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Abstract 
We consider structural vector autoregressions that are identified through stochastic 
volatility. Our analysis focuses on whether a particular structural shock can be identified 
through heteroskedasticity without imposing any sign or exclusion restrictions. Three 
contributions emerge from our exercise: (i) a set of conditions that ensures the matrix 
containing structural parameters is either partially or globally unique; (ii) a shrinkage 
prior distribution for the conditional variance of structural shocks, centred on the 
hypothesis of homoskedasticity; and (iii) a statistical procedure for assessing the validity 
of the conditions outlined in (i). Our shrinkage prior ensures that the evidence for 
identifying a structural shock relies predominantly on the data and is less influenced by 
the prior distribution. We demonstrate the usefulness of our framework through a fiscal 
structural model and a series of simulation exercises. 

Topics: Econometric and statistical methods; Fiscal policy 
JEL codes: C11, C12, C32, E62 

Résumé 
Nous étudions des modèles vectoriels autorégressifs structurels qui comportent une 
volatilité stochastique. Nous cherchons à déterminer s’il est possible de repérer un choc 
structurel particulier à l’aide de l’hétéroscédasticité sans imposer des contraintes de 
signe et d’exclusion. Trois apports ressortent de notre analyse : i) un ensemble de 
conditions qui garantissent que la matrice comportant des paramètres structuraux est 
partiellement ou globalement unique, ii) une mesure de rétrécissement liée à la 
distribution a priori pour la variance conditionnelle des chocs structurels, axée sur 
l’hypothèse de l’homoscédasticité, et iii) une méthode statistique permettant d’évaluer la 
validité des conditions énoncées au point i). Notre mesure de rétrécissement a priori 
garantit que les éléments probants utilisés pour repérer un choc structurel reposent 
principalement sur les données et sont moins influencés par la distribution a priori. 
Nous démontrons l’utilité de notre cadre au moyen d’un modèle budgétaire structurel et 
d’une série d’exercices de simulation. 

Sujets : Méthodes économétriques et statistiques; Politique budgétaire 
Codes JEL : C11, C12, C32, E62 

 



1. Introduction

This paper considers the partial identification of a structural shock in a multivariate

setup that is in line with the definition by Rubio-Ramı́rez, Waggoner and Zha (2010).

This definition states that a structural shock is identified when the parameters of its

corresponding equation within a system are globally identified, that is, up to being sign-

normalized as in Waggoner and Zha (2003b). Partial identification is essential in empirical

analyses using structural vector autoregressions (SVARs) and focusing on fewer shocks

than there are variables in the model. For example, one is often interested in identifying a

specific shock, such as a monetary or fiscal policy shock. Moreover, partial identification

becomes even more important in larger systems of variables that, on the one hand,

improve the forecasting performance of the model, resulting in more realistic impulse

responses but, on the other hand, increase the number of shocks that are not necessarily

of interest or difficult to interpret (see Carriero, Clark and Marcellino, 2019).

In our approach, the source of partial identification is conditional heteroskedasticity

that can identify all the parameters of a given equation up to a sign following the seminal

developments proposed by Rigobon (2003). We choose a specific model for conditional

variances, namely stochastic volatility (SV) as proposed by Cogley and Sargent (2005),

and in line with the identification ideas put forth by recent studies, such as Lewis (2021)

and Bertsche and Braun (2022). Not only does this choice offer a flexible approach to

address identification, but it also has been shown to be a key extension of homoskedastic

SVARs that leads to improved forecasting performance (see, e.g., Clark and Ravazzolo,

2015; Chan, Koop and Yu, 2024).

The first contribution of this paper is a general condition for the partial identification

of a structural shock via heteroskedasticity. This condition states that a structural shock

is identified up to sign if the sequence of its conditional variances is distinct from and

not proportional to those for all other shocks. Our condition covers both conditional

and unconditional heteroskedasticity and most of the heteroskedastic models used in

empirical studies. It is expressed explicitly in terms of conditional variances, simplifying
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the proof and granting a straightforward interpretation. In these respects, it stands out

from the existing conditions, which we provide more details on in Section 2. We further

show that a shock having such a unique sequence of (conditional) variances leads to

globally identified impulse response functions.

A second contribution of this paper is a formal characterization of the marginal prior

for the conditional variance of structural shocks, derived from both conventional and

alternative parameterizations of stochastic volatility processes. The latter involves (i) a

specific hierarchical-prior setup, which we propose and (ii) the non-centred specification

of state-space models, as proposed by Kastner and Frühwirth-Schnatter (2014), which we

adapt to the context of SVAR models. In particular, we show that the marginal prior for

conditional variances is centred around the hypothesis of homoskedasticity and exhibits

strong shrinkage towards it while maintaining heavy tails. These features are essential for

SVAR models with identification through heteroskedasticity for two reasons. First, they

normalize the SVAR model facilitating the identification and estimation of conditional

variances and the structural matrix. Second, this setup requires the evidence in favour

of heteroskedasticity to rely more heavily on data. A Monte Carlo study shows that our

approach is effective in achieving both objectives.

Importantly, the conditions for partial identification that we derive can be verified. In

this regard, the third contribution of this paper is the development of a Savage-Dickey

density ratio (SDDR) for the hypothesis of homoskedasticity. More precisely, we provide

the conditions under which the analysis using the SDDR is feasible. Our verification

procedure generalizes Lütkepohl and Woźniak’s (2020) procedure with a more flexible

process for conditional variance and extends that of Chan (2018) to SVARs.

In addition to the above-mentioned Monte Carlo study, we illustrate our methods by

applying and comparing our approach to popular fiscal SVARs in the literature, namely

those of Blanchard and Perotti (2002), Mertens and Ravn (2014), and Lewis (2021). Using

our proposed framework, we find evidence of identification through heteroskedasticity

for all shocks we consider in an extended sample covering the period up to 2023. Our

empirical assessment relies on estimation via a Gibbs sampler that employs state-of-the-
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art techniques, including the structural matrix sampler by Waggoner and Zha (2003a),

autoregressive slope row-by-row sampling by Chan et al. (2024), the auxiliary mixture

technique by Omori, Chib, Shephard and Nakajima (2007), and the ancillarity-sufficiency

interweaving strategy by Kastner and Frühwirth-Schnatter (2014), which enables efficient

simulation smoothing when heteroskedasticity is uncertain. All estimation procedures are

accessible via the R package bsvars by Woźniak (2024a,b) implementing our algorithms

using C++, which speeds up the computations by orders of magnitude.

Our paper is closely related to a number of studies that pursue identification through

heteroskedasticity using different techniques. For example, Lütkepohl and Milunovich

(2016) investigate identification by testing a heteroskedastic rank defined as the number

of independent heteroskedastic processes following a generalized autoregressive

conditional heteroskedasticity (GARCH) model. Lanne and Luoto (2021) propose a test

for the validity of moment conditions based on kurtosis of the structural shocks that are

in line with their non-normality or heteroskedasticity. Lewis (2021) proposes a

non-parametric approach to identify shocks through heteroskedasticity and a test based

on the autocorrelation of the reduced-form residuals that assumes non-proportional

changes in the volatilities of the structural shocks. Lütkepohl, Meitz, Netšunajev and

Saikkonen (2021) propose a test for identification through heteroskedasticity for a

two-regime volatility model when the timing of the change is known. Finally, Lütkepohl

and Woźniak (2020) develop the SDDR to verify identification using Markov-switching

heteroskedasticity in a model with an arbitrary number of regimes.

The remainder of this paper is structured as follows. Section 2 discusses

heteroskedastic SVARs and the general conditions we propose to identify them through

heteroskedasticity. Section 3 presents the two approaches we consider for

stochastic-volatility modeling. Section 4 characterizes the marginal prior for the

conditional variance of the structural shocks that emerges from these approaches.

Section 5 presents the conditions to test identification using the SDDR approach within

our proposed framework. A Monte Carlo study and an empirical application to a fiscal

SVAR are discussed in Sections 6 and 7, respectively. Section 8 concludes. An appendix
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contains details on proofs, estimation procedures and additional results.

Notation

The following notation applies to the main text and technical appendix: y denotes the

available data, IN is the identity matrix of order N, 0N×N and ıN are a matrix of zeros and

a vector of ones of the indicated dimensions, respectively, the operator diag(·) puts the

vector provided as its argument on the main diagonal of a diagonal matrix, the indicator

function I(·) takes the value of 1 if the condition provided as the argument holds and 0

otherwise, ⊗ denotes the Kronecker product of matrices. A \ B defines the set with all

elements of the set A that are not in the set B. Γ(·) denotes the gamma function, and

Kn(·) denotes the modified Bessel function of the second kind. The following notation is

used for statistical distributions: N stands for a univariate normal andNN stands for the

N-variate normal distribution. NP stands for a univariate normal product while logNP

for the univariate log normal product distribution (to be defined in Section 4). The gamma

distribution is denoted by G, the inverted gamma 2 by IG2, and the uniform distribution

byU. Unless specified otherwise, n goes from 1 to N, t goes from 1 to T, and s goes from

1 to S.

2. Partial identification in heteroskedastic SVARs

In this section we establish results for partial identification of structural parameters based

on the variances of the structural shocks. Our results are applicable within a broad class

of heteroskedastic SVAR models. Similarly general identification results can be found

in Lewis (2021). These, however, are formulated as rank conditions to be verified by

a frequentist test. In contrast, we state our conditions so as to facilitate their Bayesian

verification.

Consider the following reduced-form VAR model of order p:

yt = A1yt−1 + · · · +Apyt−p +Addt + ut, (1)
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where yt is an N-dimensional vector of observable time series variables, Ai, i = 1, . . . , p,

are N ×N autoregressive coefficient matrices, dt is a d× 1 vector containing deterministic

terms such as the intercept, trend variables, or dummies, Ad is the corresponding N × d

matrix of coefficients, and ut = (u1.t, . . . ,uN.t)′ is an N-dimensional, zero-mean, serially

uncorrelated error term.

The structural equations introduce a linear relationship between the reduced-form

innovations, ut, and the structural shocks, wt, using the N × N contemporaneous effects

matrix B0,

B0ut = wt, (2)

where the structural shocks are additionally contemporaneously uncorrelated.

Depending on the model used, the time-varying covariances, E[wtw′t], or conditional

covariances, E[wtw′t|wt−1,wt−2, . . . ], of wt are denoted by

Λt = diag
(
σ2

1.t, . . . , σ
2
N.t

)
, (3)

where the σ2
n.t are the unconditional or conditional variances. The assumptions for wt

imply that the unconditional or conditional covariance matrices of the residuals ut,E
[
utu′t

]
and E

[
utu′t|ut−1,ut−2, . . .

]
, respectively, may be time-varying and are denoted by Σt.

It is well-known that the structural matrix B0 is not identified without additional

restrictions. Below, we state general conditions for partial identification of some of the

parameters of B0.

Theorem 1. Let Σt, t = 0, 1, . . . , be a sequence of positive definite N × N matrices and Λt =

diag
(
σ2

1.t, . . . , σ
2
N.t

)
a sequence of N × N diagonal matrices with Λ0 = IN. Suppose there exists a

nonsingular N ×N matrix B0 such that

Σt = B−1
0 ΛtB−1′

0 , t = 0, 1, . . . . (4)

Let σ2
n = (1, σ2

n.1, σ
2
n.2, . . . ) be a possibly infinite dimensional vector. Then the nth row of B0 is

unique up to sign if σ2
n , σ

2
i ∀i ∈ {1, . . . ,N}\{n}.
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Proof. The proof is given in Appendix A.1. □

Note that the vectors σ2
j contain value one for the variance in period 0. This specific

parameterization gives the elements of the vectorσ2
j the interpretation of variances relative

to the variances for t = 0. We are using relative variances in our theorem because it makes

it easier to state the result, is in line with our normalization of the structural model, and

also leads directly to the verification procedure discussed in Section 5.

