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Abstract 
This paper brings novel insights into group coordination and price dynamics in complex 
environments. We implement an overlapping-generation model in the lab where output 
dynamics are given by the well-known chaotic quadratic map. This model structure allows us 
to study previously unexplored parameter regions where perfect-foresight dynamics exhibit 
chaotic dynamics. This paper highlights three key findings. First, the price converges to the 
simplest equilibria, namely either the monetary steady state or the two-cycle in all markets. 
Second, we document a novel and intriguing finding: a non-monotonicity of the behavior 
when complexity increases. Convergence to the two-cycle occurs for the intermediate 
parameter range, while the extreme scenarios of both a simple, stable two-cycle and highly 
nonlinear dynamics (chaos) lead to coordination on the steady state in the lab. All indicators 
of coordination and convergence significantly exhibit this non-monotonic relationship in the 
learning-to-forecast experiments. This finding also persists in the learning-to-optimize 
design. Finally, convergence in the learning-to-optimize experiment is more challenging to 
achieve: coordination on the two-cycle is never observed, although the two-cycle Pareto 
dominates the steady state. 

Topics: Business fluctuations and cycles; Economic models 
JEL codes: C62, C68, C91, C92, E13, E70, G12, G41 

Résumé 
Dans cette étude, nous apportons un nouvel éclairage sur la coordination de groupes et la 
dynamique des prix dans des environnements complexes. Nous exécutons en laboratoire un 
modèle à générations imbriquées, où la dynamique de la production est déterminée par une 
application quadratique chaotique qui a déjà fait ses preuves. La structure de ce modèle nous 
permet d’étudier des régions de paramètres auparavant inexplorées dans lesquelles la 
dynamique des prévisions parfaites présente un comportement chaotique. Nous tirons trois 
importantes conclusions de cette étude. Tout d’abord, les prix convergent vers l’équilibre le 
plus simple, c’est-à-dire soit un état stationnaire sur le plan monétaire, soit un cycle de deux 
périodes pour l’ensemble des marchés. Ensuite, nous mettons en évidence un nouvel effet 
surprenant : la non-monotonie de la dynamique quand la complexité augmente. La 
convergence vers le cycle de deux périodes se produit dans la région de paramètres 
intermédiaire, tandis que les scénarios extrêmes associés tant à un cycle stable – et simple – 
de deux périodes qu’à une dynamique fortement non linéaire (chaos) aboutissent à une 
coordination en état stationnaire dans notre étude en laboratoire. Tous les indicateurs de 
coordination et de convergence présentent cette relation non monotone de manière très 
nette dans les expériences dans lesquelles les sujets apprennent à former des prévisions. 
Nous obtenons la même chose lorsque les sujets apprennent à prendre des décisions 
optimales. Enfin, la convergence des prix se vérifie plus difficilement dans les expériences 
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axées sur l’optimisation, puisqu’aucune coordination n’a été observée pour le cycle de deux 
périodes, et ce, même si celui-ci domine l’état stationnaire au sens de Pareto. 

Sujets : Cycles et fluctuations économiques; Modèles économiques  
Codes JEL : C62, C68, C91, C92, E13, E70, G12, G41 



1 Introduction

This paper provides new evidence of coordination of human subjects in a lab environ-

ment with previously unexplored types of complex dynamics. We find non-monotonic

equilibrium selection as a function of the underlying complexity of the environment.

Indeterminacy and equilibrium selection are difficult but important questions in macroe-

conomics and finance that have both modeling and practical implications. Pinning down

a unique equilibrium is an essential prerequisite for using a model as a framework for

policy analysis or for estimating it against empirical data.

The question of equilibrium selection can be approached theoretically and empirically.

The theory is useful for defining the set of equilibria in a model, but theoretical selection

criteria—typically learning mechanisms—are usually not selective enough to establish

their empirical relevance. In particular, the precise specification of the learning rule

(used by the agents) already restricts which equilibria may be achieved. In other words,

any equilibrium can be reached in theory by designing an appropriate learning function.

What type of learning rules economic agents use is clearly an empirical question. Hence,

the theoretical approach has limits for understanding which equilibria would prevail in

the real world. Additionally, most learning schemes used in the theoretical literature are

designed under the representative-agent paradigm. And hence, these learning rules do

not allow for modeling nor for observing interactions between heterogeneous agents and

the possible coordination outcomes.1

Laboratory experiments are a research method that has proven beneficial to empir-

ically tackle the problem of equilibrium selection.2 This method conveniently offers a
1Evolutionary learning models, inspired by the concept of natural section, have been implemented

based on genetic algorithms (Arifovic, 1994, 1995, 1998; Arifovic and Ledyard, 2018; Bullard and Duffy,
1995, 1998) or probability choice models (Brock and Hommes, 1997) and rely on heterogeneity. Adaptive
learning, the most common form of learning in macroeconomic models, typically involves a representative
agent (Evans, 1985; Evans and Honkapohja, 2001). The idea that empirically relevant equilibria need
to be a stable outcome of an adaptive learning process can be traced back to the contributions of
DeCanio (1979); Lucas Jr (1978, 1986). Note that this form of bounded rationality does not deviate
from rationality in the broad sense: agents are just assumed to lack the necessary information to form
rational expectations. See Sargent et al. (1993). See also Evans and Honkapohja (2009) for a survey of
learning in the field.

2See the pioneer contributions of Aliprantis and Plott (1992); Arifovic (1995); Heemeijer et al. (2009b);
Lim et al. (1994); Marimon et al. (1993); Marimon and Sunder (1993, 1994, 1995). These OLG exper-
iments may be considered the foundations of the field of experimental macroeconomics. Duffy (2016)
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controlled environment where information and fundamentals of the economy are set by

the researchers, but the decisions and resulting economic behaviors are left to human

subjects. In group experiments, in particular, one may investigate the coordination of a

group of interacting and heterogeneous participants and hence equilibrium selection.

Arifovic et al. (2019) were the first to explore chaotic dynamics in general equilibrium

models in the laboratory, and they pointed at the prevalence of simple equilibria, even

when many more equilibria co-exist, including high-periodic cycles along with chaotic

dynamics. Subjects learn to coordinate but always do so on steady states or two-cycles.

This result holds in so-called learning-to-forecast experiments (LtFEs) and learning-to-

optimize experiments (LtOEs). In LtFEs, subjects’ beliefs (e.g., their expectations about

future prices) are elicited, while their optimal decisions (conditional on their beliefs) are

computerized. In contrast, subjects are asked to make these decisions in the LtOEs.

Importantly, Arifovic et al. (2019) find that as complexity increases, coordination on

two-cycles becomes increasingly likely, while coordination on the steady state disappears.

This paper advances this line of research by exploring a wider range of complex envi-

ronments. In particular, we explore behaviors in parameter regions where the underlying

model exhibits chaotic dynamics once the period-three cycle has lost stability in the

backward perfect-foresight dynamics. To do so, we use an OLG model where produc-

tion evolves according to a widely studied quadratic map. This allows us to implement

more complex and non-linear environments than in Arifovic et al. (2019)—by considering

higher values of the complexity parameter.

This feature enables us to establish our main result: the relationship between the

complexity of the chosen equilibrium in the lab and the model parameter that tunes

the complexity of the environment is non-monotonic. The coordination on two-cycles

only occurs in the LtFE for the intermediate range of the parameter values. In contrast,

coordination on the steady state is systematic in the LtOE and happens for both low

and high values of the complexity parameter in the LtFE. For low parameter values, the

model dynamics are represented by the simple steady state. For high parameter values,

provides a comprehensive survey of this literature.
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the model dynamics exhibit the other extreme—chaotic dynamics after the period-three

cycle has lost stability.

Interestingly, indicators of aggregate price convergence, individual coordination of

forecasts, and production decisions or earnings efficiency also exhibit non-monotonic pat-

terns. For the intermediary region of the model parameter, subjects have a harder time

making sound decisions and coordinating on an equilibrium compared to simpler (i.e., low

parameter values) or highly complex (i.e., large parameter values) environments. These

non-monotonic behaviors are a robust finding of our study: they hold both in the LtF

and LtO versions of our experiment. Furthermore, it holds even though our design makes

the two-cycle Pareto dominant—as opposed to the design in Arifovic et al. (2019) where

the two-cycle and the steady state yield the same payoff by design.3

We connect this non-monotonicity to subjects’ decision rules, which we estimate us-

ing the time series of individual choices. We find that participants’ chosen strategies are

complexity dependent in a non-monotonic way. For the intermediary region of the model

parameter, where the two-cycle may emerge in the LtFE and coordination in the lab was

harder in both the LtFE and LtOE designs, significantly more subjects use simple adap-

tive decision rules. In contrast, subjects used more sophisticated decision rules in simple

(i.e., low model parameter values) and highly complex environments (i.e., high model

parameter values). This finding we observe in the LtF and also in the LtO experiment.

The paper is organized as follows. Section 2 presents the theoretical analysis of the

OLG model and describes the design of the laboratory experiment and its implementation.

Section 3 presents our experimental results, and Section 4 concludes.

2 The experimental designs

First, this section presents the underlying OLG model of the experiment along with the-

oretical predictions under various expectation assumptions (i.e., learning rules). Second,

this section discusses the design of the LtFEs and the LtOEs and the lab implementation.
3In the LtOE of Arifovic et al. (2019), subjects were jointly tasked with and rewarded for forecasting

future returns.
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2.1 The OLG model

We use the overlapping generation (OLG) model of Araujo and Maldonado (2000) because

it conveniently yields production to evolve according to the widely studied quadratic

map. In this model, the complexity of the dynamics increases with the value of a single

parameter in the utility function. The offer curve is symmetric, which, we conjecture,

may make coordination on two-cycles more difficult and coordination on higher-order

cycles more likely—compared to the OLG model of Grandmont (1985) used in Arifovic

et al. (2019), where the offer curve is asymmetric.

Individuals live for two periods in the model of Araujo and Maldonado (2000). They

work in the first period when they are young and consume in the second period when they

are old. For the experimental implementation, we assume that each generation consists of

a finite number N ≥ 1 of agents, indexed by i. Agent i derives utility from consumption

when old, denoted by ci,t+1, and suffers a disutility from labor when young, which linearly

produces goods, denoted by yi,t. These goods are sold from the young generation to the

old generation at market price Pt. Households’ two-period lifetime utility function is

given by

U (ci,t, yi,t) = λ ci,t+1 −
λ

2
c2i,t+1 − yi,t, (2.1)

where λ > 0 is the parameter of interest—tuning the trade-off between consumption and

leisure when young. Each young agent chooses how many hours to work when young to

maximize consumption in old age, subject to their budget constraint

P e
i,t+1ci,t+1 ≤ Ptyi,t, (2.2)

where the superscript e denotes (possibly boundedly rational) expectations. Market clear-

ing yields
N∑
i=1

yi,t ≡ Yt =
M

Pt

, (2.3)

where M > 0 denotes the constant quantity of money available in the economy. Through-

out the paper, capitalized letters denote aggregate variables.
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As the detailed derivations in Appendix A show, at the symmetric perfect-foresight

equilibrium, the first-order condition, expressed in terms of individual output, reads as

λyt+1(1− yt+1) = yt, (2.4)

with yi,t = yt =
Yt

N
, ∀i, t. Equation (2.4) corresponds to the quadratic map where higher

values of λ generate increasingly complex dynamics.

