2,N = µ2 + Op(n

−1/2
1 ) and hence t̂∗2 = Nµ̂∗

2,N = t2 + Op(Nn
−1/2
1 ). We also

have

Var[η̂] = [E(ϕn(η̂0))]
−1 · Var[Φn(η0)] · {[E(ϕn(η̂0))]

−1}⊺ + o(n
−1/2
1 ).
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Moreover,

E[ϕn(ηηη)] =
1

N



−1 −
∑
k∈U

(1− π1k)y2kxxx
⊺
1k −

∑
k∈U

(1− π2k(I1))y2kxxx
⊺
2k

000q×1

∑
k∈U

π1k(1− π1k)xxx1kxxx
⊺
1k 000q×r

000r×1 000r×q

∑
k∈U

π1kπ2k(I1)(1− π2k(I1))xxx2kxxx
⊺
2k


and

{E[ϕn(ηηη)]}−1 = N



−1 −bbb⊺1 −ccc⊺2

000q×1

[∑
k∈U

π1k(1− π1k)xxx1kxxx
⊺
1k

]−1

000q×r

000r×1 000r×q

[∑
k∈U

π1kπ2k(I1)(1− π2k(I1))xxx2kxxx
⊺
2k

]−1


,

(18)

where b⊺1 =
[
N−1

∑
i∈U(1− π1i)y2ix

⊺
1i

] [
N−1

∑
i∈U π1i(1− π1i)x1ix

⊺
1i

]−1
and

c⊺2 =
[
N−1

∑
i∈U(1− π2i(I1))y2ixxx

⊺
2i

] [
N−1

∑
i∈U π1iπ2(I1)(1− π2i(I1))xxx2ixxx

⊺
2i

]−1
.

The following finds the total variance Var[Φn(η0)]. We can decompose Φn(η) := A1 − A2

into two independent (1 + q + r)-vectors A1 and A2:

Φn(ηηη) =
1

N



∑
k∈U

(
I1kI2k

y2k
π1kπ2k(I1)

− µ2

)
∑
k∈U

I1kx1k∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)


− 1

N


0∑

k∈U

(
IPk dkπ1kx1k

)
0r×1

 =: A1 −A2.

Because A1 and A2 are independent, we have Var[Φn(η)] = Var[A1] + Var[A2]:

Var[A1] =
1

N2


V11 V12 V13

V21 V22 V23

V31 V32 V33

 and Var[A2] =
1

N2


0 01×q 01×r

0q×1 Dq×q 0q×r

0r×1 0r×q 0r×r

 ,
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where D = Varp
[∑

k∈U IPk dkπ1kxxx1k

]
is the design-based variance-covariance matrix under

the probability sampling design for the reference probability sample SP. We derive each

element of the variance-covariance matrix Var[A1] as follows.

First, we derive matrices V11, V22 and V33 under assumptions A1 – A4.

V11 = V

[∑
k∈U

I1kI2k
y2k

π1kπ2k(I1)

]
=
∑
k∈U

y22k
π2
1kπ2k(I1)2

V [I1kI2k]

=
∑
k∈U

y22k
π2
1kπ2k(I1)2

{V1[E2(I1kI2k | I1)] + E1[V2(I1kI2k | I1)]}

=
∑
k∈U

y22k
π2
1kπ2k(I1)2

{
π1k(1− π1k)π2k(I1)

2 + π1kπ2k(I1)(1− π2k(I1))
}

=
∑
k∈U

[
1− π1k

π1k

+
1− π2k(I1)

π1kπ2k(I1)

]
y22k,

where the second line comes from the law of total variance.