The theorem generalizes Theorem 1 of Lütkepohl and Woźniak (2020), which

presents an analogous result for structural errors with volatility changes generated by a

homogeneous Markov switching process with finitely many volatility states. Our

Theorem 1 provides a general result on identification of a single equation through

heteroskedasticity and also applies, for instance, if the volatility changes are generated

by a different Markov process for each shock. It shows that a structural shock and,

hence, the corresponding structural equation is identified if the sequence of variances is

distinct from the variance sequences of any of the other shocks. Our Theorem 1

generalizes identification results for some special volatility models that have been used

in the literature on identification through heteroskedasticity (see, e.g., Kilian and

Lütkepohl, 2017, Chapter 14). For example, it is easy to see that identification results for

volatility models based on a finite number of volatility regimes as considered by

Rigobon (2003), Rigobon and Sack (2003), Lanne and Lütkepohl (2008), Lanne,

Lütkepohl and Maciejowska (2010), Netšunajev (2013), Herwartz and Lütkepohl (2014),

Woźniak and Droumaguet (2015), Lütkepohl and Velinov (2016), and Lütkepohl and

Netšunajev (2017) are special cases of Theorem 1 (see also Lemma 1 in Appendix A.1).

As we will consider SV models in the following, it is important to mention that

Theorem 1 applies for such models. In this context, SV models have also been proposed

by Lewis (2021) and Bertsche and Braun (2022). In such cases, the conditional covariance

matrices of the reduced form errors are given by Σt = B−1
0 ΛtB−1′

0 , where

Λt = diag
(
σ2

1.t, . . . , σ
2
N.t

)
is a diagonal matrix. If the σ2

n.t vary stochastically, as in SV

dynamics, they will not be proportional with probability 1 and, hence, satisfy the
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conditions for identification of Theorem 1. So if any one of the structural errors has

changing conditional variances, it will be identified, even if all the other components

have constant conditional variance. We will use that insight in our Bayesian analysis of

the SV model. It may be worth noting, however, that Theorem 1 also implies that a

single shock may be homoskedastic and still be identified in case all other shocks are

heteroskedastic. This discussion also shows that Theorem 1 generalizes results for full

identification in Sentana and Fiorentini (2001), Lewis (2021), and Bertsche and Braun

(2022) to the case of partial identification.

Structural impulse responses are computed from the reduced-form impulse responses

Φi, i = 1, . . . obtained recursively asΦi =
∑i

j=1 A jΦi− j for i = 1, 2, . . . , withΦ0 = IN from

the reduced-form VAR slope coefficients A1, . . . ,Ap using A j = 0 for j > p (Lütkepohl,

2005, Section 2.1.2). The structural impulse responses are the elements of the matrices

Θi =ΦiB−1
0 , i = 0, 1, . . . . Thus, for computing them, the structural matrix B0 is needed. In

particular, if just one shock is identified through heteroskedasticity, the following result

formalizes the implications of Theorem 1 for impulse response analysis:

Corollary 1. If the nth row of B0 is identified and, hence, unique in model (2), then the nth column

of B−1
0 is unique and the structural impulse responses can be obtained by right-multiplying the

matricesΦi by the nth column of B−1
0 .

Proof. See Appendix A.2. □

3. Two approaches to parameterize stochastic volatility

The previous section discussed the conditions required to identify SVARs under a broad

class of time-varying volatility models. We now shift our focus to heteroskedastic SVARs,

where shocks are modeled and identified through stochastic volatility. Specifically, we

examine two parameterizations of this process: the centred and non-centred approaches.

The centred parameterization

To fix ideas, we first present the more conventional (centred) parameterization for

modeling stochastic volatility. In this setup, each diagonal element of Λt in (3) is
8



parameterized as follows:

σ2
n.t = exp

(
h̃n.t

)
, (5)

h̃n.t = ρnh̃n.t−1 + υ̃n.t s.t. ρn ∈ (−1, 1), (6)

υ̃n.t ∼ N
(
0, ω2

n

)
for n = 1, · · · ,N and t = 1, · · · ,T. (7)

Theorem (1) implies that identification depends on the sequence of conditional variances,

{σ2
n.t}

T
t=1, associated with a shock being unique and not proportional to any sequence of

volatilities from another shock in the system. These conditions are satisfied under (5)–

(7), as this representation assumes that the log-volatility state variable h̃n.t (and thus σ2
n.t)

evolves stochastically as a stationary autoregressive process.

In this setup, assessing identification through stochastic volatility reduces to testing

whetherω2
n = 0. If that is the case, the corresponding shock is homoskedastic. Conversely,

if ω2
n , 0, then by construction {σ2

n.t}
T
t=1 is unique, and the condition for identification in

Theorem 1 is satisfied.

Nevertheless, implementing statistical tests for ω2
n = 0 is challenging because zero

lies at the boundary of the parameter space for ω2
n. Moreover, Bayesian methods that

estimate stochastic volatility models under the centred parameterization typically use an

inverse-gamma prior for ω2
n, whose domain is undefined at zero (see Appendix B). To

address these issues, we adopt the non-centred parameterization for σ2
n.t, discussed next.

The non-centred parameterization

To obtain the non-centred parameterization of σ2
n.t, akin to Kastner and

Frühwirth-Schnatter (2014) and Chan (2018), we first define h̃n.t = ωnhn.t. This transforms

(5)–(7) into

σ2
n.t = exp (ωnhn.t) , (8)

hn.t = ρnhn.t−1 + υn.t s.t. ρn ∈ (−1, 1), (9)

υn.t ∼ N (0, 1) for n = 1, · · · ,N and t = 1, · · · ,T. (10)
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We further assume that hn.0 = 0, ensuring σ2
n.0 = 1 to satisfy the normalization condition

in Theorem 1.

Importantly, the conditions in Theorem 1 hold under more general specifications for

SV innovations, that is, when the innovations driving hn.t and h̃n.t are correlated, given

that correlation does not imply proportionality of {σ2
n.t}

T
t=1 across equations. Even perfect

correlation of volatility shocks vn.t and ṽn.t does not imply proportional changes of the

conditional variances σ2
n.t due to the non-linear transformation in Equations (8) and (5),

respectively. This proportionality arises only when the shocks are perfectly correlated,

parameters ρn and ω2
n are equal to their counterparts across equations, and ω2

n , 0, an

extreme scenario excluded in our framework.

While there is a one-to-one mapping between the representations in (5)–(7) and (8)–

(10), they have markedly different implications for (i) the marginal prior distribution of

σ2
n.t and (ii) the feasibility of proposing a statistical method to assess shock identification.

These implications are elaborated in Sections 4 and 5.

Two more comments are in order. First, unlike the centred parameterization, the

non-centred representation for σ2
n.t is cast in terms of the standard deviation parameter

ωn instead of ω2
n. Given that ωn can take both positive and negative values on a real

line, the non-centred approach allows us to elicit priors for which ωn is defined at zero.

As shown later in Section 4.1, we propose a conditionally normal prior for ωn centred at

zero, which implies a gamma prior for ω2
n. The gamma prior allocates more mass near

ω2
n = 0 compared to the inverse-gamma prior typically used in the centred approach (see

Chan, 2018). Consequently, the non-centred approach enables stronger shrinkage toward

homoskedasticity.

Second, it is easy to see from (8) that the likelihood function is invariant to sign at the

(ωn, hn.t) ordinate. This follows from the fact that both (ωn, hn.t) and (−ωn, −hn.t) yield

the same value for σ2
n.t. Consequently, the posterior for ωn may be bimodal or unimodal

around zero. Bimodality will only occur if ωn (and, consequently ω2
n) is far from zero.

Therefore, bimodality of the posterior for ωn provides evidence that σ2
n.t , 0, supporting

the identification of structural shocks through stochastic volatility. For the purpose of
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identification, a bimodal (as opposed to unimodal) posterior for ω is desirable. We return

to this point in the context of our empirical application in Section 7.

Having distinguished two approaches to model σ2
n.t, for the remainder of this paper,

we adopt the non-centred parameterization unless explicitly stated otherwise.

4. The marginal prior for σ2
n.t

Recall that Theorem 1 is stated in terms of σ2
n.t. In the context of Bayesian estimation,

σ2
n.t can be characterized through its marginal prior distribution. However, as shown in

the previous section, σ2
n.t is a non-linear function of hn.t, ωn, and ρ. This non-linearity

complicates the assessment of how the choice of priors for these variables affects the

marginal prior for σ2
n.t.

To shed light on this matter, this section provides a detailed examination of the

marginal prior for σ2
n.t. This is achieved in two steps. First, the priors for the parameters

that underlie σ2
n.t, namely ωn and ρ, are specified. Second, the proposed marginal prior

for σ2
n.t is characterized, illustrating how it ensures centring and shrinkage towards a

homoskedastic SVAR. In what follows, we focus on the characterization of a univariate

prior for σ2
n.t and provide more general results for a multivariate distribution of {σ2

n.t}
T
t=1

in Appendix B.

4.1. Priors for the parameters underlying σ2
n.t

Once again, the parameters associated with the non-centred representation of σ2
n.t are

ωn, the essential parameter in our setup that determines whether σ2
n.t changes over time,

and ρn, the autoregressive parameter of the latent process hn.t. We assume the following

hierarchical prior structure for these parameters:

ωn | σ
2
ωn
∼ N

(
0, σ2

ωn

)
, (11)

σ2
ωn
| ρn ∼ G

(
S,A

)
I

(
0 < σ2

ωn
< 1 − ρ2

n

)
, (12)

ρn | σ
2
ωn
∼ U

(
−

√
1 − σ2

ωn ,
√

1 − σ2
ωn

)
, (13)

11



where σ2
ωn

denotes the prior variance of ωn.

The prior specification for ωn in (11) extends the one proposed by Chan (2018).

Specifically, instead of fixing the prior variance as in Chan (2018), we adopt a

hierarchical prior in which σ2
ωn

follows the gamma distribution stated in (12).

Consequently, our specification allows for the estimation of σ2
ωn

, making the prior for ωn

less dependent on arbitrary choices. Moreover, based on the results of Bitto and

Frühwirth-Schnatter (2019) and Cadonna, Frühwirth-Schnatter and Knaus (2020),

marginalizing the prior for ωn over σ2
ωn

yields a prior that combines extreme shrinkage

towards homoskedasticity with heavy tails. The latter accommodates heteroskedasticity

when it arises from strong data signals.

We complement the three priors above with the following three restrictions:

σ2
ωn

1 − ρ2
n
≤ 1, (14)

A > 0.5, (15)

|ρn| < 1. (16)

Restriction (14) ensures the desired level of centring and shrinkage in our proposed

marginal prior for σ2
n.t, which we show formally in Section 4.2. It restricts the prior

variances from Proposition 1 presented below in the limit lim
t→∞
σ2
ωn

1−ρ2t
n

1−ρ2
n
= σ2

ωn
/
(
1 − ρ2

n
)

to

ensure that the condition holds for variances at all periods t. The restriction in (15)

determines the marginal prior for ωn, making it particularly suitable for our setup.

Restriction (16) is standard and ensures that hn.t in (9) is stationary. Additionally,

Restrictions (16) and (14) determine the bounds for ρn as expressed in the uniform prior

for ρn in (13). Similarly, the truncation of the gamma prior for σ2
ωn

stated in (12) arises

from Restriction (14). We provide further elaboration on these restrictions later in this

section.
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4.2. Characterizing the marginal prior for σ2
n.t

This section provides a detailed description of the marginal prior for σ2
n.t. As discussed

in Section 1, a key feature of our prior setup for σ2
n.t is to ensure that this prior is not only

centred on the hypothesis of a homoskedastic SVAR but also provides shrinkage toward

it. In this regard, Definitions 1 and 2, along with Proposition 1, presented below, will be

instrumental in structuring the approach to achieving these objectives.

