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Abstract 
We forecast recessions in Canada using an autoregressive (AR) probit model. In this model, the 
presence of the lagged latent variable, which captures the autocorrelation in the recession 
binary variable, results in an intractable likelihood with a high dimensional integral. Therefore, 
we employ composite likelihood methods to facilitate the estimation of this complex model, 
and we provide their asymptotic results. We perform a variable selection procedure on a large 
variety of Canadian and foreign macro-financial variables by using the area under the receiver 
operating characteristic curve (AUROC) as the performance criterion. Our findings suggest that 
the AR model meaningfully improves the ability to forecast Canadian recessions, relative to a 
variety of probit models proposed in the Canadian literature. These results are robust to 
changes in the performance criteria or the sample considered. Our findings also highlight the 
short-term predictive power of US economic activity and suggest that financial indicators are 
reliable predictors of Canadian recessions. 

Topics: Business fluctuations and cycles, Econometric and statistical methods 
JEL codes: E32, C53, C51 

Résumé 
Nous prévoyons les récessions au Canada à partir d’un modèle probit autorégressif. Dans ce 
modèle, la présence d’une variable latente retardée, qui reflète l’autocorrélation de la variable 
binaire indicatrice de récession, se traduit par une vraisemblance incalculable contenant une 
intégrale de haute dimension. Ainsi, nous employons des méthodes de vraisemblance 
composite pour faciliter l’estimation de ce modèle complexe, puis nous en présentons les 
résultats asymptotiques. Nous appliquons une procédure de sélection à une grande variété 
de variables macrofinancières canadiennes et étrangères en utilisant comme critère de 
performance la surface sous la courbe de la fonction d’efficacité du récepteur. Selon nos 
résultats, le modèle autorégressif améliore considérablement la capacité de prévision des 
récessions au Canada, comparativement à divers autres modèles probit proposés dans la 
littérature canadienne. Ces résultats sont robustes aux changements dans les critères de 
performance ou l’échantillon utilisé. Par ailleurs, ils mettent en relief le pouvoir prédictif à 
court terme de l’activité économique aux États-Unis, et semblent montrer que les indicateurs 
financiers peuvent servir à prédire de manière fiable les récessions au Canada. 

Sujets : Cycles et fluctuations économiques; Méthodes économétriques et statistiques  
Codes JEL : E32, C53, C51 

 



1 Introduction

Forecasting recessions has always been of great interest in macroeconomics, given the

significant, pervasive, and persistent impact such episodes can have on various sectors

of the economy. Foreseeing the different phases of business cycles is also critical for

policymakers, as it may influence their ability to conduct appropriate monetary and fiscal

policies. A large body of literature, following Estrella and Hardouvelis (1991) and Estrella

and Mishkin (1998), uses static probit models to predict recessions.1 Several studies find

the yield curve, defined as the spread between yields from government bonds with longer

and shorter maturities, to be a useful recession predictor. An inversion of the yield curve,

that is, a negative bond yield spread, is a nearly perfect signal of recessions in the United

States. Studies also find that an inverted yield curve is a reliable leading indicator of

Canadian recessions (Atta-Mensah and Tkacz, 1998).2 Other financial and macroeconomic

leading indicators – such as stock prices (Estrella and Mishkin, 1998), credit market activity

(Levanon et al., 2015), credit spreads, and certain employment indicators (Ng, 2014) – have

also been found to be good predictors of recessions.

Chauvet and Potter (2005) extend the static probit model of Estrella and Mishkin

(1998) by incorporating breakpoints and autocorrelated unobservables. However, Kauppi

and Saikkonen (2008) suggest that the Bayesian estimation in Chauvet and Potter (2005)

can be computationally intensive. Therefore, they propose ad hoc dynamic probit models

that can simply use maximum likelihood estimation. The authors show that the inclusion of

lagged binary or lagged latent variables can improve both the in-sample and out-of-sample

recession forecasting performance of a static probit model in the United States. Hao and

Ng (2011) apply the same models for the Canadian economy but find mixed forecasting

performances. The authors also highlight that the bond yield spread, housing starts, real

money supply, and composite index of leading indicators can be helpful to predict recessions

1Besides probit models, other methods and approaches can predict economic downturns in Canada, such
as GDP density nowcasts (Chernis and Webley, 2022), tail-risk predictions by a GDP-at-Risk framework
(Duprey and Ueberfeldt, 2020), or regime-switching models (Tuzcuoglu, 2023b). However, these methods
are not suitable for predicting a binary recession indicator.

2This stylized fact can be seen in Figure 2 in Appendix B.1, which shows the evolution of the bond
yield spread in Canada and in the United States over the last 60 years.

1



in Canada. Finally, Fossati et al. (2018) show that factor-augmented static probit models

outperform their counterparts that are based solely on observed data. In addition, they

find the real activity factor to be a good predictor of Canadian recessions, especially at

short-term forecast horizons.

This paper contributes to the literature in two important respects. Foremost, it is

the first to propose an autoregressive (AR) probit model to predict Canadian recessions

while providing its estimator’s formal asymptotic theories. Compared with a static probit

model, the latent variable in this paper is modelled as an autoregressive process, which

captures the persistence in the underlying state of the business cycle. The presence of

the lagged latent variable smooths the recession probabilities and prevents false-positive

predictions, which makes it a great candidate for a recession prediction model. However,

the AR probit model, which is similar to one of the specifications of Chauvet and Potter

(2005), has a complex likelihood function, containing high-dimensional integrals. This

paper avoids computationally intensive Bayesian or other simulation-based techniques by

using composite likelihood (CL) estimation methods (Lindsay, 1988; Varin et al., 2011). In

particular, we use marginal composite likelihood (MCL), which significantly reduces the

complexity of the full likelihood. MCL estimation takes a fraction of a second, which makes

our method attractive for practitioners. Additionally, in contrast to Kauppi and Saikkonen

(2008) and Hao and Ng (2011), we provide the asymptotic theory for our estimators.3

While asymptotic results on the MCL estimation are available for more general models,

such as general state space models (Varin and Vidoni, 2008; Ng et al., 2011) or an AR

panel probit model with correlated random effects (Tuzcuoglu, 2023a), to the best of our

knowledge, we are the first to provide them for the single-equation, time series version of

the AR probit. In addition, we also compare our empirical results with those obtained

using pairwise composite likelihood (PCL) estimators.

Second, we perform a variable selection in this paper from a broader and more up-to-date

3The statistical properties of some of the proposed methods in Kauppi and Saikkonen (2008) are not
known. They rely on the results of de Jong and Woutersen (2011), which are valid only for the probit
model with a lagged observed variable. However, for the model with a lagged latent variable, which is more
akin to our model, Kauppi and Saikkonen (2008) state that they have no formal proof of the validity for
their (asymptotic) results.
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variety of Canadian and foreign macro-financial variables relative to the existing Canadian

literature. We include various real economic activity indicators for both Canada and

the United States, several commodity prices indices, measures of international trade, and

financial variables. We also consider for each of these 26 variables up to 12 lags, which

amounts to a total of 312 potential leading indicators. By virtue of the speed of our

estimation technique, we are able to run tens of thousands of probit models to select the

best predictors. Our empirical analysis focuses on the Canadian recessions that occurred

between June 1973 and December 2022. As a result, this paper incorporates the latest

recession dates published by the C.D. Howe Institute Business Cycle Council, which now

include the COVID-19 recession and changes to previous recession dates.4 We conduct

the model selection and its performance assessment using the area under the receiver

operating characteristic curve (AUROC) as a performance criteria. This metric can provide

an objective assessment of a model’s classification accuracy, improving on broadly used

goodness-of-fit measures and scoring rules (Berge and Jordà, 2011).5 We perform a variable

selection procedure based on both in-sample and pseudo out-of-sample performances. Our

procedure finds the following variables to be the best predictors: the Canadian bond yield

spread, the Chicago Fed National Activity Index (CFNAI), and the TSX Composite Index

(TSX). While the bond yield spread tends to predict recessions well in advance, the CFNAI

and TSX are usually better at shorter-term forecasts. The reliability of US economic

indicators to predict Canadian activity aligns with the existing literature (e.g., Bragoli and

Modugno (2017)), highlighting the fact that Canada has a small and open economy whose

international trade relies heavily on its southern neighbour. Finally, our estimation also

yields a high autocorrelation coefficient capturing the persistence of the recession indicator.

Our empirical results highlight the superiority of the ARmodel over its static counterpart,

both in-sample and out-of-sample. Compared with the static probit model, the AR probit

has a significantly better fit to the data, forecasts the turning points of business cycles more

4The C.D. Howe Institute Business Cycle Council is an arbiter of business cycle dates in Canada –
similar to the National Bureau of Economic Research’s (NBER’s) Business Cycle Dating Committee in the
United States.

