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Abstract 
We study indefinitely lived assets in experimental markets and find that the traded prices of 
these assets are, on average, about 40% of the risk-neutral fundamental value. Neither 
uncertainty about the value of total dividend payments nor horizon uncertainty about the 
duration of trade can account for this low traded price. An Epstein and Zin (1989) recursive 
preference specification that models the dynamic realization of dividend payments and 
incorporates risk preferences can rationalize the low traded price observed in our indefinitely 
lived asset market. 

Topics: Asset pricing, Financial markets 
JEL codes: C91, C92, D81, G12 

 

Résumé 
Nous étudions les actifs à durée indéterminée dans des marchés expérimentaux et constatons 
que les prix négociés de ces actifs s’établissent, en moyenne, à 40 % environ de la valeur 
fondamentale neutre face au risque. Ce faible prix négocié ne s’explique ni par l’incertitude 
quant à la valeur totale des versements de dividendes ni par l’incertitude entourant l’horizon 
de négociation. Une spécification de préférences récursives d’Epstein et Zin (1989), qui 
permet de modéliser la réalisation dynamique des versements de dividendes tout en 
intégrant les préférences à l’égard des risques, peut expliquer ce bas prix observé dans notre 
marché d’actifs à durée indéterminée. 

Sujets : Évaluation des actifs, Marchés financiers 
 Codes JEL : C91, C92, D81, G12 

 

 



1 Introduction

Many economic models employ an infinite horizon with discounting to examine agents’ be-
havior under the shadow of the future. Such environments are quite natural for studying
the pricing of assets because many assets, e.g., equities, are long-lived and have no definite
maturity date. Nevertheless, experimental economists have typically studied asset pricing
and trading behavior in finite-horizon settings with no discounting. In these settings, the
standard fundamental value (FV) of the asset at any moment in time is taken to be the
expected sum of the asset’s remaining dividend payments, that is, the risk-neutral present
value of the asset. Since the horizon is finite, the FV of the asset decreases over time, as in
the canonical experimental design of Smith et al. (1988).

In this paper, we study the trade of assets in an experimental market with indefinite horizons,
consisting of an unknown number of periods. The first period begins with trade in the asset.
Following trade, each unit of the asset pays its holder a fixed dividend. Thereafter, with a
constant probability δ, traders’ holdings of the asset carry over to the next period, and in
each new period, trade in the asset takes place and asset holders earn dividends per unit
held. With probability 1 − δ, the asset ceases to exist; the asset market shuts down and
the asset has no continuation value. This indefinite-horizon, or random-termination, design,
initially proposed by Roth and Murnighan (1978), is the most commonly used approach in
the laboratory to implementing infinite horizons with discounting.

Unlike most finite-horizon asset markets where the FV of the asset decreases over time, the
stationarity associated with indefinite horizons implies that the FV of the indefinitely lived
asset is constant over time.1 The stationarity associated with indefinite horizons may be a
more natural setting for understanding asset pricing decisions.2

In our baseline treatment (treatment A), subjects trade in indefinite-horizon asset markets
implemented by random termination (more precisely, a modified version of the block random
termination scheme of Fréchette and Yuksel (2017)). In each period the market is open,

1While it is possible to generate constant values for the FV in finite-horizon settings, this is typically
done by having some known, constant terminal period payoff value for the asset, as in Smith et al. (2000),
possibly also accompanied by a dividend process where the expected dividend payment is 0, as in Noussair
et al. (2001). In the indefinite-horizon design, the value of the asset is constant over time with positive
dividend payments and zero terminal value.

2Kirchler et al. (2012) have shown that the trend of the FV process (i.e., whether it is constant, increases,
or decreases over time) has a large impact on the formation of non-rational asset price bubbles (which we
define as sustained departures from the FV). Giusti et al. (2016) show that in addition to the trend of the
FV process, the sign of the expected dividend payment (positive, zero, or negative) also affects traded prices.
Our experimental setting, which features a constant FV and a positive dividend payment in each period,
serves as a more natural setting for understanding asset pricing.
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subjects first trade units of a single asset. Once trading is concluded, they receive dividend
payments for each asset share they hold. Finally, a random number determines whether the
asset market will continue to a new period. In each session, subjects participate in three
indefinite-horizon markets (with different pre-drawn market lengths) to reveal the effect of
experience, as in Smith et al. (1988). We find that traded prices are quite low, averaging
around 40% of the standard FV, and they remain low even as traders gain experience. This
result is rather surprising given that the vast majority of experimental asset market studies
following the Smith et al. (1988) design find asset price bubbles, or prices greatly in excess of
the standard FV, in the first market played, with approximate convergence to the standard
FV within three market repetitions.

To better understand the low traded prices of our indefinitely lived asset (relative to the stan-
dard FV), we design two auxiliary treatments, noting that indefinite-horizon asset markets
involve two types of intertwined risks: payoff uncertainty and trading horizon uncertainty.
Payoff uncertainty refers to the uncertain sequence of dividend realizations an investor earns
from adopting a buy-and-hold strategy. In terms of the sum of dividend payments, the asset
can be viewed as a lottery, as described in Table 1, involving an infinite number of states,
t = 1, 2, ...,∞. State t is the event that the asset lasts until period t, yielding a payoff of td,
which occurs with probability δt−1(1− δ). By contrast, trading horizon uncertainty refers to
uncertainty about the length of time in which agents can expect to buy or sell the asset, or
the asset’s liquidity. While payoff uncertainty affects the holding value of the asset, trading
horizon uncertainty may affect a trader’s strategy, especially for speculators. If the horizon
over which the asset has value is perfectly known, then speculators might time their asset
purchases and sales with this information in mind, as in the asset pricing literature using the
Smith et al. (1988) design. In that design, speculators buy early and sell when they sense
the bubble to be peaking. By contrast, with an indefinite horizon, such speculative timing is
made difficult. Thus, there is reason to believe that an indefinite horizon for asset markets
might depress prices and trade volume relative to asset markets with known, finite horizons.

Table 1: Total Dividend Payments of an Asset with an Indefinite Horizon
Market Duration 1 2 3 ... t ...
Probability 1− δ δ(1− δ) δ2(1− δ) ... δt−1(1− δ) ...
Total Dividend Payments d 2d 3d ... td ...

Our second experimental treatment (treatment B) aims to single out the effect of trading
horizon uncertainty from payoff uncertainty by separating the asset market into two stages.
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Stage one consists of a fixed number of trading periods, and subjects do not observe nor
receive dividend payments in this stage. Stage two reveals dividend realizations, and subjects
receive the realized dividend payments for each share held at the end of the trading stage. The
dividend realization process in stage two mimics the distribution of the sum of remaining
dividend payments as in the baseline treatment (characterized in Table 1). We find that
traded prices in this second treatment are fairly close to the standard FV.

At first sight, the notable difference in traded prices between these two treatments might
be attributed to trading horizon uncertainty. However, given that many studies in the
experimental asset pricing literature report that traded prices tend to converge to the FV
after three market repetitions, we suspect that the differences we find in traded prices in later
markets may not be fully attributable to trading horizon uncertainty.3 The two-stage design
of our second treatment allows us to fix the trading horizon and control for the distribution
of the sum of dividend payoffs, but it also induces a difference in the timing of those dividend
realizations. In the baseline treatment, dividend payments are realized dynamically across
each trading period. In the second treatment, all dividend payments are revealed and paid
altogether at once, only after all trading activities have ended.

To separate the effects of trading horizon uncertainty and the timing of dividend realizations,
we conducted a third treatment (treatment C). This treatment involves two separate stages,
as in the second treatment, but keeps the uncertain trading horizon of the baseline treatment.
Thus, our third treatment serves as a stepping stone between the first two treatments. The
difference between the second and third treatments reveals the effect of trading horizon
uncertainty. The difference between the first and third treatments reveals the effect of the
timing of dividend realizations. We find that the traded price in the third treatment is also
fairly close to the standard FV and not significantly different from the second treatment.

Considering the evidence from all three treatments, we come to the conclusion that our results
are not due to uncertainty about the value of total dividend payments nor horizon uncertainty
as we initially suspected. Instead, what matters more is the timing of dividend realizations.
Our remaining task is to explain our experimental results. In particular, we investigate
whether the significantly lower traded price found in our baseline treatment relative to the
other two treatments can be rationalized as a lower FV resulting from the dynamic realization
of dividend payments versus a static realization.

3Recent studies by Kopányi-Peuker and Weber (2021, 2022) find that bubbles can persist even with three
market repetitions. As shown in their first paper, this finding is mainly due to their use of a high cash-
to-asset ratio; with a lower cash-to-asset ratio similar to the one that we use, they observe prices closer to
FVs.
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More specifically, in treatment A, dividends are realized dynamically in each trading period.
The stationarity of our dynamic asset trading environment implies that the asset can be
viewed as a combination of the fixed dividend payment in the current trading period with a
binary lottery in the next trading period (or at the end of the current trading period) that
yields a zero payoff with probability 1− δ and a replica of the asset with probability δ. By
contrast, in treatments B and C, there is no dividend realization in any trading period, and
all dividend payments are realized after the entire trading phase. From the point of view of
all trading periods, all the risks of dividend payments are resolved in a batch in one single
instance and the FV of the asset is captured solely by the certainty equivalence of the static
lottery shown in Table 1.

To conduct our analysis, we develop a new methodology for calculating the FV of the asset
that incorporates the market participants’ risk attitudes toward payoff uncertainty. Specifi-
cally, we infer subjects’ risk parameters using the individual choice task of Holt and Laury
(2002) by assuming constant relative risk-aversion (CRRA) preferences. We then derive
each individual’s demand curve for the asset as the solution to a portfolio choice problem,
combining an individual’s asset and cash profile and the estimated risk parameter. Finally,
we estimate the risk-adjusted FV of the asset as the market price that clears the market.

Using this procedure we computed both the dynamic (following the Epstein and Zin (1989)
recursive preference specification to aggregate payoffs across periods) and static risk-adjusted
market FV (in which case the Epstein-Zin specification reduces to the expected utility spec-
ification).4 The computed dynamic risk-adjusted market FV is about 70% of the standard
FV, and the static risk-adjusted market FV is about 90% of the standard FV. The risk-
adjusted FVs can reasonably account for the traded price in our experimental asset markets.
For treatment A, the computed dynamic risk-adjusted FV is not statistically significantly
different from the traded price according to signed-rank tests (although there remains a
noticeable gap in the magnitude). For treatments B and C, the static risk-adjusted FV
moderately underestimates the traded price (even if the difference is statistically significant
according to signed-rank tests).

As an extension, we also examine the static and dynamic FVs under alternative assumptions;
particularly, we compute both FVs by incorporating probability weighting instead of risk

4Epstein-Zin preferences are commonly used in the finance literature to rationalize the equity premium
and risk-free rate puzzles (see, e.g., Campbell (2018)). These preferences relax the restriction that the
elasticity of inter-temporal substitution equals the reciprocal of the coefficient of relative risk aversion by
allowing different parameters for each, so that agents can treat current consumption values and the certainty
equivalence of future values in a nonlinear way that violates the independence axiom of expected utility
theory.
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attitudes in recursive preferences. We find the probability-weighted FVs are consistent with
the traded prices in all three treatments, both quantitatively and statistically.

