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Abstract 
Many explanations for the decline in real interest rates over the last 30 years point to the role 
that population aging or rising income inequality plays in increasing the long-run aggregate 
demand for assets. Notwithstanding the importance of such factors, the starting point of this 
paper is to show that the major change driving household asset demand over this period is 
instead an increased desire—for a given age and income level—to hold assets. We begin by 
presenting a simple explanation for this pattern that relies on integrating retirement and inter-
temporal substitution motives in saving decisions. We then show how the interaction of these 
two saving motives can have profound implications in terms of the shape of asset demands, 
the possibility of multiple steady state real interest rates, and a potential role for monetary 
policy to influence the long-run evolution of real rates. The framework highlights how an 
inflationary episode followed by a strong monetary response, as we are currently witnessing, 
can have long-term implications for real interest rates. 

Topics: Monetary policy; Interest rates; Inflation targets; Monetary policy framework; Inflation and 
prices; Fiscal policy; Economic models 

JEL codes: E21, E52, E31, E43, E58, E62, G51, H6 

Résumé 
Bon nombre des raisons avancées pour expliquer le recul des taux d’intérêt lors des 
30 dernières années soulignent le rôle joué par le vieillissement de la population ou la montée 
des inégalités de revenu dans la croissance de la demande agrégée d’actifs sur le long terme. 
Sans nier l’importance de ces facteurs, cette étude montre tout d’abord que le principal 
changement à l’origine d’une hausse de la demande d’actifs au cours de cette période a plutôt 
été le désir accru des ménages (selon leur classe d’âge et catégorie de revenu) d’acquérir des 
actifs. Nous commençons par présenter une explication simple de cette tendance en nous 
appuyant sur les besoins d’épargne motivés par la retraite et la substitution intertemporelle. 
Nous montrons ensuite que l’interaction de ces deux motifs d’épargne peut avoir des 
conséquences majeures sur la forme des différentes demandes d’actifs, sur la multiplicité des 
taux d’intérêt envisageables à l’état stationnaire et sur l’influence potentielle de la politique 
monétaire dans l’évolution à long terme des taux réels. Le cadre met en lumière les retombées 
que peut générer à long terme sur les taux d’intérêt réels un épisode inflationniste suivi d’une 
forte réaction des autorités monétaires (comparable à la situation actuelle). 

Sujets : Politique monétaire; Taux d’intérêt; Cibles en matière d’inflation; Cadre de la politique 
monétaire; Inflation et prix; Politique budgétaire; Modèles économiques 

Codes JEL : E21, E52, E31, E43, E58, E62, G51, H6 

 



1 Introduction

In most advanced economies, prior to the pandemic, real interest rates had been trending

down since the mid to late 1980s (see Figure 1).1 The most common explanation for this

trend is that economies had been experiencing an increased demand for assets that pushed

down interest rates and increased the price of other assets, such as stocks and real estate.

Important forces cited for inducing such an increase in asset demand include population

aging and increased inequality.2

While these factors are certainly relevant, we begin this paper by showing that a key

element driving the increased demand for assets over the last thirty years comes from house-

holds’ desire to hold more assets for given age and income levels. Notably, we document

that the increase in the wealth-to-income ratio observed over this period is largely a within

group phenomenon as opposed to resulting mainly from changes in demographics or income

distribution. Furthermore, we show that saving behavior supports an interpretation of the

observed higher wealth holdings as reflecting desired increases as opposed to temporarily

above target levels due to valuation effects. In contrast, commonly used models of savings

suggest that, if the aggregate demand for savings changes due a change in the composi-

tion of the population, then the desired assets holdings of households of a given age and

income level should actually decrease. Most importantly, this implication remains true even

in the presence of valuation effects induced by lower interest rates which increase the price

of assets. Given the tension between this empirical observations and standard theories,

this paper is aimed at both offering an explanation of this household level observation and

highlighting its general equilibrium implications with a special emphasis on its implication

for monetary policy.

When looking to explain why households with similar income and demographic char-

acteristics may have increased their desired asset-to-income ratios as interest rates fell,

retirement needs in a low income environment come quickly to mind.3 This is nicely ex-

1The influential empirical study by Laubach and Williams (2003) provides estimates showing that the
natural rate of interest r∗ has been declining.

2A vast literature examines the sources of the decreasing trend in real interest rates. Borio et al. (2017)
provide an excellent survey of the literature on these issues. Several hypotheses about these sources have
been proposed: demographics (Summers (2014), Eggertsson and Mehrotra (2014), Eichengreen (2015)),
and Goodhart and Pradham (2020); a productivity slowdown (Gordon (2017)); a global saving glut and/or
lack of safe assets (Bernanke (2005), Caballero et al. (2008), Gourinchas et al. (2020), and Acharya and
Dogra (2022)); a decline in desired investment (Rachel and Smith (2017)); a rise in inequality (Mian et al.
(2020), Auclert and Rognlie (2020), Fagereng et al. (2019), and Rachel and Smith (2017)).

3While we focus on retirement motives to help explain asset holdings, bequest motives likely play a
similar role. See Beaudry and Meh (2021).
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pressed by Raghuram Rajan, former governor of the Reserve Bank of India:4

“...savers put more money aside as interest rates fall in order to meet the savings they

think they will need when they retire.”

With this in mind, we begin by presenting a model of asset accumulation in a continuous

time overlapping generations (OLG) environment that allows for inter-temporal substitution

and retirement motives to compete. The model builds on Blanchard (1985) and Yaari

(1965), and is closest to Gertler (1999).5 The framework is sufficiently tractable to allow

the relationship between desired asset-to-income ratios and interest rates to be derived

analytically. In particular, we show that if the inter-temporal elasticity of substitution is less

than 1 (which is the more empirically plausible case), then long-run asset demands become

C-shaped, with lower interest rates motivating households to increase their asset-to-income

ratios in line with what we observed in the data over the 1989-2019 period.

After laying out the partial-equilibrium setting, we move to explore general-equilibrium

(GE) implications. The main GE implication we focus upon is the possibility of multiple

steady state real interest rates (r ∗). Given C-shaped long-run asset demands, the possibility

of two or more steady state real interest rates is easily understood as the supply for assets

can readily intersect such a demand curve more than once. In order to examine the dy-

namic properties of such settings, and especially highlight why monetary policy may affect

which real interest arises in the long run, we embed our OLG households in a sticky price

environment where monetary authority sets the nominal interest rate with a Taylor rule,

subject to the effective lower bound (ELB) constraint.

Our main results with respect to monetary policy is that, even if money is neutral in

the long run, monetary policy can nevertheless have important long-run effects by influ-

encing the stability properties and the basins of attraction of different steady state real

interest rates.6 In particular, an aggressive monetary policy regime can make a high-real-

rate environment fragile to small negative inflation shocks and favor the convergence to a

low-real-rate environment. In such a case, large inflation shocks or large increases in public

debt can help get the economy out of the low-inflation, low-real-rate trap. Specifically, we

show why large increases in public debt could lead to a discontinuous jump in the long run

equilibrium real rate r ∗, while large inflation shocks could move the economy away from a

low r ∗ basin of attraction, to a high r ∗ basin of attraction, both features being potentially

relevant for understanding the current post pandemic period.

4See Rajan (2013).
5Gaĺı (2021) introduces retirement in a similar fashion in a New Keynesian model with bubbles.
6Fernández-Villaverde et al. (2021) and Rungcharoenkitkul and Winkler (2022) also consider how mon-

etary policy can affect the long-run level of real interest rates.
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Figure 1
Long-term interest rates for G7 countries from 1990 to 2019

Our results regarding the role of monetary policy in affecting long-run real interest rate

outcomes give novel support to the view of many market commentators that the long-

term downward trend in real interest rates may have reflected central banks’ willingness to

decrease interest rates aggressively in every downturn, but being hesitant to increase them

as rapidly in upturns. This view has also been advanced by policymakers such as Borio et al.

(2017), who provide evidence that over a long history persistent changes in real interest

rates coincide with changes in monetary regimes. Recently, Bianchi et al. (2022) estimate

that two-thirds of the fall in the real interest rate since the early 1980s may be due to shifts

in the parameters of the monetary policy rule. All this points to a possibly underrated role

of nominal factors and monetary policy in affecting real interest rates over long horizons.7

Our paper is also related, but distinct, to the literature on equilibrium multiplicity and

the lower bound on nominal interest rates. From the influential work of Benhabib et al.

(2001a,b, 2002), and related literature, we know that an ELB constraint can give rise to

multiple equilibria.8 However, most of this literature is not aimed at explaining changes

7Gourinchas et al. (2020)’s focus on financial cycles, especially the leveraging cycle that accompanied
the boom and bust in the 1930s and 2000s, for explaining the short-term real interest rate movements is
consistent with the role of monetary policy.