The feedback of the forecasts is complex and non-monotonic. The price depends

positively on price expectations if the price expectation is larger than 2M . If this condition

does not hold, then the feedback is negative (see, again, Appendix A).

2.2 The experimental setting

As described in Section 2.1, individuals of the old generation take no decisions. Therefore,

we implement a single-population design, where subjects act on behalf of an individual

of the young generation in each period.4 We also use a between-subject design, that is,

each subject is randomly assigned to a single treatment and may participate only once

in the experiment. Online Appendix B and C present the instructions for the LtFE and

LtOE, respectively.

In each session, subjects are randomized into groups of seven. Each group represents

one experimental economy (i.e., market). Participants are told that they are acting as

consultants to an investment fund. The participants’ decisions correspond to the decision

of an individual of the young generation in the model presented in Section 2.1. Due to

our focus on the long-run dynamics and convergence outcomes, the experiment lasts for

100 rounds, which is common knowledge.

The amount of fiat money in the OLG economy (M) is set to rule out the autarky

solution where the asset price goes to infinity and the young generation chooses not to

work (see Appendix A). We use M = 1.5 and multiply the prices and forecasts displayed
4Arifovic et al. (2019) show that results on equilibrium selection are robust to more costly alterna-

tives that require more participants. These OLG design alternatives include (i) participants alternating
between the young and the old generation, and (ii) participants being randomly selected for entering the
market (and being assigned to the young generation).
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to the subjects by 50 to ensure intuitive values. For the same reasons, savings decisions

are mapped into a 0− 100 range. In what follows, we present both experimental settings

in parallel because they do not differ greatly.

Participants’ role In the LtFE, their role is described in terms of professional forecast-

ers, while the instructions speak about professional saving advisors in the LtOE design.5

At the beginning of any period t ∈ {1, ..., 100}, the LtFE participants are tasked with

predicting the next period’s asset price, while the LtOE participants face an additional

task. In the LtOE, participants first provide a forecast of the next period’s asset return,

and second, they need to make the savings decision. The realized return between period

t and t+ 1 is calculated as follows:

Rt =
Pt

Pt+1

. (2.5)

The return forecast helps subjects pick a savings decision based on their savings payoff

table (see Appendix Figure A2) and does not impact the aggregate outcome other than

by impacting these savings decisions. Note that forecasting the return and not the next

period’s price is necessary to make savings decisions because the current market-clearing

price may not yet be known before all savings decisions are submitted.

Sequence of events Once participants have completed their tasks, the aggregate sav-

ings Yt is computed as follows. In the LtFE, conditional on the elicited individual forecasts

P e
i,t+1, we combine the first-order condition Eq. (A.3) and individual savings yi,t per Eq.

(A.7) and calculate aggregate savings Yt as per Eq. (A.6). In the LtOE, elicited individ-

ual savings decisions yi,t are directly summed up to Yt =
∑N

i=1 yi,t. The market-clearing

price is given by Pt = M
Yt

. From period 2 on, period-t information together with the

savings decisions and the market-clearing price in period t−1 gives the consumption and

resulting utility level of each member of the old generation in period t and the realized
5We frame the decision yi,t in terms of savings that may more easily relate to asset returns than a

production (output) decision. However, we clarify in the instructions that "savings" and "output" are
used interchangeably.
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return between period t− 1 and t.

Payoff Forecasts, whether price or return forecasts, are rewarded based on their ac-

curacy. Savings decisions are rewarded on the basis of their corresponding two-period

utility level.

Subjects accumulate forecasting points in each period of the experiment, either for

their price forecasts in the LtFE or for their return forecast in the LtOE. We use quadratic

payoff functions, where higher forecast errors lead to lower earnings. Specifically, price

forecasts yield the following amount of forecasting points:

Price forecast payofft = max

(
0, 1300− 1300

49
(P e

i,t+1 − Pt+1)
2

)
, (2.6)

where forecast errors larger than 7 do not give rise to any points, and return forecasts are

paid according to:

Return forecast payofft = max

(
0, 1300− 1300

4
(Re

i,t+1 −Rt+1)
2

)
, (2.7)

where forecast errors higher than two yield zero points.6

Note that the forecasts are two-period-ahead. Hence, at the beginning of each period

t, subjects have to forecast the price (or return) in the next period without yet knowing

the price in the current period t. It follows that subjects discover their forecast error

and the corresponding payoff for any forecast in period t at the end of period t + 1.

This time structure is made very clear in the instructions, and we check for participants’

comprehension in the pre-experiment quiz (Online Appendix D).

Subjects are given the explicit formula (2.6) and (2.7) along with a payoff table that

describes the relationship between forecast errors and possible earnings; see Online Ap-

pendix B and C.

As for the savings payoff in the LtOE, savings decisions map into utility points via a
6The exchange rate from the experimental points to euros is 0.25 euro for 1300 points in the LtF

sessions (0.3 euro for 1300 points in the LtF pilot sessions) and 0.2 euro for 800 points in the LtO
sessions.
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monotonic transformation of the utility function u in Eq. (2.1):

U∗ = 300× (max(u, 0) + 3). (2.8)

Such a transformation ensures that the savings payoff range is similar to the one in the

LtFE.

Finally, in the LtOE, we use the following monotonic transformation of the payoff

such that the two-cycle Pareto dominates the steady state:

1300 ∗
(

U∗

1300

)6.5

. (2.9)

This feature is largely exploratory in light of the difficulty of coordination on a cycle as

discovered by Arifovic et al. (2019), where the two-cycles and the steady state yield the

same payoff by design. We hypothesize that Pareto dominance may help favor coordina-

tion on a two-cycle.

Information set and graphical user interface (GUI) Participants know only the

qualitative information about the experimental economy, not the exact equations, as is

standard in the related literature.

In period 1, participants enter their decisions without prior price information. The

instructions only mention that prices in similar economies typically range between 10 and

100. We set the price of period 0 to 300. This price is unknown to the subjects but is

used to compute the initial (period 0) return. This calibration ensures that the initial

level of the return is not too close to 1—which could artificially lock in the experiment

towards the steady-state equilibrium.

In any subsequent period t, participants observe the past prices, their own past de-

cisions, their past earnings, and their cumulative payoff up until period t − 1. This

information is shown on the GUI in table form and by a graph; see Figures 2.1 and 2.2

for the LtFE and the LtOE, respectively. It is important to note that subjects do not see

the predictions and payoffs of other participants. However, they observe the aggregate

8



savings decision, which is equivalent, but more intuitive, as disclosing the quantity of

money M in the economy.

Figure 2.1: Decision screen in the LtF experiment

Figure 2.2: Decision screen in the LtO experiment
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2.3 Experimental treatments

The model parameter λ in the utility function (2.1) is the treatment variable. Increasing

λ gives rise to increasingly complex economic dynamics in the model, as illustrated by

the bifurcation diagram in Figure 2.3 under backward perfect foresight.

Figure 2.3: Bifurcation diagram of the price map

Notes: Bifurcation diagram under backward perfect foresight dynamics with P e
t+1 = Pt−1, p0 = 1.55,M =

1.5. Dashed (red) vertical lines denote the numerical values of the treatment parameter λ.

We implement five treatments for the LtFE. We choose the treatments based on the

bifurcation diagram of the widely studied quadratic map. Table 2.1 reports for each

treatment the value of λ—corresponding to the red dotted vertical lines in Figure 2.3.

We choose these treatments for the diversity of outcomes they involve and the underlying

complexity of the equilibria in the backward perfect foresight dynamics. In particular,

we are interested in exploring parameter regions of high complexity beyond the dynamics

studied in Arifovic et al. (2019). Because of this exploratory dimension, we do not bind

ourselves to explicit hypotheses. Intuitively, we expect that achieving coordination is

more challenging for higher values of λ, for which the dynamics become chaotic.

Specifically, we choose a treatment with λ = 3.3 which yields a stable two-cycle after

a period-doubling bifurcation at λ = 3; one treatment with λ = 3.5 after another period-

10



Design LtFE LtO
Dynamics under backward foresight # obs λ-value
Convergence to the two-cycle 4 - 3.3
Convergence to the four-cycle 4 4 3.5
Chaotic behavior (without existence of the three-cycle) 4 4 3.8
Convergence to the three-cycle 4 4 3.83
Chaotic behavior (with existence of the three-cycle) 4 4 3.9

Table 2.1: Experimental treatments and model predictions

doubling bifurcation at λ = 3.449 that results in a stable four-cycle; one treatment with

λ = 3.8 that involves chaotic behavior (for 3.56995 < λ < 3.8283); one treatment with

λ = 3.83 that gives rise to a stable three-cycle after a tangent bifurcation of the third

iterate at λ = 3.8283. And finally one treatment with λ = 3.9, after which the three-cycle

has lost stability and chaotic behavior results.7

We implement four treatments for the LtOE, with λ-values equal to 3.5, 3.8, 3.83, and

3.9. We focus on these four treatments because we observed interesting price dynamics

in the corresponding intermediate λ-range in the LtFE.

Note that the above-discussed equilibria are obtained in the backward perfect foresight

dynamics, where P e
t+1 = Pt−1, which also corresponds to the criteria of strong E-stability

(Evans and Honkapohja, 2001).8 Figure 2.4 illustrates the convergence to the two-cycle

for λ = 3.3 (Fig. 2.4a), to the four-cycle for λ = 3.5 (Fig. 2.4b), to chaotic behavior

for λ = 3.8 (Fig. 2.4c) and λ = 3.9 (Fig. 2.4d), and convergence to the three-cycle for

λ = 3.83 (Fig. 2.4e).

We defer the details of the stability (and convergence) results under various alternative

expectation schemes to Appendix Table A1. To help the reader develop intuition on

what type of convergence to expect in the experiment, we next present some illustrative

simulations using different expectation schemes.
7Arifovic et al. (2019) did not conduct a treatment in this highly chaotic region in the context of

Grandmont (1985)’s OLG model (which would correspond to a large value of the risk aversion of the old
generation) because in this model, the price amplitude then becomes arbitrarily large, which makes it
impractical for the purpose of lab implementation. By contrast, the model used in this paper makes the
exploration of this parameter region in the lab more doable.

8Within the context of our deterministic model, the classical definition of rational expectations (P e
t+1 =

Pt+1) correspond to forward perfect foresight. The equilibria that are stable in the backward perfect
foresight dynamics are unstable in the forward dynamics, and the opposite is also true (Grandmont,
1985). In particular, this implies that for λ = 3.83, the steady state and all cycles except three-cycles
are stable, while in the chaotic region with λ = 3.9, all are stable.
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The less stringent criterion of weak E-stability is worth discussing here because it has

been found to be a sufficient, but not a necessary, condition for predicting coordination

in the experiment of Arifovic et al. (2019). Under this criterion, convergence towards a

particular equilibrium occurs if and only if agents use a learning rule that involves the

number of lags consistent with the periodicity of this equilibrium. Within the context of

our model, the monetary steady state is weakly stable for all λ-values, and the two-cycle

is stable for all treatments.