V22 = V

[∑
k∈U

I1kx1k

]
=
∑
k∈U

x1kx
⊺
1kV [I1k] =

∑
k∈U

π1k(1− π1k)x1kx
⊺
1k

V33 = V

[∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)

]
= V

[∑
k∈U

I1kx2k (I2k − π2k(I1))

]

= E1

[
V2

(∑
k∈U

I1kx2k (I2k − π2k(I1))

∣∣∣∣I1
)]

+ V1

[
E2

(∑
k∈U

I1kx2k (I2k − π2k(I1))

∣∣∣∣I1
)]

= E1

[∑
k∈U

I1kx2kx
⊺
2kπ2k(I1)(1− π2k(I1))

]

=
∑
k∈U

π1kπ2k(I1)(1− π2k(I1))x2kx
⊺
2k,

where the second line comes from the law of total variance.
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For matrices V12 = V ⊺
21, V13 = V ⊺

31 and V23 = V ⊺
32, under assumptions A1 – A4,

V12 = Cov

[∑
k∈U

I1kI2k
y2k

π1kπ2k(I1)
,
∑
ℓ∈U

I1ℓx1ℓ

]
=
∑
k∈U

y2k
π1kπ2k(I1)

∑
ℓ∈U

Cov [I1kI2k, I1ℓ]x
⊺
1ℓ = V ⊺

21

V13 = Cov

[∑
k∈U

I1kI2k
y2k

π1kπ2k(I1)
,
∑
ℓ∈U

(I1ℓI2ℓx2ℓ − I1ℓπ2ℓ(I1)x2ℓ)

]
,

=
∑
k∈U

y2k
π1kπ2k(I1)

∑
ℓ∈U

Cov [I1kI2k, I1ℓI2ℓ − I1ℓπ2ℓ(I1)]x
⊺
2ℓ

=
∑
k∈U

y2k
π1kπ2k(I1)

∑
ℓ∈U

(Cov [I1kI2k, I1ℓI2ℓ]− π2k(I1)Cov [I1kI2k, I1ℓ])x
⊺
2ℓ = V ⊺

31 and

V23 = Cov

[∑
k∈U

I1kx1k,
∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)

]
=
∑
k∈U

x1k

∑
ℓ∈U

Cov [I1k, (I1ℓI2ℓ − I1ℓπ2ℓ(I1))]x
⊺
2ℓ

=
∑
k∈U

x1k

∑
ℓ∈U

(Cov [I1k, I1ℓI2ℓ]− π2ℓ(I1)Cov [I1k, I1ℓ])x
⊺
2ℓ = V ⊺

32.

Note that we have

Cov[I1kI2k, I1ℓ] = E[I1kI2kI1ℓ]− E[I1kI2k]E[I1ℓ]

=

 E[I1kI2k](1− E[I1k]) = π1kπ2k(I1)(1− π1k) if k = ℓ

π1kπ1ℓπ2k(I1)− π1kπ1ℓπ2k(I1) = 0 if k ̸= ℓ

Cov[I1kI2k, I1ℓI2ℓ] = E[I1kI2kI1ℓI2ℓ]− E[I1kI2k]E[I1ℓI2ℓ]

=

 E[I1kI2k]− E[I1kI2k]
2 = π1kπ2k(I1)(1− π1kπ2k(I1)) if k = ℓ

π1kπ1ℓπ2k(I1)π2ℓ(I1)− π1kπ1ℓπ2k(I1)π2ℓ(I1) = 0 if k ̸= ℓ
,

where, by independence, E2[I2kI2ℓ|I1] = π2k(I1)π2ℓ(I1) for k ̸= ℓ and E1[I1kI1ℓ] = π1kπ1ℓ for k ̸= ℓ.
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It follows that

V12 =
∑
k∈U

y2k
π1kπ2k(I1)

π1kπ2k(I1)(1− π1k)x
⊺
1k =

∑
k∈U

(1− π1k)y2kx
⊺
1k = V ⊺

21,

V13 =
∑
k∈U

y2k
π1kπ2k(I1)

(Cov [I1kI2k, I1kI2k]− π2k(I1)Cov [I1kI2k, I1k])x
⊺
2k

=
∑
k∈U

y2k
π1kπ2k(I1)