5Our results are robust to a variety of criteria, such as the pseudo R2, the quadratic probability score,
and the root mean square error.
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accurately, and yields less volatile probability forecasts that result in a sizable reduction

in recession false signals. We also compare our model with those existing in the Canadian

recession forecasting literature, specifically the four static and dynamic probit models

considered in Hao and Ng (2011). The forecasting results show clear evidence of the

advantages of the AR probit model. This indicates that using a model with an autoregressive

latent component and a large set of potential predictors can enhance forecasting Canadian

recessions. Our results are also robust to a variety of changes, such as using a different

sample period that excludes the COVID-19 episode and using different performance criteria.

Finally, we note that another commonly used probit model for recession prediction is

a dynamic probit model that incorporates the lagged observed dependent variable as a

predictor. While this model has a satisfactory in-sample fit performance, it does a rather

a poor job when it comes to out-of-sample forecasting. For instance, Hao and Ng (2011)’s

in-sample results show that this model almost always predicts the recessions with a one

period lag. Similarly, Kauppi and Saikkonen (2008)’s results show a significant deterioration

in the out-of-sample forecasting power of this model after one period. One obvious reason

is that the lagged binary variable, which appears to be the main determinant of the current

state of the economy in empirical studies, is not known in the out-of-sample forecasting

exercise since recessions are announced with a significant lag.6 Therefore, we do not consider

this model in our analysis.

The rest of this paper is organized as follows. Section 2 introduces our model, the MCL

estimator and its asymptotic properties, the forecasting procedure, and the evaluation

criterion for the variable selection. Section 3 presents the data. Section 4 shows our

in-sample and pseudo out-of-sample empirical results. Section 5 shows their robustness.

Finally, Section 6 concludes. The Appendix contains mathematical proofs, details on data,

and additional empirical results.

6The average lag in NBER announcements for the start and end of US recessions is 7 and 15 months,
respectively.

4



2 Methodology

In this section, we introduce the AR probit model and its estimation by CL methods. In

particular, we provide the MCL estimator of the AR probit model and discuss its asymptotic

results and forecasting procedure.

2.1 Autoregressive probit model

For t = 1, . . . , T , we consider the following AR probit model

yt = 1[y∗t ≥ 0],

y∗t = µ+ ρy∗t−1 + β′xt−m + εt, (1)

where yt is the binary outcome, y∗t is the underlying continuous latent process, xt−m is a

K−dimensional vector of lagged observable covariates, εt is the unobservable error term,

ρ is the autocorrelation coefficient of the latent process, β is the coefficient vector, and

µ is the constant term. Note that m is the employed lag order of x, which means that

the data of x is assumed to be available for t = −m + 1, . . . , T . The model also allows

for different lags for each covariate, but for simplicity we use a common lag notation. In

practice, one chooses m ≥ H, where H is the forecast horizon. Let θ = (ρ, µ,β′)′ be the

(K + 2)-dimensional vector of parameters. For stationarity of the latent process y∗t , we

assume |ρ| < 1. The error term εt is assumed to be independent and identically distributed

with N (0, (1 − ρ2)σ2
ε), where σ2

ε = 1 is assumed for identification purposes – a typical

assumption in probit and logit models (Greene, 2003). The multiplication of the error

distribution by
√

1− ρ2 is just a reparametrization that facilitates the mathematical terms

in the distribution of y∗t .

Note that the AR probit model differs from the static (ST) probit only by the the term

ρy∗t−1, which generates persistence both in y∗t and yt. However, its presence significantly

complicates the likelihood of the AR probit model since y∗t−1 is unobserved and needs to be

integrated out. This results in the following likelihood function containing a T -dimensional
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integral:

L(y|x;θ) =
∫ b1

a1

∫ b2

a2

· · ·
∫ bT

aT

ϕT (y
∗
1, . . . , y

∗
T |x;θ)dy∗1 · · · dy∗T ,

where the limits of integration are time-varying such that (at, bt) = (−∞, 0) if yt = 0, and

(at, bt) = (0,∞) if yt = 1, for all t = 1, . . . , T ; ϕT (·) is the T -dimensional joint Gaussian

density; and x = (x′
−m+1, . . . ,x

′
T−m)

′ and y = (y1, . . . , yT )
′.7 Calculating the likelihood

function requires evaluation of the T -dimensional joint Gaussian, which is computationally

demanding even for moderate T .

2.2 Marginal composite likelihood estimator

CL reduces the number of integrals by ignoring dependencies between certain subsets

of (y∗1, . . . , y
∗
T ). In this paper, we focus on the MCL that utilizes univariate distributions

of y∗t . For this, we use backward-substitution in equation (1):

y∗t = µ+ ρy∗t−1 + β′xt−m + εt,

= (1 + ρ)µ+ ρ2y∗t−2 + β′xt−m + ρβ′xt−m−1 + εt + ρεt−1,

...

=
1− ρt

1− ρ
µ+ ρty∗0 +

t−1∑
k=0

ρkβ′xt−m−k +
t−1∑
k=0

ρkεt−k. (2)

Next, we need to make an assumption on the initial latent value y∗0. There are various

possibilities here: (i) assuming a particular non-random value for it such as y∗0 = 0 as in

Chauvet and Potter (2005) or y∗0 = (µ + β′x̄)/(1− ρ) as in Kauppi and Saikkonen (2008)

and Hao and Ng (2011); (ii) treating it as another parameter to be estimated as in Müller

and Czado (2005); or (iii) drawing it from a stationary distribution as (indirectly assumed)

in Varin and Vidoni (2006). These are ad hoc assumptions on y∗0, but different choices do

not significantly affect the parameter estimates since the importance of y∗0 vanishes in a

7Note that we ignored the initial value y∗0 in this formula for simplicity. Depending on the modelling
choice of y∗0 , the dimension of the integral could increase to T + 1.
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large T setting.8 However, the choice matters for the analytical derivations. Note that the

first and second conditional moments of y∗t will depend on y∗0, and thus in general on time

period t. To achieve time-homogeneity in the conditional mean, variance, and covariances,

we follow option (iii) and assume that the initial latent variable is drawn from a stationary

distribution such that

y∗0 =
1

1− ρ
µ+

1√
1− ρ2

ε0.

The underlying assumption here is that the data generating process started a long time

ago and reached its stationary distribution before the initial date of our observed data.

Incorporating y∗0 into (2), we obtain

y∗t =
1

1− ρ
µ+

t−1∑
k=0

ρkβ′xt−m−k +
ρt√
1− ρ2

ε0 +
t−1∑
k=0

ρkεt−k. (3)

Hence, the first and second conditional moments of y∗t can be derived as follows:

E[y∗t |x−m+1, . . . ,xt−m;θ] =
1

1− ρ
µ+

t−1∑
k=0

ρkβ′xt−m−k

Var[y∗t |x−m+1, . . . ,xt−m;θ] =
ρ2tVar(ε0)

1− ρ2
+

t−1∑
k=0

ρ2kVar(εt−k)

=
ρ2t(1− ρ2)σ2

ε

1− ρ2
+

1− ρ2t

1− ρ2
(1− ρ2)σ2

ε

= 1

Cov[y∗t , y
∗
t−j|x−m+1, . . . ,xt−m;θ] =

ρ2t−jVar(ε0)

1− ρ2
+ ρj

t−j−1∑
k=0

ρ2kVar(εt−j−k)

=
ρ2t−jVar(ε0)

1− ρ2
+ ρj

1− ρ2t−2jVar(εt)

1− ρ2

= ρj.

The univariate conditional distribution of y∗t and the associated conditional recession probabilities

8Although not reported here, we verify this claim in Monte Carlo simulations and our estimations.
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can be written as

y∗t |x ∼ N

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k, 1

)
,

P(yt = 1|x) = P(y∗t ≥ 0|x) = Φ

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k

)
, (4)

whereP is the probability operator. Finally, we define the marginal composite log-likelihood

as

LMCL(θ|y,x) =
1

T

T∑
t=1

ln f(yt|x;θ)

=
1

T

T∑
t=1

1(yt = 1) lnP(yt = 1|x;θ) + 1(yt = 0) lnP(yt = 0|x;θ)

=
1

T

T∑
t=1

yt lnΦ

(
µ

1− ρ
+

t−1∑
k=0

ρkβ′xt−m−k

)

+ (1− yt) lnΦ

(
− µ

1− ρ
−

t−1∑
k=0

ρkβ′xt−m−k

)
, (5)

where Φ(·) is the cumulative distribution function of a standard normal distribution.