(a) λ = 3.3 (b) λ = 3.5

(c) λ = 3.8 (d) λ = 3.83

(e) λ = 3.9
Notes: Model simulations for each treatment (i.e., model parameter λ) under the assumption
of backward perfect foresight: P e

t+1 = Pt−1. The thick lines illustrates the simulated price (in
blue) and the dashed red line indicates the steady state.

Figure 2.4: Dynamics under backward perfect foresight: P e
t+1 = Pt−1

12



(a) λ = 3.3 (b) λ = 3.5

(c) λ = 3.8 (d) λ = 3.83

(e) λ = 3.9
Notes: Model simulations for each treatment (i.e., model parameter λ) under the assumption
of adaptive expectations: P e

t+1 = 0.3P e
t−1 + 0.7Pt−1. The thick lines illustrate the simulated

price (in blue) and the dashed red line indicates the steady state.

Figure 2.5: Dynamics under adaptive expectations: P e
t+1 = 0.3P e

t−1 + 0.7Pt−1

We focus on adaptive expectations of the form P e
t+1 = (1 − β)P e

t−1 + βPt−1. Adaptive

expectations with a coefficient β smaller than 0.7 result in convergence to the steady

state for every treatment (see Figure 2.5). Adaptive expectations with a coefficient β

larger than 0.8 produce stable price dynamics with convergence to the steady state or to

the two-cycle (see Figure 2.6). Higher-order cycles or complex behavior do not emerge.

Average expectations of the form P e
t+1 = (1 − β)Pt−1 + βPt−2 with a coefficient β equal

to 0.5 leads to stable price dynamics as long as λ < 3.8, while chaotic dynamics occur for

larger λ-parameter values (Figure 2.7). It is worth noting that for high λ-values, chaotic

dynamics imply sensitivity to initial conditions (namely, the value of initial forecasts),

13



and there exist initial states for which convergence towards stable dynamics, such as the

steady state, occurs.

(a) λ = 3.3 (b) λ = 3.5

(c) λ = 3.8 (d) λ = 3.83

(e) λ = 3.9
Notes: Model simulations for each treatment (i.e., model parameter λ) under the assumption
of adaptive expectations: P e

t+1 = 0.1P e
t−1 + 0.9Pt−1. The thick lines illustrate the simulated

price (in blue) and the dashed red line indicates the steady state.

Figure 2.6: Dynamics under adaptive expectations: P e
t+1 = 0.1P e

t−1 + 0.9Pt−1
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(a) λ = 3.3 (b) λ = 3.5

(c) λ = 3.8 (d) λ = 3.83

(e) λ = 3.9
Notes: Model simulations for each treatment (i.e., model parameter λ) under the assumption
of average expectations: P e

t+1 = 0.5Pt−1 + 0.5Pt−2. The thick lines illustrate the simulated
price (in blue) and the dashed red line indicates the steady state.

Figure 2.7: Dynamics under average expectations: P e
t+1 = 0.5Pt−1 + 0.5Pt−2

Before turning to the lab implementation and results we take a closer look at the model’s

dynamics—to develop intuition for the experimental results. Figure 2.8 shows the price

map—that is, the price in t + 1 as a function of the price in t assuming backward-

looking expectations for each treatment (e.g., for each λ-value). The price in period t

is illustrated on the x-axis and the price in period t + 1 is on the y-axis. The dashed

line is the diagonal line and illustrates the steady state. This figure gives information

about the so-called expectation feedback in the system. Figure 2.8 reveals that the price

map is an “upside down” non-monotonic map. At first, the smaller the forecasts, the

higher the realized prices, which corresponds to negative feedback, but for higher price
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Notes: Model simulations of the price map for each treatment (i.e., model parameter λ) under
the assumption of backward perfect foresight: P e

t+1 = Pt−1. The dashed line is the diagonal
line and illustrates the steady state.

Figure 2.8: Price map under backward dynamics

values, the relationship reverses and features positive feedback. Such a non-monotonic

map illustrates the underlying complexity of the model.

2.4 Lab implementation

The experiment was programmed in oTree (Chen et al., 2016), and subjects were recruited

from the pool of the CREED lab at the University of Amsterdam. Due to COVID-19 so-

cial distancing restrictions, we conducted all sessions online in June, July, and September

2020 and in February and May 2021. Our experiment was one of the very first group ex-

periments to be conducted fully remotely via the help of the Zoom platform at CREED.9

This novel setting for a group experiment unavoidably induced some challenges in 2020.

We conducted a total of 36 experimental groups (i.e., markets).10 To be precise, we

have data from 20 LtF experimental markets and from 16 LtO experimental markets, with

a total of 259 participants. In general, one market consists of seven subjects. However,

due to recruiting difficulties, 4 out of the 36 markets consist of six subjects only. The
9A complete description of the online procedures can be found in Appendix A.

10One additional session with two groups was conducted, but the experiment could not be finished due
to severe server problems. Subjects still received the participation fee of 5 euro and a payment for the
number of rounds they participated in.
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average duration was approximately two hours for the LtFE and three hours for the

LtOE.

The subject pool consists of bachelor’s and master’s students enrolled at the Univer-

sity of Amsterdam. The average age is 22.2, and 53.6% of the participants are women.

The payment consisted of a 5 euro participation fee and performance-based payment.

The average payoff in the LtFE was 27.4 euro while the average payment in the LtOE

sessions amounted to 33 euro. The balancing tables per treatment are presented in Online

Appendix F.

Online, the experimenter may have less control than in the physical lab, in particular

regarding possible communication between subjects. However, in our experiment subjects

only have qualitative information about the experimental economy, and the underlying

equations are quite complicated, which limits the value of collusion. Another problem

arises when participants do not pay attention to the task, even in the presence of monetary

incentives, notably because of boredom or screen fatigue. Another related problem is the

occurrence of dropouts, either due to inattention or a poor internet connection. To address

these issues, we implemented a timer of 90 seconds for every decision page. Whenever

a decision page would time out, an additional 10-second timer would appear to check

whether the subject was still active. In the event of a second time-out, the subject would

be suspended, the total amount of money balances adjusted to the reduced number of

players to keep the equilibrium price values constant, and subsequent rounds would not

incorporate their decisions any longer. This procedure ensured that the dropouts do

not substantially slow down the experiment. A suspended subject could return to the

experimental task in later rounds, in which case the initial configuration of the experiment

would resume.11 The pre-experiment quiz (Online Appendix D) was also adjusted to limit

the interactions between the experimenter and the participants. Two successive wrong

answers to a question triggered a multiple-choice version of the question with four possible

answer options. After a third wrong answer, the right answer was displayed in bold font.
11To be specific, in our experiments none of the subjects dropped out entirely. However, it did occur

that subjects dropped out for some periods but came back and resumed the experiment. In total, subjects
dropped out for 49 periods in LtF sessions (0.4% of the total number of decisions) and 136 periods in
LtO sessions (1.3% of the total number of decisions).
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We now turn to the experimental results. To ease the presentation, we first discuss

the results of the LtFE and then the robustness of the results using the LtOE.

3 Experimental results

Section 3.1 provides an overview of the main results of the LtF and the LtO experiments.

Sections 3.2 and 3.3 provide further details on the LtF and LtO results and are dedicated

to highlighting the treatment differences.

3.1 Overview of the experimental results

Figure 3.1 illustrates the price and price forecast dynamics in six experimental economies

that are representative of the dynamics observed in the LtFE. And Figure 3.2 shows two

experimental economies representative for the dynamics in the LtOE. The exhaustive

collection of figures is deferred to Online Appendix G.1.

Let us first discuss the LtFEs. The price and the individual price forecasts strikingly

converge towards the monetary steady state in the large majority of the cases (in 17

economies). In the remaining three economies, the price and the individual price forecasts

converge towards the two-cycle. The convergence towards the two-cycle is only observed

for the intermediary values of the λ-value, namely 3.8 and 3.83.

This result contrasts with the observations from the experiment of Arifovic et al.

(2019), where all economies converge towards the two-cycle once the underlying dynamics

are chaotic in the backward perfect foresight dynamics, and more strikingly so as the

complexity parameter increases. In particular, once the three-cycle becomes stable, the

experimental economies in Arifovic et al. (2019) invariably converge towards the two-

cycle, while we report only a few instances of convergence towards the two-cycle. In our

experiment, no instance of convergence towards any cycle emerges in the newly explored

region with λ = 3.9, once the three-cycle has lost stability in the backward perfect

foresight dynamics. Therefore, there is a non-monotonicity in the outcomes as complexity

increases—we will focus on this discontinuity in Section 3.2.
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In the LtOEs, the first important difference with respect to the dynamics in the

LtFEs is the absence of convergence on the two-cycle, although this equilibrium Pareto-

dominates the steady state. Second, in LtOEs, the distance of the price to the steady

state remains larger than in the LtFE sessions. Nevertheless, by the end of the experiment

the price in most LtO sessions is close to the equilibrium.

As for coordination of individual decisions, we can see a rapid and high degree of

price forecast coordination in the LtFEs. In the LtOE, the coordination between return

forecasts appears higher than for savings decisions. Although the variety of savings de-

cisions is especially high at the beginning, it remains substantial even at the end of the

Notes: Each plot represents an experimental LtF economy where the thick lines report the
price (in black) and its steady-state benchmark (in red) and each thinner line represents one
subject’s price forecasts. In most sessions, the price remains in the range [0, 100]. Price spikes
(higher than 150) are almost always due to temporary dropouts, which in turn push optimal
output to 0 and the price to infinity. In such cases, the price is set to a fixed high number (750
in session 5 and 175 in all subsequent sessions). The parameter M was adjusted after session
14, and in the sessions with adjusted M dropouts do not have an effect on price.

Figure 3.1: Examples of price and forecast dynamics observed in the LtFEs
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experiment. By contrast, return forecasts are less dispersed. Most of the spikes in return

forecasts happen because subjects accidentally mix up the two tasks and enter savings

decisions instead of return forecasts (on the basis of the end-of-experiment questionnaire).

(a) Price in Group 1. λ = 3.5 (b) Price in Group 6. λ = 3.8

(c) Saving decisions in Group 1. λ = 3.5 (d) Saving decisions in Group 6. λ = 3.8

(e) Return forecasts in Group 1. λ = 3.5 (f) Return forecasts in Group 6. λ = 3.8

Figure 3.2: Examples of price, saving, and forecast dynamics in the LtOEs
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These visual impressions are confirmed by Table 3.1, which provides descriptive statis-

tics by treatment in both designs.12 The first two rows refer to price aggregate convergence

in the experimental economies. We use a definition of convergence as commonly employed

in the literature, see e.g., Bao et al. (2013): we define an instance of ϵ-convergence in any

period t if the price in this period lies within an ϵ-radius of its equilibrium value—whether

it is a steady state or a cycle—and remains there until the end of the experiment. In what

follows, we use ϵ = 5%, but results are robust to ϵ = 10%. The third and fourth rows of

Table 3.1 show metrics for individual coordination. The third row reports a measure of

coordination of price forecasts in the LtF design and a measure for coordination of return

forecasts in the LtO design. The fourth row reports such a metric for (implied) savings

decisions in the LtF and elicited savings decisions in the LtO design. The smaller the

reported numbers, the more similar are subjects’ individual variables.