Definition 1. Normal product distribution

Let x and y denote two independent zero-mean normally distributed random variables

with variances σ2
x and σ2

y, respectively. Then, random variable z = xy follows the normal

product distribution with zero mean and variance σ2
z = σ

2
xσ

2
y, denoted by z ∼ NP

(
σ2

z
)
, and

density function given by 1

π
√
σ2

z

K0

(
|z|
√
σ2

z

)
. □

The normal product distribution is known in the statistical literature. We state it here to

clarify our notation. However, the following distribution is new and its density function

is obtained by a change of variables.

Definition 2. Log-normal product distribution

Let random variable z follow the normal product distribution with variance σ2
z . Then,

random variable q = exp(z) follows the log-normal product distribution, denoted q ∼

logNP
(
σ2

z
)
, with density given by: 1

π
√
σ2

z

1
q K0

(
| log q|
√
σ2

z

)
. □

Based on the results from Definitions 1 and 2, we can state Proposition 1:

Proposition 1. Auxiliary results on conditional distributions for hn.t and σ2
n.t

Given the prior specification from Equations (8)–(7) and (11)–(15), the marginal priors for the

latent process hn.t, log-conditional variances log σ2
n.t = ωnhn.t, and conditional variances

σ2
n.t = exp(ωnhn.t) are given by the following normal, normal product, and log normal product

distributions:

(a) hn.t | ρn ∼ N

(
0, 1−ρ2t

n

1−ρ2
n

)
,
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(b) log σ2
n.t | ρn, σ2

ωn
∼ NP

(
σ2
ωn

1−ρ2t
n

1−ρ2
n

)
,

(c) σ2
n.t | ρn, σ2

ωn
∼ logNP

(
σ2
ωn

1−ρ2t
n

1−ρ2
n

)
.

Proof. (a) The result is based on the properties of a normal compound distribution that

facilitates the integration of
∫

p(hn.t, hn.t−1, . . . , hn.1)d(hn.t−1, . . . , hn.1), where the joint

distribution under the integral is constructed from the conditional distributions

hn.t | hn.t−1, . . . , hn.1 ∼ N(ρnhn.t−1, 1) and using hn.0 = 0. (b) The result is obtained directly by

applying Definition 1, the result (a) and the prior in Expression (11). Point (c) is obtained

as a straightforward consequence of the first two results and Definition 2. □

The introduced results facilitate centring and shrinking our prior for σ2
n.t toward a

homoskedastic SVAR, which is useful because it ensures that evidence supporting

heteroskedasticity – and, consequently, the identification of a shock – must come from

the data. Moreover, it provides an alternative strategy for normalizing SVARs that does

not rely on common approaches, such as setting the diagonal elements of B0 to one or

imposing that the expected value of σ2
n.t equals one. Both of these approaches complicate

the derivation of an efficient Bayesian estimation algorithm. In what follows, we discuss

how we achieve centring and shrinking of our prior for σ2
n.t.

To centre the prior for σ2
n.t around the hypothesis of homoskedasticity, we must ensure

that the log-normal product distribution characterizing σ2
n.t has a single pole at the value 1.

This follows directly from two points: (i) the normalization condition in Theorem 1, which

sets σ2
n.0 = 1, and (ii) the fact that homoskedasticity in our setup corresponds to setting

ωn = 0, which implies σ2
n.t = exp(ωnhn.t) = 1, as discussed in Section 3. Property 1,

presented below, establishes when the log-normal product for σ2
n.t is proper and has a

single pole at 1.

Property 1. Single pole of log-normal product distribution at point 1

The log-normal product distribution from Definition 2 has a single pole at point 1 when

its variance satisfies σ2
z ≤ 1. In this case, the value of the density function approaches

infinity when its argument, q, goes to 1 and approaches 0 when q goes to 0 from the right.
14



Figure 1: Densities of the log-normal product distribution for various values of the scale parameter.
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Note: The blue, orange, and green lines correspond to the densities for the values of the scale parameter σ2
z

equal to 0.8, 1, and 1.5, respectively.

If σ2
z > 1, this distribution has an additional pole at 0, hence approaching infinity as q goes

to either 0 or 1.

Figure 1 illustrates Property 1. A few points are worth highlighting. First, note that

the condition for a single pole at one was stated in (14), which denotes a restriction on the

variance of the prior limiting distribution for σ2
n.t, as characterized in Proposition 1. This

restriction ensures that the inequality in (14) holds for all t. Second, the single-pole-at-one

condition implies a strong concentration of the prior probability mass for σ2
n.t at the value

corresponding to the homoskedasticity of the structural shocks. This prior is equation

invariant and, thus, it supports our claim that, at the prior mode, the SVAR model is not

identified through heteroskedasticity.

The prior shrinkage for σ2
n.t is also achieved through Property 1 via the inequality

restriction in (14). Specifically, this restriction prevents the prior probability mass for σ2
n.t

from being distributed more evenly over the interval from 0 to 1, as would occur in the

presence of an additional pole at zero as for the density plotted in green in Figure 1.
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Figure 2: The marginal priors for σ2
n.t and log(σ2

n.t) in their centred and non-centred parameterizations
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Note: The densities in red and blue correspond to the non-centred and centred approaches, respectively, to
model σ2

n.t, as discussed in Section 3.

The centering and shrinkage effects resulting from our prior setup are more evident

in Figure 2, which compares the marginal prior distributions for σ2
n.t and log(σ2

n.t) based

on their centred and non-centred parameterizations.1

Notably, the marginal prior for σ2
n.t in the non-centred case, denoted by the red line

in Figure 2, inherits the properties from the log-normal product conditional prior for

σ2
n.t given ρn and σ2

ωn
, stated in Proposition 1(c) with a less-than-one restriction on its

variance from Expression (14). These properties are convergence to value zero when the

conditional variance goes to zero from the right, a pole at 1, strong shrinkage toward the

prior mode, and heavy tails.

1The marginal priors in Figure 2 are computed using the numerical integration of Gelfand and Smith
(1990) in two steps. In the first one for the non-centred parameterization, a sample of S draws is

obtained from the prior distributions, denoted by
{
ρ(s)

n , σ
2(s)
ωn

}S

s=1
. In the second step, the marginal prior

ordinates at pre-specified points, denoted by ςg for g = 1, . . . ,G, are each computed by p̂
(
σ2

n.t = ςg

)
=

S−1 ∑S
s=1 p

(
σ2

n.t = ςg | ρ
(s)
n , σ

2(s)
ωn

)
. Appropriate modifications reflecting the prior assumptions are made for the

centred parameterization computations.
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In contrast, in the centred case, the marginal prior for σ2
n.t has the properties of the

log-Student-t distribution revisited in Appendix B.3, that is, less concentration around

the hypothesis of homoskedasticity, a mode at one, and a pole at zero. This log-Student-t

distribution arises from the inverse gamma prior for ω2
n featured by the centred

parameterization and the exponential transformation of the log-volatility to conditional

variance. In summary, the prior distribution for σ2
n.t in the centred parameterization

favours heteroskedasticity, implies shock identification even in the absence of

time-varying volatility, and does not support the normalization of the conditional

variances at one.

5. Bayesian Identification Verification

Recall from Section 3 that in our non-centred setup, identifying a given shock n

thorough heteroskedasticity involves assessing the restriction ωn = 0. If this restriction

holds, then hn.t = 0 and σ2
n.t = 1 for all t, which corresponds to a homoskedastic shock.

Conversely, if ωn , 0, then the conditions in Theorem 1 ensure shock identification

through heteroskedasticity.

To assessωn = 0, we adopt a Bayesian approach by comparing the fit of homoskedastic

and a partially heteroskedastic SVAR using the Bayes factor. To compute the Bayes factor,

we use the SDDR approach, which defines the Bayes factor as

BFhomosk =
p(ωn = 0|y)
p(ωn = 0)

. (17)

The numerator in (17) is computed using numerical integration methods based on the

estimator proposed by Gelfand and Smith (1990). This approach only requires the full

conditional posterior distribution of ωn to be known up to its probability density

function, which is normal, and the posterior draws from the unrestricted model (ωn , 0).

Consequently, computation of (17) requires estimation only under the unrestricted, that

is, heteroskedastic SVAR. Appendix D provides a detailed description of the evaluation

of the marginal posterior density p(ωn = 0|y).

17



The denominator p(ωn = 0) involves the marginal prior, which is obtained by

integrating out σ2
ωn

from the hierarchical-prior structure of ωn, discussed in Section 4.1,

where ωn|σ2
ωn
∼ N(0, σ2

ωn
) and σ2

ωn
∼ G

(
S,A

)
. Proposition 2 formalizes this marginal

prior as follows:

Proposition 2. Density of the marginal prior p(ωn)

The marginal prior density function for parameter ωn obtained by marginalizing the joint prior

distribution p(ωn, σ2
ωn

) over σ2
ωn

, p (ωn) =
∫
∞

0
p
(
ωn | σ2

ωn

)
p
(
σ2
ωn

)
dσ2
ωn

, where the priors

p
(
ωn | σ2

ωn

)
and p(σ2

ωn
) are given by Expressions (11) and (12), respectively. This yields

p (ωn) =
|ωn|

A− 1
2 KA− 1

2

(√
2
S |ωn|

)
√
π

(√
2
)A− 3

2
Γ
(
A
) (√

S
)A+ 1

2

. (18)

□

Proof. The integration proceeds by recognizing the constant and kernel and applies to

the latter, which is facilitated using the normalizing constant of the generalized inverse

Gaussian distribution provided by Barndorff-Nielsen (1997). □

To compute the Bayes factor using the SDDR approach, it is crucial that the marginal

prior p(ωn) is bounded at ωn = 0. Property (2) establishes that the existence of this bound

depends on the hyperparameter A:

Property 2. Upper bound of the marginal prior density for ωn (see Cadonna et al., 2020,

Theorem 2).

lim
ωn→0

p (ωn) =


∞ for 0 < A ≤ 0.5

1√
2πS

(
A2
−

1
4

) Γ (A + 3
2

)
Γ
(
A
) for A > 0.5

(19)

Thus, the marginal prior density p(ωn) is bounded from above if A > 0.5, as required by

Restriction (15). Accordingly, we set A = 1, reducing the gamma prior to an exponential
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distribution, consistent with the Bayesian Lasso prior considered by Belmonte, Koop

and Korobilis (2014). Other choices are possible and are reviewed by Cadonna et al.

(2020). Additionally, we set the hyper-parameter S = 0.05, ensuring that nearly all prior

probability mass for σ2
ωn

lies within the interval (0, 1).

6. A Monte Carlo study

An important question for practitioners is the performance of the verification procedure

for identification of the structural shocks in finite samples under a misspecified variance

process. Additionally, we look into the capacity of our procedure to normalize the

structural parameters. We conduct a comparative Monte Carlo study to shed some light

on these questions. More specifically, we compare the performance of our model using

the hierarchical prior assumptions presented in Section 4.1 with one based on the prior

distribution used by Chan (2018) featuring the zero-mean normal prior for ωn as in (11)

with the prior variance fixed to σ2
ωn
= 10. The latter specification is complemented by

a uniform prior for the autoregressive parameter ρn ∼ U(−1, 1) and violates the scaling

Restriction (14), potentially undermining the normalization.2

Our analysis estimates the two models for many artificially generated data sets.

Estimation details on how to sample from the posterior densities for the states and

parameters in the Monte Carlo setup presented here are discussed in Appendix C. All

our data-generating processes (DGPs) are bivariate and share the structural equation

B0yt = wt, uncorrelated structural shocks, wt ∼ N2

(
02,diag

(
σ2

1.t, σ
2
2.t

))
, and the structural

matrix set to B0 =

100 80

−20 200

 inspired by the parameter estimates from our empirical

example in Section 7. They differ in the specification of the volatility process for which

three alternatives are considered:

SV: where σ2
n.t = exp

(
h̃n.t

)
with h̃n.t = 0.92h̃n.t−1 + ṽn.t and ṽn.t ∼ N(0, 0.25), which is

equivalent to its non-centred version given by σ2
n.t = exp

(√
0.25hn.t

)
and the same

AR(1) equation written for hn.t but with a standard normal shock.