One can also use other CL functions, such as a PCL that utilizes bivariate distributions

of (y∗1, . . . , y
∗
T ). Note that in this case we have the following bivariate conditional distribution:

 y∗t

y∗t−j

 ∣∣∣ x ∼ N

 µ
1−ρ

+
∑t−1

k=0 ρ
kβ′xt−k

µ
1−ρ

+
∑t−j−1

k=0 ρkβ′xt−j−k

 ,

 1 ρj

ρj 1

 . (6)

The PCL relies on conditional bivariate probabilities of the form P (yt = s1, yt−j = s2|x;θ)

where s1, s2 ∈ {0, 1}. In the empirical analysis, we will compare the results of MCL and

PCL estimations, but our main focus in this paper will be on the former.
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2.3 Asymptotic properties

Let us define the MCL estimator as θ̂ = argminθ∈Θ LMCL(θ|y,x), where Θ is the

compact parameter space containing the true parameter θ∗ in its interior. We further

assume that the covariates, x, have finite fourth moments, are strictly exogenous, and

satisfy the non-singularity condition for E[xtx
′
t].

9 Following standard asymptotic literature

(Amemiya, 1985; Newey and McFadden, 1994) and similar results in the CL literature

(Lindsay, 1988; Varin et al., 2011; Ng et al., 2011; Tuzcuoglu, 2023a), we can give the

asymptotic distribution of the MCL estimator, as T → ∞, by

√
T (θ̂ − θ∗) →d N

(
0,H−1(θ∗)Ω(θ∗)H−1(θ∗)

)
,

whereH(θ) is the Hessian matrix andΩ(θ) is the long-run variance of the score function. A

detailed proof of the asymptotic result, consistent estimators for H(θ) and Ω(θ) matrices,

and further details can be found in the Technical Appendix A.

2.4 Forecasting

The h-period-ahead latent variable conditional on information at time T , where m ≥ h,

can be written as

y∗T+h = µ+ ρy∗T+h−1 + β′xT+h−m + εT+h,

=
1− ρh

1− ρ
µ+ ρhy∗T +

h−1∑
k=0

ρkβ′xT+h−m−k +
h−1∑
k=0

ρkεT+h−k.

Note that the distribution of the composite error term is not a standard Gaussian distribution;

instead, it is
∑h−1

k=0 ρ
kεT+h−k ∼ N

(
0, 1− ρ2h

)
. Hence, when computing the h-period-ahead

9These are commonly used assumptions in nonlinear dynamic panel data models (Honoré and
Kyriazidou, 2000; Wooldridge, 2005; Bartolucci and Nigro, 2010, 2012).
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forecasts, we need to scale the latent variable by
√

1− ρ2h:

PT (yT+h = 1) = PT (y
∗
T+h ≥ 0) = Φ

(
1−ρh

1−ρ
µ+ ρhy∗T +

∑h−1
k=0 ρ

kβ′xT+h−m−k√
1− ρ2h

)
,

where PT is the probability function conditional on information at time T .

Even though our MCL resembles the likelihood of the second model proposed by Kauppi

and Saikkonen (2008) (also utilized by Hao and Ng (2011)), we deviate from their model

in the forecasting procedure by taking into account the distribution of the moving-average

error term, i.e., by including the scaling factor of
√

1− ρ2h. The larger the ρ and the shorter

the forecast horizon h, the more important the scaling becomes. However, for small ρ and

distant forecasting horizons, the scaling factor gets close to one and becomes unimportant.

2.5 Evaluation criterion

Various measures have been proposed in the literature to assess the goodness of fit of

models with dichotomous dependent variables. First, many alternatives to the standard

linear regression R2, such as pseudo R2 measures, have been suggested (see, e.g., McFadden

(1974), Cragg and Uhler (1970), Efron (1978), Estrella and Hardouvelis (1991) and Estrella

and Mishkin (1998)). Likelihood-based goodness-of-fit criteria, such as those of Akaike

(1973) and Schwarz (1978) (AIC and BIC), have also been used in the literature. While

these measures provide an evaluation of dichotomous models’ quality of fit, they do not

assess the models’ ability to accurately classify binary outcomes. Other studies in the

economics literature, such as Diebold and Rudebusch (1989) or more recently Kauppi and

Saikkonen (2008), have instead leveraged scoring rules, which do provide an assessment of

a model classification accuracy. Some examples include the Brier score from Brier et al.

(1950) (BS), the log probability score, and the root mean square error (RMSE). However,

the performance assessment based on these scores relies on the intrinsic structure of their

loss function as highlighted in Berge and Jordà (2011).

To overcome these limitations, we select the AUROC to assess the performance of our

probit models. This measurement has the advantage of providing a performance assessment

10



that is independent of any loss function since it is constructed by solely using true and false

positive rates. Berge and Jordà (2011) argues that this criterion has a major advantage over

alternatives when it comes to prediction or forecast accuracy for binary outcomes. While

some studies use receiver operating characteristic (ROC) curve analysis for US recessions

(e.g., Liu and Moench (2016)), to the best of our knowledge, our paper is the first one to

use it to assess the classification accuracy of recessions in Canada.

The ROC curve is a simple graphical representation that summarizes the classification

ability of a model with a binary dependent variable. Let us define the estimated recession

binary variable as ŷt(τ) ≡ 1 [P(yt = 1|x) > τ ], where τ is a threshold value and P(yt = 1|x)

is the model-based conditional recession probability (showed in Equation (4) for the AR

probit model). Given a set of observed and estimated recession binary variables, we can

express a model’s true positive rate TPR(τ) and false positive rate FPR(τ) at any threshold

τ ∈ [0, 1] as

TPR(τ) =

∑T
t=1 1[ŷt = 1, yt = 1]∑T

t=1 1[yt = 1]
and FPR(τ) =

∑T
t=1 1[ŷt = 1, yt = 0]∑T

t=1 1[yt = 0]
.

Note that for any given level of threshold τ , the model provides a different set of ŷt’s, and

thus, different TPRs and FPRs. The ROC curve plots TPR against FPR for all τ ∈ [0, 1],

representing the trade-off between them. Finally, the AUROC is obtained by calculating

the area under the ROC curve, which is independent from τ . The higher the AUROC value,

the better the classification performance of a model. Furthermore, we can statistically test

the difference in two AUROC values by using bootstrap methods (Carpenter and Bithell,

2000), which we use for comparing the in-sample model performances.

Note that studies in the recession forecasting literature commonly use τ = 25% or

τ = 50% as the threshold values to define a recession. Consequently, we provide our

pseudo out-of-sample classification results also under these two fixed threshold values. As

further robustness checks, we also present performance comparisons based on other criteria,

such as the pseudo R2, BS, and RMSE.
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3 Data

This section discusses the data underlying the binary recession variables and the leading

indicators. Our dataset covers the time period between June 1973 and December 2022.

More details such as data sources, variable abbreviations, and their detailed descriptions

can be found in Table 8 of Appendix B.2.

3.1 Canadian recessions

In this analysis, the binary variable yt is set equal to one if the economy is experiencing

a recession in period t and to zero otherwise. To define this binary variable, we use the

definition from the C.D. Howe Institute Business Cycle Council.10 The council defines

recessions as periods of pronounced, pervasive, and persistent decline in aggregate economic

activity. For instance, the Great Financial Crisis (GFC) is a good example of such a period

of contraction. During that episode, the fall in real GDP and employment were sharp,

broad-based across industries, and lasted for an extended period. Over the last 50 years,

other economic downturns have occurred in Canada, without necessarily meeting all the

magnitude, length, and scope criteria required to be considered a recession. For instance,

the burst of the dotcom bubble in 2001 and the 2014–15 oil price shock resulted in economic

downturns, but they were not classified as recessions by the C.D. Howe Institute. The list

of the recessions considered in this paper are provided in Table 1.

It is worth noting that the commonly recognized definition of a recession has greatly

evolved since the latest publications in the Canadian recession forecasting literature. For

instance, Hao and Ng (2011) define a recession in terms of the cumulative absence of positive

growth over two consecutive quarters, in line with Cross (1996) and Cross (2001). More

recent papers, such as Fossati et al. (2018), use a definition of a recession consistent with

the first report from the C.D. Howe Institute Business Cycle Council (Cross and Bergevin,

2012). However, the council has notably revised their recession dates since their first report,

reflecting various factors such as Statistics Canada’s expansion of the expenditure-based

10In this paper, we use their latest 2021 update. See Cross and Bergevin (2012) for a more comprehensive
review of their original methodology.
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Table 1: Recessions in Canada between 1974 and 2022

Peak Trough Description

1974-October 1975-March 1973 oil crisis
1981-June 1982-October Monetary policy tightening
1990-March 1992-May Inflation targeting
2008-October 2009-May Great Financial Crisis
2020-February 2020-April COVID-19 pandemic

Notes: The recession dates presented in this table reflect the definition
of the C.D. Howe Business Cycle Council, consistent with their ninth
and most recent report (C.D.Howe, 2021). The recession periods used
in the model go from one month after the business cycle peak to its
trough.