(π1kπ2k(I1)(1− π1kπ2k(I1))− π2k(I1)π1kπ2k(I1)(1− π1k))x
⊺
2k

=
∑
k∈U

y2k
π1kπ2k(I1)

[π1kπ2k(I1)− π1kπ2k(I1)
2]x⊺

2k =
∑
k∈U

(1− π2k(I1))y2kx
⊺
2k = V ⊺

31 and

V23 =
∑
k∈U

x1k (Cov [I1k, I1kI2k]− π2k(I1)Cov [I1k, I1k])x
⊺
2k

=
∑
k∈U

x1k [π1kπ2k(I1)(1− π1k)− π1kπ2k(I1)(1− π1k)]x
⊺
2k = 0q×r = V ⊺

32.

In summary,

Var[AAA1]

=
1

N2



∑
k∈U

[
1− π1k

π1k

+
1− π2k(I1)

π1kπ2k(I1)

]
y22k

∑
k∈U

(1− π1k)y2kx
⊺
1k

∑
k∈U

[1− π2k(I1)]y2kx
⊺
2k∑

k∈U

(1− π1k)x1ky2k
∑
k∈U

π1k(1− π1k)x1kx
⊺
1k 000q×r∑

k∈U

[1− π2k(I1)]xxx2ky2k 000r×q

∑
k∈U

π1kπ2k(I1)[1− π2k(I1)]xxx2kxxx
⊺
2k


.

Also,

Var[Φn(η0)] = Var[A1] + Var[A2]

=
1

N2



∑
k∈U

[
1− π1k
π1k

+
1− π2k(I1)

π1kπ2k(I1)

]
y22k

∑
k∈U

(1− π1k)y2kx
⊺
1k

∑
k∈U

[1− π2k(I1)]y2kx
⊺
2k∑

k∈U
(1− π1k)x1ky2k

∑
k∈U

[
π1k(1− π1k)x1kx

⊺
1k

]
+D 000q×r∑

k∈U
[1− π2k(I1)]xxx2ky2k 000r×q

∑
k∈U

π1kπ2k(I1)[1− π2k(I1)]xxx2kxxx
⊺
2k


.
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Therefore, the asymptotic variance for the linearized t̂∗2 is the first diagonal element of the

variance-covariance matrix Var[η̂] multiplied by N2:

VarL[t̂∗2] = N2VarL[µ̂∗
2,N ]

=
∑
k∈U

[
1− π1k

π1k

+
1− π2k(I1)

π1kπ2k(I1)

]
y22k − b⊺1

[∑
k∈U

(1− π1k)x1ky2k

]
− c⊺2

[∑
k∈U

[1− π2k(I1)]xxx2ky2k

]

− b⊺1

[∑
k∈U

(1− π1k)y2kx
⊺
1k

]
+ b⊺1

[∑
k∈U

[π1k(1− π1k)x1kx
⊺
1k] +D

]
b1

+ c⊺2
∑
k∈U

[1− π2k(I1)]xxx
⊺
2ky2k + c⊺2

[∑
k∈U

π1kπ2k(I1)[1− π2k(I1)]xxx2kxxx
⊺
2k

]
c2

=
∑
k∈U

(1− π1k)y2k

(
y2k
π1k

− b⊺1x1k

)
+
∑
k∈U

(1− π2k(I1))y2k

(
y2k

π1kπ2k(I1)
− c⊺2x2k

)
+
∑
k∈U

[(1− π1k)b
⊺
1(π1kx1kx

⊺
1kb1 − y2kx

⊺
1k)] + b⊺1Db1

+
∑
k∈U

[(1− π2k(I1))c
⊺
2(x

⊺
2k + π1kπ2k(I1)x2kx

⊺
2kc2)]