2We acknowledge that Chan’s prior was proposed for reduced-form models not requiring normalization.
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GARCH: where the conditional variances follow a GARCH(1,1) equation, σ2
n.t = 0.02 +

0.28w2
n.t−1 + 0.7σ2

n.t−1 and σ2
n.0 = 1.

Markov switching heteroskedasticity (MSH): where σ2
n.t = σ

2
n.st

, st is a two-state Markov

process with transition probabilities P =

0.98 0.02

0.02 0.98

, for st = 1, wt ∼ N (02, I2) and

for st = 2, wt ∼ N
(
02,diag (20, 10)

)
.

In other words, only the first volatility model corresponds to the SV model assumed for

our Bayesian algorithms while the assumptions underlying our methods are violated if

the volatility changes are generated by the two other models. This setup allows us to

explore the robustness of our methods against misspecification.

For each volatility process, we generate data using four different scenarios: (1) both

shocks are homoskedastic, (2) the first shock is homoskedastic while the second shock is

heteroskedastic, (3) the first shock is heteroskedastic while the second shock is

homoskedastic, (4) both shocks are heteroskedastic. For homoskedastic shocks we set

σ2
n.t = 1 ∀t, while the heteroskedastic shocks are generated by the three different volatility

models. We use two sample sizes, T ∈ {780, 260}, corresponding to 65 years of monthly

and quarterly data, respectively. Finally, the study is based on one hundred simulated

data sets for each of the four scenarios.

Table 1 reports the rejection rates for two approaches to decide on homoskedasticty of

the first shock. These rejection rates are computed based on two strategies to construct

critical values, which we refer to as l-value and q-value hereafter following Benjamini

and Hochberg (1995) and Storey (2002). In the l-value approach reported in Panel A, we

use the decision-theory consistent approach and reject homoskedasticity if BFhomosk < 1,

that is, when more than 50 % of the posterior probability is assigned to heteroskedasticity.

In the q-value approach, the critical value is set to the fifth percentile of the posterior

odds ratio, BFhomosk from Equation (17), computed under the true null hypothesis ω1 = 0.

Consequently, the rejection rates in the first row of Panel B of Table 1 are fixed at 5 %.

The rejection rates reported in Panel A of Table 1 show that our approach in most
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Table 1: Simulation results: Rejection rates for homoskedasticity using our prior vs. Chan (2018)

Our prior Chan (2018) prior

DGPs DGPs

T homoskedastic
shocks in each DGP SV GARCH MSH SV GARCH MSH

Panel A: l-value approach

780

shocks 1 & 2 0.00 0.00 0.00 0.00 0.00 0.00
shock 1 0.00 0.00 0.02 0.01 0.00 0.01

shock 2 0.98 0.80 0.22 0.95 0.71 0.18
none 1.00 0.83 0.56 0.98 0.73 0.49

260

shocks 1 & 2 0.00 0.00 0.00 0.00 0.00 0.00
shock 1 0.01 0.01 0.00 0.02 0.00 0.01

shock 2 0.57 0.31 0.19 0.55 0.27 0.30
none 0.78 0.37 0.41 0.74 0.28 0.61

Panel B: q-value approach

780

shocks 1 & 2 0.05 0.05 0.05 0.05 0.05 0.05
shock 1 0.08 0.13 0.09 0.07 0.11 0.10

shock 2 0.99 0.94 0.53 0.99 0.94 0.54
none 1.00 0.97 0.91 1.00 0.98 0.90

260

shocks 1 & 2 0.05 0.05 0.05 0.05 0.05 0.05
shock 1 0.07 0.12 0.10 0.07 0.10 0.07

shock 2 0.85 0.55 0.37 0.82 0.59 0.39
none 0.95 0.68 0.78 0.96 0.69 0.78

Note: The table reports rejection rates for the hypothesis of homoskedasticity in the first shock, i.e.,
H0 : ω1 = 0 using simulated data. The rates are calculated based on 100 realizations of DGPs each
with the following characteristics: sample sizes: T ∈ {260, 780}; volatility processes: SV, GARCH, MSH;
homoskedastic shock arrangements: shocks 1 & 2, shock 1, shock 2, none. For a homoskedastic shock, the
variance is set to σ2

n = 1.

cases outperforms the one based on Chan’s prior. However, the latter features a better

performance for the Markov-switching DGP for the smaller sample size. Overall, both

methods detect homoskedasticity of the first shock very well and exhibit high

performance in rejecting it when the first shock is heteroskedastic with SV or GARCH
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volatility. Rejecting the null hypothesis becomes more cumbersome when the shock

follows a Markov-switching volatility process. These findings are confirmed by the

rejection rates reported in Panel B, where both priors result in very similar rejection

rates.

Next, we compare the capacity of the two models with different priors for ωn to

normalize the system. We pointed out that the prior by Chan (2018) violates the scaling

restriction (14). This implies a pole at zero in the prior for the conditional variance that

is similar to the one featured by the density depicted in green in Figure 1. Due to this

violation, the conditional variance is not normalized about the value 1 and implies a

corresponding distortion in the values of the elements of the structural matrix.

In Table 2, we report averaged relative root-mean-squared errors (RMSE) between the

posterior mean estimates of the structural matrix for the two models, denoted by B̄(our)
0

and B̄(Chan)
0 , relative to its corresponding true values, B̄(true)

0 . The values of RMSE computed

for individual generated time series for a model with Chan’s prior to that with our prior

are given by:

RMSE =

√√
N∑

n=1

N∑
i=1

(
B̄(Chan)

0.ni − B(true)
0.ni

)2 / N∑
n=1

N∑
i=1

(
B̄(our)

0.ni − B(true)
0.ni

)2
. (20)

Therefore, a value greater than 1 means that the model with Chan’s prior delivers less

precise estimates than a model with our prior, while values within the interval (0, 1)

indicate that Chan’s prior results in superior estimates. The averaged value of RMSE

reported in Table 2 is a sample mean of RMSEs computed for the 100 simulated data sets.

The results in Table 2 clearly reflect the distortions in the parameter estimates due to using

Chan’s prior for ωn and, hence, not normalizing the estimated conditional variances. If at

least one shock is heteroskedastic, all RMSEs are clearly greater than one.

Our Monte Carlo study leads to two major conclusions. The first one is that our

proposed method is very well suited for investigating the identification through

heteroskedasticity. It performs well in many situations even if the volatility model does
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Table 2: Average relative root-mean-squared errors for the structural matrix for models with our prior
distribution for ωn and that by Chan (2018), for SV data generating process

T homoskedastic shocks
RMSEin each DGP

780

shocks 1 & 2 0.90
shock 1 103.58
shock 2 19.32

none 74.67

260

shocks 1 & 2 0.98
shock 1 8.53
shock 2 2.84

none 9.24

Note: The table reports relative root-mean-squared errors between the posterior mean and the true values
of the structural matrix parameters for models with alternative prior distributions for ωn computed as in
Expression (20). The reported values greater than 1 indicate a higher root-mean-squared error in the model
with the prior by Chan (2018).

not match the assumed SV volatility model. In many cases our approach outperforms

the procedure based on the prior proposed by Chan (2018). In terms of RMSE, our

method is considerably more precise than Chan’s procedure in estimating the structural

parameters. Thus, we can endorse our method for applied work and present an

empirical example in Section 7.

We acknowledge that there are other Bayesian and frequentist methods that have

been proposed for checking identification through heteroskedasticity in structural VAR

analysis such as those by Lanne and Saikkonen (2007), Lütkepohl and Milunovich (2016),

Lewis (2021), and Lütkepohl and Woźniak (2020). We have also performed simulations

for all of them and report the results in Appendix G. As those methods feature null

hypotheses that are different from our approach, they are not directly comparable to our

approach. Some of the methods are designed for specific volatility models and partly

perform very well in some situations. However, none of them outperforms our approach

in all situations and they have clear deficiencies for some of the scenarios considered in

our simulation design. Therefore, none of them is generally preferable to our approach.
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7. Empirical application: Identification of tax shocks

When heteroskedasticity is used for identification in SVAR analysis, the shocks are

distinguished by their variances or conditional variances. This approach provides

distinct shocks without economic labels and requires some additional information to

label the shocks. Such information is sometimes available in the form of specific shapes

of the impulse responses associated with a shock or a specific sign pattern of the impact

effects of the shocks.

To illustrate the methods developed in the previous sections, we will consider a fiscal

SVAR model in which the unanticipated tax shock has been identified in different ways.

These alternative identification strategies include, for example, Blanchard and Perotti

(2002) (henceforth BP), who use restrictions on the short-run effects of the shocks and

the instantaneous interactions of the variables to identify their shocks, and by Mountford

and Uhlig (2009) using sign restrictions. Moreover, Mertens and Ravn (2014) (henceforth

MR), as revised by Ramey (2016), use an external instrument, a narrative measure of the

tax shock proposed by Romer and Romer (2010). Finally, Lewis (2021) (henceforth LE)

uses heteroskedasticity and, hence, an approach in that respect similar to ours. We use

the MR model as our benchmark to illustrate the use of our methodology for identifying

the tax shock through heteroskedasticity, and the narrative measure by Romer and Romer

(2010) to ensure a correct labelling of the shocks.

7.1. A simple fiscal SVAR

MR specify a three-variable fiscal system including total tax revenue, denoted by ttr,

government spendings, gs, and gross domestic product, gdp, and they express all the

quarterly variables in real, log, per person terms. We will also consider these three

variables and investigate whether the tax shock can be identified by our methodology.

In order to investigate identification through heteroskedasticity in this fiscal system,

we use three alternative samples of different lengths and partly different values even

for overlapping periods. They are plotted in Figure 3, where it can be seen that the

series are different but similar in overlapping periods. The shortest sample, hereafter
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Figure 3: Data plots of the three samples used for estimation
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Note: The figure plots three series for three samples: the 2023-sample plotted in light pink includes
observations from 1948Q1 to 2023Q3 (T = 303), the 2006-sample plotted in darker pink is as the
2023-sample but finishes in 2006Q4 (T = 236), the MR-sample, plotted in purple, spans the period
from 1950Q1 to 2006Q4 (T = 228). The plotted series are standardized by subtracting from each
series its first observation in 1980.

MR-sample, uses the data from MR and LE that is downloaded directly from Karel

Mertens’ website.3 Following the data construction described by MR, total tax revenue,

government spending, and gross domestic product, as well as the GDP deflator are taken

from NIPA Tables numbers 3.2, 3.9.5, 1.1.5, and 1.1.9, respectively, provided by the U.S.

Bureau of Economic Analysis (2024c,d,a,b), and the population variable is provided by

Francis and Ramey (2009). This data spans the period 1950Q1 to 2006Q4.

We extend the sample to the latest available observations in 2023Q3 with modifications

in the population variable that is replaced by one matching Francis and Ramey’s (2009)

definition and provided by the U.S. Bureau of Labor Statistics (2024). Based on these

variables we form two samples, both of which contain longer time series than MR and

start in 1948Q1. One of these samples, hereafter the 2023-sample, ends in 2023Q3, and the

other one, hereafter the 2006-sample, ends in 2006Q4. Following MR, we use a VAR(4)

model with a constant term, a linear and a quadratic trend, and a dummy for 1975Q2 as

deterministic terms.

3The spreadsheet is available at https://karelmertenscom.files.wordpress.com/2017/09/jme2014 data.xls
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Table 3: Verification of identification through heteroskedasticity of the structural shocks (based on the
BP-ordering)

2023-sample 2006-sample MR-sample

wttr
t -21.38 [4.69] -1.51 [0.18] 0.32 [0.05]

wgs
t -4.62 [0.79] -1.32 [0.15] 0.23 [0.05]

wgdp
t -63.39 [6.43] 0.50 [0.03] 0.39 [0.03]

Note: The table reports the log of the Bayes factors estimated via the log of SDDRs from
Equation (17) together with numerical standard errors (NSEs) provided in brackets. Negative
values provide evidence against homoskedasticity. Bold font numbers represent cases in which
the evidence for heteroskedasticity is positive (values greater than 3 in absolute terms) or strong
(greater than 20) on the scale of Kass and Raftery (1995). The NSEs are computed based on 30
subsamples of the original MCMC draws.