The distance of the price to equilibrium (first row) is smaller in sessions with λ ≤ 3.8

than in sessions with λ = 3.83 and λ = 3.9. The distance to equilibrium is also several

times smaller in the LtFE than in the LtOE and is largest in the LtO design with λ = 3.83.

Treatments in the chaotic parameter regions take a particularly long time to converge

(second row), especially in the LtO design. Again the treatment with λ = 3.83, whether

implemented in the LtF or the LtO design, takes the longest time to converge.

We find the same pattern for individual coordination. It is higher for lower values

of λ (in both LtFEs and LtOEs) and higher in LtFEs than in LtOEs (independent of

looking at savings or forecasts).13 In both designs, the treatment with λ = 3.83 stands

out because it features the lowest degree of coordination between subjects.

Figures 3.3 and 3.4 illustrate coordination between individual decisions over time for

the LtFEs and LtOEs, respectively. For readability, groups are split into two graphs. For

the LtFE, we see that the relative standard deviation in all groups drops to almost zero

by the end of the experiment. It decreases substantially already in the first 20 rounds and

stays low until the final round 100. We also notice that the coordination of the forecasts
12We defer the statistical analysis of the cross-treatment comparisons to Sections 3.2 and 3.3 and do

not discuss statistical significance in this section, which aims to provide an overview.
13A similar conclusion is reached if we look at the time to coordinate, which is lower in the LtFEs than

in the LtOEs and lower for lower λ-values.
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Treatment λ = 3.3 λ = 3.5 λ = 3.8 λ = 3.83 λ = 3.9
Design LtFE LtFE LtO LtFE LtO LtFE LtO LtFE LtO
Equilibrium 4 SS 4 SS 2 SS∗ 3 SS,1 2-c 2 SS∗ 2 SS, 2 2-c 1 SS∗ 4 SS 3 SS∗

ARDE 0.3 0.1 26.4 0.6 27.2 8.8 38.5 2.3 16.8
TTC10 26.5 37.3 100 39.5 92.8 69.5 98.3 52.0 97.3
RSDf 0.4 0.9 28.3 0.6 18.3 6.4 56.7 4.5 22.4
RSDs 0.2 0.2 25.4 0.3 24.0 2.1 30.7 1.5 25.4
EERf 95.7 91.2 91.2 90.4 90.4 84.1 88.4 87.7 91.4
EERs - - 86.4 - 88.0 - 79.2 - 84.3
Notes: All numbers are averages over all groups of a given treatment. * denotes approximate convergence, defined
as when the average price stayed within 25% from the steady state in the last 25 rounds. Outlier price values due
to subjects dropping outs, typos, or experimentation are excluded (0.95% of the total number of periods excluded).
ARDE: average price is x% away from the equilibrium for the last 25 rounds. TTC: time to converge to an equi-
librium and stay within 10% of it until the end of the experiment. In the case of no convergence, TTC is set to 100
periods. RSDf : standard deviation of the forecasts divided by the average forecast over the last 25 rounds. RSDs:
standard deviation of the savings decisions divided by the average savings over the last 25 rounds. For the LtFE
we use savings derived from the first-order conditions of the model given price forecasts. EERf : average payoff for
the forecasting task relative to the maximum possible payoff. EERs: average payoff for the savings task relative to
the maximum possible payoff.

Table 3.1: Summary statistics of the LtFEs by treatment

in the treatment with λ = 3.83 is highest. In the LtOE, coordination is lower in general

(Figure 3.4). The coordination of the savings decisions is higher, but, unlike in the LtFE,

the index of coordination does not drop to 0 by the end of the experiment.14

The last two rows of Table 3.1 look at payoff and earnings efficiency in the experiment.

Efficiency is measured by comparing the earnings of subjects to the maximum possible

amount of points for the corresponding task. Fast convergence to the equilibrium and

a high degree of coordination naturally result in low forecast errors, high utility level,

and a high level of efficiency in almost all groups. Therefore, we remark that, again,

earnings are higher for lower λ-values and lower in the LtFEs compared to the LtOEs. In

the LtOEs, efficiency is higher for the return forecasting task than for the savings task.

Again, the treatment with λ = 3.83 stands out with the lowest earnings in both designs.

In the LtFEs, this treatment is where we observe several instances of convergence

towards the two-cycle. Along a two-cycle, a slower convergence and more fluctuations than

when the economy converges towards the steady state are associated with higher forecast

errors and lower efficiency in these economies; see Figure 3.5 for a striking illustration.
14In Figures 3.3 and 3.4 we observe occasional spikes. For the LtFE, the occasional spikes are mostly

caused by temporary dropouts and subjects’ experimentation with price forecasts. For the LtOE, many
spikes in return forecasts are caused by subjects’ mistakenly filling in savings decisions instead of the
return forecast.
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(a) Groups 1-10 (b) Groups 11-20

Notes: Panel (a) and (b) illustrate the standard deviation of price forecasts divided by the
mean forecast by group and over time.

Figure 3.3: Standard deviation of price forecasts (RSTD) in the LtFE

(a) Return forecasts (Groups 1-8) (b) Return forecasts (Groups 9-16)

(c) Savings decisions (Groups 1-8) (d) Savings decisions (Groups 9-16)

Notes: Panel (a) and (b) illustrate the standard deviation of return forecasts divided by the
mean forecast by group and over time. Panel (c) and (d) illustrate the standard deviation of
the savings decisions divided by the mean savings by group and over time.

Figure 3.4: Relative standard deviation of return forecasts and savings decisions (RSTD)
in the LtOE
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(a) Session that converged to the SS (b) Session that converged to the two-cycle

Figure 3.5: Average price forecast errors in the LtFEs

(a) Groups 1-8 (b) Groups 9-16

Figure 3.6: Average return forecast errors in LtOEs

(a) Groups 1-8 (b) Groups 9-16

Figure 3.7: Average utility of agents in LtOEs

Average forecast errors are reported in Figure 3.5. They drop to zero in all sessions by

the end of the experiment in the LtFE, and in most of these sessions zero average forecast

error is achieved even before round 50. In the LtOE, return forecasts are on average

accurate (Figure 3.6). The majority of the spikes are caused by occasional mistakes of

the subjects. The accuracy of the return forecasts is also reflected by high payoff efficiency

for the forecasting task (Table 3.1). Finally, we can see that the groups with λ = 3.83

have higher forecast errors and consequently lower average utility (Figure 3.7).

From this overview, we conclude that there exists a non-monotonicity in the exper-
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imental results as the complexity parameter λ increases. We now turn to a detailed

analysis of this pattern, first for the LtFEs and then for the LtOEs.

3.2 Non-monotonic dynamics in the LtFE

Figure 3.8 illustrates this non-monotonicity result for all indicators considered in Section

3.1. The figure shows the average value of each indicator by treatment. The treatment

λ = 3.83 is strikingly different from all other treatments—in a non-monotonic way.

In addition, we investigate treatment differences for two indicators measuring the

cognitive load of the task. The first indicator measures the average decision time of the

subjects in each round (Figure 3.8e), where a longer time indicates a higher cognitive

load. The second indicator is an uncertainty index (Figure 3.8f). The uncertainty index

is computed following the idea of Binder (2017): participants who round their forecasts

are considered uncertain. Non-rounded forecasts correspond to an index equal to zero,

forecasts rounded to 0.5 correspond to an index equal to one, and the index for integer

forecasts is equal to two. Hence, when subjects are less sure about their forecasts, the

larger the uncertainty index is. For both indicators, the treatment with λ = 3.83 stands

out (Figures 3.8e-3.8f). Again, we observe non-monotonic dynamics: In the treatment

with λ = 3.83, subjects take more time to submit their forecasts and reveal a higher level

of uncertainty than in treatments with simpler dynamics (lower λ-values) or in treatments

with highly complex dynamics (with λ = 3.9).

To test for the statistical significance of this non-monotonicity, we first pool all LtFE

groups together and regress these aggregate statistics (i.e., the indicators) on a dummy

variable that takes the value one for the treatment λ = 3.83 and zero otherwise. We

estimate a linear probability model using the following specification:

Yj = β0 + β′
1Tr3.83 + ϵj, (3.1)

where Yj denotes the indicator of group j (average over periods 1–100). Tr3.83 denotes

the dummy variable that equals one for the treatment λ = 3.83 and zero otherwise. The
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(a) Time to converge to equilibrium (b) Average relative SD of price forecasts

(c) Average forecast earnings efficiency ratio (d) Average forecast error / the mean forecast

(e) Average forecasting decision time (f) Uncertainty index

Notes: Panel (a) illustrates the time to converge to equilibrium, with the condition of staying
within 10% from equilibrium. Panel (b) shows the average relative standard deviation of price
forecasts. Panel (d) illustrates the average forecast error divided by the mean forecast. Panel
(e) shows the average forecasting decision time, measured in seconds. Panel (f) shows the
uncertainty index based on the rounding of forecasts.

Figure 3.8: Summary indicators of LtFEs by treatment
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robust standard errors are denoted by ϵj.

For some indicators, it is possible to compute the indicator also at the individual level.

For these indicators, we use the following second specification:

Yi,j = β0 + β′
1Tr3.83 + Fj + ϵi,j, (3.2)

where Yi,j is the indicator for individual i, belonging to group j. Tr3.83 denotes the

treatment dummy that is equal to one for the treatment λ = 3.83 and zero otherwise.

In addition, we control for group fixed effects, denoted by Fj. The standard errors are

clustered at the group level and denoted by ϵi,j.

EER RMSE Uncertainty Time on round
(1) (2) (3) (4) (5) (6)

λ = 3.83 -7.1042** -22.785*** 3.783*** 0.547*** 0.887*** 11.16*
(3.3308) (3.480) (0.877) (0.120) (0.204) (3.452)

constant 91.2259*** 96.94*** 2.955*** 0.567*** 0.450*** 14.39***
(1.6527) (0.223) (0.530) (0.0827) (0.104) (1.905)

Group FE - + + - + +
N 20 139 140 20 140 70
R2 0.177 0.863 0.162 0.363 0.583 0.264

Notes: Clustered standard errors are in parentheses (at treatment level). * p < 0.1, ** p < 0.05, ***
p < 0.01. EER: average payoff relative to the maximum possible payoff; RMSE: square root of the mean
squared forecast error; Uncertainty: uncertainty index based on rounding of forecasts; Time on round:
average time spent on experimental round.

Table 3.2: Testing non-monotonicity in LtFE

Table 3.2 reports the most interesting regression results.15 The treatment difference

between the treatment λ = 3.83 and all other treatments—in other words, the non-

monotonicity around the parameter value of 3.83—is statistically significant for all in-

dicators of earnings (Columns 1, 2, and 4) and cognitive load (Columns 4, 5, and 6).

Subjects make significantly higher forecast errors, take significantly more time to make a

decision, and are significantly more uncertain about their forecasts in the treatment with

λ = 3.83 than in treatments with any other λ-value considered.

Now that we have established the statistical significance of the non-monotonicity

result, we dig into the individual forecast time series to shed further light on this result.
15Table 3.2 reports all statistically significant results. Appendix G.2 provides a comprehensive overview

of the regression results for all indicators tested.
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To do so, we estimate the following common forecasting rules for each subject (see, e.g.,

Heemeijer et al. (2009a)).