8Expectations-driven liquidity traps have also been applied to fiscal policy, optimal monetary policy and
open economy issues. See for example, Mertens and Ravn (2014), Bilbiie (2018), Nakata and Schmidt
(2021), Aruoba et al. (2018), and Kollmann (2018).
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in real interest rates, as the long-run real interest rate in the ELB regime is the same

as the one in the non-ELB regime. In contrast, in our set-up, we show that the stable

real interest rate that emerges when the ELB constraint is binding is lower than when

it is not binding. Therefore, a shift from a non-ELB-constrained equilibrium toward an

ELB-constrained equilibrium is associated with a fall in real interest rates.

The remainder of the paper is organized as follows. Section 2 exploits household level

data to examine how asset positions changed over the 30 years prior to the pandemic. We

show that for households with similar income and age, asset holding increased substantially

even as interest rates fell significantly. Section 3 presents an OLG model—similar in spirit

to that of Gertler (1999)—that integrates both inter-temporal substitution forces and re-

tirement preoccupations in a manner capable of explaining the household level observations

by giving rise to C-shaped asset demands. Section 4 embeds this OLG structure in a GE

setting. The section begins with an environment without nominal rigidities to show how

and when the real side of this economy generates more than one steady state real interest

rate. Then the section introduces sticky wages/prices to highlight how monetary policy

can affect long term real rates in such en environment. Section 5 enriches the environment

by including a claim on a productive asset—where the price of the asset increases when

interest rates decrease—in order to highlight the robustness of our results to asset valuation

effects. Section 6 offers a more general formulation of the model to offer further robustness

analysis. Section 7 concludes.

2 The Between versus Within Household Decomposition of Aggregate Asset

Holdings over 30 years: 1989-2019

While real interest rates were declining over the last several decades (as seen in Figure 1),

Figure 2 indicates that the aggregate wealth-to-income ratio in the US increased significantly

and the aggregate saving rate mildly decreased.9 The question we want to address is how

best to interpret such observations; should they mainly be interpreted as reflecting between

group (composition) effects or do they instead largely reflect within group choices. In

particular, we want to ask if measured within group changes in asset holdings over the

period appear consistent with asset demands that are monotonically increasing in real

interest rates or if they place in doubt such monotonicity.

Before moving to the empirical analysis, it is important to note that such analysis will

9Mian et al. (2021b) provide an extensive analysis of the evolution of household saving behavior using
the ratio of saving to national income since 1950, including over the period from 1995 to 2019, when the
natural rate of interest fell to an extremely low level.
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not in itself provide any direct evidence of multiple steady state equilibria. Instead it is aimed

at shedding light on whether long-run asset demands are likely monotonically increasing in

real interest rates — which would make multiple steady states very unlikely — or whether

they point to an alternative configuration where asset demands are decreasing in interest

rates at least over a range of values — which makes multiple steady state equilibria much

more likely. The latter case is a necessary condition for the sort of multiple steady state

equilibria we will study in the theory sections.

Between group (compositional effect) explanation. A common explanation for the

rise in aggregate wealth-to-income ratio is that it reflects increase in demand for assets

induced by changes in demographics and income distribution. As the population aged, and

more income was concentrated in higher income groups, the demand for wealth increased.

This put downward pressure on interest rates, which through valuation effects among others,

raised the effective supply of wealth. The higher savings of the older and richer population

was compensated by a decreased incentive to save by the population at large due to lower

interest rates, leaving the overall savings rate relatively flat. Such narrative is essentially

a “between” group narrative which relies on compositional changes in types of individuals

to explain the increased demand for wealth. In particular, it suggests that, for similar

age and income levels, as interest rates fell, households at large may have saved less and

accumulated less wealth, but due to the changes in the age and income distributions of

the population, the aggregates behaved very differently from the prevailing individual level

outcomes.10

Within group explanation. At the other end of the spectrum, a multiple steady state

equilibrium story suggests that the joint pattern of increased aggregate wealth, lower interest

rates and slightly decreasing aggregate saving rates potentially reflects a “within” group

phenomenon. In this alternative view, we still have that as interest rates decrease, the

effective supply of wealth increases through valuation effects. However, now the endogenous

increase in supply does not need to be primarily driven by an exogenous increase in demand.

Instead, it can be accompanied by a simultaneous endogenous response of demand whereby

households choose to hold more wealth at lower interest rates due to the income effect that is

associated with interest rate movements. Note that such a multiple steady state equilibrium

story would not negate the possibility of between group effects arising from demographics

and inequality, but it does not rely on them. In fact, a change in demographics or income

inequality could complement this type of multiple steady state equilibrium story by helping

10In this type of scenario, the between group effect should actually explain more than 100 percent of the
increase in asset demand as the within component should be negative.
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Figure 2
Household saving rates and aggregate wealth-to-income ratios in the US from 1989 to

2019

to explain why the economy may have switched from a high real interest rate to a low real

interest rate at this time in history.

The above discussion underlines the relevance of understanding the relative roles of

within versus between group effects in explaining the increased wealth holdings in the US

over the last three decades. To do so, we use the Survey of Consumer Finances (SCF)

and focus on the difference in asset holdings across household groups between 1989 and

2019. We choose this period for our analysis as it corresponds quite closely to the period of

decreasing real interest rates presented in Figure 1. Furthermore, by looking at this thirty-

year difference, we hope to minimize higher frequency movements in wealth accumulation

dynamics associated with business cycles forces and crises.

The SCF is the most comprehensive source of data on household-level wealth and its

components in the United States. It also has a consistent sampling methodology, over-

sampling the rich, in all the survey waves between 1989 and 2019, which is useful for our

analysis. The survey has between 3 and 5.5 thousand households, depending on the year,

and our results use weights throughout. For our baseline definition of wealth, given the

importance of retirement considerations in the theory sections, we supplement the SCF

data with the estimates on defined benefit (DB) pensions of households from Sabelhaus

and Volz (2020), which have been widely adopted in the related literature.11 Thus, our

11SCF only directly measures pensions in defined contribution plans. Defined benefit pension entitlements
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measurement of wealth, including DB pension wealth and excluding social security wealth,

also lines up well with that reported in Financial Accounts of the Federal Reserve (FA).12

In this section, we primarily report findings using the SCF (plus DB pensions) data, which

allows us to establish our results using several approaches that require micro-level data.13

These data show similar upward movement in the dynamics of the total household wealth-

to-income ratio as in the aggregate accounts of the United States (FA and NIPA), although

the magnitudes are somewhat smaller for the latter.

The aggregate wealth-to-income ratios in 1989 and 2019 we use for our decompositions

are calculated from the SCF as the ratio of the sum of the wealth of each household to

the sum of incomes of each household, respectively denoted
(

w
y

)
89

and
(

w
y

)
19

. In our

baseline, we include all household wealth either directly reported in or constructed from the

SCF (including estimates of DB pensions from Sabelhaus and Volz (2020)) in our measure

of wealth.14 To explore robustness, we also provide calculations where we exclude wealth

in a primary residence from the baseline measure of wealth.15 Our measure of income is

the total of components available in SCF, and does not vary with the definition of wealth

used either in the baseline or the robustness scenarios.16

calculated by Sabelhaus and Volz (2020) represent their termination value, which is the legal obligation of
employer plans, and corresponds to the measure of defined benefit pension entitlements (both funded and
unfunded) in Financial Accounts. We thank the authors for sharing their estimates with us.

12Sabelhaus and Volz (2020) also provide estimates of social security wealth using SCF, in addition to
defined benefit pension wealth, using both termination and expected values of such wealth. However,
similar to Auclert et al. (2021) conceptually we think of social security wealth as a future transfer, and do
not include it in our measure of household wealth.

13Later in the section we also report results from micro data scaled to Financial Accounts and National
Income and Product Account (NIPA) aggregates.

14In particular, we do not exclude vehicles as a measure of consumer durables from household wealth
in the SCF. Consistent with this approach, our measure of saving rates in the next section also includes
consumer durables, as the FA concept of saving rate, but unlike the NIPA measure of saving rate. However,
the difference in saving rates implied by inclusion of vehicles is very small. There is some difference
associated with using NIPA or FA saving, as the FA saving is more noisy. However, the dynamics over time
of these saving rates are quite similar.

15Our preferred measure of wealth includes housing. An additional reason for this has to do with the
subsequent analysis of group-wise changes in wealth and saving rates in Section 2.1. We construct saving
rates by components of household wealth following the approach in Mian et al. (2021b). Thus, while it
is also possible to exclude the components of housing wealth – both in assets and liabilities – from the
construction of saving rates, the relevance of this measure in comparison to other studies using standard
measures of saving from the data is less clear. Saving in housing expressed as the net new housing also
represents a non-trivial component of saving.