7.2. Verifying identification through heteroskedasticity

We base our structural analysis on model (2). Hence, we have to sample from the posterior

of the structural B0 matrix, which is not identified without further restrictions if the shocks

are homoskedastic. Even if the shocks are identified, the row ordering and row signs may

change in different drawings from the posterior if one does not take special precautions to

prevent that from happening. We, therefore, follow LE and reorder the rows and adjust

their signs such that each draw has the minimum distance to the benchmark B0 matrix

computed from the estimates of the structural parameters from BP to begin with, and call

this the BP-ordering. More details on this procedure are provided in Appendix E. Hence,

the shocks can be labeled along the lines of BP as an unanticipated tax shock (wttr
t ), a

government spending shock (wgs
t ), and an additional shock (wgdp

t ) capturing unexpected

changes in gdpt not caused by tax or spending shocks. We will label our shocks accordingly

although it is, of course, not clear from the outset if the shocks can be identified through

heteroskedasticity with our methodology. If they can, they may still differ from those in

BP and MR, in which case our labels may not be meaningful. We will return to this issue

later.

The next step in our analysis is to assess whether there are shocks that are identified

through heteroskedasticity. Our main tool for that purpose is the SDDR from
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Equation (17). The SDDR values computed for each of the three shocks individually

using our three data samples are reported in Table 3. For the 2023-sample, the evidence

for heteroskedasticity of all three structural shocks is strong according to the scale

proposed by Kass and Raftery (1995). The values of the log Bayes factors shown in

Table 3 indicate that the posterior mass in favour of heteroskedasticity exceeds 99% for

all the shocks. This result provides strong evidence for the identification of all three

shocks through heteroskedasticity in the 2023-sample and is robust to many variations

in the model prior specification. These variations include perturbations of the

hyper-parameters that need to be fixed in our setup. We checked the conclusions for

three values of each scale and shape of the prior distribution for ωn, as well as for three

alternative setups for the hyper-parameters for each of the matrices A and B0. Each of

these alternative setups included cases of stronger and weaker shrinkage than in our

benchmark prior specification.

The evidence for the structural shocks to be identified through heteroskedasticity is

much weaker in the 2006-sample. Moreover, the log Bayes factors estimated by the

log-SDDRs for the MR-sample are positive, implying that the posterior mass for

homoskedasticity is greater than that for heteroskedasticity. The log-SDDRs are negative

for the last two shocks in the 2006-sample, which includes eight more observations than

the MR-sample from the volatile late 1940s. More specifically, in the 2006-sample, the

posterior probability of the heteroskedastic shock wttr
t is 82%. Obviously, in this case, the

evidence for identification through heteroskedasticity of the first shock is limited and it

is even more limited for the other shocks. These findings are also robust to the

perturbations in the values of the prior hyper-parameters.

In Figure 4, we further illustrate how the SDDRs work by plotting the marginal prior

versus the marginal posterior densities of ωn associated with our three samples. Based

on the information from these plots, the SDDRs from Equation (17) can be approximated

by the ratio of the marginal posterior ordinate at zero to that of the marginal prior

density. The figures for the 2023-sample exhibit posterior mass concentrated away from

the origin and the bi-modality discussed in Section 3, providing evidence against
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Figure 4: Marginal prior (solid line) and posterior (histograms) densities of ω1 across samples (based on
the BP-ordering)
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Note: The marginal prior density is estimated by numerical integration as in Gelfand and Smith
(1990) using a grid of points from -1.1 to 1.1. They are the same for all samples and shocks. The
marginal posterior densities are approximated using histograms. The ratio of these densities at
point zero approximates the SDDR in Equation (17). Posterior mass less concentrated than the
prior mass about zero provides evidence against homoskedasticity.

homoskedasticity. Instead, the posterior mass for the 2006- and MR-samples is

concentrated about the hypothesis of homoskedasticity, often more than the prior, thus

favouring homoskedasticity.

Finally, we analyse the sequences of conditional variances of the structural shocks that

are required to be clearly distinct for partial identification of the shocks to hold according

to Theorem 1. We plot their posterior means together with 90% highest posterior density

(HPD) intervals in Figure 5.4 The conditional variances are visibly time varying for the

2023-sample. The conditional variances of the first shock are significantly different from

4We compare these variance trajectories to those for a model with the centred SV process in Appendix F.
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Figure 5: Conditional variance of structural shocks in the three samples (based on the BP-ordering)
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Note: The figures plot time-varying conditional variances of the structural shocks. The lines
report the posterior mean and the shaded areas 90% HPD intervals. The variances in the first row
clearly exhibit non-proportional changes across time. The horizontal black line is set at the value
of 1, around which the prior is centred.

1 in six periods in that sample, including the mid-70s and mid-80s, individual quarters

in 2001, 2002, and 2003, and the first quarter of 2009. The variances of the second shock

are different from 1 in the first quarter of 1951 only, while those of the third shock have

HPD intervals not including 1 in 1950 and quarters 2 and 3 of 2020. The distinctive

occurrence times of high volatility periods for the three shocks provide strong evidence

for them to be different in these sequences, further supporting the identification through

heteroskedasticity in this sample. In particular, this evidence supports our claim that the

first shock is identified as its conditional variances evolve non-proportionally to those of

other shocks.

The conditional variances in the 2006-sample are to some extent similar to those from
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the 2023-sample until 2006. However, at all times, the 90% HPD intervals include the

value of 1. This is caused by a weaker signal provided from the data in the shorter sample

regarding time-varying volatility, which undermines the evidence for identification in

the framework of our model. In the MR-sample, the evidence for conditional variances

that support identification is even weaker. Thus, the bottom line is that, in the 2023-

sample, the shocks are clearly identified through heteroskedasticity, while the evidence

for identification through heteroskedasticity is weaker in the 2006-sample, and no such

evidence is found in the MR-sample.

7.3. Checking alternative ordering rules

One may wonder how much our results depend on the BP-ordering of our draws from the

posterior of B0. Therefore, we have repeated our sampling using the estimates obtained

by MR to order the rows of the B0 drawings (see Appendix E). The results of the SDDRs

based on the MR-ordering are presented in Table 4(a). They paint a similar picture as

the results in Table 3. The evidence for shocks identified through heteroskedasticity is

overwhelming in the 2023-sample. It is weaker for the 2006-sample and hardly existent

in the MR-sample.

In Figure 6(a) we show the marginal prior and posterior densities of the ω1 parameter.

The picture is very similar to that in Figure 4. In other words, the posterior in the 2023-

sample has considerable mass away from the origin and bi-modal and, hence, strongly

supports identified shocks, while the situation is much less clear for the 2006-sample and

for the MR-sample, where identification is clearly not supported because the prior and

posterior densities are both centred at zero and have considerable density mass in the

neighbourhood of zero.

Finally, we show the conditional variances based on the MR-ordering in Figure 7(a).

Comparing that figure to Figure 5, it can be seen that the conditional variances are

again very similar to those in the latter figure. Thus, the choice of B0 for normalizing

the posterior draws is of limited importance. At least, if there is sufficient conditional

heteroskedasticity to ensure identification of the shocks, whether we use the BP- or the
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Table 4: Verification of identification through heteroskedasticity of the structural shocks (based on
alternative orderings)

2023-sample 2006-sample MR-sample

(a) MR-ordering

wttr
t -21.38 [4.97] -0.92 [0.14] 0.32 [0.05]

wgs
t -4.62 [0.79] -1.27 [0.13] 0.24 [0.04]

wgdp
t -32.46 [8.16] 0.38 [0.04] 0.38 [0.03]

(a) PM-ordering

wttr
t -21.38 [4.7] -1.47 [0.2] 0.27 [0.05]

wgs
t -4.62 [0.79] -1.31 [0.14] 0.52 [0.03]

wgdp
t -63.39 [6.43] 0.35 [0.03] -0.04 [0.07]

Note: The table reports the log of the Bayes factors estimated via the log of SDDRs from
Equation (17) together with numerical standard errors provided in brackets. The note to Table 3
applies.

MR-ordering for the B0 drawings is not important.

We emphasize, however, that some kind of normalization of the B0 drawings is

necessary even if the shocks are all well-identified because the structure of the model is

invariant to changing the order and sign of the shocks. As long as the normalization

ensures a unique ordering and sign of the shocks, it should have little impact on the

samples from the posterior distributions if the shocks are well-identified. Therefore,

given that for the 2023-sample, we can expect to identify all three shocks through

heteroskedasticity, we have also used a target matrix B0 for this sample that is not based

on a set of estimates from some alternative identification scheme. Instead, we have used

a selected posterior mode as the benchmark B0 matrix and call it the PM-ordering (see

Appendix E for details).

In this case, it is not clear a priori that the ordering of the shocks will be the same as for

the BP- and MR-orderings. As the shocks are distinguished by their conditional variances,

we consider the conditional variances and order them such that they look similar to those

based on the BP- and MR-orderings. In this case, the three distinct variance patterns
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Figure 6: Marginal prior (solid line) and posterior (histograms) densities of ω1 across samples (based on
alternative orderings). The note to Figure 4 applies.
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allow for easily matching them with the shocks from the BP- and MR-orderings so we can
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Figure 7: Conditional variance of structural shocks in the three samples (based on alternative orderings).
The note to Figure 5 applies.
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easily label the shocks correspondingly. We present the resulting conditional variances in

Figure 7(b).

We have also computed SDDRs and the conditional variances of the three shocks, using

the PM-ordering of the B0 drawings from the posterior. The results are shown in Table 4(b).

They strongly support that all three shocks are identified through heteroskedasticity in

the 2023-sample. In fact, the SDDR values in Table 4(b) are identical to the corresponding

values for the 2023-sample in Table 3. Additionally, the robustness of heteroskedasticity

and identification verification to various ordering rules is confirmed by the plots of

marginal posterior and prior distributions of ωn for the PM-ordering in Figure 6 (b),

closely resembling other reported figures of this parameter. Thus, as long as some fixed

ordering is used to normalize the drawings from the posterior of B0, it does not affect the

posterior of the conditional variances and, hence, the identification of the shocks.

7.4. The effects of tax shocks

Thus far, we have documented partial identification through heteroskedasticity of the

tax shock in two of our samples. As the MR-sample does not support identification

through heteroskedasticity of any of the shocks, we do not consider the MR-sample in

the following. There is strong evidence for identification in the 2023-sample and much

weaker evidence in the 2006-sample. Subsequently we investigate how this reduced level

of empirical support for identification affects the impulse responses of the tax shocks on

gdpt. Given that our identification results are robust with respect to different orderings of

the posterior drawings, we now focus on the PM-ordering.

Given that heteroskedasticity provides three identified shocks, we begin by

investigating which one is the tax shock. The properties of the conditional variances of

the first shock in the PM-ordering closely resemble those of the tax shock in the BP- and

MR-orderings. This fact makes it more likely that the first shock in the PM-ordering is

the tax shock as well. We investigate this further and report the correlations between the

structural shocks from our estimated models and PM-orderings and the narrative

measure of the unanticipated tax shock by Romer and Romer (2010) in Table 5. The
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Table 5: Correlations between the narrative tax shock measure by Romer and Romer (2010) and other
selected measures (based on the PM-ordering)

2023-sample 2006-sample BP results MR results LE results

wttr
t 0.224 0.264 0.277 0.298 0.233

wgs
t -0.022 0.030

wgdp
t -0.154 -0.170

Note: The table reports sample correlations between the narrative measure of tax shocks proposed
by Romer and Romer (2010) and used by MR. The results in the 2023-sample and 2006-sample
columns are based on our posterior estimations, where we used the posterior mean of the shocks
as their estimator. The results in the BP results, MR results, and LE results columns are based on
our reproduction of the results from MR and LE using the authors’ computer codes and data.

results show that the first shock in our models is, albeit modestly, the most correlated

one with the narrative measure of Romer and Romer (2010). Such a low correlation is,

however, in line with the weak instrument observation by Ramey (2016) and exceeds 0.22

for all the models reported in Table 5. It is also higher than for the second shock, for

which the values are -0.022 for the 2023-sample and 0.03 for the 2006-sample, and for the

third shock for which the reported correlations are less than -0.15 for both samples.