There is a large body of literature involving experimental asset markets with known, finite
horizons following Smith et al. (1988). Surveys can be found in Palan (2009, 2013) and
Noussair and Tucker (2013). In this set-up, the asset yields dividends up to some known
terminal date, beyond which the asset pays no further dividends (it either ceases to have
value or pays some final buyout value). This set-up reliably generates asset prices bubbles
and crashes among inexperienced subjects. With experienced subjects, the price tends to
approach the standard FV.

By comparison, there are relatively fewer experimental studies of asset markets with in-
definite horizons. Table 2 provides a summary of the 11 studies involving the pricing of
indefinitely lived assets that we are aware of, the continuation values they used, and what
they found in terms of asset pricing behavior. As this table indicates, both overpricing and
underpricing of assets has been found using indefinitely repeated asset pricing models. Al-
though these papers adopt an experimental framework where the number of trading periods
is uncertain, their main focus is often not on the indefinitely lived feature itself, and they
often introduce other confounding design features. This makes it difficult to directly com-
pare their results to ours and pinpoint the exact reasons behind the different results. In
Appendix A, we provide further details on how these studies compare with our own and why
the results with regard to prices may differ from ours.

Among these studies, our indefinite-horizon treatment is most similar to treatment 2 in Kose
(2015), who uses the standard random termination instead of the block variation of our study.
Like us, he also finds underpricing of the asset relative to the standard FV, but he does not
offer a theory or deep explanation about this anomalous phenomenon. We confirm that this
finding is robust and develop an in-depth analysis about why.5 By designing the auxiliary
treatments, we rule out trading horizon uncertainty as the driver of low traded prices and
identify the importance of modeling the dynamic realization of dividend payments while
calculating the FV. We question the applicability of expected utilities in this setting and

5The low traded price of an indefinitely lived asset relative to the standard FV is a robust finding,
at least where the risk of termination without a buyout value is salient and there is careful control of
other confounding factors (e.g., asset trading is the single main activity, the dividend payment scheme and
termination probability are clearly defined and communicated, the C/A ratio is moderate and subjects have
the opportunity to gain experience). Kose (2015) has the same finding with standard random termination.
As part of revising the paper, we conducted five more sessions of indefinitely lived assets (three with block
random termination and two with standard random termination) after the COVID pandemic, and all five
sessions again exhibited a low traded price.
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Table 2: Summary of Indefinitely Repeated Asset Pricing Experiments

Authors Market Details δ Results
Camerer and Weigelt (1993) Asset pays different dividends .85 Overpricing and underpricing

to different subject types

Ball and Holt (1998) Random termination with .833 Overpricing, bubble crash
a terminal value

Hens and Steude (2009) Dividend process is stochastic .97 Overpricing and underpricing
and unknown to subjects

Kose (2009) Definite versus indefinitely .875 Underpricing of assets
repeated asset pricing models in indefinitely repeated model

Asparouhova et al. (2016) Asset and bond pricing with .833 Prices close to fundamentals
consumption smoothing but excessively volatile

Fenig et al. (2018) Asset market competes with .865 Overpricing, bubble crash
production income

Weber et al. (2018) Pricing of risky bond Endogenous∗ Prices close to or greater
subject to default risk than fundamental values

Crockett et al. (2019) Consumption smoothing .833 Underpricing with a consumption
using Lucas assets smoothing objective

Kopányi-Peuker Forecasting versus trading Unknown† Recurrent bubbles and crashes
and Weber (2021) models of asset pricing unless the C/A ratio is low

Kopányi-Peuker Definite versus indefinite and 0.9 after some periods Recurrent bubbles
and Weber (2022) short versus long with high C/A ratio

Halim et al. (2022) Consumption smoothing .833 Overpricing even with a
using Lucas assets consumption smoothing objective

* The continuation probability, or discount factor, is determined as a function of an initial price offering.
† Subjects were not told the number of periods for each market, only that it would lie between 25 and 40 periods.

show that recursive utilities can explain the low traded price.

Moreover, we show the dynamic FV is also consistent with the finding in other experimental
asset markets, such as the original design of Smith et al. (1988) with fixed, finite trading
periods, or indefinite-horizon asset markets with a buyout value. In those settings, the
dynamic FV is close to the standard FV and is, therefore, consistent with the experimental
finding that the traded price is close to the standard FV with experienced subjects. Our
study suggests that it is important to study experimental asset markets with a dynamic
perspective: this is especially critical for indefinite-horizon markets. Finally, our paper
makes a methodological contribution in the development of a new procedure to determine
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the market FV for an asset that incorporates traders’ heterogeneity, here with respect to
data we collected on our subjects’ risk preferences. This methodology could also be used to
incorporate other subject attributes as well as, for instance, heterogeneity in agents’ time
preferences.

Our work is also related to a growing experimental literature on preferences for the timing
of uncertainty resolution (see Nielson (2020) for an excellent survey). Among them, Brown
and Kim (2014) and Meissner and Pfeiffer (2022) are most closely related to this paper.
Brown and Kim (2014) report that most subjects prefer early resolution of risk and provide
supportive evidence for Epstein-Zin preferences. In particular, individuals predicted to prefer
early resolution according to Epstein-Zin preferences choose early resolution with 20–50%
higher probability. However, Meissner and Pfeiffer (2022) find a negative correlation between
the (model-free) elicited-timing premia and the predicted-timing premia under Epstein-Zin
preferences. Our paper shows that recursive utility specifications can help to account for the
low traded price in indefinitely lived asset markets relative to the standard FV, as well as
differences that we observe in market traded prices when we change the timing of dividend
realizations. However, we did not design our experiment to test for Epstein-Zin preferences
or preferences for the timing of risk resolution.6

The remainder of the paper is organized as follows. Section 2 presents the experimental
design and procedures. Sections 3 and 4 report on the experimental results across treatments
and estimate the market FV. Section 5 concludes.

2 Experimental Design

In this section, we describe the main characteristics of our baseline treatment with an indefi-
nitely lived asset market. We then describe two auxiliary treatments designed to understand

6It is still under debate how long the time delay should be between stages of uncertainty resolution
when eliciting such preferences. Nielsen (2020) points out that if the time delay between two stages of
uncertainty resolution is over days or weeks it may introduce instrumental information concerns, especially
with monetary payments. Meissner and Pfeiffer (2022) argue that it requires a meaningful amount of time
to test the recursive utility. Nielsen (2020) implements a non-instrumental framework, where the time delay
between the two stages of resolution is 30 minutes during which subjects were occupied by other activities.
The preference for early (late) resolution in her framework is represented by the choice of the multi-stage
lottery or information structure in which the first-stage random draw or signal is more (less) informative on
the final outcome. She finds framing matters: a preference for early resolution with a frame of information
structures and late resolution with isomorphic multi-stage lotteries. Using Nielsen’s (2020) information
structure frame with non-instrumental information, Brown et al. (2022) elicit subjects’ preferences on risk
(objective uncertainty) and ambiguity (subjective uncertainty) resolution. They find that subjects most
frequently exhibit a preference for early resolution of both risk and ambiguity and that the generalized
recursive smooth ambiguity model of Hayashi and Miao (2011) can explain their experimental findings.
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traded prices in our baseline treatment. Finally, we describe the experimental procedures
that we follow in running all three treatments.

2.1 Baseline Treatment

The baseline treatment (treatment A) implements an indefinitely lived asset market. Each
experimental session consists of two parts. In the first part, subjects complete a Holt and
Laury (2002) risk-preference elicitation task that involves choosing between 10 pairs of lot-
teries with different expected payoffs. This task allows us to obtain a measure of each
subject’s risk attitude, which we later use to investigate whether subjects’ risk attitudes can
help to explain the traded price of the asset. In the second part, subjects trade assets in
three consecutive and ex-ante identical asset markets. The repetition of three markets allows
for subject learning and to examine the possibility of price convergence in an indefinitely
lived asset market. Repetition is motivated by the observation in Smith et al. (1988) and
follow-up studies that when the same group of traders interact in consecutive fixed-horizon
asset markets with identical market structure, prices converge toward the standard FV by
the third market.

Each asset market lasts for an indefinite number of periods. The indefinite horizon is im-
plemented through a modified version of the block random termination scheme of Frechette
and Yuksel (2017); therefore, we also label this treatment BRT.7

At the beginning of each of the three asset markets, subjects are endowed with shares
and cash (in units of experimental money (EM)). They then trade shares for an indefinite
number of periods. In each period, subjects first trade shares through a double-auction
trading interface subject to budget and asset supply constraints (subjects cannot borrow
cash or shares). Following the completion of asset trading, subjects receive a dividend of
d = 5 EM for each share of the asset that they hold post trading. The dividend payments
are placed in a separate account and cannot be used to purchase shares in the future, so
the cash-to-asset ratio (C/A) is kept constant and equal to 1 given the traders’ endowment
profiles, as described below.8 Finally, a randomly drawn number determines whether or not

7For a robustness check of the block implementation, we report two sessions of treatment A using standard
random termination without blocks. The results, as reported in Appendix C, are similar to BRT. In addition,
Kose (2015) runs three sessions of an indefinitely lived asset market implemented with standard random
termination and has similar findings.

8Caginalp et al. (1998, 2001), Haruvy and Noussair (2006), Kirchler et al. (2012) and Kopányi-Peuker
and Weber (2021, 2022) report that high initial or increasing C/A ratios can drive bubble formation in
experimental asset markets. In our experiment, the supply of assets is held constant and dividend payments
are placed in a separate account so that the subject cannot use dividend income for asset purchases in
later periods of the market. This restriction prevents the dividend payments from increasing the C/A ratio
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the market will continue with another period. If the market continues, then each trader’s
asset position carries over to the next period; if it does not continue, then the asset shares
have a zero value and the market is declared over. As noted, the probability of continuation
is δ = 0.9, and so the probability that a market ends is (1− δ) = 0.1. In practice, a random
number between 1 and 100 is drawn and if the random number is less than or equal to 90, the
market continues with another period; if it is greater than 90, the market ends and the asset
ceases to have value. Subjects’ earnings in EM from the asset market consists of their cash
balance at the end of the market and all dividends earned over the course of that market;
this amount is converted into dollars at a fixed and known exchange rate.

Unlike the standard random termination scheme, where subjects are informed about the
random draw realization at the end of each period, with our BRT implementation scheme,
in the first “block” of 10 periods, subjects receive no feedback on the random draws and
participate in the market anyway. At the end of period 10, subjects are told whether or not
the market has actually ended and, if so, in which period this occurred within that block of
10 periods. If the market does not end within the 10-period block, then subjects continue to
participate in the market as in regular indefinite-horizon markets with random termination,
that is, at the end of each period the realization of the random draw is revealed. If the
market ends within the first 10 periods, then all trading activities and dividend payments
in the subsequent periods after the market has actually ended are void. Subjects are made
well aware of this block random termination procedure before they participate in the asset
market. The BRT allows us to obtain, at a minimum, a 10-period data series to analyze
asset pricing; without it, some markets would be too short for meaningful discussion.

In Frechette and Yuksel (2017), subjects play the game in fixed-length blocks, and a full-
length new block is played if the game has not ended in the previous block. We modify their
design in that beyond the first block, the market continues with the regular random termi-
nation design, so that from period 11 on, subjects receive live information about whether the
current period has ended or not. The main purpose of this modification is to save on time
and guarantee that we run three markets of at least 10 periods to examine the possibility
of price convergence in indefinite-horizon markets. Repeating 10-period blocks would make
each market longer, and it would be difficult to complete three markets in one session.