=
∑
k∈U

[
(1− π1k)π1k

y22k
π2
1k

− (1− π1k)π1ky2kb
⊺
1x1k

π1k

+ (1− π1k)π1kb
⊺
1x1kx

⊺
1kb1 −

(1− π1k)π1ky2kb
⊺
1x1k

π1k

]
+
∑
k∈U

[
(1− π2k(I1))

π1kπ2k(I1)y
2
2k

π2
1kπ2k(I1)2

− (1− π2k(I1))π1kπ2k(I1)y2kc
⊺
2x2k

π1kπ2k(I1)

+(1− π2k(I1))π1kπ2k(I1)c
⊺
2x2kx

⊺
2kc2 −

(1− π2k(I1))π1kπ2k(I1)y2kc
⊺
2x2k

π1kπ2k(I1)

]
+ b⊺1Db1.

Finally, we have

VarL[t̂∗2] =
∑
k∈U

(1− π1k)π1k

(
y2k
π1k

− b⊺1x1k

)2

+ b⊺1Db1

+
∑
k∈U

(1− π2k(I1))π2k(I1)π1k

(
y2k

π1kπ2k(I1)
− c⊺2x2k

)2

,

where b⊺1 =
[
N−1

∑
i∈U(1− π1i)y2ix

⊺
1i

] [
N−1

∑
i∈U π1i(1− π1i)x1ix

⊺
1i

]−1
,DDD = Varp

[∑
i∈SP diπ1ix1i

]
and c⊺2 =

[
N−1

∑
i∈U(1− π2i(I1))y2ix

⊺
2i

] [
N−1

∑
i∈U π1iπ2i(I1)(1− π2i(I1))x2ixxx

⊺
2i

]−1
.
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As a note, to obtain the asymptotic variance for µ̂∗
2 :=

∑
k∈SNP,2

ŵ∗
2ky2k/

∑
k∈SNP,2

ŵ∗
2k, we

can modify the first element in (16) from
∑
k∈U

(
I1kI2k

y2k
π1kπ2k(I1)

− µ2

)
to
∑
k∈U

(
I1kI2k

y2k − µ2

π1kπ2k(I1)

)
.

Following the same procedure, we can obtain the asymptotic variance for µ̂∗
2 by replacing

every y2k in VarL[t̂∗2] with y2k − µ2, and then multiply by 1/N2.

A.3 Proof of Proposition 2

The proof for Proposition 2 comes from the first-order Taylor series expansion of t̂∗2 around

(α,β), which essentially adapts the suggested “cookbook” approach from Beaumont et al.

(2015) for our setup with unknown Phase 1 and (conditional) Phase 2 inclusion probabilities.

The “cookbook” consists of the following steps: (i) linearize t̂∗2 through a first-order Taylor

expansion; (ii) express all sums over SNP,2 as sums over SNP,1; and (iii) treat I2k, π̂1k and

π̂2k(I1) as fixed and estimate the first-phase variance based on the Poisson sampling with

π̂1k.
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Step 1: Linearize t̂∗2 through a first-order Taylor expansion

By Equation (17) and t̂∗2 = Nµ̂∗
2,N ,

t̂∗2 =
∑

k∈SNP,2

y2k
π̂1kπ̂2k(I1)

=
∑

k∈SNP,2

[
1

π1k
− 1− π1k

π1k
x⊺
1k(α̂−α)

] [
1

π2k(I1)
− 1− π2k(I1)

π2k(I1)
x⊺
2k(β̂ − β)

]
y2k + op(Nn

−1/2
1 )

=

 ∑
k∈SNP,2

y2k
π1kπ2k(I1)

−

 ∑
k∈SNP,2

1− π1k
π1kπ2k(I1)

y2kx
⊺
1k

 (α̂−α)

−

 ∑
k∈SNP,2

1− π2k(I1)

π1kπ2k(I1)
y2kx

⊺
2k

 (β̂ − β) + op(Nn
−1/2
1 )

=

 ∑
k∈SNP,2

y2k
π1kπ2k(I1)