16Following Fagereng et al. (2019) and Eika et al. (2020) we have also examined the case where we
include in the SCF definition of income a measure of imputed housing rents of homeowners, constructed by
distributing NIPA reported rents according to the value of housing of SCF respondents. When applying this
definition of income with the baseline measure of wealth, we find that the contribution of the within-group
component to the overall change in the wealth-to-income ratio is largely unchanged. For this reason, we
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The aggregate wealth-to-income ratio in the SCF increased from 5.61 in 1989 to 8.43 in

2019, which is an increase of about 2.82. This is the increase associated with an inclusive

wealth measure from the SCF. When we exclude net housing wealth from this measure,

the increase in the ratio is of similar magnitude at 2.65. The increases are all substantial

relative to 1989 levels.17 To examine the within versus between components of increased

wealth holdings, we apply a simple shift-share methodology in the main text, and report

robustness results using a regression based decomposition in Appendices B.2 and B.3.

For the shift share analysis, we place households in I bins, with Ni households in a bin

i = 1, ..., I . The change in the aggregate wealth-to-income ratio can be decomposed as

follows:

(
w

y

)
19

−
(
w

y

)
89

=
∑

i

(
w̄i

ȳi

)
89

[(
yi

y

)
19

−
(
yi

y

)
89

]
︸ ︷︷ ︸

between group or compositional effect

+
∑

i

(
yi

y

)
19

[(
w̄i

ȳi

)
19

−
(
w̄i

ȳi

)
89

]
︸ ︷︷ ︸

within group

, (1)

where the first summation term represents the between group component, using 1989 as

the base year for income and wealth profiles, and the second one represents the within group

component.18 In this expression, yi is the total income in bin i , ȳi is the average income in

bin i , w̄i is the average wealth in bin i and finally y is the total income across all bins. All

nominal variables are converted into real variables indexed in 2019 dollars. As can be seen

from Equation (1), the changes in the total wealth-to-income ratio can be divided into the

between group component determined by the shift in the share of income going to each

of the individual groups (yi/y) and the within group component determined by changes in

the (average) wealth-to-income ratio of each group (w̄i/ȳi ). If the wealth-to-income ratios

of individual groups were stable across time (e.g., (w̄i/ȳi )19 = (w̄i/ȳi )89 for all groups i),

the change in the aggregate wealth-to-income ratio would need to be fully explained by

the between group component (i.e., by the change in income shares alone). However, at

the other extreme, if the income and age distributions remained stable across time (e.g.,

if (yi/y)19 = (yi/y)89 for all groups i), then the within group components would need to

keep the original measure of income from SCF in our baseline results.
17In the scaled wealth and income data, the ratio changes by 171pp from 4.27 in 1989 to 5.98 in 2019.

The literature has also used other definitions of wealth ratios, for example, normalized by GDP. While the
exact changes in these ratios may depend on what goes into their numerator/denominator, they all have
increased substantially over time.

18In Appendix B.3, we clarify the close relationship between the shift-share and the regression based
decomposition. This discussion helps to highlight under what conditions the first component represents
the between-group component and the second component represents a within-group component.
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account for all the change in the aggregate wealth-to-income ratio.19

We start by dividing the population households into age groups, defined by the age

of the head of the household, to look narrowly at the effects of demographic changes in

isolation. Then, we divide the population of households into income groups to examine

only the effects of changes in the current income distribution. Finally, in our preferred

specification, we combine the two and place households into age-income specific bins.20

The results of the shift share analysis for these different groupings are presented in Tables 1

and 2.

Table 1
Shift Share Decomposition of the Change in the Aggregate Wealth-to-Income Ratio

Between 1989 and 2019

Groups Total Change Between Within Fraction due to Within

(%)

Age Groups

5 age groups 2.819 0.944 1.875 66.5
12 age groups 2.819 0.984 1.835 65.1

Income Groups

6 income groups 2.819 0.175 2.644 93.8
12 income groups 2.819 0.179 2.640 93.6

Note: The 5 age groups are: 18-34, 34-35, 35-44, 45-54, 54-64, 65+ and the 12 age groups are: <25, 25-29,
30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, and 75+. The 6 income groups (in thousands of
real 2019 dollars) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+ and the 12 income groups: 0-20, 20-40, 40-60,
60-80, 80-120, 120-160, 200-250, 250-500, 500-750, 750-1250, 1250+. Wealth includes defined benefit pensions.

In Table 1, we report results for the more narrow focus on either only age or income

19Work by Auclert et al. (2021) is the closest to this paper in terms of quantifying the contribution of
population aging, i.e. between-group component with 5-year age groups in place of i , to the change in the
wealth-to-income ratio in the US between 1950 and 2016.

20In their shift-share analysis of the changes in saving to national income ratio, Mian et al. (2021b)
test the relative importance of aging versus income inequality drivers over the 1950-2019 period. For
this reason, they choose to focus separately on age groups and within-birth-cohort income distribution
groups defined by 10th, 50th, and 90th income percentiles. Feiveson and Sabelhaus (2019) also look at
within-birth-cohort permanent income groups which are only available for the 1995-2019 period. When
using normal income for the formation of income groups and income measure itself, we find that over the
period between 1995 and 2019, the within-group component is responsible for 55% of the change in our
benchmark measure of the wealth-to-income ratio, including defined benefit plans.

9



groups.21 With respect to the results based on demographics the table presents two break-

downs: one based on 5 age groups and one based on 12 age groups. For these two

breakdowns, we get very similar results: the within component explains about 65 percent

of the change in the wealth-to-income ratio.22 Then, we look at two groupings based only

income: one based on 6 groups and one based on 12 groups. In both of these cases, the

between component only explains about 7 percent of the change, leaving 93 percent of the

change to the within-group component.23

In Table 2, we present results for our preferred approach, where we allow for 30 groups as

the product of 5 age groups and 6 income groups. These results use two different measures

of wealth: our baseline measure inclusive of all wealth and the baseline measure less net

housing wealth (primary residence).24 For comparison between the survey and aggregate

data, we also report in Table 2 the results of the shift-share analysis when rescaling SCF

estimates of wealth and income to match the FA and NIPA aggregates (”scaled” estimates).

The latter approach is used in the literature, such as Feiveson and Sabelhaus (2019), Mian

et al. (2020), and Bauluz and Meyer (2019). It builds each group’s wealth using its shares

of different assets and liability classes in SCF and values of their counterpart FA classes.25

The same is done on the income side where SCF reports income from different sources,

which are matched to their corresponding aggregates in NIPA.26 As shown in Panels A and

B, the two sets of results are quite similar. The within component — that is, the component

21Appendix B.1 also presents the results of the decomposition of the changes in wealth-to-income ratio
between 1989 and 2019 into within and between-group components with additional income groups at the
higher end of the income distribution. The results using additional groups are similar to the benchmark 6
and 12 income groups.

22The compositional age effect in Auclert et al. (2021) computed for the 1950-2016 period and using
2016 for base profiles of labor earnings and wealth is responsible for 105 out of 118 percentage points
increase in the wealth-to-GDP ratio. Over the period studied in this paper the compositional effect in
Auclert et al. (2021) is about half of that in the full period, while the actual change in wealth-to-GDP
ratio is similar between 1989 and 2016 and 1950 and 2016. In what follows, we also discuss the results of
using 2019 as the base year for the between-group component calculation, which is closer to 2016 used in
Auclert et al. (2021).

23As mentioned earlier, this definition of income groups differs from that used in Mian et al. (2021b)
analysis of the changes in aggregate saving rate, which also controls for life-cycle effects by looking at
top, middle and bottom parts of income distribution within each cohort. We similarly condition on age
differences, when looking at the product of income and age groups in what follows.

24In the remainder of the sections pertaining to empirical analysis, we would refer to SCF data plus DB
pensions as simply raw SCF data, for ease of the exposition.

25We use the aggregates as reported directly in FA, as opposed to combining aggregates for some
asset classes from SCF and others from FA. But the results do not substantially change when we use a
combination approach instead.

26In the benchmark, we use the definition of gross NIPA income less imputations for owner-occupied
housing rents. However, we have also used other measures of income, including with imputed owner-
occupied rents, and the results using these other measures are similar.
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associated with changes in the wealth-to-income ratio of different groups — accounts for

between 57 and 65 percent of the change with the between component explaining around

40 percent.27

The results in Table 2 are obtained using 1989 as the base year for each group i ′s initial

profiles. In Appendix B.1 we also check the robustness of these results when changing the

base year to 2019. When doing so, as suggested by Mian et al. (2021b), the importance of

the between component increases, helping to explain some of the difference in our results

relative to those reported in Auclert et al. (2021). However, even with the change in the

base year the within-group component accounts for more than 50% of the change in the

aggregate wealth-to-income ratio between 1989 and 2019.28

It must be immediately noted that these decomposition results — by themselves — do

not imply that within group desired wealth holdings have necessarily gone up. Instead, if

households’ wealth holdings are sticky, it could be that these high levels of within-group

increases in wealth holdings simply reflect the fact that falls in real interest rates have led to

increased valuation of wealth, and that households in 2019 are holding much more wealth

than they desire relative to similar households in 1989. This could be the case if households

face constraints on adjusting their portfolios. This is especially likely for housing, which

is why we also reported results excluding housing. As we saw, the results are not driven

by housing wealth. Nonetheless, to explore the possibility that households hold wealth

above their target level more thoroughly, we need to examine the changes in saving rates

by age-income groups. We do so focusing on total saving rates.