The expected horizon of each asset market is T = 1/(1 − δ) = 10 periods from the start of

and affecting market outcomes. As our focus is on the fundamental price, not price bubbles, we choose a
moderate C/A ratio of 1, as in Kirchler et al. (2012). In addition, we keep the same C/A ratio across all
treatments so that the differences in traded prices across the treatments cannot be attributed to the C/A
ratio.
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the market or from any period reached. The standard FV of the asset, which measures the
expected value of total dividend payments, is constant in all periods at

V0 = d

∞∑
τ=t

δτ−t =
d

1− δ
= 50.

The realized life span of the asset, however, can be any number of periods, t = 1, 2, 3, · · · .
Since random termination can result in a large variance in the length of asset markets and
we are restricted in the length of time that we can keep subjects in the laboratory, we pre-
drew a set of three sequences of random numbers and used the same set of draws to control
the length of the three asset markets in all experimental sessions to reduce uncertainty and
facilitate a comparison across different sessions.9 These sequences of random numbers imply
market lengths of 6, 20, and 9 periods for markets 1, 2 and 3, respectively (for an average
of 11.67 periods per market). Note that under the BRT scheme, in asset markets 1 and 3,
subjects are prompted to trade for 10 periods, but their actions and dividend payments after
period 6 (9) are void. In market 2, all 20 periods count.

Previous studies on finite-horizon experimental asset markets suggest that traded prices
converge to the standard FV, the expected value of total dividend payments, after subjects
repeat the same trading market three times. We check whether that convergence result
also holds in our asset markets with indefinite horizons, that is, whether the traded price in
market 3 converges to the standard FV of 50 EM.

2.2 Auxiliary Treatments

To our surprise, the mean traded price of the asset in market 3 of the baseline treatment is
about 40% of the standard FV. In order to understand this surprising result, we design two
auxiliary treatments where the asset market part differs from the baseline treatment (while
the first, risk elicitation part remains the same).

While designing the second treatment (treatment B), we note that the asset market in
the baseline treatment involves two types of intertwined risks: (1) payoff uncertainty and
(2) trading horizon uncertainty. Payoff uncertainty refers to uncertainty about the asset’s
dividend payments. Note that if a trader buys a share of the asset in any period and holds
it until the end of the market, in terms of total dividend payments, it is similar to buying a
lottery, as in Table 1. Trading horizon uncertainty refers to the length of time that agents

9The first two sequences of random numbers were obtained from a pilot session that consisted of just two
asset markets, and the last sequence of random numbers was produced using a random number generator.
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can expect to trade the asset, which affects the asset’s liquidity. While payoff uncertainty
affects the holding value of the asset, trading-horizon uncertainty may affect traders’ strategy,
especially for speculators. If the horizon over which the asset has value is perfectly known,
then speculators might time their asset purchases and sales with this information in mind.
By contrast, in an indefinite horizon, timing such speculation is more difficult. Thus, an
indefinite horizon for asset markets might depress prices and the volume of trade relative to
known, finite horizon markets.

Treatment B (D-2) is designed to disentangle the effect of trading-horizon uncertainty and
payoff uncertainty. It replicates BRT treatment regarding payoff uncertainty by having the
same distribution of total dividend payments, while fixing the trading horizon and, therefore,
eliminating the trading-horizon uncertainty. To achieve this, we divide the asset market into
two phases: the trading phase and the dividend realization phase. In the first phase, subjects
trade assets for a finite duration of T = 10 periods (as in much of the experimental asset
pricing literature, beginning with Smith et al. (1988)). We chose T = 10 as that is the
expected number of periods from the beginning of an indefinitely repeated asset market with
a continuation probability of δ = 0.9, that is, T = 1/(1 − δ) = 10. During these T trading
periods, there are no dividend realizations. In each trading period, subjects can choose to
buy or sell assets as they wish, subject only to budget and (asset) supply constraints.

Following the final trading period T , all asset positions are considered final and subjects move
on to the second phase of the market where they experience/observe a random sequence of
dividend payments. Specifically, each share of the asset that a subject holds at the end of the
trading phase yields at least one dividend payment of d = 5EM . Following each dividend
payment, a random number between 1 and 100 is drawn to determine whether or not there
will be further dividend payments. If the random number is greater than 90, then there will
be no further dividend payments. Otherwise, each share yields another dividend payment,
d, followed by another independent random draw to determine further dividend payments.
Using this procedure, the asset in treatment B not only has the same standard FV of 50,
but the same distribution of total dividend payments as in treatment A (represented by the
lottery in Table 1). In fact, we use the same three sequences of random numbers used to
determine market durations in treatment A to determine the realized number of dividend
payments in the second stage of treatment D-2; i.e., for each share held at the end of the
trading stage, subjects receive 6 dividend payments in market 1, 20 dividend payments in
market 2, and 9 dividend payments in market 3. We label this treatment “D-2,” with “D”
standing for definite horizon, and “2” for two phases.
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We find that the mean traded price of the asset is close to the standard FV in treatment
B. At first sight, the low traded price in treatment A relative to treatment B could be
attributed to trading-horizon uncertainty. However, given the finding in the literature that
traded prices tend to converge to the FV after three market repetitions, it is possible that
the persistent difference in traded prices that we observe between treatments A and B in
the later markets cannot be fully attributable to trading-horizon uncertainty. The two-stage
design of our second treatment allows us to fix the trading horizon while controlling for the
distribution of total dividend payoffs, but it also induces an unavoidable difference in the
timing of dividend realizations. In treatment A, dividend payments are revealed and paid
period-by-period as subjects trade. In treatment B, all dividend payments are revealed and
paid altogether after trading activities have ended. To separate the effects of the trading
horizon and the timing of dividend realizations, we conduct a third treatment.

Treatment C (BRT-2) combines the uncertain trading horizon of the baseline treatment
with the two-stage design of treatment D-2, while keeping the distribution of total dividend
payments identical to the first two treatments. We label this treatment “BRT-2” to reflect
the block random termination of the trading horizon and the two-stage design. Similar to
treatment D-2, no dividends are realized during the trading phase and there is no trading
during the dividend realization phase. This new treatment serves as a bridge between the
first two treatments. The difference between treatments B and C serves as a clearer indicator
of whether trading-horizon uncertainty matters more than the difference between treatments
A and B. The effect of the timing of dividend realizations is also more cleanly captured by
comparing treatments A and C.

The number of dividend realizations remains 6, 20 and 9 for the three markets of treat-
ment C. We independently draw another three sequences of random numbers with the same
continuation probability, δ = 0.9, to determine the actual lengths of the trading phases of
the three markets of treatment C. These turned out to be 11, 5 and 16 periods.10 As in
treatment A, subjects did not know the number of trading periods for each market, and
as in treatments B and C, they did not know the number of dividend realizations for each
market.

Another difference between treatment A and treatment B is that in treatment A the dividend
payment depends on the quantity of shares held at the end of each trading period, while

10The realizations of the random variable that determine trading duration and dividend realizations are
independently drawn to ensure that the distribution of total dividend payments remains the same across
time. If we used the same realizations for the two stages, then the distribution would have a lower bound of
d multiplied by the current trading period, and the holding value of the asset would increase across time.

12



in treatment B it depends on each trader’s final share position at the end of the entire
trading phase, i.e., trading period 10. Note that treatment C helps to bridge the other two
treatments in this respect too. In treatment C, similar to treatment A, the asset position
in every trading period counts as well because each trading period can be the last trading
period.

Table 3 summarizes the main differences in the design of the three treatments. Table 4
provides a summary of the number of trading periods and dividend realizations in the three
markets of our three treatments.

Table 3: Treatments
Treatment Trading Uncertain Dividends Realized

Horizon FVt? after Trading Phase?
A (BRT) Random Yes No
B (D-2) Definite Yes Yes
C (BRT-2) Random Yes Yes

Table 4: Number of Trading Periods and Dividend Payments
No. of Trading Periods No. of Dividend Payments

Treatment Mkt 1 Mkt 2 Mkt 3 Mkt 1 Mkt 2 Mkt 3
A (BRT) 6 20 9 6 20 9
B (D-2) 10 10 10 6 20 9
C (BRT-2) 11 5 16 6 20 9

2.3 Experimental Procedures

The experiment was conducted at CIRANO economics lab using university student subjects.
Subjects were recruited for the experiment using ORSEE (Greiner, 2004). We conducted
eight sessions for each of our three treatments. Most sessions had 10 participants (five sessions
had eight or nine subjects) with no prior experience in any treatment of our experiment. Each
subject participated in one session of one treatment only.

Each session had two parts. In the first part, subjects completed a Holt and Laury (2002)
risk-preference elicitation task (details are provided in Appendix D). For this individual
choice task, subjects were instructed to make 10 choices between pairs of lotteries and were
paid based on their choice from one randomly chosen lottery out of the 10 pairs.11 This part
of the experiment took about 10 minutes.

11Payments from this task were made only at the end of the experiment, and the average earning from
this part was $4.
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Table 5: Session Characteristics
Session Duration No. of Subjects Avg. Payment

A1 2.5 hr 10 $29.98
A2 2.5 hr 10 $30.87
A3 2.5 hr 10 $30.34
A4 2.5 hr 9 $29.17
A5 2.5 hr 10 $29.45
A6 2.5 hr 10 $30.41
A7 2.5 hr 10 $30.03
A8 2.5 hr 10 $32.43
B1 2 hr 10 $37.29
B2 2 hr 10 $30.26
B3 2 hr 10 $31.00
B4 2 hr 10 $30.64
B5 2 hr 10 $29.58
B6 2 hr 8 $29.20
B7 2 hr 10 $29.88
B8 2 hr 10 $27.86
C1 2.5 hr 10 $36.99
C2 2.5 hr 8 $30.83
C3 2.5 hr 10 $30.86
C4 2.5 hr 10 $31.61
C5 2.5 hr 10 $30.12
C6 2.5 hr 10 $30.57
C7 2.5 hr 9 $28.02
C8 2.5 hr 9 $30.84

The second part of a session consisted of the three asset markets. Following the risk-
elicitation procedure, subjects were given written instructions for the asset market corre-
sponding to either treatment A, B or C. The experimenter read aloud these instructions
(in an effort to make them common knowledge), and subjects were asked to answer a set
of quiz questions. After reviewing the answers to these questions with the experimenter,
subjects practiced using the computerized trading interface before the formal asset market
was officially opened. The trading interface uses a double auction mechanism programmed
in z -Tree (Fischbacher, 2007).12 It took about 45 minutes to go through the instructions
and practice periods using the trading interface. Subjects then participated in the three
consecutive asset markets.13 Each asset market took 20–40 minutes to complete, depending
on the treatment and the realized market length. At the beginning of the asset market, half

12The z -Tree program we used was modified from a program published by Kirchler et al. (2012).
13In the instructions, subjects were told that after one asset market, depending on the time remaining,

another market might open, so they did not know in advance that there would be only 3 asset markets.
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of the participants were endowed with 20 shares of the asset and 3,000 EM units, while the
other half was endowed with 60 shares of the asset and 1,000 EM units; at the standard FV
of 50 EM, the values of these endowments were identical.14 In each trading period of the
asset market, the trading interface was open for two minutes. Subjects’ earnings from all
three markets consisted of their end-of-market cash balance and all dividends earned over
the course of each market. This amount, denominated in EM, was converted into Canadian
dollars at a fixed and known exchange rate of 500 EM = 1 Canadian dollar at the end of the
experiment.15 Given that there were 6, 20, and 9 dividend payments in markets one, two,
and three, respectively, the average earning from the asset markets was $26.