−

 ∑
k∈SNP,2

1− π1k
π1kπ2k(I1)

y2kx
⊺
1k


[∑
k∈U

π1k(1− π1k)x1kx
⊺
1k

]−1

[∑
k∈U

(
I1kx1k − IPk dkπ1kx1k

)]
2005/06/28ver : 1.3subfigpackage

−

 ∑
k∈SNP,2

1− π2k(I1)

π1kπ2k(I1)
y2kx

⊺
2k


[∑
k∈U

π1kπ2k(I1)(1− π2k(I1))x2kx
⊺
2k

]−1 [∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)

]
+ op(Nn

−1/2
1 )

=

 ∑
k∈SNP,2

y2k
π1kπ2k(I1)

−

[∑
k∈U

(1− π1k)y2kx
⊺
1k

]
[∑
k∈U

π1k(1− π1k)x1kx
⊺
1k

]−1 [∑
k∈U

(
I1kx1k − IPk dkπ1kx1k

)]
−

[∑
k∈U

(1− π2k(I1))y2kx
⊺
2k

]
[∑
k∈U

π1kπ2k(I1)(1− π2k(I1))x2kx
⊺
2k

]−1 [∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)

]
+ op(Nn

−1/2
1 )

=

 ∑
k∈SNP,2

y2k
π1kπ2k(I1)

− b⊺1

{[∑
k∈U

(
I1kx1k − IPk dkπ1kx1k

)]}
− c⊺2

{[∑
k∈U

(I1kI2kx2k − I1kπ2k(I1)x2k)

]}

+ op(Nn
−1/2
1 )

=

 ∑
k∈SNP,2

y2k
π1kπ2k(I1)

− b⊺1

 ∑
k∈SNP,1

x1k

+ b⊺1

∑
k∈SP

dkπ1kx1k

− c⊺2

 ∑
k∈SNP,1

I2kx2k

+ c⊺2

 ∑
k∈SNP,1

π2k(I1)x2k


+ op(Nn

−1/2
1 ),
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where we replace (α̂ − α) and (β̂ − β) with the first-order approximation of Φn(η̂) around η in

(18).

Step 2: Express all sums over SNP,2 as sums over SNP,1

t̂∗2 =

 ∑
k∈SNP,1

1

π1k

(
I2ky2k
π2k(I1)

− π1kb
⊺
1x1k − π1kI2kc

⊺
2x2k + c⊺2π2k(I1)x2k

)+ b⊺1

∑
k∈SP

dkπ1kx1k

+ op(Nn
−1/2
1 )

=

 ∑
k∈SNP,1

1

π1k
ak

+ b⊺1

∑
k∈SP

dkπ1kx1k

+ op(Nn
−1/2
1 ),

where

ak :=
y2kI2k
π2k(I1)

− π1kb
T
1 x1k − π1kI2kc

T
2 x2k + π1kπ2k(I1)c

T
2 x2k.

This concludes the proof of Part (i) in Proposition 2.

Under Assumptions A1 – A4, we define

VarAlt[t̂∗2] :=

(∑
k∈U

1

π2
1k

a2kVar[I1k]

)
+ b⊺1Db1 =

(∑
k∈U

1− π1k
π1k

a2k

)
+ b⊺1Db1. (19)

Step 3: Treat I2k, π1k and π2k(I1) as fixed and estimate the first-phase variance

based on the Poisson sampling with π̂1k

Therefore, a consistent estimator for VarAlt[t̂∗2] is

V̂ar
Alt

[t̂∗2] =

 ∑
k∈SNP,1

1− π̂1k
π̂2
1k

â2k

+ b̂⊺1D̂b̂1.