• Naive expectations: agents set forecasts equal to the latest available price:

pet+1 = pt−1

• Trend-following expectations: expectations are a function of the latest available

price and the latest period-to-period change in price:

pet+1 = βpt−1 + δ(pt−1 − pt−2).

• Adaptive expectations: expectations are a weighted average of their own past fore-

cast and the latest observable price (or, equivalently, expectations are adjusted

towards the latest observable forecast error):

pet+1 = wpt−1 + (1− w)pet−1, where 0 < w ≤ 1.

• Sample average expectations: expectations are equal to the average of the last t

past prices, where t is often restricted to a low value, such as 2:

pet+1 =
1

t− 1

t−1∑
j=1

pj.

• Anchoring-and-adjustment heuristic (Tversky and Kahneman, 1974): subjects choose

a weighted sum of a constant, the latest price and their last forecast as an anchor,

and adjust this sum based on the latest price change:

P e
t+1 = β1Pt−1 + β2P

e
t + α + γ(Pt−1 − Pt−2). (3.3)

After the estimation of the rules, we choose the best-fitting rule for each subject based

on the nested-model approach: we progressively add more variables into a regression and
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choose the best model with a Likelihood-Ratio test.

Figure 3.9 shows the average composition of the different price forecasting rules by

treatment. Trend-following, adaptive, and anchoring-and-adjustment expectations are

the most widely used strategies. In the majority of cases, the intercept in the trend-

following rule is significant—which resembles an anchoring-and-adjustment behavior: a

weighted average of some constant, possibly a perceived steady state, and the last price

serve as an anchor for many subjects. Such a strategy is the most frequent strategy in

the LtFEs.

Figure 3.9: Composition of forecasting rules by treatment in the LtFEs (144 subjects)

Most interestingly, the treatment with the parameter value λ = 3.83 clearly stands out.

Recall that in this region we observe the majority of the two-cycles and the composition

of the forecasting rules for this parameter value is different: we observe the majority of

adaptive expectations in the treatment with λ = 3.83. We tested if the share of subjects

who use adaptive, trend-following, and anchoring-and-adjustment heuristics is identical

in the treatment with λ = 3.83 and in all other treatments using the Chi-squared test.

The differences in composition are statistically different (p-value= 0.0002)16

This difference in forecasting heuristics, and in particular a higher share of adaptive
16To be precise, we present the largest p-value from the pairwise comparisons using Chi-squared test.
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expectations in the treatment λ = 3.83 compared to all other treatments, clearly relates

to the observed non-monotonicity of the dynamics as complexity increases. To see how,

we conduct simulations by varying the share of agents who use adaptive expectations in

the group with λ = 3.83. The share of adaptive expectations observed in the λ = 3.83

treatment (about 40%, see Figure 3.9) leads to coordination on the two-cycle for the

majority of the parameter values. Figure 3.10 shows the summary of the simulations in

the form of bifurcation diagrams.

After establishing the non-monotonicity result in the LtFE, both at the aggregate and

at the individual levels, we show in the next section that this result is robust in the LtOE.

(a) P e
t = 0.5Pt−1 + 0.5P e

t−1 (b) P e
t = 0.6Pt−1 + 0.4P e

t−1

(c) P e
t = 0.7Pt−1 + 0.3P e

t−1 (d) P e
t = 0.8Pt−1 + 0.2P e

t−1

Notes: Model simulations. All agents who do not use adaptive expectations are assumed to
follow the naive forecasting rule.

Figure 3.10: Bifurcation diagram with varying shares of adaptive expectations and varying
coefficients in adaptive expectations for λ = 3.83
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3.3 Robustness of the non-monotonic result in the LtOEs

The non-monotonicity of behavior depending on the complexity is also present in the

LtOE sessions. Figure 3.11 highlights this non-monotonicity for a series of aggregate

and individual indicators. For the LtOE sessions and in contrast to the LtFE, we can

calculate the optimal savings decision conditional on the return forecast. Recall that we

elicit return forecasts, and hence we may evaluate for each individual whether the savings

decision is optimal—that the saving decision results in the maximal payoff, conditional on

the return forecast submitted by the subject. Figure 3.11h shows the average difference

between optimal and actual savings for each treatment. While savings decisions are on

average downward-biased (i.e., subjects save too little), this downward bias is largest for

the treatment with λ = 3.83.

Next, we investigate whether the treatment differences with λ = 3.83 are statistically

significant for the following indicators: coordination of savings and return forecasts, price

relative to distance to the steady state, efficiency, and relative forecast errors. Table 3.3

reports the regression results on the statistical significance of the differences observed with

λ = 3.83. We find that the treatment with λ = 3.83 is significantly different compared

to the other treatments. The price remains further away from its steady-state value,

and subjects make large forecast errors, earn less utility points when making savings

decisions, and are less coordinated with λ = 3.83 than in simpler or highly complex

parameter regions.
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(a) Distance from optimal savings (b) Relative distance of price from SS

(c) Average relative SD for savings task (d) Average relative SD for forecasts

(e) Savings earning efficiency ratio (f) Forecast earning efficiency ratio

(g) Forecast error / mean forecast (h) Uncertainty index

Notes: Panel (a) illustrates the average distance of savings from optimal savings. Panel (b)
shows the relative distance of the price from its steady-state value. Panel (c) illustrates the
average relative standard deviation of the saving task. Panel (d) shows the average relative
standard deviation of the forecasts. Panel (e) shows the earning efficiency ratio for savings
decisions. Panel (f) shows the return forecasting earning efficiency ratio. Panel (g) illustrates
the average return forecast error divided by the mean forecast. Panel (h) shows the uncertainty
index based on the rounding of savings.

Figure 3.11: Summary indicators of LtOEs by treatment
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Do RD Uncertainty FEr RSDs

(1) (2) (3) (4) (5)
λ = 3.83 8.019* 25.867*** -0.274*** 0.183* 6.350*
(dummy) (2.260) (7.776) (0.083) (0.109) (3.453)

Group FE - - - + -
N 16 16 16 108 16
R2 0.487 0.225 0.349 0.088 0.136

Notes: Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05, ***
p < 0.01. Do: distance of actual savings decisions from the optimal savings given
subjects’ return forecasts (a negative number refers to saving too much and a
positive number to saving too little); Uncertainty - uncertainty index based on
rounding of forecasts; RSDs: relative standard deviation of the savings deci-
sions; RD: average relative distance to the equilibrium; FEr: forecast error di-
vided by the mean forecast.

Table 3.3: Testing non-monotonicity in the LtOE

Finally, we estimate several benchmark heuristics using the time series on individual

savings:

• Naive decisions: agents make savings decisions equal to the past decision:

yt+1 = yt.

• Trend-following decisions: savings are a combination of the past savings and the

latest change in savings:

yt+1 = βyt + δ(yt − yt−1).

• Adaptive decision-making: savings are equal to the weighted average of their own

past savings decisions and the average savings decisions in the last period:

yt+1 = wyt−1 + (1− w)ȳt−1, where 0 < w ≤ 1.

• Average savings: savings are equal to the last average savings of the group:

yt+1 = ȳt.
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• Average trend-following: savings are equal to the weighted average of the last two

average savings of the group:

yt+1 =
1

2

2∑
j=1

ȳt−j+1.

• Sophisticated decision: savings are a function of their own last savings decision and

the last observed return:

yt+1 = β1yt + β2rt−1.

We choose for each subject the best-fitting rule based on the Akaike information

criterion. The results by treatment are presented in Figure 3.12. The most popular rule

in all treatments is the average of the last two savings decisions, but even more so for the

treatment with λ = 3.83 than for lower and higher λ-values. In this treatment, the fewest

subjects rely on the group information, namely the average of the last two savings. It is

worth noting that constant output decisions are observed only in the lowest and highest

λ range. The differences between the treatment with λ = 3.83 and all other treatments

are statistically significant (Chi-squared test: p-value = 0.000).

Notes: The fitting decision rules are chosen based on the Akaike information criterion. Unlike
in the LtFE, the models in the LtOE are not nested, hence the LR test cannot be used.

Figure 3.12: Composition of decision rules by treatment (108 subjects)
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4 Conclusion

This paper investigates group coordination and price dynamics in complex environments.

We implement an overlapping generations model in the lab and conduct learning-to-

forecast and learning-to-optimize experiments. We have chosen the model of Araujo and

Maldonado (2000) because the output dynamics are given by the well-known chaotic

quadratic map. Depending on the value of the utility function parameter, infinitely

many perfect foresight equilibria can arise. In contrast to the related literature, we are

particularly interested in the parameter region that allows for complex dynamics. We

conduct five treatments of the learning-to-forecast experiment with different values of

this parameter that correspond to the following theoretical predictions of price dynamics

under the backward perfect foresight: convergence to the two-cycle, convergence to the

four-cycle, convergence to the four-cycle, and chaotic behavior. In addition, we conduct

four treatments using a learning-to-optimize design with parameter values corresponding

to the following theoretical predictions: convergence to the four-cycle, convergence to

the three-cycle, and chaotic behavior. This paper contributes mainly to two strands

of literature. First, it contributes to the literature that studies equilibrium selection

empirically using laboratory experiments. And second, this paper contributes to the

experimental research on chaotic dynamics in general equilibrium models.

In all markets of the learning-to-forecast experiment, the price converges to a perfect

foresight equilibrium. It is striking that convergence occurs on the simplest equilibria.

In 17 out of 20 markets, the price converges to the monetary steady state, while in the

remaining three sessions the price converges to the two-cycle. In the learning-to-optimize

experiment, the price approximately converges to the steady state in most sessions. These

findings confirm the results of Arifovic et al. (2019) that convergence occurs on the sim-

plest equilibria.

Our paper documents an interesting and novel finding that the relationship between

the complexity of chosen equilibria and model parameters is non-monotonic. The coor-

dination on the two-cycles occurs only in the intermediate range of parameter values,

while the coordination on the steady state happens for both low and high λ-values. This
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non-monotonicity is also observed for convergence, forecasting errors, and subjects’ un-

certainty. The treatment with the parameter λ = 3.83 clearly stands out and differs from

all other parameter values (i.e., treatments). The non-monotonicity in this parameter

region is also present in the learning-to-optimize experiments.

One potential reason for the observed non-monotonic behavior could be differences

in the forecasting strategies subjects used. In particular, we find that significantly more

subjects used adaptive expectations in treatments of the intermediary parameter region—

which corresponds to the treatments where most two-cycles are observed. Such behavior

is not observed in Arifovic et al. (2019). We confirm our finding by conducting simula-

tions where we vary the share of subjects using adaptive expectations in an experimental

economy. Using the average share of adaptive expectations observed in our experiment

with λ = 3.83 leads to coordination on the two-cycle in the simulations. In general, mar-

ket convergence to the two-cycle is more likely if 3–5 (out of 7) subjects exhibit adaptive

expectations.

Finally, our paper finds that the convergence in the learning-to-optimize experiment is

much more challenging to achieve. In this experiment, we observe many suboptimal sav-

ings decisions and less efficient behavior. Also, the two-cycle is never observed, although

it Pareto dominates the steady state in terms of payoff.