The sessions of treatments A and C lasted two-and-a-half hours, while the sessions of treat-
ment B lasted two hours. The average total payment per subject was about $30 ($26 from
the asset markets, plus $4 from the Holt-Laury risk-elicitation task), excluding the show-
up fee. Participants were paid in cash and in private at the end of each session. Table 5
summarizes the characteristics of the 24 experimental sessions.

3 Experimental Results: Comparison across Treatments

We analyze the experimental data from two perspectives. In this section, we compare market
outcomes among the three treatments and infer the effect of horizon uncertainty and the
different timing of dividend payments. In the next section, we will focus on whether we can
explain traded prices in the final market 3 with a market FV that incorporates risk aversion
and the effects of the different timing of dividend realizations.

Figure 3 shows the average prices of the asset over time in each treatment. The three vertical
bars in this figure indicate the first period of each new market. The left (right) panel shows
the mean (median) of session average prices across the 8 sessions in each treatment. For
treatments A and B, the mean and median trajectories are very close. For treatment C,
the mean trajectory is noticeably higher than the median. This was caused by session C7,
which is an outlier with persistently high prices (see Figure B.1 in Appendix B, which shows

14In three sessions, we had nine subjects. Since odd-numbered subjects were given endowment profile 1,
the value of cash relative to shares was slightly higher in this session. This did not seem to significantly
affect the market outcome (see Table C.1). In addition, the cash and asset supplies are incorporated into
the calculation of market FV in Table 9.

15In sessions B1 and C1 only, the exchange rate was 400 EM=$1, which resulted in a higher payment in
the asset markets, as shown in Table 5. All other sessions had an exchange rate of 500 EM=$1. We tried
a different exchange rate for the first sessions of treatments B and C considering they involved a two-stage
procedure, and we wanted to pay the subjects a bit more to compensate for that. We then found from the
first sessions that the second stage (the dividend realization stage) went very quickly. As a result, we scaled
the exchange rate back to be the same as for treatment A.
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Figure 1: Mean and Median of Session-Level Average Traded Prices over Time, by Treatment

Notes : The red horizontal line is the standard FV, which is equal to 50. The left (right)
panel is the mean (median) of the session-level average traded price across the 8 sessions in
each treatment.

the average price trajectory for each session). Our discussion will focus on the median. In
treatment A, the median of the session average price in the first market starts at around 50
(the standard FV), 55 in treatment B and 40 in treatment C; as we will see later, the session
average prices in the first market are not significantly different across the three treatments.
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However, the median of the session average price in treatment A in the second and third
markets steadily declines, falling to around 20 by the end of market 2 and remaining there
in market 3, while it stays around 50 in the last two markets in treatments B and C.16 The
pattern tends to hold at the disaggregated session level as well. Further, the underpricing
of the asset observed in treatment A is robust to replacing the block random termination
design with standard random termination, as shown in Appendix C.17

Table 6 shows the average price and the trading volume in each market of each session. We
also show in boldface the mean and median of session average prices. We conduct two-tailed
Mann-Whitney tests on session average prices and trading volume to assess whether there
are any treatment differences in these market measures. There are nine tests (3 markets x
3 treatments) each for traded price and volume. We present the p-values from the Mann-
Whitney tests and the Bonferroni adjusted p-values for multiple hypothesis testing, in Table
7. The results reported in that table provide support for the following three findings.18

Finding 1 There is no systematic, significant difference in the average trading volume across
the three treatments.

The experimental data suggest that the treatment variables, horizon uncertainty and the
timing of dividend payments, have no significant effect on average trading volume by the
Bonferroni adjusted p-values of the nine pairwise tests. We cannot reject the hypothesis that
it is equally likely that the observation is drawn from the two alternative treatments.

Finding 2 In market 1 the average traded price is not significantly different between any
two treatments.

Again, support for this finding comes from Table 7. Although the traded price tends to
be lower in treatment A versus the other two treatments, the difference is not statistically
significant by the Bonferroni adjusted p-values.

Finding 3 In markets 2 and 3, the average market price is significantly lower in treatment

16From Figures 3 and B.1, there is only a very mild restart effect. This is likely because the environment
is stable across rounds and across markets.

17Given that the price pattern across our three different treatments is quite clear, we choose not to report
the bubble (mispricing) measures (as deviations from the standard FV) as in most of the experimental papers
on asset markets. The statistical tests on bubbles measures, RAD and RD, developed in Stockl et al. (2010)
are consistent with the test results we report for price differences from the standard FV.

18The results from the Kruskal-Wallis tests support similar findings. The average traded price across the
three treatments is marginally significantly different in market 1 (p < 0.05), and very significantly different
in markets 2 and 3 (p < 0.001). The average trading volume is not significantly different in markets 1 and 2
(p > 0.1) and marginally significantly different in market 3 (p < 0.05).
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Table 6: Average Traded Price and Volume by Session and Market
Session Average Price Average Volume

Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3
A1 30.9 18.9 17.9 60.7 45.2 67.3
A2 34.3 24.0 11.5 54.3 64.7 62.6
A3 84.9 40.9 33.3 58.7 58.5 64.3
A4 18.3 15.7 16.5 52.5 72.7 101.0
A5 41.3 20.6 22.1 122.8 146.9 221.6
A6 37.1 13.4 17.5 60.1 57.45 22.6
A7 37.3 27.4 27.3 85.9 61.55 91.4
A8 49.3 43.8 34.9 72.3 63.45 89.9

Treatment A Mean 41.7 25.6 22.6 70.9 71.3 90.1
Treatment A Median 37.2 22.3 20.0 60.4 62.5 78.6

B1 77.9 52.8 45.0 32.0 22.7 10.8
B2 73.6 70.9 67.7 71.1 85.3 67.9
B3 39.5 48.8 49.5 65.2 64.6 66.4
B4 52.7 50.3 50.2 57.4 48.9 48.5
B5 59.8 49.0 45.3 125.3 90.2 65.8
B6 39.6 49.2 55.7 15.3 17.3 16.4
B7 66.6 55.5 51.1 48.6 42.2 54.2
B8 109.9 54.3 56.8 23.3 57.5 62.8

Treatment B Mean 64.9 53.8 52.6 54.8 53.6 49.3
Treatment B Median 63.2 51.5 50.6 53.0 53.2 58.5

C1 49.1 45.6 47.7 37.2 40.7 24.6
C2 42.6 46.5 46.8 54.8 52.5 75.5
C3 58.6 60.6 62.1 32.5 43.6 29.6
C4 55.6 48.4 49.5 55.9 54.1 22.9
C5 36.6 40.0 70.6 84.4 88.3 60.4
C6 56.7 44.6 47.2 27.8 32.4 18.3
C7 152.6 177.7 170.4 13.0 23.5 22.6
C8 41.9 41.8 46.0 73.0 57.5 35.3

Treatment C Mean 61.7 63.1 67.5 47.3 49.1 36.2
Treatment C Median 52.4 46.0 48.6 46.0 48.1 27.1
Notes : Average price is the mean of the period price over all trading periods in a market.
For treatments A and C, it includes 10 periods if the market ends within the block. The
period price is the volume-weighted average traded price in the period. Average volume is
the mean of trading volume (number of shares traded) over all trading periods in a market.
The mean and median of both session average price and volume are in bold face.

A (BRT) than for the other two treatments in markets 2 and 3. The average market price
in markets 2 and 3 is not significantly different between treatments B and C.

In treatment A, the median of session average traded prices in markets 2 and 3 are 22.3 and
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Table 7: p-values from Mann-Whitney Tests of Treatment Differences in Average Market
Price and Trading Volume
Treatment Average Price Trading Volume

Comparison Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3
A vs. B 0.028 0.000 0.000 0.234 0.328 0.065

[0.253] [0.002] [0.002] [1.000] [1.000] [0.585]
A vs. C 0.065 0.001 0.000 0.105 0.028 0.015

[0.585] [0.010] [0.002] [0.944] [0.253] [0.137]
B vs. C 0.382 0.083 0.900 0.879 0.742 0.442

[1.000] [0.747] [1.000] [1.000] [1.000] [1.000]
No. of Obs. 16 16 16 16 16 16
Notes : Bonferroni adjusted p-values are in square brackets to correct for multiple hypothe-
ses testing (tests on average trading price and trading volume corrected separately for 9
hypotheses, 3 comparisons between treatments x 3 markets).

20.0, respectively. By contrast, in treatment B, the prices in markets 2 and 3 are 51.5 and
50.6, respectively, and in treatment C, they are 46.0 and 48.6, respectively. The average
traded price in markets 2 and 3 is, therefore, significantly lower in treatment A than in the
other two treatments. The Bonferroni adjusted p-value is ≤ 0.01 for the two-tailed Mann-
Whitney tests between treatment A and either treatment B or C. Comparing treatments B
and C, the average traded price is very close. The difference in the median of the session
average traded price is 5.5 in market 2 and 2.0 in market 3. The difference in the session
average traded prices is statistically insignificant (the Bonferroni adjusted p-value is > 0.5

for all three markets).

Based on these statistical results, we conclude that market outcomes in treatment A, specif-
ically prices, are significantly different from the other two treatments. The insignificant
difference in traded prices between treatments B and C indicates that the uncertain trading
horizon itself does not significantly affect the market price with experienced subjects. In
addition, given that all three treatments share the same distribution of the value of total
dividend payments, the experimental results suggest that the uncertainty in the value of
total dividend payments cannot account for the low traded price in treatment A relative to
the other two treatments. Instead, it appears that the timing of the dividend realizations is
what matters for the significant difference we observe in traded prices.

4 Market FVs

Next, we try to rationalize the differences in traded prices observed in the third market of
our three treatments. The approach we take is to calculate what we refer to as the market

19



FV of the asset based on the actual risk preferences of the market participants and test
whether it is significantly different from the traded price in market 3. The rationale is that
since the same subjects repeat the same market game three times, the market price in the
third market can reasonably be expected to approximate the market FV of the asset.19

First, as shown in the second column of Table 10, the standard FV (V0 = 50) cannot capture
the low traded price of the asset in treatment A: the median of the session average traded
price in market 3 is 20.0, which is 40% of the standard FV. Statistically, this result is also
confirmed by a two-tailed, Wilcoxon signed rank test that compares this traded price with
the standard FV of 50: the Bonferroni adjusted p-value is 0.024. By contrast, the traded
price in market 3 of the other two treatments is close to the standard FV of 50 (the Bonferroni
adjusted p-value is 0.766 for treatment B and 1 for treatment C).

Noting that the standard FV cannot explain the low traded price in treatment A, a natural
next step is to investigate whether incorporating subjects’ (heterogeneous) risk attitudes can
explain the low traded prices in treatment A versus treatments B and C. For this purpose, we
construct a three-step procedure to compute the market FV that accounts for subjects’ risk
attitudes. In step 1, we estimate each individual’s risk parameter by using individual data
from the Holt-Laury risk-preference elicitation task. In step 2, we derive each individual’s
net demand curve for assets as a function of the share price. We derive the demand curve as
the solution to a portfolio choice problem, combining each individual’s asset and cash profile
assigned in the experiment and their risk parameter estimated in the first step. In step 3, we
aggregate the individual demand curve for each session and calculate the market equilibrium
price, where the net demand equals zero, which we refer to as the market FV of the asset.