Notably, the correlations for the first shock have similar values as the tax shocks

estimated by BP, MR, and LE, reported in the last three columns of Table 5. Therefore,

our correlation analysis provides some support that the first shock could be interpreted

as the tax shock.

Next, we investigate the dynamic effects of the tax shock identified with our approach

on gdpt. Figure 8 reports the corresponding impulse responses for both the 2006- and

2023- samples. Following MR and LE, they represent gdpt responses to a tax shock that

reduces ttrt by 1% of gdpt. Our impulse response results in Figure 8 share two common

features: (i) no effect on impact and over the first six quarters and (ii) an increase in

gdpt reaching a peak thirteen quarters after the impact at a value around 0.38% for the

2023-sample and 0.73 for the 2006 one. The shorter sample shock is more persistent as

its effect stays significant even five years after impact, whereas that for the longer sample
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Figure 8: Impulse responses of gross domestic product to a negative tax shock: Our estimates (based on
the PM-ordering)
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Note: The figure reports impulse responses of gdpt to a negative tax shock lowering ttrt by 1% of
the gdpt value in the last quarter of 2006. The lines report the posterior medians and the shaded
areas the 68% HPD point-wise intervals.

dies out after 3.5 years.

Nevertheless, the shapes of the impulse responses from the 2023- and 2006-samples are

quite similar to each other. We further compare them to the impulse responses reported

in BP,5 MR, and LE for the MR-sample, that is, the original data used by these authors.

Figure 9 reports our estimates for the 2006-sample with 90% HDP intervals with the results

from the BP, MR, and LE models reporting the maximum likelihood estimates with the

95% confidence intervals. Our results share two features with other estimates. Namely,

the peak is reached in the mid-horizons, and the statistical significance is lost around

three or four years after the impact. Additionally, our peak response is similar to those

in BP and LE, whereas MR obtain a larger peak. However, only the impulse responses

reported by LE are statistically insignificant on impact and in the following four quarters,

as in our estimates, while those by BP and MR are positive and significant also on impact.

5Our BP results are based on the BP model estimated by MR.
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Figure 9: Impulse responses of gross domestic product to a negative tax shock: Comparison with other
studies
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Note: The figure reports impulse responses of gdpt to a negative tax shock lowering ttrt by 1% of
the gdpt value in the last quarter of 2006. In the 2023-sample plot, the line reports the posterior
median and the shaded area reports the 90% HPD point-wise interval for the PM-ordering. In the
remaining plots, the lines report the maximum likelihood estimator and the shaded areas, the 95%
point-wise confidence intervals.

Nevertheless, the conclusions from our estimates do not deviate far from those established

in the literature and are obtained by identification through heteroskedasticity and shock

labelling using narrative measures only.
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8. Conclusions

In this paper, we provided general conditions for identifying a structural shock through

heteroskedasticity in multivariate dynamic structural models. These conditions apply

to a wide range of heteroskedastic and conditionally heteroskedastic structural vector

autoregressions and can also be used if only a subset of the shocks can be identified

through heteroskedasticity. We also proposed a flexible and easy-to-compute Bayes factor

to verify the identification conditions. This was enabled by our analysis of marginal

priors for conditional variances of the structural shocks. Such priors are flexible due

to a hierarchical specification and ensure normalization using a specification centred at

homoskedastic structural shocks. As a result, shock identification through time-varying

volatility relies more heavily on the data and is less susceptible to prior.

These methods were applied in a Monte Carlo simulation confirming that our prior

distributions lead to a strong performance of the identification verification procedure and

precise estimation. In an applied example, we show that the unanticipated tax shock in

the U.S.A. is identified through heteroskedasticity reliably.

However, our model is flexible and applicable to a wide range of time series in

empirical macroeconomic and financial applications, which is facilitated by the code

being available in the R package bsvars by Woźniak (2024a,b). Additionally, an

important extension in which the structural matrix and the conditional standard

deviation of the SV equation change over time with a Markov process was recently

proposed by Camehl and Woźniak (2024). This model facilitates verification through

heteroskedasticity within Markov regimes.
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Appendix A. Proofs

Appendix A.1. Proof of Theorem 1

We first prove the following lemma.

Lemma 1. Let Σt, t = 0, 1, . . . , be a sequence of positive definite N × N matrices and Λt =

diag
(
σ2

1.t, . . . , σ
2
N.t

)
a sequence of N × N diagonal matrices with Λ0 = IN. Suppose there exists

a nonsingular N ×N matrix B such that

Σt = BΛtB′, t = 0, 1, . . . . (A.1)

Let σ2
n = (1, σ2

n.1, σ
2
n.2, . . . ) be a possibly infinite dimensional vector. Then the nth column of B is

unique up to sign if σ2
n , σ

2
i ∀i ∈ {1, . . . ,N}\{n}.

Proof. Let B∗ be a matrix that satisfies: Σt = B∗ΛtB′∗, t = 0, 1, . . . . It will be shown that,

under the conditions of Lemma 1, the nth column of B∗ must be the same as that of B,

except perhaps for a reversal of signs. Without loss of generality, it is assumed in the

following that n = 1 because this simplifies the notation. In other words, it is shown

that the first columns of B and B∗ are the same except for a reversal of signs if σ2
1 , σ

2
i ,

i = 2, . . . ,N.

There exists a nonsingular N ×N matrix Q such that B∗ = BQ. Using Σ0 = BB′, Q has

to satisfy the relation

BB′ = BQQ′B′.

Multiplying this relation from the left by B−1 and from the right by B−1′ implies that

QQ′ = IN and, hence, Q is an orthogonal matrix.

The relations

BΛtB′ = BQΛtQ
′B′

imply Λt = QΛtQ′ and, hence, QΛt = ΛtQ for all t = 0, 1, . . . .

Denoting the (i. j)th element of Q by qi j, the latter equation implies that

qn1σ2
1 = qn1σ2

n, n = 1, . . . ,N.
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Hence, since σ2
n is different from σ2

1 for n = 2, . . . ,N, we must have qn1 = 0 for n = 2, . . . ,N.

Since, Q is orthogonal, the first column must then be

(1, 0, . . . , 0)′ or (−1, 0, . . . , 0)′

which proves the lemma. □

Now consider the setup of Theorem 1 with B = B−1
0 . Then the arguments in the proof

of Lemma 1 show that B−1
0∗ = B−1

0 Q, where Q is as in the proof of Lemma 1. Hence,

B0∗ = Q′B0, which shows that B0∗ and B0 have the same nth row up to sign. Q.E.D.

Appendix A.2. Proof of Corollary 1

To show that uniqueness of the nth row of B0 implies a unique nth column of B−1
0 we focus

without loss of generality on the first row. If the first row of B0 is unique, any other

admissible B0 matrix must be of the form QB0, where Q is an orthogonal matrix of the

form:  1 0(1×(N−1))

0((N−1)×1) Q∗

 ,
with Q∗ being an orthogonal (N − 1) × (N − 1) matrix. This fact is an easy implication of

Theorem 1. Thus, any admissible inverse has the form B−1
0 Q′ and, hence, has the same

first column as B−1
0 . Clearly, the same argument applies for any other row of B0, meaning

that the impact effects of the nth shock are unique if the nth row of B0 is unique. This

fact allows us to do impulse response analysis for a partially identified model. For each

identified shock, unique impulse responses are obtained and can be easily computed in

the usual way. Q.E.D.

Appendix B. Priors

Appendix B.1. Multivariate prior for stochastic volatility

Our prior assumptions also imply the joint distributions for the sequences of latent

variables related to the volatility processes. In what follows, we first define two new
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multivariate distributions and use them subsequently to state the joint distributions of

conditional variances and their logarithms (see Tsionas, 2017; Izzeldin, Tsionas and

Michaelides, 2019, on the role of joint specification in posterior inference).

Definition 3. (Multivariate normal product distribution) Let x be a scalar zero-mean

normally distributed random variable with variance σ2 that is independent of a T × 1

zero-mean normal vector Y with covariance Σ. Then, a random vector Z = xY follows

a T-variate normal product distribution with zero mean and covariance equal to σ2Σ,

denoted by Z ∼ NPT
(
σ2Σ

)
, with density:

2−
T−1

2 π−
T+1

2 det(Σ)−
1
2

( 1
σ2 Z′Σ−1Z

)− T−1
4

K
−

T−1
2


√

1
σ2 Z′Σ−1Z

 . (B.1)

□

Definition 4. (Multivariate log normal product distribution) Let a T × 1 random vector

Z follow a multivariate normal product distribution: Z ∼ NPT
(
σ2Σ

)
. Then a T×1 random

vector Q = exp(Z) obtained by applying the exponent to each of the elements of Z follows

the multivariate log normal product distribution, denoted by Q ∼ logNPT
(
σ2Σ

)
, with

density:

2−
T−1

2 π−
T+1

2 det(Σ)−
1
2

× det(diag(Q))−1
( 1
σ2 log(Q)′Σ−1 log(Q)

)− T−1
4

K
−

T−1
2


√

1
σ2 log(Q)′Σ−1 log(Q)

 . (B.2)

□

Note that the univariate (log-)normal product distributions are special cases of their

multivariate versions for T = 1. The multivariate distributions are useful to state the

following joint distributions for the sequences of volatilities:

Proposition 3. (Joint distributions of conditional volatilities)
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Given the prior specification from equations (8)–(10) and (11)–(15), the joint priors for the T × 1

vectors containing the latent process hn, log-conditional variances logσ2
n = ωnhn, and conditional

variances σ2
n = exp(ωnhn) are given by the following T-variate normal, normal product, and log

normal product distributions:

(a) hn | ρn ∼ NT

(
0T×1,

(
H′ρn

Hρn

)−1
)
,

(b) logσ2
n | ρn, σ2

ωn
∼ NPT

(
σ2
ωn

(
H′ρn

Hρn

)−1
)
,

(c) σ2
n | ρn, σ2

ωn
∼ logNPT

(
σ2
ωn

(
H′ρn

Hρn

)−1
)
, □

where hn =
(
hn.1 . . . hn.T

)′
is a T× 1 vector and Hρn is a T×T matrix with ones on the

main diagonal, with −ρn on the first subdiagonal, and with zeros elsewhere.

Appendix B.2. Prior distribution for the SVAR parameters

Our objectives for setting the joint prior distribution for the structural matrix B0 and the

autoregressive slope parameters collected in the matrix A =
[
A1 . . . Ap Ad

]
are that

(i) it is conditionally conjugate, and thus, facilitates the derivation of an efficient Gibbs

sampler for the estimation of the parameters, (ii) it is a reference prior that does not distort

the shape of the likelihood function due to the local identification of the model as defined

by Rubio-Ramı́rez et al. (2010), (iii) it can be interpreted as a Minnesota prior proposed by

Doan, Litterman and Sims (1984), and (iv) it enjoys the flexibility of the hierarchical prior

specification thanks to which the essential hyper-parameters responsible for the level of

shrinkage are estimated as argued by Giannone, Lenza and Primiceri (2015).