Our results show that people coordinate on the simplest possible equilibria—even

in a highly complex and non-linear environment. This finding has important policy

implications. In many cases, multiple equilibria co-exist. Policy-makers aiming to improve

social welfare are advised to make the welfare-improving equilibria as salient and simple

as possible to ease coordination.
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A Appendix: Derivations of the OLG model

A.1 Finite number of agents

P e
i,t+1 denotes the individual i’s expectations in period t about the price level in t + 1.

Using the individuals’ price expectations P e
i,t+1, the compactness of the budget set (2.2),

and the concavity of the utility function (2.1), the first-order condition of an individual
i’s maximization program reads as

λ
Pt

P e
i,t+1

− λ

(
Pt

P e
i,t+1

)2

yi,t − 1 = 0. (A.1)

Market clearing as described by (2.3) implies

λ
M/

∑N
i=1 yi,t

P e
i,t+1

− λ

(
M/

∑N
i=1 yi,t

P e
i,t+1

)2

yi,t − 1 = 0, (A.2)

rewriting yields that

λMP e
i,t+1

N∑
i=1

yi,t − λM2yi,t − (P e
i,t+1

N∑
i=1

yi,t)
2 = 0 (A.3)

must hold for each individual i ∈ {1, ..., N}.

For both experiments (LtF and LtO), we impose that an individual price forecast is
strictly positive; i.e., P e

i,t+1 > 0 ∀i, t. Summing up all individual first-order conditions
in (A.3) gives

λM
N∑
i=1

yi,t(
N∑
i=1

P e
i,t+1)− λM2(

N∑
i=1

yi,t)− (
N∑
i=1

(P e
i,t+1)

2)(
N∑
i=1

yi,t)
2 = 0. (A.4)

Solving for aggregate output, denoted by Yt ≡
∑N

i=1 yi,t, yields the following equation:

Yt

(
λM

J∑
i=1

P e
i,t+1 − λM2 −

J∑
i=1

(P e
i,t+1)

2)Yt

)
= 0. (A.5)

Equation A.5 admits two solutions for the temporary equilibrium of the model. The first
one is the autartic equilibirum where production is always zero, i.e., yi,t = 0 ∀i, t. In ad-
dition, a monetary equilibrium exists as soon as at least one individual output is strictly
positive. Note that we restrict output decisions to be strictly positive in the implementa-
tion of the LtO experiment. In any non-autartic temporary equilibrium, aggregate output
is then equal to

Yt =
λM(

∑N
i=1 P

e
i,t+1)− λM2

(
∑N

i=1(P
e
i,t+1)

2)
. (A.6)

Note that aggregate output in (A.6) is non-negative as soon as
∑N

i=1 P
e
i,t+1 > M . The

value of the parameter M is chosen to be equal to 1.5 in the calibration so that the
condition is likely to hold for reasonable values of individual outputs. In the rare cases
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when aggregate output turns out to be negative, we set it to 0.

Plugging (A.6) in the individual first-order condition of the form (A.3) gives the indi-
vidual output yi,t for each young individual i—expressed as a function of price forecasts
only:

yi,t = P e
i,t+1

∑N
i=1 P

e
i,t+1

M
− 1∑N

i=1(P
e
i,t+1)

2

(
λM − P e

i,t+1

λM
∑N

i=1 P
e
i,t+1 − λM2∑N

i=1(P
e
i,t+1)

2

)
. (A.7)

The aggregate price Pt is derived using the market-clearing condition and is given by

Pt =
M∑N
i=1 yi,t

=
M

Yt

. (A.8)

A perfect-foresight equilibrium assumes that P e
i,t+1 = Pt+1, ∀i, t. Hence, all agents

work and consume the same quantity such that yi,t = yt ∀i, t. It follows that

λyt+1(1− yt+1) = yt, (A.9)

which corresponds to the quadratic map.

The feedback from price expectations to realized prices is a complex non-monotonic
function. To derive the conditions for a positive feedback, we differentiate the price
function with respect to price expectations:

Pt =
(P e

t+1)
2

λ(P e
t+1 −M)

(A.10)

∂Pt

∂P e
t+1

=
P e
t+1

λ

(P e
t+1 − 2M)

(P e
t+1 −M)2

(A.11)

where P e
t+1 =

∑N
i=1 P

e
i,t+1.

A.2 Stability analysis under various expectation schemes

Table A1 summarizes the results of the stability analysis and shows the equilibria, de-
pending on the learning regime.
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2* Treatment\
Stability concept

Forward
perfect

foresight

Backward
perfect

foresight

Strong
E-stability

Weak
E-stability

Adaptive
Expectations

Grandmont (1985)a Evans and
Honkapohja (2001)b

Guesnerie and
Woodford (1991)c

λ = 3.3 SS 2-cycle 2-cycle
SS

2-cycle

SS

2-cycle

λ = 3.5
SS

2-cycle
4-cycle 4-cycle

SS

2-cycle

4-cycle

SS

2-cycle

4-cycle

λ = 3.8

SS

All cycles
except
period 3

none none
SS

2-cycle

SS

2-cycle

All cycles
except period 3
(if w is low enough)

λ = 3.83

SS

All cycles
except
period 3

3-cycle 3-cycle

SS

2-cycle

3-cycle

SS

2-cycle

3-cycle

All cycles
(if w is low enough)

λ = 3.9
SS

All cycles
none none

SS

2-cycle

SS

2-cycle

All cycles
(if w is low enough)

Notes: SS denotes the monetary steady state. w is the weight on the previous price realization
in the adaptive expectations rule. The stability of any cycle under adaptive expectations is
conditional on agents using an adaptive rule consistent with the cycle’s periodicity.

Table A1: Stability analysis under different learning criteria

aGrandmont (1985)
bEvans and Honkapohja (2001)
cGuesnerie and Woodford (1991)
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Online Supplementary Material

Learning in a Complex World:
Insights from an OLG Lab Experiment

Cars Hommes, Stefanie J. Huber, Daria Minina, Isabelle Salle

Section A describes the implementation of the online experiment. Section B provides the
instructions of the LtF experiment, and Section C the instructions for the LtO experi-
ment. Section D shows how we make sure that the subjects understood the instructions.
Section E provides the questionnaire we asked subjects to complete after the experiment
ended. Section F reports demographic statistics across treatments. And Section G reports
additional results.

A Online procedure
We use the CREED Laboratory at the University of Amsterdam and send the invitation
emails to 50–100 randomly selected students from the CREED pool. The email briefly
explains the online procedure (including the use of the Zoom computer interface), the
requirement to fill in an IBAN bank account number for receiving the payment, the ex-
pected duration of the experiment, and importantly that participants need to finish the
experiment to receive the payment. The session is open for 5–7 extra participants to
insure against no show-up.

One day before the experiment, we send a reminder email to the registered partici-
pants. Subjects receive the link to the Zoom meeting 15 minutes before the beginning of
the experiment. After they open the link, they are assigned to the Zoom waiting room.
All participants in the waiting room see the following message:

“Please wait, the host will let you in the virtual lab within the limit of the required
number of participants (first-come first-served basis). If you can’t enter this time, you
will be able to register for another session soon!”

For the registration, we let subjects in one by one. After letting them into the main
Zoom room but before checking their IDs, we renamed subjects to “participant 1,” “par-
ticipant 2,” etc. Then we ask each subject to turn the video on, check their IDs, and send
them back to the waiting room with the following message:

“Thank you! You will be participating in the experiment but please, you have to wait
for a few more minutes until all participants have been registered, so I’m putting you back
now into the waiting room. I’ll let you in once I start the experiment.”

After the required number of participants are registered, these subjects are moved
back to the main Zoom room, and the remaining participants in the waiting room are
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sent home with the show-up fee of 7 euro and the following message:

“I’m sorry: the groups are full and there aren’t enough participants for an additional
one! I have to send you away, but feel free to register for another upcoming session!
Thank you for your participation!”

In the main room, the video is turned off and the subjects are muted. Communication
between participants is disabled. The room is locked so that no other participant can
join. All the participants see the message:

“Welcome! I will now send you a link to the experiment in this chat box. Each link is
private and anonymous. You may open it in any browser, but Google Chrome is preferred.
Please open the link by clicking on it and start reading the instructions at your own pace.
After the instructions, there is a quiz. Once everybody has answered the questions cor-
rectly, the experiment will start. Good luck!“

Participants can ask questions through the “Raise your hand” Zoom option or in the
private chat. The link to the experiment is sent via the private chat to each subject
separately.

After the main experimental task is over, subjects receive the following message in
the Zoom meeting:

“The experiment is now over. Once you have filled in the end-questionnaire and pro-
vided us with your International Bank Account Number (IBAN), you can leave the meet-
ing. Thank you once again for your participation!”

After filling in the questionnaire, subjects leave the Zoom meeting. The payment
is made to the subjects’ accounts by the financial administration of the University of
Amsterdam. The anonymity of the participants is preserved as experimenters know only
the IBAN number but not the participant’s name.
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B Instructions: Learning-to-forecast experiment
Welcome
Welcome! The experiment is anonymous; the data from your choices and information
about your payment will only be linked to your participant number, not your name. If
you follow these instructions carefully, you can earn a considerable amount of money.
Your earnings will be transferred to your account right after the experiment. We will
ask you to fill in your IBAN number before the experiment begins in case of technical
difficulties on our side. Before the payment, you will also be asked to fill out a short
questionnaire. During the experiment, you can use scratch paper and a calculator if you
feel the need to do so. Before starting the experiment, you have to answer five questions
at the end of the instructions section to make sure that you understand your role in the
experiment. Each participant has the same role, and the rules are the same for all partic-
ipants. From now until the end of the experiment, you are not allowed to communicate
with other participants. Please address your questions to us by using the Zoom interface.

General information about the experimental market
You participate in a market in which individuals trade chips at a given price in each
period. You are a professional forecaster, and you have to predict the price of the chips
in the next period. In every period, two generations of individuals – the young and the
old – trade chips with each other. Imagine that a period in this economy represents a
generation: in each period, the young generation from the previous period becomes old,
and a new young generation enters.

The young generation produces the chips and earns income by selling them to the
old generation who consumes them. This income is saved till the next period, when the
young generation becomes old and is spent fully to buy all the chips produced by the
new young generation. Hence, young agents have to decide how many chips to produce.
This decision depends on the price of the chips that will prevail in the next period,
when they will be buying chips with their earnings. They need your forecasts of the chip
price in the next period to make their production decision. The old generation does not
need your advice as they simply spend all their savings at the prevailing price then. The
savings of a young individual in money then equals:
savings in money = number of chips earned when young × current price of the chips

To sum up, in each period:
- earnings of young individuals in money = number of chips produced *current price of
the chips
- amount of chips consumed by the old generation = earnings when young / current price
of the chips (which means that, whatever the price, they spend all their earnings)

How the price of chips is determined
The price of chips is always determined in such a way that the chips produced by the
young individuals can be exactly bought by the money of the old individuals. As a pro-
fessional forecaster, at the beginning of each period you have to predict the
price of the chips in the next period, and your prediction is then used by a
young individual for making a savings decision in the current period. In each
period, there are seven young individuals, and each of them is advised by a forecaster.
Each forecaster is played by a participant like you.
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The price predictions of participants for the next period determines the amount of
chips produced by the young generation. This means that your price prediction for the
next period only influences the price in the current period, not the price in the next
period. The price is a complicated function of your forecast and the forecasts of other
financial advisors. In economies similar to this one, the price of chips has historically
been between 1 and 100.