As discussed in the experimental design section, treatment A differs from treatments B and
C regarding the timing of dividend realization. In treatment A, dividends are dynamically
realized in each trading period. In treatments B and C, trading and dividend realization
take place in two separate stages, and all dividends are realized after trading ends. In
these two treatments, in all trading periods, the asset can be viewed as a static lottery, as
described in Table 1; we call the related market FV the static risk-adjusted FV. In treatment
A, in principle, it is possible that subjects view the asset as the same as in the other two
treatments if they care only about total dividend payments. However, given the significant
difference in traded price between treatment A and the other two treatments, it is unlikely
that subjects take this perspective. For treatment A, we also calculate what we call the

19As shown in Tables 6 and 7, the traded price changes little from market 2 to market 3, so it seems that
convergence is achieved in market 2 and strengthened in market 3. We focus on the comparison between the
traded price in market 3 and the FV to save on unnecessary repetition.
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dynamic risk-adjusted FV. The stationarity of the dynamic asset market in treatment A
implies that the asset can be viewed as a combination of the fixed dividend payment in the
current trading period with a binary lottery in the next trading period (or at the end of
the current trading period) that yields a zero payoff with probability 1− δ and a replica of
the asset with probability δ. In the following steps, we will describe in more detail how to
calculate the risk-adjusted FVs.

Step 1 of the three-step procedure, which is the same for computing static and dynamic
market FVs, is to estimate the risk parameter for each subject from their Holt-Laury tasks.
We assume that subjects’ utility functions take the form u(x, α) = xα/α, where α is a risk-
preference parameter, with α = 1, α < 1 and α > 1 corresponding to risk-neutrality, risk-
aversion and risk-loving behavior, respectively. Table D.1 provides a summary of α(nA), the
estimated value of the risk parameter as a function of the number of safe choices, nA, made
by individual subjects. More details about how we derive the numbers can be found in the
online appendix D. Table 8 suggests that risk-neutral subjects would choose nA = 4, and
risk-averse (loving) agents would choose nA ≥ 5 (nA ≤ 3). Out of the 233 participants, 31,
or 13%, (who chose 4 safe choices) can be classified as risk-neutral, 177, or 76%, (who chose
more than 4 safe choices) are classified as risk-averse, and 25, or 11%, (who chose 0–3 safe
choices) are classified as risk-loving. Figure D.1 shows a histogram of the number of safe
choices across all sessions. The results are consistent with previous findings in the literature.

Table 8: Estimation of the CRRA Parameter from the Holt-Laury Task
nA α(nA)
0 2.7128
1 2.3298
2 1.7167
3 1.3146
4 0.9981
5 0.7211
6 0.4562
7 0.1766
8 −0.1695
9 −0.3684
10 −0.3684

Notes. We assume subjects have CRRA utility functions, u(x) = xα/α.

4.1 Static Risk-Adjusted FV

In this subsection, we use the estimated-risk parameter to calculate the static risk-adjusted
market FV (in steps 2 and 3 of the three-step procedure) and examine whether it can capture
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the traded price in our experiment.

First, we derive each subject’s demand for assets. Let m0 and s0 be the subject’s endowment
of money and shares, respectively, p the market price, and s the holding of shares after
trading. An individual with risk parameter α solves the following portfolio choice problem:

max
s

Σ∞
t=1(1− δ)δt−1[tds+m0 + (s0 − s)p]α/α (1)

subject to: s ≥ 0;m0 + (s0 − s)p ≥ 0,

where the two constraints imply there are no short sales of shares and subjects cannot borrow
money to buy shares. Let s(p) be the solution to equation(1), then the subject’s individual
net demand for shares is q(p) = s(p)− s0. We then construct the aggregate demand Q(p) as
the sum of individual demands. The market FV, V , solves Q(V ) = 0. In Table 9, we report
the estimated static risk-adjusted market FV, which we denote by V1.20

Given that most (76%) of our subjects are risk-averse, this risk-adjusted FV, V1, is always
found to be lower than the standard FV, V0 = 50, but V1 lies in a relatively small range
between 40.2 and 49.9 across all treatments. Incorporating risk attitudes toward uncertainty
in the value of total dividend payments brings the market FV closer to the traded prices in
market 3 of treatment A, which are repeated in the second column of Table 9 for comparison
purposes. However, for treatment A there is still a large gap between V1 and the market
3 traded prices. As Table 9 reveals, the median of V1 is 45.0 across the eight sessions of
treatment A while the median of the actual average market traded price is much lower, at
20.0.

Column 3 in Table 10 reports on signed rank tests of the null hypothesis that the market
traded prices are equal to V1 in market 3 of our three treatments. There we see that for
market 3 of treatment A, our method of adjusting the static-market FV by incorporating
individual risk attitudes still leads us to reject the null hypothesis of no difference in favor of
the alternative that traded prices in market 3 of treatment A are significantly lower than V1

(Bonferroni adjusted p = 0.024). By contrast, for treatments B and C we see in Table 9 and
10 that although market 3 average traded prices are higher than V1 statistically (Bonferroni
adjusted p < 0.05), the difference is modest in terms of magnitude. The median of V1

20We find the market-clearing price numerically, following these steps: (1) Set the interval for possible
prices, for instance, from 1 to 100, with a fine grid, 0.1. Index these prices by j. (2) For each price pj in the
interval, use subjects’ individual risk parameter α measured in step 1 to solve the maximization problem (1)
and find the individual’s desired asset holding s(pj). The net demand for the individual is s(pj) − s0. (3)
Sum up the net demands across all subjects to get the net total demand Q(pj). (4) The equilibrium price is
the pj that minimizes |Q|.
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Table 9: Estimated Risk-Adjusted FV, by Treatment and Session
Session Avg Mkt3 Price V0 V1 V2

A1 17.9 50 44.7 36.7
A2 11.5 50 44.5 36.7
A3 33.3 50 40.2 24.3
A4 16.5 50 46.2 36.8
A5 22.1 50 45.0 30.0
A6 17.5 50 49.9 49.9
A7 27.3 50 44.9 36.7
A8 34.9 50 45.7 36.7

Treatment A Mean 22.6 50 45.1 36.0
Treatment A Median 20.0 50 45.0 36.7

B1 45.0 50 44.9
B2 67.7 50 40.7
B3 49.5 50 44.6
B4 50.2 50 44.3
B5 45.3 50 43.9
B6 55.7 50 42.6
B7 51.1 50 48.0
B8 56.8 50 47.3

Treatment B Mean 52.6 50 44.5
Treatment B Median 50.6 50 44.5

C1 47.7 50 44.4
C2 46.8 50 44.5
C3 62.1 50 47.2
C4 49.5 50 44.3
C5 70.6 50 42.3
C6 47.2 50 43.3
C7 170.4 50 45.2
C8 46.0 50 46.7

Treatment C Mean 67.5 50 44.7
Treatment C Median 48.6 50 44.5
Notes. V0 is the standard (risk-neutral) FV; V1 is the static risk-adjusted FV; and V2 is
the dynamic risk-adjusted FV. The treatment mean and median are taken over the session
values.

undershoots the median of the session average price by 12% for treatment B and by 8% for
treatment C.

4.2 Dynamic Risk-Adjusted FV

In this subsection we calculate the dynamic risk-adjusted FV for treatment A (for the other
two treatments, the static FV remains an appropriate benchmark). To incorporate the
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Table 10: p-values from Wilcoxon Signed Rank Tests: Average Market 3 Prices against
Market FVs
Treatment V0 V1 V2

A 0.008 0.008 0.039
[0.024] [0.024] [0.117]

B 0.383 0.008
[0.766] [0.016]

C 0.742 0.016
[1.000] [0.032]

No. of Obs. 8 8 8
Notes : V0 is the standard (risk-neutral) FV, V1 is the static risk-adjusted FV, and V2 is the
dynamic risk-adjusted FV. Bonferroni adjusted p-values are in square brackets to correct for
multiple hypothesis testing (tests for each treatment corrected separately).

dynamic realization of dividend payments into the analysis of the FV for treatment A, we
employ a recursive preference specification as per Kreps and Porteus (1978) and Epstein and
Zin (1989). This specification involves two components: a risk aggregator that aggregates
risky payoffs within the same period and a time aggregator that aggregates the certainty
equivalence of risky payoffs across periods. We adopt the popular specification, as per Epstein
and Zin (1989), which uses a constant elasticity of substitution (CES) time aggregator to
combine the current payoff, in our case, the dividend d, with the certainty equivalence
value of all future payoffs. To calculate the FV of the asset in treatment A, we consider
a special case of the CES time aggregator where subjects treat the payoff in the current
trading period and the certainty equivalence of future payoffs as perfect substitutes (and the
implied elasticity of inter-temporal substitution is infinity). This is a reasonable assumption
(and perhaps the only assumption that can be made) for time aggregation in the context
of treatment A because each trading period lasts for only two minutes and it is hard to
imagine subjects would have any motive to smooth payoffs across different trading periods
(or discount payoffs in later periods). For the risk aggregator, we continue using the CRRA
specification to aggregate the risk-associated future payoffs. With these assumptions, each
subject solves the following portfolio choice problem:

max
s

ds+m0 + p(s0 − s) + δ1/αps (2)

subject to: s ≥ 0;m0 + (s0 − s)p ≥ 0,

where the last term is the certainty equivalence of the lottery that pays ps with prob δ and
0 with prob 1 − δ. Note, it is assumed that the economy is in its stationary equilibrium
where the price of the asset is constant across time. The solution to equation (2) gives the
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individual’s demand for the asset:

q =

{
m0

p
if p < d

1−δ
1
α

−s0 otherwise
.

We then construct the aggregate demand curves to calculate the dynamic-market FV (V2)
following the same procedures as in the estimation of the static FV (V1). The estimated V2

for treatment A is shown in the last column of Table 9. The p-values from Wilcoxon signed
rank tests comparing the market 3 traded prices with the estimated V2 values are shown in
Table 10.

For treatment A, Table 9 reveals that the static and dynamic FVs are very different from one
another.21 The dynamic FV is noticeably lower than the static FV for seven out of the eight
sessions.22 Compared with the static FV, which has a median of 45.0, the dynamic FV has a
median of 36.7 and is significantly closer to the median of the session average traded price in
market 3 of treatment A, which is 20. A signed rank test reported in column 4 in Table 10
suggests that average traded prices in market 3 of treatment A are not significantly different
from the estimated dynamic FV at the 10% significance level (the Bonferroni adjusted p-
value is 0.117). We summarize the results regarding the standard FV and risk-adjusted FVs
in the following finding.

Finding 4 Market Price and Risk-Adjusted FV.

1. For treatment A, the traded price in market 3 is significantly lower than the standard
FV or the static risk-adjusted FV. The dynamic risk-adjusted FV is not statistically
significantly different (at the 10% significance level) from the traded price, although the
magnitude of overshooting is still noticeable.

2. For treatments B and C, the traded price in market 3 is not significantly different from
the standard FV prediction. The traded price is statistically significantly higher than
the static risk-adjusted FV predictions, but the magnitude of overshooting is modest at
about 12% and 8%, respectively.

21To understand the difference, note that in the dynamic context, subjects view the asset as a current
dividend payment plus certainty equivalence of the future value of the asset, which is zero if the market
ends. If subjects view the asset as a static lottery, then they consider all possibilities of the total number of
dividend payments, which ranges from 1 to infinity. With concave utilities, the prospect of a zero payment
lowers the dynamic FV.