GDP time series back to 1961 from 1981 (C.D.Howe, 2017). Methodological changes

have also been implemented to better reflect the importance of the breadth to determine

recessions (C.D.Howe, 2019). In themselves, these changes in the definition of a recession

call for a reassessment of the findings of the literature on Canadian recessions, which we

undertake in this paper.

3.2 Explanatory variables

To select potential explanatory variables, we start by considering macro-financial indicators

that were found to be informative to predict recessions in Canada based on Hao and Ng

(2011), which include the bond yield spread (SP), housing starts (HS), real money supply

(M1) and a composite leading indicator (CLI).11 We build on the existing literature by

considering additional domestic indicators.

First, we add the Canadian version of the Sahm rule (SAHM) based on Sahm (2019).

This measurement represents the difference between the 3-month moving average of the

unemployment rate relative to its prior 12-month low. While this indicator tends to slightly

lag the peaks in the business cycles, it is a highly reliable signal of recessions in the United

States, which also happens to be the case for Canada (see Figure 3 in Appendix B.1).

Second, we consider other domestic indicators included in the CLI and considered in the

11Given that the original CLI series used by used Hao and Ng (2011) is discontinued, we replace it using
the OECD CLI.
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literature (e.g., Liu and Moench (2016)). This includes the consumer confidence index

(CCI), the S&P/TSX composite index (TSX) and building permits (BP).

In order to better reflect some of the specificities of the Canadian economy, we also

consider a variety of global and commodity prices indicators. As highlighted in Binette et al.

(2017), exports play a particularly important role for a small open economy like Canada.

In fact, exports represent about one-third of Canadian GDP and are highly volatile.

Therefore, they have a substantial impact on quarterly GDP dynamics.12 Accordingly,

we incorporate in our pool of potential leading indicators various foreign economic activity

measures, with a particular focus on US economic indicators. This prevalence of the US

variables stems from the fact that about three-quarters of Canadian merchandise exports

are shipped towards their southern neighbour. In particular, in our pool of variables we

embed global exports (WEX), real Canadian merchandise exports (EX) and imports (IM),

US employment (USE), US industrial production (USIP), the US Purchasing Manager

Index (USPMI), and the 3-month moving average of the Chicago Fed National Activity

Index (CFNAI).

The commodity-related sector also plays an important role in the Canadian economy,

which motivates the inclusion of various energy and non-energy commodity prices indicators.

In 2019, the nominal share of production related to this sector was about 7.5%.13 Canada

is also a major commodity exporter, with commodities representing more than 55% of

Canadian goods exports. We measure commodity prices using the Bank of Canada Commodity

Price Index (BCPI), which is a chain Fischer index of the spot price of 26 commodities

produced in Canada (Kolet and Macdonald, 2010). We also include seven key BCPI

subcomponents, such as oil and metal prices (BCPI-O & BCPI-M) and the non-energy

commodity prices index (BCNE).

12For instance, the average absolute annualized contribution to GDP growth from exports stands close
to 3 percentage points between 1961 and 2022.

13See the annual GDP by industry account from Statistics Canada for agriculture, forestry, fishing and
hunting, mining, quarrying, and oil and gas extraction.
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4 Empirical Analysis

In this section, we discuss the variable selection and present our in-sample and pseudo

out-of-sample results.

4.1 Variable selection

In this subsection, we present the variable selection procedure and provide an in-sample

performance comparison of the autoregressive (AR) and static (ST ) probit models, formally

defined in Section 2. In order to identify the optimal set of covariates (and their lags) for

these models, we follow a procedure similar to that of Hao and Ng (2011):

1. First, we conduct a pre-screening of the potential explanatory variables. To do so,

we estimate single-regressor static equations for each variable identified in Table 8

of Appendix B.2, allowing their lags to vary between 1 and 12 months ahead. This

results in 12 different models per explanatory variable. We estimate these models

using MCL with data going from June 1973 to December 2022, and compute their

in-sample AUROC values (Table 9 of Appendix C).14 Then, we create a shortlist by

selecting the 10 regressors having the highest average AUROC values across these

forecast horizons (Table 2).15

2. Second, we combine the best regressor, at its optimal lag, with any two remaining

variables from Table 2, by allowing the lags of these two additional regressors to

vary between 1 and 12 months ahead. We assess the performance of the resulting

three-variables AR or ST probit model using their in-sample AUROC values.16

3. Third, from the best 30 models identified in step 2, we select the model having the

highest AUROC value obtained from the pseudo out-of-sample exercise (see Section

14Note that we assess all models’ in-sample performance over a fixed period going from November 1974
to December 2022.

15This step allows us to conduct the combined optimization procedure on a smaller list of variables,
which is less computationally intensive.

16We opt to include three regressors in the final model to be consistent with Hao and Ng (2011). Including
a fourth regressor does not bring any sizable gain in terms of predictive power.
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4.3 for more details on the out-of-sample exercise). This step ensures a balance

between the in-sample and out-of-sample performances.

Table 2: Shortlist of potential explanatory variables

Forecast horizon (h)
Order Mnemonic 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

1 CFNAI 0.874 0.864 0.864 0.853 0.838 0.809 0.785 0.760 0.755 0.744 0.741 0.727 0.801
2 SP 0.660 0.697 0.728 0.755 0.782 0.803 0.821 0.822 0.826 0.832 0.837 0.842 0.784
3 SAHM 0.854 0.823 0.797 0.771 0.744 0.713 0.682 0.653 0.627 0.615 0.614 0.614 0.709
4 CLI 0.602 0.649 0.706 0.740 0.754 0.756 0.747 0.728 0.708 0.691 0.680 0.672 0.703
5 USE 0.754 0.753 0.738 0.701 0.681 0.654 0.649 0.627 0.631 0.608 0.615 0.586 0.666
6 USIP 0.711 0.692 0.709 0.679 0.666 0.658 0.631 0.612 0.638 0.610 0.621 0.614 0.653
7 BCNE 0.650 0.655 0.662 0.654 0.677 0.683 0.672 0.667 0.635 0.611 0.610 0.597 0.648
8 TSX 0.651 0.661 0.693 0.671 0.671 0.684 0.668 0.654 0.618 0.614 0.593 0.584 0.647
9 BCPI-M 0.622 0.640 0.676 0.710 0.738 0.703 0.666 0.629 0.595 0.571 0.596 0.576 0.644
10 M1 0.615 0.641 0.647 0.627 0.643 0.648 0.625 0.610 0.611 0.595 0.614 0.600 0.623

Notes: This table shows the in-sample AUROC values calculated from single-variable static probit models,
with lags varying between 1 and 12 months ahead. The last column provides the average AUROC
values across these forecast horizons. The models are estimated using MCL with data going from June 1973
to December 2022. This table contains the 10 best explanatory variables based on their average in-sample
AUROC. See Table 9 in Appendix C for the complete list.

Table 2 shows the 10 best explanatory variables based on their average in-sample

AUROC values. Consistent with the literature, the bond yield spread stands out as the best

single predictor at longer forecast horizons (above 6 months ahead). The solid performance

of this indicator at a longer range partly reflects the forward-looking information it conveys

about market participants’ perceptions of risk and expectations of future interest rates. The

CFNAI, however, appears to be the best single predictor of economic downturns at shorter

horizons, outperforming the other indicators when considering forecasts conducted between

1 and 6 months ahead. US employment and industrial production are also strong predictors

at this forecast horizon, although to a lesser extent. The strong leading property of these

US economic indicators on Canadian downturns is quite intuitive given that Canada has a

small and open economy in which international trade relies heavily on the United States.17

Other domestic variables, such as the SAHM and the CLI, are also particularly informative

for Canadian recessions at shorter forecast horizons. Finally, commodity prices offer a

moderate performance that generally peaks before the 7-month-ahead forecast horizon.

17For instance, about 75% of Canadian nominal exports in 2022 were shipped towards the United States.
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Commodity prices excluding energy (BCNE) and metal prices (BCPI-M) stand out as the

best commodity prices subindices.

4.2 In-sample results

Table 3 shows the regression results for the optimal AR and ST model specifications that

were obtained using the variable selection procedure previously described. The bond yield

spread and the CFNAI appear among the best predictors, as they are selected in both

the AR and the ST equations. In addition, the TSX composite index and real money

supply are selected as the third regressors in the AR and in the ST models, respectively.

All these regressors’ coefficients have negative values, suggesting that an improvement in

these indicators imply a lower recession probability. It is worth noting that the AR model

has a high and statistically significant autoregressive coefficient ρ, highlighting the strong

auto-correlation component of the latent process y∗t , and thus that of yt. Finally, we can

see that the AR model outperforms the ST model, with a significant 5 percentage points

advantage in its AUROC value. Table 10 in Appendix C also shows that this advantage is

robust to a variety of performance measurements, such as the pseudo R2, the Brier score,

and the RMSE.