All these objectives are met when the prior for the structural matrix is set to the

generalized-normal distribution proposed by Waggoner and Zha (2003a) and multivariate

normal for the autoregressive parameters. Let B0.n and An denote the nth row of the

matrices B0 and A, respectively. Then the prior distribution for matrix B0 is proportional

to

p
(
B0 | γ0

)
∝ det (|B0|)

ν−N exp

−1
2

N∑
n=1

1
γ0.n

B0.nB′0.n

 . (B.3)
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The parameters of this distribution are further assumed to be equation invariant. That

feature makes this distribution the reference prior, which means that it is invariant to

the rotations of the structural system up to permutation and sign change of its rows (see

Woźniak and Droumaguet, 2015). The scale matrix of the distribution in (B.3) is set to

γ0.nIN, where γ0.n is a hyper-parameter, and the shape parameter is set to ν0 = N, which

makes the marginal prior distribution for the rows of B0 the N-variate normal distribution

with the zero mean and covariance γ0.nIN.

The prior distribution for each row of matrix A is multivariate normal, sharing

features of the Minnesota prior. Therefore, the prior mean of A is equal to

A =
[
D 0N×(N(p−1)+d)

]
, where D is a diagonal matrix with zeros and ones on the diagonal

depending on whether the corresponding variables in yt are stationary or unit-root

nonstationary. The matrix D is fixed at IN if all variables in yt are unit-root

non-stationary or at 0N×N if they are stationary. The covariances of the rows of A are

given by diagonal matrices γA.nΩ with scalar hyper-parameters γA.n and, where

Ω = diag
(
p−1′
⊗ ı′N 100ı′d

)
, and p−1 denotes a vector containing the reciprocal of integer

values from 1 to p. This matrix provides the increasing level of shrinkage with

increasing lag order of the autoregressive slope parameters, incorporating the ideas of

the Minnesota prior of Doan et al. (1984). Furthermore, the prior variances of the

parameters corresponding to the deterministic terms are equal to 100γA, reflecting a

popular view that the shrinkage should be relatively weaker for these parameters.

Extending the prior by Giannone et al. (2015), the levels of shrinkage of the

autoregressive and structural matrices follow a 3-level global-local hierarchical prior on

the equation-specific shrinkage parameters γA.n and γ0.n:

γ0.n | s0.n ∼ IG2
(
s0.n, ν0

)
, s0.n | sγ0.n

∼ G

(
sγ0
, νγ0

)
, sγ0

∼ IG2
(
ss0
, νs0

)
, (B.4)

γA.n | sA.n ∼ IG2
(
sA.n, νA

)
, sA.n | sγA.n

∼ G

(
sγA
, νγA

)
, sγA

∼ IG2
(
ssA
, νsA

)
. (B.5)

We set ν0, νγ0
, ss0
, and νs0

to values 10, 10, 100, and 1 respectively to make the marginal

prior for the elements of B0 quite dispersed, and νA, νγA
, ssA
, and νsA

all equal to 10, which
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facilitates relatively strong shrinkage for the autoregressive parameters in matrix A that

gets updated, nevertheless. Providing sufficient flexibility on this 3-level hierarchical

prior distribution was essential for a robust shape of the estimated impulse responses.

Appendix B.3. Prior for conditional variances in a centred SV model

Consider a centred SV model from equations (5)–(7) with the inverted-gamma 2 prior for

the SV conditional variance parameter:

ω2
n | σ

2
ωn
∼ IG2

(
σ2
ωn
, ν

)
. (B.6)

Then,

(a) the log-volatilities, h̃n.t, follow a Student-t marginal prior distribution (see Bauwens,

Lubrano and Richard, 1999),

(b) the conditional variances, σ2
n.t, follow a log-Student-t marginal prior distribution (see

Hogg and Klugman, 1983),

(c) the prior distribution stated in (b) has a pole at point 0, unless ν goes to infinity (see

Callealta Barroso, Garcı́a-Pérez and Prieto-Alaiz, 2020, for points (c)–(e)),

(d) the prior distribution stated in (b) has a second mode – a local maximum – at point

exp
{
−

1
2

[
(ν + 1) −

√
(ν + 1)2 − 4σ2

ωn

]}
iff σ2

ωn
<

(ν+1)2

4 ,

(e) the prior distribution stated in (b) has a median at point 1 only if ν goes to infinity. □

These properties show that the unrestricted centred SV parameterisation can be highly

problematic in SVAR applications. With unconstrained ω2
n, it does not ensure even the

normalization of the system about value σ2
n.t = 1. Moreover, with any finite values of the

shape hyper-parameter, ν, the pole at point 0 provides heavy local shrinkage towards a

point where the model is singular as it exhibits zero conditional variances of the structural

shocks. In this context, our proposal satisfying all the stated objectives leads to reliable

posterior estimates and inferences.
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Appendix C. Gibbs sampler for the estimation of the parameters

This section scrutinizes the estimation procedure that belongs to the class of MCMC

methods. The assumptions regarding the distribution of residuals and the prior

distribution of the parameters of the model result in a convenient and efficient Gibbs

sampler that performs excellently even for larger systems of variables.

Appendix C.1. Sampling SVAR parameters

The conjugate prior distribution for matrix B0 results in a convenient generalized-normal

full conditional posterior distribution that is proportional to:

p
(
B0 | y,A,σ2

1, . . . ,σ
2
N, γ0

)
∝ det (|B0|)

ν−N exp

−1
2

N∑
n=1

B0.nS
−1
n B′0.n

 (C.1)

S
−1
n = IN/γ0.n +

T∑
t=1

utu′t/σ
2
n.t (C.2)

ν = T + ν (C.3)

The random number generator from this distribution follows the algorithm by Waggoner

and Zha (2003a). Our experience clearly indicates its fast convergence and efficient

extraction of the global shape of the posterior distribution, as pointed out by Woźniak

and Droumaguet (2015).

In order to sample the autoregressive parameters A, we follow the row-by-row

algorithm by Chan et al. (2024) that reduces the number of operations to be performed

by the computer by orders of magnitude in comparison to sampling all the parameters

at once. Each of the rows, denoted by An, is sampled from a conditional multivariate

normal distribution given all other rows and parameters, and data. Denote by A(n)
0 an

N × K matrix filled with the elements of matrix A and zeros in the nth row, and an

(Np + d)–vector xt =
[
y′t−1 . . . y′t−p d′t

]′
. Then the structural-form model from equation
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(2) can be written as

B0

(
yt −A(n)

0 xt

)
=

(
B0.n ⊗ x′t

)
A′n +wt. (C.4)

Define an N–vector z(n)
t = B0

(
yt −A(n)

0 xt

)
and an N × (NP + d) matrix W(n)

t =
(
B0.n ⊗ x′t

)
.

Then, the full conditional posterior distribution for the vector An is given by:

A′n | y,A
(n)
0 ,B0,σ2

1, . . . ,σ
2
N, γA ∼ NNp+d

(
VnAn,Vn

)
(C.5)

V
−1
n = Ω

−1/γA.n +

T∑
t=1

W(n)′
t diag

(
σ2

1.t, . . . , σ
2
N.t

)−1
W(n)

t (C.6)

An = Ω
−1A′n/γA.n +

T∑
t=1

W(n)′
t diag

(
σ2

1.t, . . . , σ
2
N.t

)−1
z(n)

t (C.7)

where An is the nth row of A.

The hierarchy of the structural matrix hyper-parameters γ0.n, s0.n, and sγ0
is sampled

from their respective full conditional posterior distributions:

γ0.n | B0.n ∼ IG2
(
s0.n + B0.nB′0.n, ν0 +N2

)
(C.8)

s0.n | γB, sγ0
∼ G

(
(s−1
γ0
+ (2γ0.n)−1)−1, νγ0

+ 0.5ν0

)
(C.9)

sγ0
| s0 ∼ IG2

ss0
+ 2

N∑
n=1

s0.n, νs0
+ 2Nνγ0

 , (C.10)

whereas the hierarchy of the autoregressive hyper-parametersγA.n, sA.n, and sγA
is sampled

from:

γA.n | An, sA.n ∼ IG2
(
sA.n +

(
An −An

)
Ω−1

(
An −An

)′
, νA +Np + d

)
(C.11)

sA.n | γA.n, sγA
∼ G

(
(s−1
γA
+ (2γA.n)−1)−1, νγA

+ 0.5νA

)
(C.12)

sγA
| sA ∼ IG2

ssA
+ 2

N∑
n=1

sA.n, νsA
+ 2NνγA

 . (C.13)
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Appendix C.2. Sampling stochastic volatility parameters

The Gibbs sampler for the parameters of the SV processes results from our prior

assumptions described in Section 4 and the normality assumption for the structural

shocks (wn.t). It is facilitated by using the auxiliary mixture sampler proposed by Omori

et al. (2007). To this end, note that each structural shock can be written as:

wn.t =
√
σ2

n.tϵn.t, (C.14)

ϵn.t ∼ N(0, 1). (C.15)

By squaring and taking the logarithm of both sides of Equation (C.14) and remembering

that we define σ2
n.t = exp(ωnhn.t), we have:

w̃n.t = ωnhn.t + ϵ̃n.t, (C.16)

where w̃n.t = log w2
n.t and ϵ̃n.t = log ϵ2

n.t. Given the standard normal assumption for ϵn.t in

(C.15), the distribution of ϵ̃n.t is logχ2
1. This non-standard distribution is approximated

precisely by a mixture of ten normal distributions defined by Omori et al. (2007). Applying

the auxiliary mixture technique makes the linear equation (C.16) conditionally normal

given the mixture component indicators, which greatly simplifies the sampling algorithm.

This mixture of normals is specified by sn.t = 1, . . . , 10 – the mixture component indicator

for the nth equation at time t, the normal component probability πsn.t , mean µsn.t , and

variance σ2
sn.t

. The latter three parameters are fixed and given in Omori et al. (2007), while

sn.t augments the parameter space and is estimated. Its prior distribution is multinomial

with probabilities πsn.t . Finally, define T × 1 vectors: sn =
(
sn.1 . . . sn.T

)′
collecting the

realisations of sn.t for all t, µsn
=

(
µsn.1 . . . µsn.T

)′
, and σ2

sn
=

(
σ2

sn.1
. . . σ2

sn.T

)′
collecting

the nth equation auxiliary mixture means and variances, and w̃n =
(
w̃n.1 . . . w̃n.T

)′
.

Sampling latent volatilities hn proceeds independently for each n from the following

T-variate normal distribution parameterized following Chan and Jeliazkov (2009) in terms
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of its precision matrix Vhn and location vector hn as:

hn | y, sn,B0,B+, ωn, ρn ∼ NT

(
Vhnhn,Vhn

)
(C.17)

V
−1
hn
= ω2

n diag
(
σ−2

sn

)
+H′ρn

Hρn (C.18)

hn = ωn diag
(
σ−2

sn

) (
w̃n − µsn

)
(C.19)

The distinguishing feature of the precision matrix is that it is tridiagonal, which greatly

improves the speed of generating random numbers from this full conditional posterior

distribution if only the appropriate simulation smoother proposed by McCausland, Miller

and Pelletier (2011) is implemented.

The parameters that are essential for the assessment of identification of the SVAR

models, ωn, are sampled independently from the following normal distribution:

ωn | y, sn, hn, σ
2
ωn
∼ N

(
vωnωn, vωn

)
(C.20)

v−1
ωn
= h′n diag

(
σ−2

sn

)
hn + σ

−2
ωn

(C.21)

ωn = h′n diag
(
σ−2

sn

) (
w̃n − µsn

)
(C.22)

Next, proceed to the ancillarity-sufficiency interweaving sampler proposed by

Kastner and Frühwirth-Schnatter (2014). They show that sampling directly the

parameters of the centred SV model leads to an efficient sampler if data is

heteroskedastic, but it leads to substantial inefficiencies if data is homoskedastic. On the

other hand, sampling directly parameters of the non-centred SV parameterisation leads

to efficient sampling for homoskedastic data but not for heteroskedastic series. The

solution offering the optimal strategy when the heteroskedasticity is uncertain, and to be

verified, is to apply an ancillarity-sufficiency interweaving step in the Gibbs sampler.