27It is interesting to note that showing that the within group effects are important for explaining the rise
in wealth-to-income ratios does not mean that these effects are solely due to interest rates. They could be
due to other common time effects such as tax changes.

28It is worth noting that the sensitivity of results to base year choice tends to decrease as we increase
the number of groups. However, it must also be recognized that some of the groups start to have rather
few observations when we go above 30, explaining the choice of the number of groups for our baseline
results. Nonetheless we did explore how our decomposition results change when we considerably increase
the number of groups. For example, when we allow for 75 groups (15 income groups and 5 age groups),
our within group estimate declines to around 48% when using 1989 as the base year, and this does not
change much if we change the base year to 2019. Given this, we are comfortable interpreting our results
as suggesting that both the within and between components are close to equally important in explaining
the increase in wealth to income ratios.
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Table 2
Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019 and the
Fraction of the Change due to Within and Between Effects: Shift Share Decomposition

Definition Total Change Within Between

(%) (%)

Panel A: Raw SCF Data

Wealth (baseline) 2.819 61.6 38.4
Wealth less housing 2.649 61.4 38.6

Panel B: Scaled SCF Data

Wealth (baseline) 1.71 57.4 42.6
Wealth less housing 1.64 65.9 34.1

Note: The decomposition is done for 30 groups which are the product of 5 age
groups and 6 income groups. The age groups are: 18-34, 34-35, 35-44, 45-54,
54-64, 65+ and the income groups (in thousands of real 2019 dollars) are: 0-20,
20-40, 40-60, 60-80, 80-120, 120+.

2.1 Within-group saving behavior: Are households in 2019 trying to shed their

increased wealth?

In the previous section we documented that a large share of the increase in the aggregate

wealth-to-income ratio in the US over the period 1989-2019 is accounted for by increases

in wealth for given levels of age and income, that is, it is predominantly a within group

phenomenon. There are at least two potential interpretations of such an observation.

On the one hand, increases in wealth-to-income ratio could reflect increases in desired

wealth holdings due to low expected returns on assets. On the other hand, such increases

in wealth could reflect unanticipated valuation effects, where the observed higher wealth

holdings reflect wealth holdings that are above their desired levels. To help discriminate

between these two possibilities, in this section we look at the changes in within group

saving patterns over the same period. In particular, if the observed within group increases

in wealth-to-income ratios reflect wealth levels in 2019 that are above desired levels, then

we should see household groups with large increases in wealth wanting to spend more and

save less to get their wealth back down to its target level. Accordingly, we should see
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them decrease their savings rates.29 Hence, the absence of a negative relationship between

increased wealth and changes savings rates would indicate that the extra wealth holdings

are likely desired not excessive.

In line with the previous section, we focus on within group changes in saving rates for

the 30 groups we used for our analysis of changes in wealth-to-income ratios. We measure

saving in the SCF using synthetic saving approach, widely adopted in the literature, which

approximates saving by each group by netting out valuation effects from changes in their

wealth between two SCF waves.30 Our saving rates are calculated over a three-year window.

Saving rates for 1989-92 and 2016-2019 periods, respectively, correspond to the start and

the end of our 30-year period used to analyze changes in the aggregate wealth-to-income

ratio in the US. In our robustness exercises using the SCF, we also exclude net inheritances

from changes in wealth, which does not materially change the results.31

We follow the approach of the previous section in using both unscaled/raw SCF data, as

well as scaled to the aggregates SCF data to construct group savings rates and their changes.

For valuation effects we apply asset/debt inflation factors from Mian et al. (2020), which

are aggregate in nature and are available until 2016 inclusive, and use their methodology to

extend them to 2019. Appendix A provides further details of the saving rate construction.

Table 3
Correlation between Group Changes in Wealth-to-Income Ratios and Changes in Saving

Rates: Raw and Scaled SCF Data, 30 Age-Income Groups

Raw SCF Scaled SCF

corr(∆(s/y), ∆(w/y)) -0.05 0.16

Note: Correlation is computed using 30 age-income groups constructed
using SCF data as defined previously.

29Fagereng et al. (2019) ask a similar question whether households who experience capital gains sell off
the assets subject to price increases to consume. They find evidence against such behavior and show that
it is consistent with a model where asset price increases are driven by declining asset returns, as opposed
to growing dividends.

30For other papers using synthetic saving approach see Mian et al. (2021b) and references therein.
This approach of decomposing total changes in wealth into the component associated with capital gains
and non-capital gains component is also used in the FA approach to calculating saving, with the latter
conceptually corresponding to the measure of saving in NIPA.

31Accounting for inheritances has a zero net effect in the aggregate, as inheritances received should
equal inheritances bequeathed, but within groups these inflows and outflows may not be equal, potentially
affecting group-wise changes in saving rates.
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Table 3 presents correlations between changes in wealth-to-income ratios and changes

in saving rates using these two different approaches. Using raw SCF data to compute

the correlation between group changes in wealth-to-income ratios and saving rates results

in a coefficient of -0.05, and with scaled SCF data it is 0.16. Both of these numbers

suggest that groups that faced greater increases in wealth-to-income ratios do not appear

to systematically reverse this accumulation by decreasing their saving rates.32 In Figure 3,

we complement the evidence on correlations from Table 3 by plotting the changes in saving

rates against the changes in log wealth for all the groups that experienced increases in

wealth. Given that the saving rates constructed using raw SCF data were low relative to

aggregate measures of saving rates in FA/NIPA, for this figure we are using results based

on the scaled SCF measures of saving rates. The average change in savings rates for this

subset is slightly positive. Moreover, as can be seen in the figure (and is confirmed by the

correlation), higher increases in wealth are not on average associated with larger decreases

in saving rates. It must be recognized that our measure of saving rates, which is common

to the literature, is quite noisy. Accordingly, we witness substantial variation in saving rates.

Nonetheless, we view these patterns as providing support to the notion that increases in

within group wealth-to-income ratios documented in the previous section are more likely

reflecting changes in desired wealth holdings as opposed to reflecting wealth holdings that

exceed desired levels.

2.2 The Asset-demand interest-rate relationship holding income constant

In the previous section, we documented that when one compares households with the

same real income in 1989 versus 2019, desired asset holdings appear to have increased

as interest rates fell. In Appendix C, we show that such a pattern conflicts with a large

class of models commonly used in macroeconomics to capture household savings behavior.

Specifically, in the appendix we consider asset accumulation decisions of a household with

preferences of the form

max

∫ ∞
0

e−(δ+ρ)t

[
c1−σc

t

1− σc
+ Λ

a1−σa
t

1− σa

]
dt, σc ,σa > 0, Λ ≥ 0

subject to the budget constraint

32Amongst our 30 benchmark groups, we find that all of the groups in the top income grouping, except
one, did not decrease their saving rates, which is consistent with findings in Mian et al. (2021b) using
averages for 1963-1982 and 1995-2019 periods and the top 10% of the within-cohort income distribution.
However, the time periods and the income group definitions in the two studies are not fully comparable.
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Figure 3
Change in saving rates vs. change in log wealth for age-income groups with wealth

increases between 1989 and 2019

Sources: Survey of Consumer Finances values scaled using aggregates from the Financial Flow
Accounts and National Income and Product Accounts.

ȧt = yt − ct = wt + rtat − ct

where ct is consumption, ρ is the discount rate, δ is a death rate, at is asset holdings, yt is

total income, rt is the return on the asset at , wt is non-asset income and Λ a1−σa

1−σa
represents

any potential additional gains—besides the consumption they allow—of holding assets. If

Λ = 0, we have the standard representative agent setting. Allowing for Λ ≥ 0 covers a

wider range of models including those considered in Kumhof et al. (2015), Mian et al.

(2021a), Michaillat and Saez (2018), De Nardi (2004), Straub (2019), and Michau (2022)

which allow assets to directly affect utility.