4.3 Out-of-sample results

We now compare the performance of the AR and ST probit models by assessing their

forecasting abilities in a more realistic situation. Due to data limitations, we limit our

analysis to a pseudo out-of-sample forecasting exercise. To proceed, we first estimate the

models using a sample going from June 1973 to March 1989 and obtain a first 1-month-ahead

forecast for April 1989. Next, we add this last observation to our estimation sample and

obtain a second 1-month-ahead forecast for May 1989. We repeat this expanding-window

procedure recursively until we obtain a forecast for December 2022, which corresponds

to the last month of our sample. The choice of this forecasting period allows us to test

the models on three recessions, namely the 1990s recession, the Great Financial Crisis,

and the COVID-19 pandemic. For the sake of simplicity, we assume that the values of
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Table 3: In-sample regression results

Specifications

ARMCL ST

SPt−7 −0.116∗∗∗

(0.022)

CFNAIt−1 −0.052 −0.640∗∗∗

(0.040) (0.140)

TSXt−1 −0.091∗∗∗

(0.024)

SPt−12 −0.503∗∗∗

(0.066)

M1t−2 −0.426∗∗∗

(0.117)

y∗t−1 0.922∗∗∗

(0.016)

Constant −0.071∗ −1.090∗∗∗

(0.039) (0.108)

AUROC 0.987 0.9379
DIFF 0.049∗∗∗

Notes: This regression table contains the parameters of the
optimal AR and ST probit models, estimated by MCL using
data from June 1974 to December 2022. The last line shows
the difference between both models’ AUROC values, along
with its test of significance (Carpenter and Bithell, 2000).
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

the explanatory variables xt are known at the same time as the binary variable yt. Note

that relaxing this assumption, to better account for the recession dates publication delays,

would have only a marginal impact on the relative performance of the ST and AR models.

Finally, it is worth noting that we focus on 1-month-ahead forecasts obtained from our

optimal model. This choice facilitates the comparison with other models and results in the

literature, but making adjustments to target longer forecast horizons is straightforward.

Table 4 compares the out-of-sample performance of the two models considered at a

1-month-ahead forecast horizon. Similar to the in-sample results, we can see that the AR

model outperforms the ST model based on their AUROC values. This advantage holds
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also for other performance measurements. As a sanity check, we also verify in Table 4 that

our AR model outperforms reproduced versions of the models proposed in Hao and Ng

(2011).18

Table 4: Models’ out-of-sample performance (1-month-ahead forecasts)

Model AUROC DIFF R2 BS RMSE
ARMCL 98.2% 78.3% 1.7% 13.1%
ST 96.6% 1.5% 45.9% 4.3% 20.7%
STHN 93.6% 4.5% 46.3% 4.2% 20.6%
DYNHN 87.1% 11.1% 44.7% 4.4% 20.9%
ARHN 91.3% 6.8% 43.0% 4.5% 21.2%
DYNARHN 87.3% 10.9% 43.9% 4.4% 21.0%

Notes: The second column shows the difference between the ARMCL and the specified model
AUROC values. R2, BS, and RMSE stand for the pseudo R2, Brier score, and root mean
square error, respectively. The first two rows reflect the performance of the AR and ST
probit models presented in this paper. The last four rows reflect the performance of the
static (STHN ), dynamic (DYNHN ), autoregressive (ARHN ), and dynamic autoregressive
(DYNARHN ) probit models replicated from Hao and Ng (2011).

Table 5: Out-of-sample turning points identification (1-month-ahead forecasts)

25% threshold 25% threshold

Peaks ARMCL ST Troughs ARMCL ST

March 1990 -2 +3 May 1992 -4 -4
October 2008 +1 -5 May 2009 0 +1
February 2020 +1 +1 April 2020 0 +3

Notes: (+a) or (−a) imply that a model identifies a turning point ”a” months too late or too
early. A peak is identified too early (late) if the model’s forecasted probability exceed a given
threshold before (after) the actual peak. A trough is identified too early (late) if the model’s
forecasted probability fell below a given threshold before (after) the actual trough. The lags
and leads in this table are assessed at the 25% threshold.

Let us have a closer look at how the models perform during the three recessions

contained in the simulation period. Figure 1 plots the 1-month-ahead forecasted recession

probabilities for both the AR and ST probit models.19 First, we can observe that both the

18The four probit models presented by Hao and Ng (2011) are labelled as static (STHN ), dynamic
(DYNHN ), autoregressive (ARHN ), and dynamic autoregressive (DYNARHN ). Note that methodological
differences, such as the forecasts scaling, differentiate ARMCL from ARHN . It is also worth noting that
the authors use a different sample and recession definition to select their optimal models, which makes this
exercise an imperfect comparison.

19We present only the ST model in Figure 1, as it represents the best benchmark for the out-of-sample
exercise.
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Figure 1: Out-of-sample forecasted probabilities (%, 1-month-ahead forecasts)

Notes: This figure compares the 1-month-ahead forecasts (h = 1) between the ARMCL and ST
probit models over the out-of-sample exercise simulation period (April-1989 to December-2022).
The two dashed lines represent the 25% and 50% thresholds, respectively.

AR and ST models provide a meaningful response during the three recessions analyzed,

although not always identifying precisely the turning points. Both models also yield a

significant response in 2001, which corresponds to the burst of the dotcom bubble. Despite

this episode not being considered an official recession, the 2001 pick-up in the AR model

forecasted probabilities mostly reflects the deterioration in US economic activity and in

the TSX composite index. It is worth noting that the ST model’s forecasts are much more

volatile, and therefore provide more false signals at lower thresholds relative to the AR

model. For instance, the ST models’ FPR at the 12.5% threshold is about 8%, almost four

times larger than the AR model’s rate (see Table 11 in Appendix C). In contrast, we can

see that the AR model’s forecasts are much smoother than the ST model outside of the

recessions, reflecting the model’s higher persistence due to its autoregressive feature.

In Table 5, we assess more precisely the models’ accuracy to identify the turning points

in the business cycles over the simulation period. First, we can see that the AR model is

generally more precise than the ST to signal peaks in the business cycles. While the AR
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model is a bit early in calling the 1990s recession, it is only one month late in identifying

the peaks preceding the GFC and the COVID-19 pandemic. In contrast, the ST model

is generally off by a larger amount, especially in the case of the GFC, where the model

identifies the peak five months too early. The AR advantage over the ST equation is also

obvious when looking at the identification of the troughs: the AR model perfectly identifies

the turning points at the 25% threshold for the last two recessions of the out-of-sample

exercise. Note that the choice of the threshold can impact a model’s ability to identify

the turning points, although the relative advantage of the AR model at other thresholds

remains (see Table 12 in Appendix C).

Finally, we compare the in-sample and out-of-sample performances between the AR

probit model estimated using the MCL and PCL estimators (ARMCL andARPCL, respectively).

While the estimated parameters using PCL should theoretically be more efficient than

those obtained by using MCL, the results presented in Table 13 in Appendix C suggest

that no empirical advantage is obtained from using the former estimator. In addition, it

is worth noting that the PCL estimation (45 seconds) takes significantly longer than the

MCL estimation (a fraction of a second). However, two main caveats prevent us from

reaching robust conclusions from this exercise. First, the optimal AR model presented in

this paper was selected using the MCL estimators, resulting in an obvious advantage in

favour of ARMCL. Second, this comparison is conducted using one model only. A more

thorough comparison, including several AR models with different variable selections, would

be required to generalize these findings.

5 Robustness

In this section, we assess the sensitivity of our empirical results to the exclusion of the

COVID-19 recession from both the in-sample and pseudo out-of-sample analysis. Given

the historical data volatility observed during this period, it is reasonable to assess how

the relative performance of the models responds to this change. Table 6 presents the

regression results of the ARMCL and of the ST model estimated with a sample going
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from June 1973 to December 2019 and using the same selection procedure as described in

Subsection 4.2. For the ARMCL model, the variable selection is fairly close to the complete

in-sample analysis, with the only difference being that the TSX variable is now lagged by

two months instead of one. For the ST model, M1t−2 is now replaced by SAHMt−9 and

the bond yield spread now has a shorter lag (7 months instead of 12). We can see that

both models’ in-sample AUROC values are better relative to those obtained when including

the COVID-19 pandemic (see Table 14 in Appendix C for the complete in-sample results).