Our implementation proceeds as follows: Having sampled the random vector hn and

parameter ωn, compute the parameters of the centred parameterisation h̃n.t = ωnhn.t and
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σ2
υn
= ω2

n. Then, sample σ2
υn

from the following full conditional posterior distribution:

σ2
υn
| y, h̃n, σ

2
ωn
∼ GIG

(
−

T − 1
2
, h̃′nH′ρn

Hρnh̃n, σ
−2
ωn

)
, (C.23)

where h̃n =
(
h̃n.1 . . . h̃n.T

)
. Finally, compute ωn = ±

√
σ2
υn and hn.t =

1
ωn

h̃n.t and return

them as the MCMC draws for these parameters.

The autoregressive parameters of the SV equations are sampled independently from

the following truncated normal distribution:

ρn | y, hn, σ
2
ωn
∼ N


T−1∑

t=0

h2
n.t


−1  T∑

t=1

hn.thn.t−1

 ,
T−1∑

t=0

h2
n.t


−1I (

|ρn| <
√

1 − σ2
ωn

)
. (C.24)

This sampler is performed using the algorithm proposed by Robert (1995) and

implemented in the R package RcppTN by Olmsted (2017).

The prior variances of parameter ωn, σ2
ωn

, are a posteriori sampled independently from

the following generalized inverse Gaussian distribution:

σ2
ωn
| y, ωn ∼ GIG

(
A −

1
2
, ω2

n,
2
S

)
(C.25)

using the algorithm introduced by Hörmann and Leydold (2014) and implemented in the

R package GIGrvg by Leydold and Hörmann (2017).

Finally, the auxiliary mixture indicators sn.t are each sampled independently from

a multinomial distribution with the probabilities proportional to the product of the prior

probabilities πsn.t and the conditional likelihood function.

Appendix C.3. Computational considerations

The computations reproducing our results can be performed using the R package bsvars

by Woźniak (2024a,b) that contains our data set with observations until 2022. It contains

compiled code implementing the developed Gibbs sampler as well as the computations

for the SDDR and other objects in C++ using the R package Rcpp by Eddelbuettel,
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François, Allaire, Ushey, Kou, Russel, Chambers and Bates (2011) and Eddelbuettel

(2013) for convenient interfacing with R and the package RcppArmadillo by

Eddelbuettel and Sanderson (2014) for algebraic operations and sampling random

matrices. The C++ source code for some low-level utility functions is taken from the

open-source package stochvol by Hosszejni and Kastner (2021). The computations for

this paper were performed at the Spartan HPC-Cloud Hybrid (see Meade, Lafayette,

Sauter and Tosello, 2017) at the University of Melbourne.

Appendix D. Computing the Savage-Dickey density ratio

The SDDR can be easily computed as long as the densities of the full conditional posterior

and the prior distributions are of a known analytical form. In Appendix C, we show that,

given the data, the latent volatilities processes involved in our model and the parameters of

the SVAR equation, the parametersωn can be independently sampled from the univariate

normal full conditional posterior distributions with the meanωn and variance vωn specified

in equations (C.20)–(C.22). Then, the numerator of the SDDR can be computed using a

sample of S draws from the posterior distribution by applying the marginal density

ordinate estimator proposed by Gelfand and Smith (1990):

p̂
(
ωn = 0 | y

)
=

1
S

S∑
s=1

fN
(
0;ω(s)

n , v
(s)
ωn

)
, (D.1)

where fN denotes the density function of a normal distribution, whereas ω(s)
n and v(s)

ωn

denote the values of the mean and variance in which the place of the parameters of the

model are replaced by their sth draws from the posterior.

Appendix E. Row sign and order normalization

Heteroskedastic SVARs are identified up to the signs and orders of the rows of the

structural matrix. Their practical application to the analysis of the sign and order

dependent quantities requires transformation of the posterior sample so that it seems
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drawn from the posterior region corresponding to the selected row signs and order. We

follow the normalization practice by Lewis (2021) and choose the changes of row signs

and order of the structural matrix that minimize a distance from the particular posterior

draw to the benchmark structural matrix, denoted by B̂0. Let an N × N diagonal scaling

matrix D with 1 or −1 on the main diagonal, and an N × N permutation matrix P

represent the possible row sign and order transformation of B(s)
0 , denoted by PDB(s)

0 . We

choose those D and P that minimize the likelihood-based distance proposed by

Jarociński (2024):
{
vec

[(
PDB(s)

0 − B̂0

)′]}′
Ω̂−1

{
vec

[(
PDB(s)

0 − B̂0

)′]}
, where Ω̂ is the

covariance matrix of the asymptotic distribution of the maximum likelihood estimator

evaluated at B̂0. Having chosen the row signs and order, the appropriately transformed

draw of the structural matrix is returned and the equation ordering of the SV parameters

and latent variables is adjusted accordingly.

Following Lewis (2021), we construct the benchmark B̂0 such that it matches the matrix

product on the left-hand side of the equation


σttr 0 0

0 σgs 0

0 0 σgdp


−1 

1 θgs 0

γttr 1 0

0 0 1


−1 

1 0 −θgdp

0 1 −γgdp

−ζttr −ζgs 1




uttr
t

ugs
t

ugdp
t

 =


wttr
t

wgs
t

wgdp
t

 (E.1)

with the parameter values from the appropriate columns of Table 1 in Mertens and Ravn

(2014).

The PM–ordering is chosen by drawing first from the posterior of B0 without paying

attention to row ordering and sign. Such a sample from the posterior has modes

corresponding to the various possible combinations of row signs and orderings. We pick

one of the modes and use it for fixing the row signs and orderings in the posterior

sample by choosing the row signs and orderings such that Jarociński’s likelihood

distance is minimized.
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Appendix F. Volatility plots for alternative SV model specification

For the sake of comparison, we report the conditional variance plots for the SVAR model

with an alternative specification for the SV process. We estimated models for all

considered data with our priors for matrices B0 and A, but with the centred SV model by

Chan et al. (2024) that is specified similarly to that used by Cogley and Sargent (2005).

The model features SV equations (7)–(5) together with the prior distributions set

following Chan et al. (2024) as:

ω2
n ∼ IG2(1, 3), and ρn ∼ U(−1, 1). (F.1)

Figure F.10 reports the conditional variances. They have similar shapes as those

reported in Figure 5 for our non-centred parameterisation of the SV model. In particular,

Figure F.10: Conditional variance of structural shocks in the three samples for a model with the centred SV
specification. The note to Figure 5 applies.
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the periods in which the conditional variances are significantly greater than 1 overlap to

a large extent with those for our model for the 2023 sample. Nevertheless, the periods of

high volatility are estimated to be more modest than for our model as the variance values

in these periods are much lower here. We attribute this phenomenon to the thinner right

tail of the prior entertained by the centred parameterisation. Note that a more flexible

hierarchical prior structure, for instance, estimating the scale of the inverse gamma prior

in (F.1) instead of setting it to one, could give this specification greater flexibility.

Appendix G. Rejection rates for other identification through heteroskedasticity tests

In this section, we report the rejection rates of other procedures that verify identification

through heteroskedasticity and consider different hypotheses. Consequently, they are not

directly comparable to the results for our procedure reported in Section 6.

Table G.6: Simulation Results: Rejection Rates for Proportional Variance Changes in a Markov-Switching
Heteroskedasticity Model Using the Procedure by Lütkepohl and Woźniak (2020)

DGPs

T homoskedastic shocks SV GARCH MSHin each DGP

l-value approach

780

shocks 1 & 2 1.00 1.00 1.00

shock 1 0.99 1.00 0.97
shock 2 0.92 0.94 0.99

none 0.46 0.82 0.51

260

shocks 1 & 2 1.00 1.00 1.00

shock 1 1.00 1.00 0.99
shock 2 0.98 0.99 1.00

none 0.80 0.94 0.51

Note: The table reports rejection rates for the hypothesis of proportional changes in conditional variances
H0 : σ2

1.st=2/σ
2
2.st=2 = 1 investigated using ln SDDR by Lütkepohl and Woźniak (2020). The rates are calculated

based on 100 realisations of DGPs each with the following characteristics: Sample sizes: T ∈ {260, 780};
Volatility processes: SV, GARCH, MSH; Homoskedastic shock arrangements: shocks 1 & 2, shock 1, shock
2, none. For a homoskedastic shock the variance is set to σ2

n = 1.
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The first method is also a Bayesian method and was proposed by Lütkepohl and

Woźniak (2020). It investigates identification in the context of a MSH model by checking

whether the shock variances in different volatility regimes are sufficiently different for

identification through heteroskedasticity. It does so by considering ratios of variances.

Table G.6 reports the rejection rates for the l-value approach for the hypothesis that the

variances of the structural shocks are not proportional in a homogeneous two-regime

Markov-switching heteroskedasticity model represented by the restriction involving the

ration of conditional variances from the second regime σ2
1.st=2/σ

2
2.st=2 = 1 and investigated

using the Bayes factor (see Lütkepohl and Woźniak (2020) for details). This restriction is

sufficient because the conditional variances in the first regime are equal to one.

The procedure performs very well when one shock is hetero- and the other

homoskedastic. Its performance significantly weakens when both shocks are

heteroskedastic, especially for a heterogeneous Markov process. The Bayes factor

performs badly when all shocks are homoskedastic. This is attributed to the fact that

Lütkepohl and Woźniak (2020) assume a stationary Markov process requiring non-zero

occurrences of each regime. Given this assumption, in homoskedastic data, the second

regime picks up a few outlying observations with the regime-specific variances much

higher than in the first regime. This leads to the rejection of the hypothesis. Note that

Lütkepohl and Woźniak (2020) recommend verifying heteroskedasticity first, for which

they provide another Bayesian procedure. Finally, due to this behaviour of the

procedure for homoskedastic data, we were not able to calibrate the critical value for the

q-value approach.

Table G.7 reports the rejection rates for the frequentist tests by Lanne and Saikkonen

(2007) and Lütkepohl and Milunovich (2016) used by Bertsche and Braun (2022) and that

proposed by Lewis (2021). Not all of these values are comparable with those reported in

Table1 due to different hypotheses verified and the lack of critical values for Bayesian

procedures. However, due to our design of the simulation consisting of checking the

procedures performance using the same generated data sets the rejection rates in the

Bayesian q-value approach and the size-adjusted power simulations are directly
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comparable accross the Panel B of tables 1 and G.7.

Lanne and Saikkonen (2007) proposed two alternative versions of a LM-type test

based on Portmanteau test statistics to determine the heteroskedasticity rank defined as

the number of independent univariate GARCH processes in the system. Lütkepohl and

Milunovich (2016) proposed another LM test for the same set of null hypotheses for a

differently specified structural model. We test the null hypothesis that the

heteroskedasticity rank is equal to one which implies identification of the structural

shocks for our DGPs. The test proposed by Lewis (2021) verifies the rank order of a

specifically constructed matrix involving conditional variances. In order to investigate

the hypothesis representing an identified system in our bivariate DGPs, we test the null

hypothesis of the rank order being equal to one which again implies identification of the

shocks.

The results indicate that the test by Lewis (2021) and the Q1 test by Lanne and

Saikkonen (2007) exhibit excellent size properties as their empirical sizes nearly perfectly

match the nominal size of the tests based on critical values for a 5% level test. The Q1 test

by Lanne and Saikkonen (2007) is consistently undersized and the test by Lanne and

Saikkonen (2007) is consistently oversized in all our samples (see the first row in Panel A

of Table G.7). As the test is oversized, its empirical power is somewhat inflated and it is

not surprising that its empirical power exceeds that of the Lewis (2021) test. However,

even if a small sample correction of the tests is performed as in the size-adjusted power

simulation approach in Panel B of Table G.7, the power of the Q2 test by Lanne and

Saikkonen (2007) is superior in many cases. Exceptions are some DGPs based on MSH

processes.

The overall conclusion of our simulations is that none of the procedures works

perfectly and is superior for all the scenarios considered in our simulations.
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