For this class of models, one can easily derive the steady state asset demand function

which is of the form

ass = A(r , y)

and verify that ∂ass

∂r
> 0 for all values of σa and σc , that is, desired assets are always

increasing in r (holding total income y constant).33

33It may be worth noting that for this class of utility functions, the asset-to-income ratio will be increasing,
invariant or decreasing in income depending on whether σc > σa, σc = σa or σc < σa, respectively. The
interesting work by Mian et al. (2021a) examines implications of asset holdings with non-linear Engel
curves by considering the case where σc > σa (non-homothetic preferences). Instead, our paper (as seen
from Section 3 onwards) focuses on asset demands that are not monotonic in r holding income constant.
Note that when σc > σa as in Mian et al. (2021a), ∂ass

∂r is positive when holding income constant. This
observation may appear to contradict Mian et al. (2021a) where it is shown that asset holdings can be
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Note that in such an environment, if there is a change in the distribution of types, say for

example due to a change in the distribution of non-asset income wt , the general-equilibrium

implication can be a fall in asset returns and valuations effects due to the repricing of fixed-

income assets. In the new steady state equilibrium induced by such a change, agents

would therefore need to hold—in aggregate—a portfolio of higher value because of the

valuation effects. However, it will remain the case that despite these valuation effects,

when comparing two households with the same income before and after the change, the

household in the higher-interest-rate environment should be holding more assets. This is a

direct consequence of ∂a
∂r
> 0. In other words, if we perform a between group and within

group decomposition of the change in the aggregate asset-to-income ratio induced by a

change in the distribution of types that lowers the real rate in this kind of environment, we

should find that the between component explains more than 100 percent of the change in the

asset-to-income ratio while the within component would be making a negative contribution.

Such a pattern is clearly at odds with what we observed when decomposing the change in

the asset-to-income ratio in the higher interest rate environment of 1989 relative to that

of the lower interest rate environment of 2019. For this reason, we now turn to present an

environment which is more compatible with the decomposition observations.

3 Model

The asset holding pattern presented in the previous section suggests that the quantity

of asset holdings desired by households may be increasing with low frequency decreases in

interest rates, at least over certain ranges. As indicated previously, such a property is not

theoretically problematic as interest rate changes can have both income and substitution

effects on desired wealth holdings. The question for us is how best to explain such an

observation and what does it imply about the potential role of monetary policy in affecting

long-run outcomes. The workhorse infinitely lived agent model is not a good starting point

for asking these questions as it is not consistent with desired wealth holdings decreasing

with higher interest rates. In contrast, the positive effect of lower interest rates on asset

demands can in principle be easily captured in an OLG type framework. However, the

perpetual youth OLG model of Blanchard (1985) and Yaari (1965), by omitting retirement

savings needs, downplays precisely the potential income effects of interest rates which could

decreasing in r when σc > σa. However, the potential confusion comes from the fact that the relationships
between asset holdings and interest rates depend on whether income is being held constant or not. For
example, in Mian et al. (2021a), income is ra. If one replaces y by ra in our asset demand relationship
ass = A(r , y) = A(r , rass) and examines the implicit relationship between ass and r with income changing
according to y = ra, then this will result in, as in Mian et al. (2021a), ∂ass

∂r being negative if σc > σa.

16



help explain the pattern of interest to us. For these reasons, in this section we build on

a model similar to that of Gertler (1999) that integrates both inter-temporal substitution

forces and retirement preoccupations in wealth accumulation.34 In particular, these two

forces will be shown to interact in a manner that gives rise to C-shaped wealth demands

where desired wealth holdings increase when long term interest rate decrease at low levels.

In the subsequent section, we will embed this household decision model into a general

equilibrium set-up to show how it can lead to multiple steady state real interest rates(r ∗)

and how it creates a role for monetary policy to influence long run real interest rates. In

particular, the model will highlight why aggressive inflation targeting monetary policy may

have contributed to the fall in real interest rates over the last thirty years. It is worth noting

that the mechanisms we will highlight are not driven by monetary policy simply affecting

beliefs in a multiple equilibrium setting but are instead associated with monetary policy

affecting the inherent dynamics of a system with multiple steady states.

3.1 The household’s decision problem with both inter-temporal substitution

and retirement motives

When thinking about consumption and wealth accumulation decisions, it is common to

think about people in different states. As is standard in simple OLG models, we can think

of a household in one of three states: an active work state, a retirement state and a death

state. Following Blanchard (1985), Yaari (1965) and Gertler (1999) we want to think of

these states as evolving stochastically. To be more precise, let us assume that a person

starts life in a work state and transits out with instantaneous probability δ1. In the absence

of fixed retirement dates, this shock can be thought as a health shock. At this transition,

with probability q, the person retires and with probability (1−q), the health shock is severe,

and the person dies. If the person retires, the person will die with instantaneous probability

δ2 ≥ δ1. If we denote the expected discounted utility of entering the retirement state at

time t by Vt , we can express the utility of an active household, that is a household in the

work state, as: ∫ ∞
0

e−(δ1+ρ)t

[
c1−σ1

t

1− σ1
+ δ1qVt

]
dt, σ1 > 0

34We depart from Gertler (1999) by maintaining the more common CRRA utility specification instead
of adopting RINSE preferences. Carvalho et al. (2016) uses the model of Gertler to examine equilibrium
rates. More recently, Gaĺı (2021) introduces retirement in a New Keynesian model with logarithmic utility
in which there are multiple steady state real rates that are related to the size of bubbles. In a two-period
OLG model with nominal rigidities, Plantin (2022) also examines the case where a Taylor rule may create
monetary bubbles. We do not explore the possibility of bubbles in our analysis.
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where ct is consumption, ρ is the subjective discount rate and σ1 > 0 is the inverse of the

elasticity of substitution (1/σ1), or alternatively the risk aversion parameter.

A retiree’s decision problem. For the household in the retirement state, the preferences

are given by: ∫ ∞
0

e−(δ2+ρ)τ c1−σ2
τ

1− σ2
dτ , σ2 > 0

We are allowing the parameters governing inter-temporal substitution, σ1 and σ2, to differ

between the two states of life to illustrate important forces at play. Later, we will restrict

attention to the more standard case where σ1 = σ2.

The budget constraint facing the retired household is given by:

ȧt = atrt − ct ,

where at is the asset holding of a retired person at time t and rt is the return on the asset

a. As can be seen from the budget constraint of the retirees, moving into the retirement

state is associated with the absence of labor income implying that households must rely

only on asset income for consumption. The need to rely on asset income in retirement will

play an important role in our results. Given this structure, the discounted expected utility

of a household who retires at time t1, Vt1 , can be solved explicitly and expressed as35

Vt1 =
a1−σ2

t1

1− σ2

[∫ ∞
t1

e
−
∫ t

t1

1
σ2

[(ρ+δ2)−(1−σ2)r(τ)]dτ
dt

]σ2

,

where at1 is the level of assets held by the household at time of retirement. For convenience,

we will also express Vt1 as

Vt1 = V (at1 , Γt1) =
a1−σ2

t1

1− σ2
[Γt1]σ2 ,

where

Γt1 =

∫ ∞
t1

e
−
∫ t

t1

1
σ2

[(ρ+δ2)−(1−σ2)r(τ)]dτ
dt,

with Γt1 being a function of the whole future path of returns {rt}∞t1
. Expressing utility as

V (at1 , Γt1) =
a

1−σ2
t1

1−σ2
[Γt1]σ2 makes it clear that the utility of someone who retires at time t1

35The expected utility associated with the retirement state is found by first solving for the optimal
consumption path, which is governed by the Euler equation ċt

ct
= rt−ρ−δ2

σ2
and then integrating the implied

utility flow over the expected duration of retirement.
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depends on both the asset at the time of retiring and the entire path of asset returns over

the retirement period. As we shall see, the degree of inter-temporal substitution 1
σ2

will

play an important role in controlling how asset returns affect marginal value of assets.

For future reference, it is useful to note that Γt1 obeys the following differential equation

Γ̇t = −1 + Γt

[
ρ + δ2

σ2
− 1− σ2

σ2
rt

]
. (2)

To see most easily how asset returns affect retirement utility, note that if the return on

asset a is constant, rt = r , then Vt1 can be expressed as

Vt1 =
a1−σ2

t1

1− σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−σ2

Here we see that higher r increases utility in both the case where σ2 < 1 or when

σ2 > 1, that is, retired individuals always like higher interest rates as this gives them a

superior income stream . However, what will play an important role in our analysis is how

higher r affects the marginal value of at1 to a retiree. This is given by the following key

lemma.

Lemma 1. At fixed r , the marginal value of assets to a retiree is decreasing in interest

rates when σ2 > 1 and is increasing in interest rates when σ2 < 1 since
∂2Vt1

∂at1∂r
= a−σ2

t1
(1−

σ2)
[
ρ+δ2

σ2
− 1−σ2

σ2
r
]−σ2−1

.

In general, the effect of asset returns on the marginal value of assets for retirees depends

on σ2. As noted in Lemma 1,36 this marginal value is decreasing in r when σ2 > 1. In other

words, when a retiree has limited opportunities to inter-temporally substitute consumption

across time, the retiree will view assets at time of retirement to have a greater marginal

value when interest rates are low than when they are high. This property will influence

the wealth accumulation behavior of non-retirees as will be the focus below.37 It is worth

36Lemma 1 can be trivially extended to include the case of log preferences. In this case, the marginal

value of assets is independent of interest rates, i.e.,
∂2Vt1

∂at1
∂r = 0.