Although the difference between the ARMCL and the ST models’ AUROC values is smaller,

the former model continues to have a significant advantage of 1.7 percentage points over

its static counterpart. Table 7 presents the results of the pseudo out-of-sample exercise

conducted between April 1989 and December 2019. Similar to the in-sample results, all

AUROC values are still better relative to those obtained using the complete sample. Again,

the advantage of the AR model over the ST model reduces when looking at the AUROC

values but remains substantial when looking at the other performance criteria. Finally,

the AR model outperforms the replicated models from Hao and Ng (2011) through all

performance criteria considered in the out-of-sample exercise, supporting the robustness of

our results.
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Table 6: In-sample regression results (excluding COVID-19)

Specifications

ARMCL ST

SPt−7 −0.138∗∗∗ −0.564∗∗∗

(0.022) (0.080)

CFNAIt−1 −0.056 −1.507∗∗∗

(0.044) (0.195)

TSXt−2 −0.102∗∗∗

(0.019)

SAHMt−9 0.795∗∗∗

(0.124)

y∗t−1 0.909∗∗∗

(0.021)

Constant −0.099∗∗ −1.978∗∗∗

(0.049) (0.191)

AUROC 0.993 0.975
DIFF 0.017∗∗∗

Notes: This regression table contains the parameters of the
optimal AR and ST probit models, estimated by MCL using
data from June 1974 to December 2019. The last line shows
the difference between both models’ AUROC values, along
with its test of significance (Carpenter and Bithell, 2000).
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 7: Models’ out-of-sample performance (1-month-ahead forecasts, excluding
COVID-19)

Model AUROC DIFF R2 BS RMSE
ARMCL 99.5% 75.4% 2.0% 14.1%
ST 99.1% 0.3 % 51.9% 3.9% 19.8%
STHN 94.6% 4.8% 48.2% 4.2% 20.5%
DYNHN 87.5% 11.9% 50.3% 4.1% 20.1%
ARHN 92.0% 7.4% 48.9% 4.2% 20.4%
DYNARHN 87.7% 11.8% 49.4% 4.1% 20.3%

Notes: The second column shows the difference between the ARMCL and the specified
model’s AUROC values. R2, BS, and RMSE stand for the pseudo R2, Brier score, and
root mean square error, respectively. The first two rows reflect the performance of the AR
and ST probit models presented in this paper. The last four rows reflect the performance of
the static (STHN ), dynamic (DYNHN ), autoregressive (ARHN ), and dynamic autoregressive
(DYNARHN ) probit models replicated from Hao and Ng (2011).
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6 Conclusion

Recessions have significant, pervasive, and persistent economic consequences, and therefore

their prediction has attracted great interest from both academics and practitioners. In this

paper, we use an autoregressive probit model to forecast recessions in Canada. Compared

with its static counterpart, the AR model contains a lagged latent variable, which helps

capture the autocorrelation in the recession binary variable. However, the AR probit

model results in an intractable likelihood function containing a high dimensional integral.

Therefore, we propose using composite likelihood methods that yield consistent, asymptotically

normally distributed, and less computationally intensive estimators. This fast estimation

method allows us to perform a variable selection procedure on a large variety of Canadian

and foreign macro-financial variables. We use the AUROC as the classification performance

criterion, although our results are robust to a variety of performance measurements.

Our results suggest that the best leading indicators of Canadian recessions are the

CFNAI, the Canadian government bond yield spread, and the the S&P/TSX composite

index. In particular, the CFNAI has a short-term predictive power on Canadian recessions

reflecting the interconnectedness between both economies. In contrast, the bond yield

spread is a reliable long-term predictor for recessions, aligning with the existing literature.

Our model comparison shows that the AR probit model provides superior in-sample and

pseudo out-of-sample performances relative to its static version. The AR model fits the

data better, identifies the business cycle turning points more accurately, and yields much

smoother recession probability forecasts that result in far fewer false signals. Finally, our

AR probit model has a superior forecasting performance compared with a variety of static

and dynamic probit models proposed in the Canadian recession literature.

24



References

Akaike, H. (1973): “Information theory and an extension of the maximum likelihood principle,” in Proc.

Second International Symposium on Information Theory, ed. by B. N. Petrov and F. Caski, Budapest:

Akademiai Kiado, 267–281.

Amemiya, T. (1985): Advanced Econometrics, Harvard University Press.

Atta-Mensah, J. and G. Tkacz (1998): “Predicting Canadian recessions using financial variables: A

probit approach,” Tech. rep., Bank of Canada.

Bartolucci, F. and V. Nigro (2010): “A dynamic model for binary panel data with unobserved

heterogeneity admitting a
√
n-consistent conditional estimator,” Econometrica, 78, 719–733.

——— (2012): “Pseudo conditional maximum likelihood estimation of the dynamic logit model for binary

panel data,” Journal of Econometrics, 170, 102–116.
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A Technical Appendix

In this technical section, we provide the mathematical details for the asymptotic distribution

of the MCL estimator. In particular, we compute the first and second derivatives of

the MCL, derive the score and its long-run variance, calculate the Hessian matrix, and

provide the asymptotic variance of the estimator. First, we introduce some notation: let

mt ≡ mt(θ) = mt(x,θ) = µ/(1−ρ)+
∑t−1

k=0 ρ
kβ′xt−m−k such that y∗t |x ∼ N (mt, 1). We may

suppress the dependency on θ or x for notational simplicity throughout the mathematical

derivations.

A.1 Derivatives of mt(θ)

The derivatives of mt(θ) are needed to calculate the asymptotic variance. Note that

mt(θ) can be also written as mt(θ) = µ + ρmt−1(θ) + β′xt−m with m0(θ) = µ/(1 − ρ).

Then, the first derivative of mt(θ) can be recursively computed as

∂mt(θ)

∂θ
= ρ

∂mt−1(θ)

∂θ
+


mt−1(θ)

1

xt−m

 with
∂m0(θ)

∂θ
=


µ/(1− ρ)2

1/(1− ρ)

0

 .

The second derivative of mt(θ) can be computed as

∂2mt(θ)

∂θ∂θ′ = ρ
∂mt−1(θ)

∂θ∂θ′ + e1
∂mt−1(θ)

∂θ′ +
∂mt−1(θ)

∂θ
e′1 with

∂m0(θ)

∂θ∂θ′ =


2µ

(1−ρ)3
1

(1−ρ)2
0

1
(1−ρ)2

0 0

0 0 0

 ,

where e1 = (1, 0, . . . , 0)′ is of dimension (K + 2)× 1.
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A.2 Asymptotic distribution

Let us rewrite the marginal composite log-likelihood as

LMCL(θ|y,x) =
1

T

T∑
t=1

ln f(yt|x;θ) =
1

T

T∑
t=1

yt lnΦ (mt(θ)) + (1− yt) lnΦ (−mt(θ)) .

The score of the individual log-likelihood is st(θ) = s(θ|yt,x) = ∂ ln f(yt|x; θ)/∂θ, where

s(θ|yt,x) = yt
∂ lnΦ (mt(θ))

∂θ
+ (1− yt)

∂ lnΦ (−mt(θ))

∂θ

= yt
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (mt(θ))
− (1− yt)

∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (−mt(θ))
. (7)

Note that ϕ(mt(θ)) = ϕ(−mt(θ)). The hessian of the individual log-likelihood is ht(θ) =

ht(θ|yt,x) = ∂2 ln f(yt|x; θ)/∂θ∂θ′, where

ht(θ|yt,x) = yt
∂2 lnΦ (mt(θ))

∂θ∂θ′ + (1− yt)
∂2 lnΦ (−mt(θ))

∂θ∂θ′

= yt
∂

∂θ′

[
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (mt(θ))

]
− (1− yt)

∂

∂θ′

[
∂mt(θ)

∂θ

ϕ(mt(θ))

Φ (−mt(θ))

]
= yt

[
∂2mt(θ)

∂θ∂θ′
ϕ(mt(θ))

Φ (mt(θ))
+

∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
−mt(θ)ϕ(mt(θ))

Φ (mt(θ))
+

−ϕ(mt(θ))
2

Φ (mt(θ))
2

)]
− (1− yt)

[
∂2mt(θ)

∂θ∂θ′
ϕ(mt(θ))

Φ (−mt(θ))
+

∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
−mt(θ)ϕ(mt(θ))

Φ (−mt(θ))
+

ϕ(mt(θ))
2

Φ (−mt(θ))
2

)]
= yt

ϕ(mt(θ))

Φ (mt(θ))

[
∂2mt(θ)

∂θ∂θ′ − ∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
mt(θ) +

ϕ(mt(θ))

Φ (mt(θ))

)]
− (1− yt)

ϕ(mt(θ))

Φ (−mt(θ))

[
∂2mt(θ)

∂θ∂θ′ − ∂mt(θ)

∂θ

∂mt(θ)

∂θ′

(
mt(θ)−

ϕ(mt(θ))

Φ (−mt(θ))

)]
. (8)

One can easily show the uniform boundedness of the score and Hessian. First, by

following the steps in the online appendix of Tuzcuoglu (2023a), we can show that |∂mt(x,θ)/∂θ|

and |∂2mt(x,θ)/∂θ∂θ
′| are both uniformly bounded as long as |x| = |(x−m+1, . . . ,xT−m)

′|

is bounded, where | · | is the Euclidean norm. Second, note that the inverse Mills ratio

|ϕ(ν)/Φ(ν)| is bounded by a linear function of ν for any ν ∈ R. This implies that

|ϕ(mt(x,θ))/Φ(mt(x,θ))| is uniformly bounded as long as |x| is bounded. Finally, these

two results imply that both the variance of the score and the Hessian matrix are uniformly
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bounded by a linear function of the fourth moment of x.