Information about your prediction task
The experiment lasts for 100 periods or generations. At the beginning of each period, you
have to submit a forecast of the price of the chips in the next period. This means that you
will observe the realized value of the price that you predicted in a given period only at the
end of the next period. Your payoff in each period depends on your forecast error—that
is, the difference between your price forecast for a given period and the realized value of
the price (we explain below how your payoff is exactly computed). You will then observe
your forecast error and your corresponding payoff for a forecast made at the beginning of
any period at the end of the next period.

The experiment starts at period 1. You are asked to submit your price forecast for
the next period (period 2). Once all participants have submitted their price forecasts,
all young individuals decide how many chips to produce and thus how many chips to
save and sell to the old in period 1, and this determines the price of the chips in period
1. You are then entering period 2, you have to submit your price forecast for period 3.
After all participants have submitted their price forecasts, young individuals decide how
many chips to produce and sell in period 2, and the price of chips in period 2 is disclosed.
You then observe your forecast error based on the forecast that you made in period
1 for period 2 and your corresponding score (payoff) for period 2. You are then enter-
ing period 3. This sequence of events repeats in each of the 100 periods of the experiment.

Computer interface
The computer interface is mainly self-explanatory. When making your forecast in any pe-
riod, the following information will be displayed in the table (right panel of the computer
screen) and the graph (bottom panel):

• The price level from the beginning of the experiment (period 1) up to the previous
period

• Your price forecasts from the beginning of the experiment up to the current period

• Your forecast errors from the beginning of the experiment up to the current period

• Your payoffs from the beginning of the experiment up to the previous period

All these elements can be relevant for your forecasts, but it is up to you to determine
how to use this information in order to make accurate forecasts. You have to enter your
price predictions in the top left part of the screen (Figure A1). When submitting your
prediction, use a decimal point if necessary (not a comma). For example, if you want to
submit a prediction of 2.5, type 2.5. The computer interface will be telling you when you
can enter your prediction and when you have to wait for other participants.
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Figure A1: Computer screen

How payoff is computed
In each period, your payoff depends on the accuracy of your price forecast. The accuracy
of your forecast is measured by the squared difference between your price forecasts and
the realized values of price. Your payoff will be displayed on the computer screen in terms
of points and is computed as follows:

Payoff= max{0, 1300− 1300/49(your forecast − actual price)2}

The payoff, depending on your forecast error, is also displayed in Figure A2. Figure A3
shows your payoff for different values of forecast errors.

If you forecast the price perfectly, your squared error is zero and you get 1300 points.
This is the highest payoff that you can get in any period. The more accurate your forecast,
the lower your squared forecast error, and the higher your payoff. If your forecast error is
higher than 7, you get 0 points, and this is the minimum payoff you can get in any period.

Example: If your price forecast was 6 and the realized price is 5.7, your squared error
is (6− 5.7)2 = 0.09, and your payoff is 1300− 1300/49 ∗ 0.09 = 1297.6 points.

If your prediction of the price was 32 and the realized price is 42, your squared error
is (32− 42)2 = 100, and your payoff is 0. So, you do not earn any points.

The sum of your payoffs over the different periods is shown in the top right of the
screen. At the end of the experiment, your cumulative payoff over all 100 periods is
computed and converted into euro. For each 1300 points you make, you earn 0.35 euros.
You will also receive a show-up fee of 5 euro on top of it. If you drop out before the end
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of the experiment, the show-up fee will not be paid to you.

Please fill out the questionnaire on the next page. We will make sure that every
participant has filled out the questionnaire with the correct answers for each of the five
questions before starting the experiment.

Figure A2: Payoff as function of forecast error
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Figure A3: Payoff table
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C Instructions: Learning-to-optimize experiment
Welcome
Welcome! The experiment is anonymous; the data from your choices and information
about your payment will only be linked to your participant number, not to your name.
If you follow these instructions carefully, you can earn a considerable amount of money.
Your earnings will be transferred to your account right after the experiment. We will
ask you to fill in your IBAN number before the experiment begins in case of technical
difficulties on our side. Before the payment, you will also be asked to fill out a short
questionnaire. During the experiment, you can use scratch paper and a calculator if you
feel the need to do so. Before starting the experiment, you have to answer six questions
at the end of the instructions section to make sure that you understand your role in the
experiment. Each participant has the same role, and the rules are the same for all partic-
ipants. From now until the end of the experiment, you are not allowed to communicate
with other participants. Please address your questions to us by using the Zoom interface.

General information about the experimental market
You participate in a market in which individuals trade chips at a given price in each
period. In every period, two generations of individuals––the young and the old––trade
chips with each other. Imagine that a period in this economy represents a generation:
in each period, the young generation from the previous period becomes old, and a new
young generation enters. The young generation consists of individuals of working age
who work and produce chips. The old generation does not work anymore, and therefore
consumes the income saved while being young.

The young generation produces the chips and earns income by selling them to the old
generation who consumes them. This income is saved till the next period, when the young
generation becomes old, and spent fully to buy all the chips produced by the new young
generation. Hence, young agents have to decide how many chips to produce,
which is equivalent to how much chips they want to save.

You are a professional advisor working for the Professional Saving Advisor
Bureau and you have to decide in each period on the quantity of chips a young
individual will save. Also, you have to forecast the return on savings in the
next period. The calculation of the return is explained later on. In each period, there
are seven young individuals, and each of them follows the savings decision of a profes-
sional advisor. Each advisor is played by a participant like you.

To carry the saved chips to the next period, the young individual converts these chips
into money by selling them to the old individuals. The quantity of money in the economy
remains constant. The savings of a young individual in money then equals:

savings in money = number of chips earned (when young) × current price of the chips

The maximum amount of chips that can be produced by one young indi-
vidual is 100.

The current price of chips is always determined in such a way that the chips produced
by the young individuals can be exactly bought by the money of the old individuals. The
more chips the young individuals save, the lower the realized price of chips,
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and the more chips the old individuals can purchase with their savings and
consume. As old individuals just consume the number of chips their savings can buy
from the new young individuals, they do not need your savings advice. The consumption
of chips of an old individual then equals:

consumption of chips when old = savings in money / price of the chips when old

Your savings decision influences what the individual consumes when old
in the next period. The price of the chips in the current period determines how
much in money the young individual saves. The price of chips in the next period
will determine how many chips the individual will be able to buy with his savings when
old. Therefore, the consumption of chips when old also depends on the return on savings
between the current period and the next period, defined as:

return on savings = current price (when young) / future price (when old)

The return on savings tells you how many chips the individual will be able
to buy when old with one chip you choose to save for him when young.

You do not know yet the prices of the current and the next periods, so you do not
know yet the return on savings when making your savings/production decision. Instead,
you should make a forecast of the return on savings. This forecast may also
guide your savings decision in the current period.

Information about your task as an advisor
The Savings Advisor Bureau exists for 100 periods or generations. Each individual lives
for two periods, produces and saves when young, and consumes when old. At the be-
ginning of each period, you have to submit your savings/production decision and the
forecast of the return on savings for a young individual for this period. Your payoff for
the savings task depends on the consumption of chips of this individual when
old (we explain below how your payoff is exactly computed). This means that you will
observe the quantity of chips this individual has consumed over his two-period
life, and the corresponding payoff of your savings decision, only at the end of
the next period, when he becomes old. Your payoff for the forecasting task
depends on the accuracy of your return forecast. At the time of the forecast,
you do not know the current price and the price in the next period, so you will observe
the forecast error and the payoff for the forecasting task two periods after the forecast is
made.

The experiment starts at period 1. From period 1 to the end of the experiment (period
100), you have to make a savings/production decision and forecast the return on savings.
Once all participants have entered their decisions and forecasts in period 1, all young peo-
ple produce and save chips according to the advisors’ decisions, all old individuals trade
the money they earned in the young age against the saved chips of the new young and
consume them. This determines the price of chips for period 1. Based on the initial price
level, which usually ranges from 1 to 100, you observe the first return on savings. You are
then entering period 2. After all participants have submitted their savings/production
advice and return forecast for period 2, young individuals produce and save chips, old
individuals buy and consume chips, and the realized price of chips for period 2 is dis-
closed, which determines the return on savings between period 1 and 2. You then observe
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the consumption of the young person you advised in period 1 in period 2 (when old),
and therefore the corresponding payoff of your savings decision made in period 1. You
also observe the payoff you get for forecasting the period 1 return. You are then entering
period 3. This sequence of events takes place in each of the 100 periods of the experiment.

Computer interface
The computer interface is mainly self-explanatory. When making your savings/production
decision and forecasting return in any period, the following information will be displayed
in the table (right panel of the computer screen) and the graphs (bottom panel):

• The price level from the beginning of the experiment (period 1) up to the previous
period

• The return on savings from period 1 up to the previous period

• The average savings decisions among the seven advisors from the beginning of the
experiment (period 1) up to the previous period

• Your savings/production decisions from the beginning of the experiment (period 1)
up to the previous period

• Your return forecasts from the beginning of the experiment (period 1) up to the
previous period

• The consumption of chips when old of the individual you advised when young from
period 2 up to the previous period

• Your payoff from period 2 up to the previous period

• Your payoff from forecasting the return from period 2 up to the previous period

The two plots (bottom panel) indicate your savings decisions together with the average
decisions and the returns on savings with your return forecasts.

All these elements can be relevant for your savings/production decisions and return
forecasts, but it is up to you to determine how to use this information in order to make
optimal decisions and predictions.

You have to enter your savings/production decisions and return forecasts in the top
left part of the screen (Figure below). When submitting your decisions and predictions,
use a decimal point if necessary (not a comma). For example, if you want to submit a
savings decision of 15.5 chips, type 15.5. The computer interface will be telling you when
you can enter your decision and when you have to wait for other participants.

How the payoff is computed
In each period, your savings payoff depends on the quality of your savings/ pro-
duction decisions. The higher utility the individual you are advising gets
from his/her consumption when old, the higher the quality of your sav-
ings/production decisions, and the higher your payoff. While consumption
is positively related to the utility, the amount of work done while young is
negatively related to the utility. You do not need to calculate his/her utility, and
hence your payoff yourself. There is a payoff table in the instructions (Figure be-
low). According to your forecast of the return on savings (vertical axis), it shows the
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number of points that you can earn for a given savings decision. You can use this
payoff table to make your savings decision in the current period (columns)
according to your forecast of the return on savings in the next period (rows).
Note that the payoff table displays only some possible savings decisions and forecasts of
the return on savings, but you can choose other ones. For instance, you do not need
to choose between either 90 or 100—you may submit 91.2. Equally, you do not have to
choose either 0.7 or 0.8 for your forecast of the return on savings; you may choose 0.72.

Your payoff for the forecasting task depends on your forecasting accuracy. The accu-
racy of your forecast is measured by the squared difference between your return forecasts
and the realized values of return. Your payoff will be displayed on the computer screen
in terms of points and is computed as follows:

Payoff = max{1300− 1300

4
(your forecast error)2, 0}

If you forecast the return perfectly, your squared error is zero and you get 1300 points.
This is the highest payoff you can get in any period. The more accurate your forecast,
the lower your squared forecast error, and the higher your payoff. If your forecast error
is higher than 2, you get 0 points, and this is the minimum payoff you can get in any
period. There is a payoff table with the instructions (Figure A3). It shows your payoff
for different values of forecast errors.