37When σ2 > 1, a rise in interest rates causes the optimal path of post-retirement consumption to be
higher at all dates and hence the marginal value of assets is lower. This is easily understood and intuitive. In
contrast, when σ2 < 1 different interest rates cause optimal paths of post-retirement consumption to cross;
with retirees consuming initially less in a higher interest rates environment but having their consumption
decline more slowly over time. Because of this crossing property, the effect of interest rates on the marginal
value of assets is not straightforward when σ < 1. Lemma 1 indicates that the net effect is that higher
interest rates increase the marginal value of assets when σ2 < 1 due to this crossing feature.
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noting that, although we have not allowed for an annuity market for the effect of uncertainty

about time of death, Lemma 1 is not dependent on the presence or not of such a market.

The content of Lemma 1 would remain identical if we were to allow for an annuity market

similar to that in Blanchard (1985).38

An active household’s decision problem. Let us now turn to the decision problem of

an active household. Its decision problem will incorporate the continuation value of assets

in retirement and can be written as:∫ ∞
0

e−(δ1+ρ)t

[
c1−σ1

t

1− σ1
+ δ1qV (at , Γt)

]
dt,

subject to

ȧt = yt − ct (3)

with yt = wt + rtat −Tt , where yt is disposable income, wt is labor income and Tt are

taxes.

The consumption Euler equation for the active household becomes

ċt

ct
=

rt − ρ− δ1

σ1
+

cσ1
t

σ1
δ1qVa(at , Γt) (4)

Relative to a standard infinitely lived agent Euler equation, this Euler equation incorpo-

rates forces associated with both inter-temporal substitution and retirement preoccupations

as in Gertler (1999) and Grandmont (1985). The first term in this Euler equation maintains

the standard substitution effect of interest rates on consumption. However, this effect now

relates to short-term interest rates movements holding the future path of interest rates

constant. When both short-term and long-run interest rates move together the net effect is

more involved. The additional term in the Euler equation — c
σ1
t

σ1
δ1qVa(at , Γt) — represents

the incentive to save due to retirement motives and thus is affected by future interest rates.

Given this term is always positive, it implies that retirement adds a force towards postpon-

38Like Gertler (1999), a key assumption is the absence of a pension system which acts as a perfect insur-
ance market against loss of labor income. The absence of such market implies consumption in retirement
depends on the accumulated savings when active.

20



ing consumption and favoring asset accumulation.39 The key element for us, and which will

allow us to capture features of the data, is that the retirement incentive to save is affected

by long run returns to savings. In particular, when interest rates are constant, rt = r ,

we have seen that Va,r (at , r) < 0 when σ2 > 1. Hence, interest rates have two opposing

effects in our set-up when σ2 > 1. Low interest rates will favor higher consumption today

due to inter-temporal substitution forces, while at the same time, low interest rates are an

incentive for greater retirement savings if the low interest rates are viewed as persistent.

To help further highlight implications of this Euler equation, it is helpful to examine

the implied long-run asset holdings of the active household when the return of asset a

is constant and therefore Γt = [ρ+δ2

σ2
− 1−σ2

σ2
r ]−1. We will denote an active household’s

steady state asset holding function by aa,ss(y , r). Proposition 1 indicates that aa,ss(y , r) is

attractive and describes the key properties of the function aa,ss(y , r).

Proposition 1. For fixed r, the asset holdings of active households will converge to

aa,ss(y , r)40 given by

aa,ss(y , r) = (δ1q)
1
σ2

[
ρ + δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ + δ1 − r ]
−1
σ2 y

σ1
σ2 , (5)

when r is in the interval defined by [ρ+δ1−r
δ1q

(ρ+δ2

σ2
− (1−σ2)r

σ2
)σ2]

1
σ1 > max[0, r ].41

The long-run asset holdings of active households aa,ss(y , r) are increasing in income.

Moreover, if σ2 ≤ 1, then aa,ss(y , r) are monotonically increasing in asset return r , while if

σ2 > 1, they are C-shaped in r .42

See Appendix D.1 for the proof.

The first property noted in Proposition 1 is straightforward. If an active household has

greater income, its target level of asset holding will be higher. This remains true regardless

of the degree of inter-temporal substitution. The most important element in Proposition 1

relates to the effects of steady state returns on desired long-run asset holdings. In particular,

we see that if σ2 ≤ 1 , then desired long run asset holdings would be monotonically in-

39This force is also present in models with warm-glow bequest motives, but in that case it does not
depend on interest rates, which is the key feature for our purposes.

40When σ1 = σ2, this equation implicitly defines the asset-to-income ratio as a function of interest rates.
41If r is not in the interval, asset holdings do not converge.
42When σ1 > σ2, the long-run asset demands exhibit the non-linear Engel curve property emphasized in

Mian et al. (2021a), in particular, the desired asset-to-income ratio would be increasing in income holding
interest rates constant.
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Figure 4
Active households’ long-run asset demand

creasing in r because the substitution effect always dominates retirement savings effect.The

case that interests us is when σ2 > 1. In this case, the effects of returns on long-run asset

holdings are non-monotonic. For high levels of returns, desired holdings are increasing in r ,

while for low returns they are decreasing in r . To understand this effect, recall that interest

rates have two effects in this model. At low interest rates, households are encouraged

to consume more, and accumulate less, through the standard inter-temporal substitution

channel. However, retirement preoccupations play a counterbalancing role. When long-term

interest rates are low and σ2 > 1, active households have an increased marginal incentive

to accumulate assets for retirement needs. What Proposition 1 indicates is that there will

be a point of reversal of the effect of steady state r on accumulation incentives. When r

is sufficiently high, a marginal increase in steady state r would lead to more accumulation

as the positive substitution effect dominates the decreased retirement need effect even if

σ2 > 1. When interest rates are low then the increased need for retirement income will

dominate the inter-temporal substitution effect and favor a greater accumulation of asset

when σ2 > 1.43

The shape of the active household’s long-run asset demand aa,ss(y , r) is illustrated in

43Our paper has some similarities with the work of Brunnermeier and Koby (2019) on the reversal interest
rate. In their work, there is a reversal rate of interest whereby interest rates below the reversal rate become
contractionary. Their reversal rate result comes from banking frictions. Our set-up can also be thought
as having a reversal rate, which we denote r̄ . Our reversal rate arises from expected income effects in
retirement that drive up households’ desired savings while working and therefore depress consumption.
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Figure 4 when σ2 > 1. Here we see the C-shape of the long-run asset demand keeping

income, y , constant. Moreover, we can see that the long-run asset demand (when σ2 > 1)

is delimited by two levels of r . As r tends to ρ + δ1, desired asset demands relative to

consumption tend to infinity. As r tends to ρ+δ2

1−σ2
< 0, desired asset demand relative to

consumption will tend again toward infinity. When σ2 > 1, there exists also a threshold or

point of inflexion

r̄ =

[
σ2(σ2 − 1)(ρ + δ1)− (ρ + δ2)

(σ2 − 1)(σ2 + 1)

]
,

such that the asset demand of active households is increasing in interest rates when r is

above r̄ and is decreasing in interest rates when r is below r̄ . This implies that decreases

in interest rate can lead to higher desired assets holding income constant.

Even before we specify the general-equilibrium setting, one can immediately see why

the C-shaped property of asset demands by active households may create a situation with

multiple steady state interest rates. An economy populated with such households will face

a residual asset supply coming from the total asset supply in the economy minus that

held by retired households. Even if this residual asset supply faced by active households is

monotonic and well-behaved, it is likely to cross the steady state asset demand of active

households more than once.

While the objective of the next section is to set up a GE structure where this possibility

can be examined explicitly, Figure 5 illustrates three possible equilibrium configurations. In

the first panel, we have the case where the asset supply curve faced by active agents is

rather inelastic. This creates two equilibrium real rates. The second panel is the case where

the asset supply curve is very elastic, it creates only one equilibrium real rate. Finally, the

third panel represents the case where the asset supply curve is rather inelastic at high real

rates but quite elastic at lower real rates. This can create three equilibrium real rates. The

shape of such an asset supply curve will depend, as we shall discuss, on the set of assets

available in the economy and the extent to which these assets will exhibit valuation effects.

To simplify the presentation, the remaining sections will focus on the case of interest

where σ1 = σ2 ≡ σ > 1.

4 General equilibrium

We now want to derive the general equilibrium properties of an OLG economy populated

with active and retired households with preferences as defined in the previous section. In

particular, we want to look at the implications of having active households whose long-run
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Figure 1: Long-run asset demand and asset supply: multiple steady state
real interest rates (r∗)

1

Figure 5
Long-run asset demand and different configurations of the long-run asset supply: multiple

steady state interest rates

asset demands are non-monotonic in asset returns when σ > 1.44 To begin, we will examine

a setting without any nominal constraints. This will allow us to show why real side of this

economy is likely to generate more than one steady state real interest rate. Then we add

nominal rigidities and examine the effect of monetary policy. In our initial set-up, we will

allow for only one asset and this will be a short term government bond. This simplifies

the analysis considerably and allows a simpler presentation of how monetary policy can

have long-term effects in the presence of two steady state real interest rates. However,

the case with only short term bonds is quite restrictive as there can’t be asset valuation

effects due to changes in interest rates. Accordingly, we will follow up this initial analysis

by also presenting the case where there are valuation effects which can lead to more than

44Note that we take the empirical observations we presented previously as placing in serious doubt the
relevance of the case with σ < 1 as the observed pattern is not easily reconcilable with asset demands
which would be monotonically increasing in real interest rates.
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two steady state real interest rates.