Under the assumptions given in Section 2 and following the asymptotic results of Newey

and McFadden (1994) and Tuzcuoglu (2023a), one can show that the score and Hessian

satisfy the following asymptotics:

s(θ) =
1

T

T∑
t=1

s(θ|yt,x) =
1

T

T∑
t=1

∂ ln f(yt|x;θ)
∂θ

→d N (0,Ω(θ)) ,

h(θ) =
1

T

T∑
t=1

h(θ|yt,x) →p H(θ),

where H(θ) is the Hessian matrix and Ω(θ) is the long-run variance of the score that

can be computed as Ω(θ) = Ω0(θ) +
∑∞

l=1 Ωl(θ) + Ω′
l(θ) with Ω0(θ) = Var(st(θ)) and

Ωl(θ) = Cov(st(θ), st−l(θ)). Then, for the true parameter θ∗, the asymptotic distribution

of the MCL estimator can be given by

√
T (θ̂ − θ∗) →d N

(
0,H−1(θ∗)Ω(θ∗)H−1(θ∗)

)
.

An estimator for the Hessian matrix is

Ĥ(θ̂) =
1

T

T∑
t=1

[
yt
∂2 lnΦ(mt(θ̂))

∂θ∂θ′ + (1− yt)
∂2 lnΦ(−mt(θ̂))

∂θ∂θ′

]
,

where the second derivatives are given in (8) in detail. Moreover, the derivatives of mt(θ)

are given at the end of this section. To obtain an estimator of the long-run matrix Ω(θ),

we rely on Newey and West (1994) for the bandwidth selection and Gallant (1987) for the

Parzen kernel weights. Then, an estimator of Ω(θ) can be given by

Ω̂(θ̂) = Ω̂0(θ̂) +

MT∑
l=1

Ω̂l(θ̂) + Ω̂′
l(θ̂),

=
1

T

T∑
t=1

st(θ̂)s
′
t(θ̂) +

1

T

MT∑
l=1

κ(l/MT )
T∑

t=l+1

st(θ̂)s
′
t−l(θ̂) + st−l(θ̂)s

′
t(θ̂),
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where the bandwidth is MT = ⌊12(T/100)4/25⌋ and the Parzen kernel is

κ(l/MT ) =

 1− 6|l/MT |2 + 6|l/MT |3 if 0 ≤ l/MT ≤ 0.5,

2(1− |l/MT |)3 if 0.5 < l/MT ≤ 1.

Note that ⌊·⌋ denotes the floor function. This choice of bandwidth provides better asymptotic

results – in terms of correct sizes of nominal t-tests – in the Monte Carlo simulations

compared with the bandwidth choice of ⌊4(T/100)2/9⌋ as in Kauppi and Saikkonen (2008)

that results in smaller estimated standard errors and, thus, higher over-rejection rates. The

results are available upon request.
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B Data Appendix

B.1 Figures

Figure 2: Evolution of the yield curve in Canada and in the United States over history

(a) Canada

(b) United States

Notes: The bond yield spreads are shown in percentage points on the y-axis. The US spread reflects the
difference between the 10-year and 3-month treasuries yields, while the Canadian spread is the difference
between the 10-year-and-over government of Canada marketable bonds and the 3-month treasury bills
yields. Recession dates are represented by the shaded grey area in Figures 2a and 2b. Those are defined
by the C.D. Howe Institute in Canada and by the National Bureau of Economic Research (NBER) in the
United States.
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Figure 3: Canadian version of the Sahm rule

Notes: The Canadian Sahm rule is consistent with the measurement proposed
in Sahm (2019) (see Figure 2). This indicator represents the percentage points
difference between the 3-month moving average of the unemployment rate and
its prior year minimum. We use the seasonally adjusted unemployment rate
from the Statistics Canada Labour Force Survey to replicate this indicator for
Canada.
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B.2 Potential explanatory variables

Table 8: List of potential explanatory variables

Variable Mnemonic Description Source Period

Canadian Sahm rule SAHM Unemployment rate
(3-month moving
average) relative to
prior 12-month low

Sahm (2019),
Statistics Canada
Labour Force Survey

Mar 1956–Dec 2022

Housing starts HS Month-to-month log
difference of housing
starts

Canada Mortgage
and Housing
Corporation
(CMHC)

Feb 1956–Dec 2022

Consumer
confidence

CCI Month-to-month
growth rate of
consumer confidence

Conference Board of
Canada and Bank of
Canada calculations

Apr 1961–Dec 2022

Railway carloadings RAIL Month-to-month log
difference of rail
carloads, seasonally
adjusted

Statistics Canada
and Bank of Canada
Calculations

Feb 1970–Dec 2022

Building permits BP Month-to-month log
difference of building
permits, seasonally
adjusted

Statistics Canada
and Bank of Canada
Calculations

Feb 1948–Dec 2022

Composite leading
indicator

CLI Month-to-month
growth rate of the
composite leading
indicator, seasonally
adjusted, amplitude
adjusted

OECD Feb 1956–Dec 2022

M1 M1 Month-to-month
growth rate of
money supply
(M1++), CPI
deflated, seasonally
adjusted

Bank of Canada Feb 1968–Dec 2022

Exchange rate CAD Month-to-month
growth rate of
exchange rate
(US$/CAD$)

Federal Reserve
Board and Haver

Feb 1947–Dec 2022

TSX Composite
Index

TSX Month-to-month
growth rate of the
TSX Composite
Index, CPI deflated

S&P Feb 1921–Dec 2022

Bond yield spread SP Difference between
the “over 10 years”
Government of
Canada marketable
bonds yield and
3-month treasury
bills yield

Bank of Canada Jan 1962–Dec 2022
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Variable Mnemonic Description Source Period

Drilling rigs RIGS Month-to-month log
difference of drilling
rigs count,
seasonally adjusted

Baker Hughes and
Bank of Canada
Calculations

Feb 1968–Dec 2022

Goods exports EX Month-to-month log
difference of
Canadian
merchandise
exports, seasonally
adjusted

Statistics Canada
and Bank of
Canada
Calculations

Feb 1968–Dec 2022

Goods imports IM Month-to-month log
difference of
Canadian
merchandise
imports, seasonally
adjusted

Statistics Canada
and Bank of
Canada
Calculations

Feb 1968–Dec 2022

BCPI – Total BCPI Month-to-month
growth rate of the
BCPI, CPI deflated

Bank of Canada Feb 1972–Dec 2022

BCPI – Crude oil BCPI-O Month-to-month
growth rate of the
crude oil BCPI,
CPI deflated)

Bank of Canada Feb 1972–Dec 2022

BCPI – Natural gas BCPI-G Month-to-month
growth rate of the
natural gas BCPI,
CPI deflated

Bank of Canada Feb 1972–Dec 2022

BCPI – Agriculture BCPI-A Month-to-month
growth rate of the
agriculture BCPI,
CPI deflated

Bank of Canada Feb 1972–Dec 2022

BCPI – Metals BCPI-M Month-to-month
growth rate of the
metals BCPI, CPI
deflated

Bank of Canada Feb 1972–Dec 2022

BCPI – Forestry BCPI-F Month-to-month
growth rate of the
forestry BCPI, CPI
deflated

Bank of Canada Feb 1972–Dec 2022

BCPI – Energy BCPI-E Month-to-month
growth rate of the
energy BCPI, CPI
deflated

Bank of Canada Feb 1972–Dec 2022

BCNE BCNE Month-to-month
growth rate of the
BCNE, CPI
deflated

Bank of Canada Feb 1972–Dec 2022

CFNAI CFNAI Chicago Fed
National Activity
Index, 3-month
moving average

Federal Reserve
Bank of Chicago

May 1967–Dec 2022
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Variable Mnemonic Description Source Period

US industrial
production

USIP Month-to-month
growth rate of the
industrial
production index,
seasonally adjusted

Board of Governors
of the Federal
Reserve System

Feb 1921–Dec 2022

US employment USE Month-to-month
growth rate of US
employment,
seasonally adjusted

Bureau of Labor
Statistics

Feb 1948–Dec 2022

World exports WEX Month-to-month
growth rate of
world export, CPI
deflated, bil. US$