22The exception is session A6, where the Holt-Laury task suggests that 4 out of the 10 subjects are
risk-neutral and the computed static and dynamic FVs are both close to the standard FV.
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The dynamic risk-adjusted FV reasonably captures the low traded price in treatment A. One
may wonder whether the result can be generalized to other experimental asset markets. In
Appendix E, we apply the analysis to two other types of markets studied in the literature.
The first is the widely studied market with a fixed, finite horizon, as in Smith et al. (1988).
The second is the market with an indefinite horizon and a buyout/terminal value of the
asset (this type of treatment is studied in Kose (2015)). We find that unlike in treatment
A, where the dynamic FV is substantially lower than the standard FV, they are much
closer in these two setups. In terms of experimental evidence of the traded price in these
alternative experimental settings, the general finding is that the traded price is close to
the standard FV, with experienced subjects. Given that the risk-adjusted dynamic FV is
close to the standard FV, the traded price in those settings is also close to the risk-adjusted
dynamic FV. The take-away is that the dynamic consideration and recursive preferences
apply generally to our treatments as well as to other settings in the literature. In our
treatment A with random termination and no buyout value, the dynamic FV is very different
from the standard FV so it is critical to use the dynamic FV to explain the traded price
with experienced subjects. In the settings with definite horizons and/or the existence of a
buyout value for the asset, the dynamic FV is close to the standard FV, so the standard FV
constitutes a good approximation.

Finally, given that there is still a noticeable gap between the dynamic risk-adjusted FV and
the traded price in treatment A, we extend our analysis of static and dynamic FVs under
alternative assumptions; particularly, we compute both FVs by incorporating probability
weighting (following the cumulative prospect theory of Tversky and Kahneman (1992)) in-
stead of risk attitudes in recursive preferences. In our baseline treatment, the market ends
and the asset becomes worthless with a small probability (0.1), and it seems likely that
probability weighting could affect traded prices.23 The procedure and results are reported in
Appendix F.24 We find the probability-weighted FVs are consistent with the traded prices in
all three treatments, both quantitatively and statistically. One point to emphasize is that,
with probability weighting, it is still crucial to distinguish the dynamic and static realizations
of dividend payments, which affects how small probabilities are over-weighted and is critical
in accounting for the different traded prices in treatment A versus B and C.

23Ackert et al. (2009) report direct evidence of probability judgment errors on low-probability, high-payoff
events in experimental asset markets, similar to Smith et al. (1988), and find the probability judgment error
is correlated with the occurrence of asset price bubbles measured relative to the standard FV.

24As we did not elicit subjects’ probability weighting parameters, we rely on parameter values suggested
in the literature, such as Tversky and Kahneman (1992), Camerer and Ho (1994), and Wu and Gonzalez
(1996). We use the value in Wu and Gonzalez (1996) as it involves the least distortion of the objective
probabilities.
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5 Conclusion

Most asset pricing models employ infinite horizons, as the duration of assets, such as equities,
is typically unknown. By contrast, experimental asset markets typically have finite horizons
making it difficult to test the predictions of infinite horizon models. While strictly speak-
ing infinite horizons cannot be studied in the laboratory, one can mimic the environment
with indefinite horizons, where in each period the asset continues to yield future dividend
payments with a known probability. If agents are risk-neutral, expected utility maximizers,
then the probability that the asset continues to yield payoffs plays the role of the discount
factor and the price predictions under the infinite horizon economy extend to the indefinitely
repeated environment. In both environments, the fundamental value of the asset is constant
over time and equal to the expected value of total dividend payments, a standard measure
of FV found in asset pricing models.

In this paper, we study the empirical relevance of the indefinite-horizon model for understand-
ing the predictions of deterministic infinite-horizon asset pricing models with discounting.
In our baseline treatment A, which implements a random termination design, we find that
experienced subjects consistently price the asset below the standard FV, a surprising finding
given the literature.25

Compared with the infinite-horizon model with discounting, the indefinite-horizon model
introduces two types of risks: risk in dividend payoffs (payoff uncertainty) and risk in the
duration of trading (trading-horizon uncertainty). In order to understand whether the low
trading price can be attributed to these risks, we consider two additional treatments with a
two-stage design. In the first stage, subjects trade assets without receiving or observing the
dividend payments on those assets. In the second stage, they observe dividend realizations,
and the total dividend payoff replicates the distribution in the baseline treatment. The
two auxiliary treatments differ in that the number of trading periods is fixed in one and
uncertain in the other. In both of these two auxiliary treatments, the asset is priced close to
the standard FV.

As a result, we conclude that neither uncertainty about the trading horizon nor uncertainty
regarding total dividend payoffs can account for the low traded prices observed in the baseline
treatment A relative to the other two treatments. Instead, the experimental results suggest
that the dynamic realization of dividend payments plays a critical role in accounting for
the low traded price in treatment A relative to the other two treatments. In treatment A,

25Kose (2015) has a similar finding but does not offer a deep explanation about the phenomenon.
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in each trading period, subjects receive dividend payments in the current period and face
an uncertain continuation value in the future. In the other two treatments, as all dividend
realizations are realized after the trading is completed, subjects are more likely to view the
asset as a static lottery and care about the total dividend payments.

To investigate whether risk attitudes together with dynamic considerations could account
for the low traded prices in treatment A, we introduce a new procedure to adjust the esti-
mated FV for observed heterogeneity in subjects’ risk attitudes (and departures from risk
neutrality). We find that the risk-adjusted dynamic FV can account for a significant fraction
of the low traded price that we observe in our baseline treatment A, and the two are not
significantly different according to signed-rank tests. However, the risk-adjusted FV still
overshoots the traded price in treatment A by a noticeable margin. At the same time, for
the other two treatments, the static risk-adjusted FV tends to undershoot the traded price
according to a signed-rank test, but the magnitude of undershooting is moderate.

We also extend the application of recursive preferences by incorporating probability weight-
ing, according to which subjects overreact to the small probability of market termination,
while assuming risk neutrality. The probability-weighted FVs can rationalize the low traded
prices observed in our baseline treatment, as well as the observation that the traded prices
in treatments B and C are close to the standard FV.

Our findings are of relevance to both finance and experimental researchers. For finance
researchers, our results suggest that in the presence of risk non-neutrality (or probability
weighting), modeling the asset as a static lottery over total dividend payments could be
misleading in calculations of the FV of the asset. An important take-away for experimental
economists is that the mis-pricing behavior found in experimental asset markets may be quite
different under random termination, as compared with the more typically studied finite-
horizon case that follows the lead of Smith et al. (1988). Rather than finding overpricing
relative to the standard FV (bubbles) among inexperienced subjects and close tracking of
the standard FV among experienced subjects, we find substantial underpricing relative to
the standard FV in our baseline random termination treatment with experienced subjects.
We can rationalize this departure from the standard FV by incorporating risk attitudes or
probability weighting of the Epstein-Zin type of recursive preferences.

Finally, while our experiment was not designed to directly test the Epstein-Zin preferences or
whether subjects engage in probability weighting, we find that incorporating these features
helps to explain our experimental results. In future research involving asset markets with
indefinite horizons, it would be of interest to directly elicit the parameters of the Epstein-Zin
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preferences and probability weighting, in a manner similar to the way in which we elicited
individual risk preferences. Note that the procedure that we developed to incorporate in-
dividual subjects’ risk into the estimation of market FV is quite general and additional
individual characteristics can easily be incorporated. We leave this exercise to future re-
search.
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Appendices for Online Publication Only

A Details of Related Experimental Literature with In-

definitely Lived Markets

In this appendix, we provide details on all known papers that use indefinite horizons to study
asset pricing behavior, as reported in Table 2. We explain differences in the experimental
designs of these papers relative to our own design and why these design differences may
matter for differences between the results of those studies and our results.

1. Camerer and Weigelt (1993) study pricing of stochasticly lived assets using continuous
double auctions and random termination with a continuation probability δ = 0.85.
Each period, assets paid one of three dividend levels rotated to different subject types
(1/3 of each), so the dividend value of the asset was not common to all subjects as in
our design. They find that prices converge to equilibrium values slowly and unreliably,
with prices lying above or below the equilibrium price for long periods of time. Relative
to our own study, they have an induced motivation for trade (and it is more difficult
for subjects to find the equilibrium price due to heterogeneous valuation of the asset),
whereas we rely on heterogeneity in risk attitudes. Still, their finding of underpricing
of the asset in some sessions is consistent with our findings for treatment A.

2. Ball and Holt (1998) report on a classroom experiment involving 15 assets traded by
5 or more players using an oral double auction. Each asset survives from one period
to the next with probability δ = 5/6. The asset pays a constant and known dividend
per period. Any asset that survives 10 periods receives a redemption value, so this
is not a pure random termination design as in our approach. They report that in
using this game, there are bubbles (overpricing) of the asset “in some classes but not
in others.” One design feature is that the survival risk is applied to each individual
share, so as time goes by, the number of shares decreases, while cash increases with
accrued dividends. Together, this induces a high cash-to-asset ratio, which could have
contributed to the high trading price in their experiment.

3. Hens and Steude (2009) are interested in the correlation of lagged returns with future
asset price volatility—the leverage effect says that volatility rises (falls) when lagged
returns are negative (positive). They study an indefinitely lived asset using a contin-
uous double auction market. The continuation probability is δ = .97. The dividend
process is stochastic but unlike in our study it is unknown to subjects. Further, the
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dividend is probabilisticly biased to be upward sloping over time, which may bias prices
upward. They find evidence for a leverage effect in their data. Prices seem to track
the dividend process with a lag and are often above the fundamental value.

4. Kose (2015) compares both definite and indefinitely repeated asset pricing designs using
a continuous double auction. Subjects are endowed with assets and trade over either a
fixed horizon or an indefinite horizon with or without a final terminal redemption value.
Here δ = .875 and the dividend is a random draw from a known distribution. In his
treatment 2, which is the most similar to our treatment A, Kose studies an indefinite
horizon with a positive dividend and no terminal value and finds underpricing of the
asset relative to the fundamental value just as we do. Where we differ is that we run
auxiliary treatments to distinguish between uncertainty about dividend payoffs and
uncertainty about the horizon length, and we develop an in-depth explanation about
the low traded price.

5. Weber et al. (2018) study the pricing of risky bonds that are subject to default risk.
The bonds are auctioned off in an IPO, and the IPO price affects the default rate or
the probability with which bonds continue to exist and pay interest. Thus, unlike in
our study, the continuation probability and thus the fundamental value of the asset is
not exogenous. The market mechanism is a call market. Regarding prices, they are
observed both at or above the fundamental value; positive bubbles disappear among
experienced subjects.

6. Kopányi-Peuker and Weber (2021) compare asset pricing in a call market trading
setup using a Smith et al. (1988) type asset with asset pricing in a learning-to-forecast
design, where expectations of future prices matter for current price realizations. They
study whether experience reduces the incidence of bubbles and crashes and adopt an
indefinite horizon to make the two asset pricing approaches comparable. They are
also interested in how the amount of information subjects have matters for the role
of experience in reducing mispricing. They find that neither experience nor greater
information reduces the frequency of the bubble crash phenomenon assets unless the
cash-to-asset ratio is low as in our study.

7. Kopányi-Peuker and Weber (2022) study the role of a trading horizon in a Smith et al.
(1988) type of asset market. They have a 2x2 design of the trading horizon: short or
long x definite or indefinite. They find recurring bubbles and similar price dynamics
in all treatments.
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Two potential factors that have contributed to the high traded price in Kopányi-Peuker
and Weber (2021, 2022): high cash-to-asset ratio and a buyout value, which tends to
move the dynamic risk-adjusted FV closer to the standard risk-neutral FV.