In our model economy, we normalize the population to have a measure 1 of households,

with the implied fraction φ ≡ δ2

δ1q+δ2
who are active and the fraction 1− φ who are retired.

When a household dies it is replaced by a new active household.

The government in this one-good economy spends an amount G , has an outstanding

real debt in the amount B and levies taxes T1t on active households. The taxes adjust to

satisfy the government budget constraint

φT1t = G + rtB ,

where rt is the real interest rate on government debt. Each active household is endowed

with one unit of labor that produces w goods. Total production in this economy is given

by output produced with the labor of active workers and therefore is equal φw . We will

limit attention to cases where B is not so large that it could not be financed by active

households. Since ρ + δ1 is the highest possible interest rate in this economy, we restrict

attention to cases where B(ρ+ δ1) < φw . Since we have not introduced annuity markets,

private agents will generally have positive asset holdings when they die and therefore there

will be unintended bequests. We assume that the unintended bequest of a household goes

to the newborn household replacing that household. To keep the structure more tractable,

we assume that the government ensures — through a tax T2t on active households —

that newborn households receiving bequest from retired parents have the same average

starting wealth as the newborn households inheriting from active households. Under this

assumption, if asset holdings are equal across active households at a point in time, then

the system inherits a representative agent structure for active households.45 The second

tax on active households, T2t , is defined by the following budget condition.

δ1(1− q)φat + δ2(B − φat) = [δ1(1− q)φ + δ2(1− φ)] at − φT2t .

The first term on the left hand side of this equation is the total funds received from

accidental bequests.46 On the right hand side, the first term is the funds needed to give to

newborn active households while the second term is the tax levied on all active households

to equalize wealth between newborns that inherited from retired and active households.

Rearranging the equation, we obtain that T2t = δ2(at − B)/φ.

45Assuming that active households act like a large family as in Gertler et al. (2020) would lead also to
maintain the tractability of the representative agent structure.

46This equation includes the asset market clearing condition φat + ar
t = B implying that the total asset

demand of retirees is ar
t = B − φat .
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Definition 1. An equilibrium for this economy will be composed of a consumption profile

and asset allocation profile for the different types of households, a time path of interest

rates, and taxes such that (1) given interest rates, taxes, government expenditures and

public debt, household consumption and asset allocation profiles maximize households’

utility, (2) both the markets for goods and assets clear at each point in time, and (3) the

government budget is balanced.

Let us begin by examining the behavior of total asset demands in this economy in a

steady state with constant interest rates and taxes. This demand is comprised of both

the long-run asset demand function of active households, aa,ss(y , r), and that of retired

households, denoted ar ,ss .47 The steady state asset demand function of active households

when interest rates are constant is given explicitly in Proposition 1 where it is shown to be

C-shaped in r . Since long-run asset demands relative to consumption of active households

go to ∞ when either r goes to ρ + δ1 or −ρ+δ2

σ−1
, we can restrict attention to situations

where r ∈
(
−ρ+δ2

σ−1
, ρ + δ1

)
as this is the only feasible range for a steady state equilibrium.

To get the steady state asset demand for retired households, we need to aggregate the

asset holdings across the different retirement cohorts. With r < ρ + δ1 ≤ ρ + δ2, retired

households will be depleting their asset holdings as they age. In particular, this will cause

the asset holdings of a retired household who retired τ periods ago with a assets to be

given by ae−(
ρ+δ2−r

σ
)τ .48 Since in steady state, each retiree starts retirement with the same

amount of assets, which is equal to the steady state asset holdings of active households

(aa,ss), the aggregate asset demand of retirees (ar ,ss) is given by

ar ,ss = aa,ss(y , r)(1− φ)
δ2

ρ+δ2−r
σ

+ δ2

= aa,ss(y , r)(1− φ)g(r) g ′(r) > 0,

where g(r) ≡ δ2
ρ+δ2−r

σ
+δ2

.

As a result, total asset demand in the steady state of this economy can be expressed as

at,ss(y , r) = φaa,ss(y , r)

(
1 +

g(r)(1− φ)

φ

)
.

47We are focusing on potential steady states where all active households have the same wealth level in
the steady state. There may be other types of steady states. However, if wealth levels of active households
start from a position of equality, then they always stay equal because of the government tax-transfer
scheme.

48Note that the consumption of retirees satisfies the relationship c r
t = ar

t Γ−1, where ar
t is the asset at

time t. Hence, asset accumulation dynamics for constant interest rates are given by ȧr
t = −ρ+δ2−r

σ ar
r .
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Figure 6
Active households’ asset demand and total asset demand

Total asset demand in a steady state is therefore equal to the total asset demand —

i .e.,φaa,ss(y , r) — of active households multiplied by the factor 1 + g(r)(1−φ)
φ

. Accordingly,

total asset demand will reflect several of the properties of the asset holdings of active

households. In particular, this total asset demand will be non-monotonic in r with the

additional property that as r goes to either ρ + δ1 or −ρ+δ2

σ−1
, demand will go to infinity.

However, even if total asset demand takes this form, it may not always inherit the simple

C-shape of the active household’s long-run asset demands. An example of a more complex

non-monotonic shape for total asset demand that cannot be ruled out is illustrated in

Figure 6.

From Figure 6, we can see why such an economy is likely to have more than one steady

state values for r . For a given level of total bonds B in the economy, there is likely to be

more than one interest rate that clears the asset market. However, this simple argument is

not complete as the income of active households, y , is being held fixed in this figure while

in this set-up it is endogenous. Proposition 2 nonetheless confirms this line of reasoning.

Proposition 2. When σ > 1 and bonds B are in fixed supply, then a unique steady state

equilibrium interest rate – a unique r ∗ – is generically impossible.49 There will either be

more than one steady state value for r ∗ or, if the supply of bonds is sufficiently small, there

49The generic property relates to the amounts of bonds. There can be one value for B where a unique
equilibrium can exist if the bond supply happens to satisfy a precise tangency condition. However, such an
equilibrium configuration would not be robust to any minor change in the amount of bonds.
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will be no equilibrium.

See Appendix D.2 for the proof.

Prudent “perpetual” youth assumption. Much of our analysis could be conducted in

the current set-up. However, to allow for an easier presentation of results we will now adopt

a very useful simplifying assumption.50 In the last section we will drop this assumption and

come back to the general case to show that this assumption is not driving any of our main

insights. To immediately get a sense of why we want to add a simplifying assumption, it

is helpful to focus on the long run demand for asset by active households as presented in

Figure 4. As we have stressed, this demand is C-shaped when σ > 1. The equilibrium

determination of r ∗ can then be viewed as depending on the interaction of this C-shaped

demand curve for assets with a residual supply curve for assets. The relevant residual supply

curve corresponds to the total supply of assets in this economy minus that held by retired

agents. Depending on the properties of this residual supply curve, it is obvious from Figure

50In the version of the model without nominal rigidities, the equilibrium dynamic system can still be
analytically tractable if we are in a situation where the wealth of active households has converged to the
same level. Once active households have the same wealth, it will remain that way with active households
acting like a representative household. In this case, the equilibrium behavior is described by the following
system of three dynamic equations:

ċt

ct
=

rt − ρ− δ1

σ
+

cσt
σ
δ1qVa(at , Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]

ȧt = w + rtat +
(B − at)δ2

φ
− G + Brt

φ
− ct

plus the goods market clearing condition

φct = φw − G − (B − φat)Γ−1
t

where ct is the consumption of the representative active household and at is its asset holdings. However,
when we extend the model to include nominal rigidities this dynamic system expands to a 4th and 5th

degree system making analytical results very difficult. It is for this reason, we choose to make the additional
simplifying assumption of having q go to zero with ε > 0. Under this assumption, the dynamic system is
reduced, in the absence of nominal rigidities, to the pair of dynamic equations

ċt

ct
=

rt − ρ− δ1

σ
+

cσt
σ
δ1q

sVa(B, Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]
plus the goods market clearing condition ct = w−G . This lower dimensional system can be easily extended
to allow for nominal rigidities and still be analytically tractable.
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4 that many different equilibrium configurations could arise. In particular, as expressed in

Proposition 2, there is likely more than one equilibrium value for r ∗. In fact, depending

on the shape of this residual supply curve, even if it is monotonic, there could be two,

three or more equilibrium values for r ∗. Our model in its full generality does not rule out

any such possibilities. However, analyzing all these possibilities at once can be confusing.