Example 1 If you have advised a young person to save 90 chips, and the current price
turns out to be 10 and the next period’s price 20, the return on savings is 10/20 = 0.5,
this person consumes 0.5 × 90 = 45 when old, and your payoff is 230 points. For the
same savings decision and current price, if the next period’s price turns out to be 5, the
return on savings is 10/5 = 2 and this person consumes 2 × 90 = 180 when old, and your
payoff is 65 points.

Example 2 If your return forecast was 6 and the realized price is 5.7, your squared error
is (6− 5.7)2 = 0.33 = 0.09, and your payoff is

Y our earnings = max{1300− 1300

4
0.09, 0} = 1270.8 points.

If your prediction of the return was 32 and the realized return is 42, your squared error
is (42− 32)2 = 1−2 = 100, and your payoff is

Y our earnings = max{1300− 1300

4
100, 0} = 0,

and you do not earn any points.

At the end of the experiment, your cumulative payoffs for both tasks over all 100
periods are computed and converted into euro. Each 500 points you make in the savings
task are converted into 0.2 euro, and each 800 points you make in forecasting task are
converted into 0.2 euros. You will also receive a show-up fee of 5 euro on top of that. If
you drop out before the end of the experiment, the show-up fee will not be paid to you.
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You are going to be paid only for one task, either the savings decision or
forecasting. This will be determined randomly at the end of the experiment.

Please fill out the questionnaire on the next page. We will make sure that every
participant has filled out the questionnaire with the correct answers for each of the six
questions before starting the experiment.

Figure A1: Computer screen
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Figure A2: Payoff table. Savings task.

Figure A3: Payoff table. Forecasting task
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D Quiz: Comprehension checks

Learning-to-forecast design

1. If you enter period 6, for which period are you asked to submit a price forecast?
Answer: 7

2. If you enter a price prediction for period 10, which period’s price will be influenced
by your prediction?
Answer: 9

3. Suppose that in a period your prediction for the market price was 40, and the
market price turns out to be 41. How many points do you earn in this period? (Use
the payoff table.)
Answer: 1273

4. Suppose that in a period your prediction for the price was 10, and the price turns
out to be 25. How many points do you earn in this period? (Use the payoff table.)
Answer: 0

5. Suppose the total amount of chips sold by the young generation in period 2 is 5,
and the total amount of chips sold in period 3 is 20. In which period will the price
be the highest?
Answer: period 2

Learning-to-optimize design

1. If you enter period 6, for which period are you asked to submit a production/savings
decision and return forecast?
Answer: 6

2. If you enter a savings/production decision for period 10, which period’s price will
be influenced by your decision?
Answer: 10

3. If the total amount of chips saved by the young generation is 150, how many chips
will the old generation consume?
Answer: 150

4. Suppose that in period 9 you advised to save 4 chips, and the price of the chips
was 30 in this period and 10 in the next period (period 10). What is the return on
savings between period 9 and period 10?
Answer: 3

5. Suppose you forecast that the return on savings will be 9. How many chips should
you advise to save? (Use the payoff table.)
Answer: 10

6. Suppose the total amount of savings of the young generation in period 2 is 100, and
the total amount of savings in period 3 is 200. In which period will the price be the
highest?
Answer: period 2
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E End-of-experiment questionnaire

Learning-to-forecast design

1. What is your age?

2. What is your gender?
Options: male, female, other

3. What is your nationality?

4. What is your study field?

5. How clear did you find the instructions?
Options: very clear, clear, understandable, fairly confusing, confusing, unclear

6. Have you participated in a similar experiment before?
Options: yes, no, I don’t know

7. What strategy did you use for forecasting asset price?

8. Do you feel your forecasts influenced price? If yes, in which way?

9. If you have other comments, write them here.

Learning-to-optimize design

1. What is your age?

2. What is your gender?
Options: male, female, other

3. What is your nationality?

4. What is your study field?

5. How clear did you find the instructions?
Options: very clear, clear, understandable, fairly confusing, confusing, unclear

6. Have you participated in a similar experiment before?
Options: yes, no, I don’t know

7. What strategy did you use in making savings decisions?

8. What strategy did you use in forecasting return?

9. Do you feel your decisions influenced price? If yes, in which way?

10. If you have other comments, write them here.

F Balancing tables across treatments
The Chi-squared test shows significant treatment differences in age for both LtOE and
LtFE treatments. The treatments are balanced in all other characteristics: gender, EU
nationality, participation in similar types of experiments.
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Treatment λ = 3.3 λ = 3.5 λ = 3.8 λ = 3.83 λ = 3.9
Design LtF LtF LtO LtF LtO LtF LtO LtF LtO
The number of
participants 28 28 26 28 27 28 27 28 28

Age (average) 22.0 21.0 25.0 21.8 21.8 21.8 21.9 22.0 23.0
(0.02) (0.07) (0.03) (0.02) (0.03) (0.04) (0.08) (0.10) (0.17)

Share of women 0.45 0.55 0.53 0.58 0.63 0.50 0.40 0.55 0.63
(0.11) (0.28) (0.33) (0.11) (0.09) (0.28) (0.08) (0.42) (0.08)

Share with EU
nationality 0.35 0.65 0.68 0.63 0.80 0.55 0.70 0.45 0.85

(0.09) (0.09) (0.34) (0.09) (0.34) (0.09) (0.21) (0.25) (0.21)
Share of experienced
participants 0.63 0.60 0.50 0.60 0.45 0.73 0.63 0.68 0.45

(0.18) (0.18) (0.12) (0.06) (0.41) (0.06) (0.17) (0.11) (0.12)
Share of participants
who find instructions
at least understandable

0.89 0.93 0.73 0.89 0.74 0.93 0.78 0.89 0.79

(0.28) (0.28) (0.68) (0.55) (0.46) (0.55) (0.46) (0.30) (0.56)
Notes: All the characteristics displayed in the table are computed as the average for all groups in the treatment. The
largest p-value of the Chi-squared test for the pairwise comparisons between treatments is displayed in brackets. The
p-values larger than 0.05 mean no significant differences between treatments at the 95% confidence level.

Table A1: Balancing table of LtF and LtO by treatment

G Additional results

G.1 Price dynamics in each experimental economy
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(a) λ = 3.3 (b) λ = 3.5

(c) λ = 3.8 (d) λ = 3.83

(e) λ = 3.9

Figure A1: The price dynamics in LtFE sessions per treatment
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(a) λ = 3.5 (b) λ = 3.8

(c) λ = 3.83 (d) λ = 3.9

Figure A2: The price dynamics in LtO sessions per treatment
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G.2 Regression tables

EER RSD RMSE ARDE Uncertainty Time on round
(1) (2) (3) (4) (5) (6) (7) (8) (9)

λ = 3.83 -7.104** -22.79*** 3.940* 10.14 3.783*** 13.80 0.547*** 0.887*** 11.16***
(3.331) (3.480) (2.196) (20.71) (0.877) (16.40) (0.120) (0.204) (3.452)

constant 91.23*** 96.94*** 7.422*** 15.46 2.955*** 8.233* 0.567*** 0.450*** 14.39***
(1.653) (0.223) (1.148) (9.179) (0.530) (2.940) (0.0827) (0.104) (1.905)

Group FE - + - - + - - + +
N 20 139 20 20 140 20 20 140 70
R2 0.177 0.863 0.123 0.013 0.162 0.096 0.363 0.583 0.264

Notes: Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. EER - average payoff relative to the maximum
possible payoff; TTC - time to converge to equilibrium and stay within 5% from it for at least 10 rounds; RSD - relative standard de-
viation of the forecasts; RMSE: square root of the mean squared forecast error; ARDE - average relative distance to the equilibrium;
Uncertainty - uncertainty index based on rounding of forecasts; Time on round - average time spent on experimental round. The data
on the time spent on round spans 5 experimental sessions with 2 groups in each.

Table A1: Testing non-monotonicity in the LtFE

Time on round EER RMSE Uncertainty
(1) (2) (3) (4)

λ = 3.83 11.16*** -22.79*** 3.783*** 0.887***
(0.320) (1.602) (0.0812) (0.0436)

constant 14.39*** 96.94*** 2.955*** 0.450***
(0.177) (0.587) (0.0491) (0.0272)

Group FE + + + +
N 7000 13860 14000 13840
R2 0.264 0.061 0.162 0.183

Notes: Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01. EER - average payoff relative to the maximum possible payoff;
RMSE: square root of the mean squared forecast error; Uncertainty - uncer-
tainty index based on rounding of forecasts; Time on round - average time spent
on experimental round. The data on the time spent on round spans 5 experi-
mental sessions with 2 groups in each.

Table A2: Testing non-monotonicity in the LtFE II

Do RD EERs EERf FEr RSDs RSDf Uncertainty
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

λ = 3.83 8.019*** 25.87*** -3.723 -5.794 -2.627 -7.989 0.0642 0.183* 6.350* 9.037 -0.274*** -0.426
(2.260) (7.776) (2.721) (8.456) (1.744) (5.768) (0.0513) (0.109) (0.0513) (3.453) (12.70) (0.292)

constant 17.31*** 41.70*** 85.46*** 82.67*** 91.01*** 94.36*** 0.167*** 0.0887*** 0.167*** 32.59*** 44.37*** 1.310***
(1.083) (7.372) (1.524) (7.212) (1.094) (1.753) (0.0275) (0.0256) (0.0275) (2.321) (6.847) (0.184)

Group FE - - - + - + - + - - - +
N 16 16 16 108 16 108 16 16 16 16 16 108
R2 0.487 0.225 0.115 0.121 0.105 0.113 0.093 0.088 0.136 0.032 0.349 0.106

Notes: Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. Do - difference between the optimal savings and the actual savings decisions. EERs

- average payoff for the savings task relative to the maximum possible payoff; EERf - average payoff for the forecasting task relative to the maximum possible payoff; RSDs

- relative standard deviation of the forecasts; RSDs - relative standard deviation of the savings decisions; RD - average relative distance to the equilibrium; Uncertainty -
uncertainty index based on rounding of forecasts; FEr - forecast error divided by the mean forecast.

Table A3: Testing non-monotonicity in the LtOE
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EERs EERf FEr Uncertainty
(1) (2) (3) (4)

λ = 3.83 -7.989*** -5.765*** 0.185*** -0.417***
(1.364) (1.322) (0.0131) (0.0464)

constant 94.36*** 82.64*** 0.0890*** 1.309***
(0.805) (0.960) (0.0102) (0.0314)

Group FE + + + +
R2 10800 10666 11186 10666
R2 0.017 0.034 0.074 0.048

Notes: Robust standard errors are in parentheses. * p < 0.1, ** p < 0.05,
*** p < 0.01. EERs - average payoff for the savings task relative to the
maximum possible payoff; EERf - average payoff for the forecasting task
relative to the maximum possible payoff; Uncertainty - uncertainty index
based on rounding of forecasts; FEr - forecast error divided by the mean
forecast.

Table A4: Testing non-monotonicity in the LtOE II
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