IMF Feb 1960–Dec 2022

US PMI USPMI Month-to-month
growth rate of US
Purchasing
Manager Index,
seasonally adjusted

ISM Feb 1948–Dec 2022
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C Empirical Analysis Appendix

Table 9: In-sample performance of single-variable static probit models (AUROC)

Forecast horizon (h)
Order Mnemonic 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

1 CFNAI 0.874 0.864 0.864 0.853 0.838 0.809 0.785 0.760 0.755 0.744 0.741 0.727 0.801
2 SP 0.660 0.697 0.728 0.755 0.782 0.803 0.821 0.822 0.826 0.832 0.837 0.842 0.784
3 SAHM 0.854 0.823 0.797 0.771 0.744 0.713 0.682 0.653 0.627 0.615 0.614 0.614 0.709
4 CLI 0.602 0.649 0.706 0.740 0.754 0.756 0.747 0.728 0.708 0.691 0.680 0.672 0.703
5 USE 0.754 0.753 0.738 0.701 0.681 0.654 0.649 0.627 0.631 0.608 0.615 0.586 0.666
6 USIP 0.711 0.692 0.709 0.679 0.666 0.658 0.631 0.612 0.638 0.610 0.621 0.614 0.653
7 BCNE 0.650 0.655 0.662 0.654 0.677 0.683 0.672 0.667 0.635 0.611 0.610 0.597 0.648
8 TSX 0.651 0.661 0.693 0.671 0.671 0.684 0.668 0.654 0.618 0.614 0.593 0.584 0.647
9 BCPI-M 0.622 0.640 0.676 0.710 0.738 0.703 0.666 0.629 0.595 0.571 0.596 0.576 0.644
10 M1 0.615 0.641 0.647 0.627 0.643 0.648 0.625 0.610 0.611 0.595 0.614 0.600 0.623

11 BCPI 0.651 0.670 0.672 0.645 0.649 0.629 0.603 0.594 0.575 0.558 0.532 0.504 0.607
12 CCI 0.582 0.587 0.615 0.620 0.642 0.653 0.635 0.597 0.576 0.572 0.597 0.593 0.606
13 BCPI-A 0.609 0.620 0.597 0.581 0.577 0.614 0.648 0.662 0.629 0.608 0.560 0.531 0.603
14 BCPI-F 0.609 0.613 0.611 0.584 0.598 0.593 0.579 0.559 0.535 0.533 0.555 0.575 0.579
15 BCPI-O 0.620 0.645 0.644 0.612 0.610 0.574 0.535 0.521 0.513 0.505 0.493 0.544 0.568
16 RIGS 0.605 0.613 0.607 0.585 0.583 0.557 0.543 0.536 0.556 0.538 0.539 0.553 0.568
17 RAIL 0.586 0.613 0.574 0.572 0.589 0.584 0.566 0.536 0.556 0.543 0.535 0.552 0.567
18 BCPI-E 0.618 0.640 0.638 0.607 0.593 0.561 0.529 0.522 0.514 0.501 0.519 0.551 0.566
19 HS 0.616 0.602 0.584 0.582 0.597 0.565 0.535 0.541 0.517 0.496 0.521 0.503 0.555
20 IM 0.601 0.579 0.584 0.583 0.581 0.543 0.529 0.510 0.539 0.519 0.547 0.525 0.553
21 USPMI 0.555 0.560 0.567 0.567 0.577 0.554 0.570 0.476 0.533 0.537 0.554 0.533 0.549
22 EX 0.541 0.555 0.542 0.549 0.549 0.546 0.543 0.544 0.542 0.520 0.515 0.513 0.538
23 IM 0.558 0.571 0.594 0.563 0.543 0.520 0.494 0.494 0.509 0.539 0.502 0.505 0.533
24 BP 0.583 0.563 0.552 0.549 0.551 0.534 0.522 0.501 0.528 0.496 0.498 0.496 0.531
25 CAD 0.540 0.559 0.559 0.545 0.544 0.507 0.512 0.503 0.543 0.541 0.486 0.517 0.530
26 BCPI-G 0.578 0.591 0.568 0.553 0.525 0.511 0.509 0.519 0.508 0.484 0.467 0.471 0.524

Notes: This table shows the in-sample AUROC values calculated from single-variable static probit models,
with lags varying between 1 and 12 months ahead. The last column provides the average AUROC
values across these forecast horizons. The models are estimated using MCL with data going from June 1973
to December 2022. The variables are sorted in descending order of performance. See Table 8 for the
variable abbreviations.
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Table 10: Models’ in-sample performance (1-month-ahead forecasts)

Model AUROC TPR FPR R2 BS RMSE
ARMCL 98.7% 89.3% 3.1% 75.4% 2.1% 14.7%
ST 93.8% 66.1% 2.9% 42.9% 5.0% 22.4%
STHN 91.9% 71.4% 4.6% 44.1% 4.9% 22.1%
DYNHN 98.4% 92.9% 1.0% 82.4% 1.5% 12.4%
ARHN 98.9% 94.6% 2.9% 70.8% 2.6% 16.0%
DYNARHN 98.5% 92.9% 1.0% 82.4% 1.5% 12.4%

Notes: R2, BS, and RMSE stand for the pseudo R2, Brier score, and root mean square
error, respectively. The true positive rates (TPR) and the false positive rates (FPR) are
calculated at the 25% threshold. The first two rows reflect the performance of the AR and
ST probit models presented in this paper. The last four rows reflect the performance of the
static (STHN ), dynamic (DYNHN ), autoregressive (ARHN ), and dynamic autoregressive
(DYNARHN ) probit models replicated from Hao and Ng (2011).

Table 11: Models’ out-of-sample performance, rates (1-month-ahead forecasts)

Model TPR12.5 FPR12.5 TPR25 FPR25 TPR50 FPR50

ARMCL 91.4% 2.2% 88.6% 1.1% 71.4% 0.3%
ST 85.7% 8.1% 74.3% 3.2% 34.3% 0.5%
STHN 85.7% 8.1% 65.7% 1.4% 37.1% 0.8%
DYNHN 77.1% 5.7% 68.6% 3.2% 37.1% 0.5%
ARHN 91.4% 19.2% 71.4% 6.8% 48.6% 0.8%
DYNARHN 77.1% 5.4% 62.9% 4.1% 37.1% 0.5%

Notes: The true positive rates (TPR) and the false positive rates (FPR) are calculated at the
12.5%, 25%, and 50% thresholds. The first two rows reflect the performance of the AR and ST
probit models presented in this paper. The last four rows reflect the performance of the static
(STHN ), dynamic (DYNHN ), autoregressive (ARHN ), and dynamic autoregressive (DYNARHN )
probit models replicated from Hao and Ng (2011).

Table 12: Out-of-sample turning points identification, τ = 50% (1-month-ahead forecasts)

50% threshold 50% threshold

Peaks ARMCL ST Troughs ARMCL ST

March 1990 -2 6 May 1992 -5 -11
October 2008 +1 3 May 2009 -1 -3
February 2020 +1 +1 April 2020 0 2

Notes: (+a) or (−a) implies that a model identifies a turning point a months too late or too
early, respectively. A peak is identified too early (late) if the model’s forecasted probability
exceed a given threshold before (after) the actual peak. A trough is identified too early (late) if
the model’s forecasted probability fell below a given threshold before (after) the actual trough.
The lags and leads in this table are assessed at the 50% threshold.
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Table 13: Performance comparison between ARMCL and ARPCL (AUROC)

Model In-sample Out-of-sample
ARMCL 0.9871 0.9817
ARPCL 0.9865 0.9807
Difference 0.0006 0.0010

Notes: This table shows the in-sample and out-of-sample AUROC
values obtained from the MCL and PCL estimations.

Table 14: Models’ in-sample performance (1-month-ahead forecasts, excluding
COVID-19)

Model AUROC DIFF R2 BS RMSE
ARMCL 99.3% 77.8% 2.0% 14.1%
ST 97.5% 1.7%∗∗∗ 52.5% 4.3% 20.6%
STHN 92.6% 6.7%∗∗∗ 45.3% 4.9% 22.2%
DYNHN 98.7% 0.6% 85.6% 1.3% 11.4%
ARHN 99.2% 0.1% 73.7% 2.4% 15.4%
DYNARHN 98.8% 0.5% 85.7% 1.3% 11.3%

Notes: The second column shows the difference between the ARMCL and the specified model
AUROC values, along with its test of significance. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. R2, BS and
RMSE stand for the pseudo R2, Brier score and root mean square error, respectively. The first
two rows reflect the performance of the AR and ST probit models presented in this paper. The
last four rows reflect the performance of the static (STHN ), dynamic (DYNHN ), autoregressive
(ARHN ), and dynamic autoregressive (DYNARHN ) probit models replicated from Hao and Ng
(2011).
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