8. Fenig et al. (2018) use random termination (δ = .965) to implement an infinitely lived
production economy where subjects play the role of households supplying labor to firms
and use wage income to consume goods. The main focus is how asset trading affects
the real economy and how different policies affect asset market activities. In some
treatments, subjects are endowed with dividend paying assets and can use dividends
and capital gains from asset market trades as an alternative to labor income. How-
ever, subjects are paid primarily on consumption and labor decisions, and a rational
subject should have little incentive to participate in the asset market. Nonetheless,
they find that when subjects actively participate in the asset market, asset bubbles
emerge and persist but have no significant effect on real allocation. The introduction
of leverage constraints and asset inflation targeting monetary policy have either no or a
small effect on mis-pricing. In this experiment, overpricing may arise because subjects
are not sufficiently experienced with the asset market, they must divert attention to
production-consumption decisions, or they find asset trading easier to comprehend or
more interesting than the production-consumption decision and therefore trade.

Finally, there are three papers (Asparouhova et al. 2016, Crockett et al. 2019, and
Halim et al. 2022) that study the consumption based, Lucas asset pricing model.
All of them use random termination to implement an infinitely lived economy. Their
results regarding the trading price relative to the risk-neutral fundamental value are
mixed. It would be useful to unify the mixed results and see if the fundamental value
is different in these three studies (the recursive preferences can potentially offer a new
perspective), but we must leave this for a new paper. Because assets are used for
intertemporally smoothing consumption, these papers are not directly comparable to
ours and other experimental studies following the tradition of Smith et al. (1988), as
listed above.

9. Asparouhova et al. (2016) study trade of two assets, one a consol bond paying a fixed
dividend and the other an indefinitely lived Lucas asset paying a random dividend.
Several indefinite markets are played with δ = 5/6. Agents choose how much to
consume and save, with savings in the form of long-lived consols or assets. Trade
in assets is via a continuous double auction. Consumption smoothing is induced by
paying consumption only in the last period of an indefinite replication (sequence). They
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find that asset prices are quite volatile but do not depart too far from fundamentals.
However, there is not much of an equity premium for the asset over the bond. Finally,
agents use assets to smooth consumption.

10. In Crockett et al. (2019), the only method of intertemporally smoothing consumption
is to buy/sell shares of a long-lived asset (trees) over an indefinite horizon (δ = 5/6).
Subjects are of two types in terms of the variability of income. Crockett et al. use a
continuous double auction market mechanism. They find that agents use the asset to
smooth consumption. Prices are observed to be above fundamental values when there
is a linear utility (payoff) function, but prices are below fundamental value when there
is a concave utility (payoff) function. As noted earlier, we are not studying the use of
assets as a means of intertemporally smoothing consumption.

11. In Halim et al. (2022), δ = 5/6, and the motivation to have a smooth consumption
profile is induced by the same scheme as in Asparouva et al. (2016) (only cash holdings
at the end of the terminal period count toward earnings). Players have different income
profiles, some constant and so without a need to smooth consumption while others are
variable and have consumption smoothing motivations. Halim et al. also add aggregate
risk in terms of uncertain dividend payoffs. They do not find underpricing of the asset;
generally prices trade at or above FVs regardless of the composition of traders in terms
of having a consumption smoothing motivation and irrespective of whether there is
aggregate risk. Despite this mispricing, agents use the asset to intertemporally smooth
consumption.
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B Average Traded Prices by Session
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Figure B.1: Average Traded Prices over Time for Each Session, Grouped by Treatment

Notes : The red horizontal line is the standard FV, which is equal to 50.
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C Treatment A with Standard Random Termination (SRT)

In this appendix, we report the results from two additional sessions of treatment A where
the block is removed. As in treatment A, traders participated in 6, 20, and 9 trading periods
in markets 1, 2, and 3, respectively.

Table C.1: Average Traded Price and Volume by Session and Market
Session Average Price Average Volume

Mkt1 Mkt2 Mkt3 Mkt1 Mkt2 Mkt3
SRT1 68.2 33.0 26.1 52.0 43.9 46.6
SRT2 40.6 40.8 38.1 107.5 106.0 65.0
SRT 54.4 36.9 32.1 79.8 74.9 55.8

Table C.2: Estimated Fundamental Value by Session (SRT)
Session Avg Mkt3 Price V0 V1 V2

SRT1 26.1 50 44.0 24.3
SRT2 38.1 50 44.4 36.7
SRT 32.1 50 44.2 30.5
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Figure C.1: Traded Prices over Time for the Standard Random Treatment (left panel average
of 2 sessions; right panel individual session data)

Notes : The red horizontal line is the standard FV, which is equal to 50.

D Risk-Parameter Estimates

In this appendix, we explain how to estimate the risk parameter for each subject from
their Holt-Laury tasks. This is step 1 of the three-step procedure to calculate risk-adjusted
market FV, and it is the same for computing static and dynamic market FVs. We assume
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that subjects’ utility functions take the form u(x, α) = xα/α, where α is a risk-preference
parameter, with α = 1, α < 1 and α > 1 corresponding to risk-neutrality, risk-aversion and
risk-loving behavior, respectively. Using this functional form, we first calculate the value of α
such that an individual with risk parameter α is exactly indifferent between option A, the safe
choice, and option B, the risky choice, for each of the 10 paired lottery choices in the Holt-
Laury procedure. The 10 choices can be found in Appendix D (experimental instructions).
For example, in choice i, the payoff from option A is x̄A = $4.0 with probability pi = i/10

and xA = $3.2 with probability 1 − pi, while option B offers x̄B = $7.7 with probability pi

and xB = $0.2 with probability 1−pi.26 An agent who is indifferent between the two options
in choice i has preferences u(x, α̂i), with α̂i solving EuA(x, α̂i) = EuB(x, α̂i) or

pix̄
α̂i
A + (1− pi)x

α̂i
A = pix̄

α̂i
B + (1− pi)x

α̂i
B .

In the Holt-Laury data elicited from the experiment, we observe the number of safe (A)
choices that each subject made (denoted by nA). We now describe how we estimate α(nA),
the risk parameter as a function of the number of safe choices.

Figure D.1: Distribution of the Number of Safe Choices (Lottery A) in the Holt-Laury Task

If we observe that a subject switched from the safe option A to the risky option B at the ith
choice (or equivalently, with nA = i), then we infer that the subject is indifferent between

26The payoffs we used in the lottery are twice the payoffs used in the low stakes treatment of Holt and
Laury (2002). Given the CRRA assumption, the two sets of payoffs should lead to the same estimation of α
given the same switch point.
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Table D.1: Estimation of the CRRA Parameter from the Holt-Laury Task
Choice i nA pi α̂i α(nA)

0 2.7128
1 1 0.1 2.7128 2.3298
2 2 0.2 1.9468 1.7167
3 3 0.3 1.4866 1.3146
4 4 0.4 1.1426 0.9981
5 5 0.5 0.8536 0.7211
6 6 0.6 0.5885 0.4562
7 7 0.7 0.3288 0.1766
8 8 0.8 0.0294 −0.1695
9 9 0.9 −0.3684 −0.3684
10 10 1 −∞ −0.3684

Notes. We assume subjects have CRRA utility functions, u(x) = xα/α.

option A and option B at a choice with a p value lying between pi and pi+1, and his/her
risk parameter lies on the interval [α̂i+1, α̂i]. We estimate the subject’s risk parameter as
the midpoint of this interval.27 For instance, if a subject chooses option A for the first four
choices (nA = 4) and switches to option B beginning with choice 5, that implies the subject
is indifferent between option A and option B when p takes a value between 0.4 and 0.5.
Therefore, the risk parameter of this subject lies between α̂5 and α̂4, i.e., in the interval
(0.8536, 1.1426). We estimate this subject’s risk parameter as 0.9981, the midpoint between
α̂4 and α̂5.

If a subject always chose the risky option B, then the interval for the estimate of his/her
risk parameter is open and we use the lower bound of 2.7128. If the subject chooses the safe
option A nine or ten times, then the interval for the estimate of his/her risk parameter is
again open, and we use the upper bound of −0.3684.

Table D.1 provides a summary of α(nA), the estimated value of the risk parameter as a
function of the number of safe choices, nA, made by individual subjects. Table D.1 suggests
that risk-neutral subjects (those whose true α = 1) would switch from option A to option B
after the fourth choice (nA = 4), and risk-averse (loving) agents would switch later (earlier).
Out of the 233 participants, 31, or 13%, (who chose 4 safe choices) can be classified as risk-
neutral, 177, or 76%, (who chose more than 4 safe choices) are classified as risk-averse, and
25, or 11%, (who chose 0–3 safe choices) are classified as risk-loving. 28

27Our robustness checks show that the estimation of the market FV does not change significantly when
the estimated risk parameter takes on values other than the midpoint of the interval (e.g., either endpoint).

28Also consistent with previous findings in the literature, around 27% of subjects had multiple switch
points in the Holt-Laury task. For those cases, we count the number of times that each individual chose
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E Dynamic Risk-Adjusted FV for Finitely Lived Assets

and Indefinitely Lived Assets with Buyout

In the main text, we calculate the dynamic risk-adjusted FV for our treatment A, which is
indefinitely lived without a buyout value. In this appendix, we illustrate how to calculate
the risk-adjusted dynamic FV for two other types of markets. The first is the widely studied
market with a fixed, finite horizon, as in Smith et al. (1988). The second is the market with
an indefinite horizon with buyout/terminal value (Kose (2015) has this type of treatment).29

Finitely lived asset, as in Smith et al. (1988)

To be more concrete, we look at the following configuration in Smith et al. (1988). The
asset lasts for 10 periods, and in each period, the dividend follows an iid distribution with
four possible realizations, xi ∈ {0, 4, 8, 20}, with equal probabilities. The expected dividend
is 8 and, thus, the standard FV of the asset equals 8× the number of remaining periods.

Given this setup, we compare the standard (risk-neutral) FV with the dynamic risk-adjusted
FV. The latter is computed as follows. First, in the last period, T , the FV is the certainty
equivalence (CE) of the lottery associated with one round of dividend payments:

VT =

{
(1/4)

4∑
i=1

xα
i

}1/α

.

We can then calculate recursively the FV in the second last period, T − 1, VT−1, where we
assume the payments in different periods are perfect substitutes, as in our paper:

VT−1 =

{
(1/4)

4∑
i=1

(xi + VT )
α

}1/α

.

The dynamic risk-adjusted FV in other periods can be calculated similarly. In table E.1,
we list the imputed risk-adjusted dynamic FV for T = 10 and α = 0.63, the mean of the
estimated risk parameters of subjects who participated in our experiment.

From this example, we can see that for a finitely lived asset, the dynamic risk-adjusted FV
is very close to the standard FV, especially when multiple rounds of trading still remain. By
contrast, in our setting with random termination and no buyout value, subjects always view
the asset as today’s dividend payment plus an uncertain future where the asset may become

option A and we use that as an approximation for nA, as if the subject had chosen Option A for the first
nA choices and Option B for the remaining choices.