Following Section 2.1 of Beaumont et al. (2015) with the Poisson sampling at the second phase (our

Assumptions A1–A5) and the consistency of b̂1, ĉ2, π̂1 and π̂2(I1), we have V̂ar
Alt

[t̂∗2] − Var[t̂∗2] =

op(N
2n−1

1 ) +O(n1/N). This concludes the proof of Part (ii) in Proposition 2.
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A.4 Proof of Proposition 3

The proof in this subsection shows the validity of the pseudo-population bootstrap (PPB) approach

for variance estimation in Section 3.2. Specifically, the goal is to show that V̂ar
PPB

[t̂∗2] is consistent

for Var[t̂∗2] if the sampling fractions n1/N and np/N are negligible.

Let p(·) and 1(·) denote the bootstrap sampling mechanisms that lead to S
(c)
P and S

(c)
NP, c =

1, . . . , C, respectively. From (19), we have

Ep(·)E1(·)

[
V̂ar

PPB
[t̂∗2]
]
= VarAlt[t̂∗2 | UNP, UP] + o(N (·)2n

(·)−1
2 )

=

 ∑
k∈UNP

1− π
(·)
1k

π
(·)
1k

a
(·)2
k

+ b
(·)⊺
1 D(·)b

(·)
1 + o(N (·)2n

(·)−1
1 ),

where Ep(·) and E1(·) denote the expectation with respect to mechanisms p(·) and 1(·), respectively.

π
(·)
1k , a

(·)
k , b

(·)
1 , D(·) and n

(·)
2 are defined the same way as their counterparts without the superscript

(·), but under pseudo-populations UNP and UP. N (·) is the maximum of NP and NNP. The first

term is

∑
k∈UNP

1− π
(·)
1k

π
(·)
1k

a
(·)2
k =

∑
k∈SNP,1

⌊π(·)−1
1k ⌋

1− π
(·)
1k

π
(·)
1k

a
(·)2
k

=
∑

k∈SNP,1

[π
(·)−1
1k − (π

(·)−1
1k − ⌊π(·)−1

1k ⌋)]
1− π

(·)
1k

π
(·)
1k

a
(·)2
k

≈
∑

k∈SNP,1

π
(·)−1
1k

1− π
(·)
1k

π
(·)
1k

a
(·)2
k .

The assumption of a negligible n1/N justifies the above approximation. Intuitively, if the Phase 1

sampling fraction is negligible, the number of population units a sampled unit represents is large,

and hence, the weight attached to the sampled unit is large. Therefore, the fractional part of the

weight is negligible compared with the integer part of the weight. Indeed, for every k, the mag-

nitude of the fractional part of π
(·)
1k , (π

(·)−1
1k − ⌊π(·)−1

1k ⌋), to π
(·)−1
1k is of order

π
(·)−1
1k − ⌊π(·)−1

1k ⌋
π
(·)−1
1k

=

O(1)

O(N (·)/n
(·)
1 )

= O

(
n
(·)
1

N (·)

)
= O

(n1

N

)
, where the first equality comes from the fact that π

(·)−1
1k −
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⌊π(·)−1
1k ⌋ is a fraction and condition C3. It can be shown that NN (·)−1 = 1+ op(1) +O(n1/N) and

n1n
(·)−1
1 = 1 + op(1) + O(n1/N). Therefore, the fractional part of π

(·)−1
1k is negligible if n1/N is

negligible.

It can also be shown that a
(·)
k − ak = op(1)+O(n1/N), b

(·)
1 − b1 = op(1)+O(n1/N), c

(·)
2 − c2 =

op(1) +O(n1/N) and D(·) −D = op(1) +O(nP/N) when n1/N and nP/N are negligible. We also

have π
(·)
1k = π̂1k. Therefore, we have

E
[
V̂ar

PPB
[t̂∗2]
]
= Var[t̂∗2] + o(N2n−1

1 ) +O(n1/N) +O(nP/N),

where the equality comes from Proposition 2, following Equation (A.30) in Chen et al. (2019).

Therefore, we have V̂ar
PPB

[t̂∗2] consistent for Var[t̂∗2], if n1/N and nP/N are negligible. This con-

cludes the proof for Proposition 3.
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