29There are also settings where the horizon is finite and the asset has a buyout value (e.g., Kirchler et al.
(2012); Kose (2015)); the application is a straightforward combination of our analysis here.
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Table E.1: Dynamic FV of Finitely Lived Assets, as in Smith et al. (1988)
t 1 2 3 4 5 6 7 8 9 10
V2 75.6 67.8 59.9 52.1 44.3 36.5 28.8 21.1 13.6 6.3
V0 80 72 64 56 48 40 32 24 16 8
V2/V0 0.95 0.94 0.94 0.93 0.93 0.91 0.90 0.88 0.85 0.78
Notes : V0 is the standard (risk-neutral) FV, and V2 is the dynamic risk-adjusted FV.

totally worthless and the risk-adjusted FV can be substantially lower than the standard FV,
as shown in Table 9.

Indefinitely lived assets with a terminal value

Now we calculate the dynamic risk-adjusted FV for an indefinitely lived asset with a terminal
value, which is studied by Kose (2015). Let B be the buyout value. The holding value of
the asset can be calculated from the following equation:

V = d+ {δV α + (1− δ)Bα}1/α .

To see how the dynamic risk-adjusted FV is affected by the buyout value, we change B and
d simultaneously such that the standard FV is constant. As a concrete example, we set
δ = 0.9 and aim at RN-FV=50, as in our treatment A. As in the previous exercise, we use
α = 0.63. Figure E.1 below shows the dynamic risk-adjusted FV as B increases from 0 to 50
(and as d decreases from 5 to 0 to keep RN-FV the same). The dashed line is the standard
FV, and the solid line is the dynamic risk-adjusted FV. Our treatment A corresponds to
B = 0, and Kose’s (2015) treatment 1 corresponds to B = 50. As shown in Figure E.1, as
the buyout value increases, the dynamic risk-adjusted FV (V2) gets closer and closer to the
standard FV (V0). Kose (2015) shows that in his treatment 1, the traded price is very close
to the standard FV, which coincides with the dynamic risk-adjusted FV.
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Figure E.1: Dynamic Risk-Adjusted FV with Buyout Value

F Probability Weighting

The analysis in Section 4 suggests that the dynamic risk-adjusted FV, V2, greatly improves
upon the static risk-adjusted FV, V1, in terms of capturing the low traded price in the
baseline indefinite-horizon asset market (treatment A). However, there is still a noticeable
gap between the estimated market FV and the actual market price. We, therefore, continue
to search for additional/alternative explanations for the final market 3 traded prices. A
second factor that we explore is the possibility from cumulative prospect theory (Tversky and
Kahneman (1992)) that subjects employ probability weighting in evaluating the lotteries that
characterize the asset.30 In treatment A, the market ends and the asset becomes worthless
with a small probability, 0.1. It may be that subjects overweight this small probability,
thereby lowering their valuation of the asset.

To isolate the role of probability weighting, we will calculate the market FV, assuming risk
neutrality. We start with a short description about probability weighting. We then describe
how to apply probability weighting to our experimental treatments. The estimation of risk-
neutral FV under probability weighting follows a two-step procedure. The first step is to
transform the probabilities of the lottery outcomes involved in our treatments. In the second
step, we use the transformed probabilities to calculate the expected value of the lottery. Note
that under the assumption of risk neutrality, the expected value of the lottery is also the
market FV. Note also that while estimating the probability weighted FV, similar to the

30Probability weighting, together with loss aversion and reference dependence, are fundamental principles
of prospect theory, an alternative to the expected utility theory. Given that it is not clear what the appro-
priate reference point is in the context of the market game that we study, we focus only on the probability
weighting aspect of prospect theory.
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consideration of risk attitudes, it is important to distinguish static versus dynamic FVs. For
treatment A, we will estimate both; for the other two treatments, it is more appropriate to
consider the static FV.

F.1 A Primer on Probability Weighting

We first provide a short description of probability weighting. Suppose agents face a risky
prospect with n outcomes x1 < x2 < xi < ... < xn, with probability p1, p2, ..., pi, ..., pn.
Probability weighting transforms the original probability pi to wi through

πi = w

(
n∑

j=i

pj

)
− w

(
n∑

j=i+1

pj

)
= w (qi)− w (qt+1) ,

and one often-used functional form for w(·) is

w(q) =
qγ

[qγ + (1− q)γ]1/γ
.

Note the following:

1. The function w(·) is applied to the cumulative density function, where qi =
n∑

j=i

pj is

the cumulative probability of getting an outcome weakly better than xi, i.e., Pr(x ≥
xi), and qi+1 =

n∑
j=i+1

pj is the the probability of outcomes strictly better than xi.

The transformed density probability πi is derived from the transformed cumulative
probabilities.

2. The transformed probabilities πi satisfy
n∑

i=1

πi = 1.

3. We say event i is overweighted if πi > pi and underweighted if πi < pi. Note that since

πi

pi
=

w (qi)− w (qi+1)

pi
,

whether event i is over or underweighted depends on the slope of the line that connects
the two points (qi, w(qi)) and (qi+1, w(qi+1)). If there are many events, then the slope
of this line can be approximated by the slope of the function w at point qi. Note
that qi is cumulative probability counting events better than event i (not counting
downward as in convention). Roughly speaking, event i is overweighted if w′(qi) > 1

and underweighted if w′(qi) < 1.
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F.2 Transform Probabilities of Lottery Outcomes

To transform the probabilities of the lottery outcome, we set γ = 0.71, following Wu and
Gonzalez (1996).31

In treatment A, at the end of each period after the dividend payment of 5 points, a random
draw determines whether the market will continue. With probability δ = 0.9, the market
continues, and with probability 1 − δ = 0.1, the market ends. So from a subject’s point of
view, there are two outcomes; the bad outcome has a small probability of 0.1.

outcome i prob (pi)

1: market ends (bad) p1 = 1− δ = 0.1

2: market continues (good) p2 = δ = 0.9

We can calculate transformed probabilities πi as follows:

π1 = w (1)− w (0.9) = 1− w(0.9) > 0.1

π2 = w(0.9)− w(0) = w(0.9) < 0.1,

so that the bad outcome is overweighted and the good outcome is underweighted.

In treatments B and C, subjects trade the asset first (for a fixed 10 periods in treatment
B and a random number of periods in treatment C) and then learn about the dividend
realizations of the underlying asset in a separate stage. In the dividend realization stage,
subjects get one dividend for sure, after that, there is a random draw. With probability 0.1,
the dividend payment stops, and with probability 0.9, the dividend payment continues. The
asset can be viewed as the following lottery: outcome i (i.e., i dividends) with probability
pi = δi−1(1− δ) for i = 1, 2, ...∞.

outcome i

d

2d

...
id

...

prob (pi)
1− δ = 0.1

δ(1− δ) = 0.09

...
δt−1(1− δ)

...

Define D as the random variable of accumulated dividends. According to the probability

31As we did not elicit subjects’ probability weighting parameters, we rely on values suggested in the
literature. Other values of γ suggested are 0.56 in Camerer and Ho (1994) and 0.61 in Tversky and Kahneman
(1992). We use the highest value of γ among the three, 0.71, as it involves the least distortion of the objective
probabilities.
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weighting function, the weighted probability of receiving i dividends is

πi = π(id)

= w(Pr(D ≥ id))− w(Pr(D > id))

= w(qi)− w(qi+1)

= w(δi−1)− w(δi),

for example,

π1 = π(d) = w (1)− w (0.9) = 1− w(0.9),

π2 = w(0.9)− w(0.81).

Note that π(d) for treatments B and C is the same as π(bad) in treatment A.

As mentioned earlier, for a prospect involving many outcomes, whether event i is over or
under weighted can be approximated by whether w′(qi) > 1. In figure F.1, we draw the
function w(q) using γ = 0.71 and the 450 line (which corresponds to γ = 1 and leads to the
objective probabilities per se). We solve w′(q) = 1, which has two solutions, q= 0.11 and
q̄ = 0.835. Roughly speaking, events with qi lying within the interval [q,q̄] are underweighted,
while those with qi lying outside the interval are overweighted. In the case of treatments B
and C, extremely good and bad outcomes are overweighted, while the outcomes in the middle
are underweighted. With γ = 0.71, we know d and 2d are overweighted, and events with
more than 22 dividends are also overweighted. The rest are underweighted. The solution 22

is acquired from solving the equation qi = δi−1 =q or ı̄ =
log q

log δ
+ 1.

Figure F.2 shows the effect of probability weighting using γ = 0.71, plotting the transformed
probabilities π against the original probabilities (the dotted line is the 450 line). For treat-
ment A, after probability weighting, the bad outcome is overweighted and the good outcome
is underweighted. For treatments B and C, the worst two outcomes and very good outcomes
are overweighted and the rest are underweighted.

F.3 Estimate the Fundamental Value

In the case of the static lottery, the risk-neutral, probability-weighted market FV is the
expected value of dividend payments using the weighted probabilities, π(td) = w(δt−1) −
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Figure F.1: Transformed Probabilities

Figure F.2: Transformed Probabilities in Treatments

w(δt), in place of the original probabilities, (1− δ)δt−1:

V PW
1 =

∞∑
t=1

[w(δt−1)− w(δt)](td) = 57.3.

47



The probability-weighted dynamic FV is given by

V PW
2 =

d

1− π2

= 23.6.

Table F.1: p-values from Wilcoxon Signed Rank Tests: Average Market 3 Prices against
Risk-Neutral Probability-Weighted Market FVs
Treatment V PW

1 V PW
2

A 0.008 0.742
B 0.109
C 0.844

No. of Obs. 8 8
Notes. V PW

1 is the risk-neutral, probability-weighted static FV, and V PW
2 is the risk-neutral,

probability-weighted dynamic FV.

Table F.1 lists the p-value of the signed rank tests between the session average traded price
and the (risk-neutral) probability-weighted FV. The probability-weighted FV seems to cap-
ture the traded price in all three treatments reasonably well. For treatment A, the dynamic
probability-weighted FV is 23.6, which is only slightly above the median of the session av-
erage price in market 3, 20. The signed rank test suggests that the average traded prices
in market 3 of treatment A are not significantly different from the probability-weighted
dynamic FV. The p-value for the test between probability-weighted dynamic FV and the
average market 3 price in treatment A is 0.742. For treatments B and C, the probability-
weighted static FV is 57.3, which slightly overshoots the median of the session average traded
price in market 3 (50.6 in treatment B and 48.6 in treatment C). The p-value for the tests
between the probability-weighted static FV and the average market price is 0.109 and 0.844,
respectively.32 We summarize the analysis in this section as the finding below.

Finding F.1 Market Price and Risk-Neutral, Probability-Weighted FV.

1. For treatment A, the traded price in market 3 is not significantly different from the
probability-weighted dynamic FV.

2. For treatments B and C, the traded prices in market 3 of treatment B and C are not
significantly different from the standard FV or the static probability-weighted FV.

Similar to the exercise with the risk-adjusted FV in section 4, we show that the probability-
weighted dynamic FV is also consistent with the convergent traded prices in asset markets,
similar to the setup in Smith et al. (1988). For example, in one configuration used in Smith

32The p−values in table F.1 do not correct for multiple hypotheses. Doing so will not change the results.
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et al. (1988), the asset lasts for a finite number of periods, and in each period, the dividend
follows an iid distribution with four possible outcomes {0 4 8 20} with equal probabilities.
The standard FV is = 8× the number of remaining periods. The weighted probabilities
assuming γ = 0.71 as above are {0.3611, 0.1783, 0.1677, 0.2929}. The probability-weighted
dynamic FV is 7.9122× the number of remaining periods, which is very close to (98.9% of)
the standard FV.
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