The following simplifying assumption will allow us to approach the problem in steps, where

we first focus on a case which produces exactly two potential equilibrium values for r ∗,

then we introduce productive assets and discuss the case of three values. The general case

embeds the features emphasized in these special cases but potentially allows for even more

equilibria. At this point, we do not see any added insights from the cases with more than

two or three potential equilibrium values for r ∗. It is for this reason we find the adoption

of following simplifying assumption useful.

In particular, consider a modification of the above setting where the probability q of

surviving the health shock that moves one to retire has an objective component and a

subjective component with the subjective value being denoted qs while the objective value

is still given by q with qs = q + ε (ε > 0). In this setting, ε is governing the extent to

which people are over-estimating the probability of needing their retirement savings. Now

consider this model as q goes to zero. In this limit, we will have active agents that are

saving for retirement but no actual retirees.51 This simplifies the analysis by removing the

need to track the wealth holdings of the retirees. In effect, under this assumption, the

steady state demand for assets is now given entirely by the desired wealth holdings of the

active population and has a simple C-shape.52 Hence, steady state equilibrium real interest

rates are given by the intersection of the C-shaped asset demand of active households and

the exogenous supply of bonds as shown in Figure 7. As can be easily seen on this figure,

under this simplifying assumption, the steady state will never be unique. This was also

true in the more general case, but was harder to visualize. Moreover, if the supply of asset

is sufficiently large, there will always be exactly two steady state values for r , which we

will denote r ∗H and r ∗L for the high and low real steady state rate respectively. In the

continuation, we will assume that B is sufficiently large such that an equilibrium exists as

stated below. Lemma 2 indicates some key properties of r ∗H and r ∗L.

Going forward we will assume that the quantity of outstanding government bonds

51In similarity to the perpetual youth model of Blanchard (1985) and Yaari (1965), this version of our
model can be considered as a “prudent” perpetual youth model where agents are prudently preparing for
retirement even if they never retire. They are young, working and saving for retirement until they die.

52In the case without nominal rigidities, the income and consumption levels of the active household
become exogenous with c = y = w − G .
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(B) is sufficiently large to guarantee the existence of an equilibrium, that is, B > B̄ ≡
(δ1qs)1/σ(ρ + δ1 − r̄)−1/σ

[
ρ+δ2

σ
− 1−σ

σ
r̄
]

.

Lemma 2. The low and high natural interest rates r ∗H and r ∗L have the following properties:

(i) r ∗H > r̄ and r ∗L < r̄ ; (ii) the high real interest rate (r ∗H) increases with government

bonds B while the low real rate r ∗L decreases with B; and (iii) r ∗H increases with the

probability of death of retirees δ2 while r ∗L falls with δ2.

See Appendix D.7 for the proof.

The two steady state real interest rates depicted in Figure 7, r ∗H and r ∗L, will continue

to play an important role in the presence of nominal rigidities.53 To foreshadow future

results, monetary policy will be shown to potentially affect which of these real interest rates

are stable and which are more likely to arise in the long run. However, monetary policy will

simultaneously maintain a neutrality property, in that it will not affect the values of the

potential long-run real interest rate that can arise. These will always be either r ∗H or r ∗L.54

4.1 Introducing nominal rigidities that allow for a vertical long-run Phillips curve

In the environment considered up to now, we have not included any nominal rigidities.

In this section, we extend the model to allow demand considerations to affect economic

activity in the short run while maintaining that in the long run economic activity is entirely

determined by the economy’s productive capacity. In other words, we extend the model in a

way that allows for a Phillips curve which reflects a short-run tradeoff between inflation and

activity but not a long-run tradeoff. To this end, we slightly modify the environment and

assume that output is produced using labor by a set of competitive firms. The production

function is given by yt = Alt , where productivity A > 0 is constant. Goods prices pt are

perfectly flexible and therefore competition between firms will ensure that the price of the

output good is equal Wt

A
, where Wt is now the nominal wage. This implies that real wages

53Note that when r∗L < r̄ , the income effects/retirement motives dominate the intertemporal substitution
effects associated with interest rate movements. Hence, when B increases, r∗L has to fall to provide
incentives to demand more assets to clear the long-run asset market. For r∗H > r̄ , the intertemporal
substitution effects dominate. Thus, when B goes up, r∗H rises to clear the asset market. The intuition is
similar for changes in δ2 where an increased expected retirement duration (1/δ2) boosts asset holdings.

54In terms of stability properties in the absence of nominal rigidities, the high-interest-rate steady state
obeys a saddle configuration and therefore locally admits only one equilibrium outcome. While the low-
interest-rate steady state has a sink configuration and therefore admits the continuum of rational expec-
tations paths for r that converge to r∗L.

30



 

 

 

 

 

 

 

 

 

 

 

 

  

𝜌 + 𝛿1 

𝑟 

𝑎 

𝜌 + 𝛿2

1 − 𝜎2
 

𝐴𝑠𝑠𝑒𝑡 𝑑𝑒𝑚𝑎𝑛𝑑 

𝐴𝑠𝑠𝑒𝑡 𝑠𝑢𝑝𝑝𝑙𝑦 

𝐵 

𝑟∗𝐻 

𝑟∗𝐿 

�̅� 

Figure 7
Long-run asset demand and asset supply: multiple steady state real interest rates (r ∗)

are always equal to A. We denote l̄ and ȳ = Al̄ the natural rate of employment and output

respectively.55

The key nominal rigidity we introduce is related to wage determination, where we

assume that wage growth increases or decreases depending on whether employment is

above or below l̄ . More specifically, nominal wages Wt are assumed to adjust according

to
∂
(

Ẇt
Wt

)
∂t

= κ′(lt − l̄), with κ′ > 0. Since in this model wage inflation is equal to price

inflation πt , the Phillips curve takes the form π̇t = κ′(lt − l̄), where (lt − l̄) represents

the deviation of employment from full employment l̄ and κ′ > 0 governs the relationship

between inflation and the employment gap. Expressing this Phillips curve in terms of the

output gap leads to

π̇t = κ(yt − ȳ), (6)

where κ = κ′

A
> 0 controls the link between inflation and the output gap. Since past wage

growth is taken as given, πt will be treated as a state variable.56 This formulation of the

55The household’s budget constraint in real terms is now given by the following, where lt will be endoge-
nously determined: ct + ȧt = Alt + rtat − Tt .

56Our assumption of a backward-looking Phillips curve is chosen to keep the presentation simple while
simultaneously allowing πt to be treated as a state variable. It can be shown that our analysis can be
generalized to a hybrid Phillips curve of the form π̇t = 1

ln
(

β1
1−β1

) π̈t + β2

2β1−1 (yt − ȳ), which is the continuous

time analog of a discrete time Phillips curve of the form πt = (1 − β1)πt+1 + β1πt−1 + β2(yt − ȳ)
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Phillips curve implies the absence of any long-run tradeoff between inflation and output (or

employment).

Since we now allow for variable inflation, we need to distinguish between real and

nominal rates of interest. We will denote the nominal rate by it with the real rate given by

rt = it − πt .

The equilibrium dynamics for this economy with nominal wage rigidities (and q = 0) is

now governed by the following dynamic system

π̇ = κ(ct + G − ȳ)

ċt

ct
=

it − πt − ρ− δ1

σ
+

cσt
σ
δ1qsVa(B , Γt)

Γ̇t = −1 + Γt

[
ρ + δ2

σ
− 1− σ

σ
(it − πt)

]
To complete this model, we need to specify how monetary policy sets the nominal

interest rate it . Our main focus will be monetary policy that is governed by a simple Taylor

rule of the form

it = max
{

0, iT + ψ(πt − πT )
}

ψ > 1, (7)

where iT is a nominal interest rate target, πT is the central bank’s inflation target, ψ > 1

satisfies the Taylor principle and the effective lower bound on interest rates is set to 0.

However, instead of looking immediately at the implications of this constrained Taylor rule,

it is easiest to start with the two embedded sub-cases: (1) it = iT + ψ(πt − πT ), that is,

disregard the ELB constraint and (2) it = 0, setting the interest rate at the ELB.

Propositions 3 and 4 highlight how monetary policy affects the stability of the system.57

(0 ≤ β1 ≤ 1, β2 > 0). Note that this alternative specification embeds both forward-looking and backward-
looking Phillips curves. When introducing this more general Phillips curve in our analysis, the set of steady
states remains the same regardless of the value of β1, but some stability properties can change if β1 is
sufficiently small. For example, if β1 is greater than 0.5, then all our main results—including those regarding
stability properties and basins of attraction—are maintained under this hybrid Phillips curve specification.
None of our results require β1 to be exactly 1. However, if β1 is sufficient small, such that the Phillips
curve becomes mainly forward looking, certain steady states that our analysis describes as unstable when
β1 is exactly one, can exhibit local indeterminacy as in Benhabib et al. (2001a).

57The set-up allows for a more general result: The high real-interest-rate steady state will be stable
if nominal policy interest rate setting locally satisfies the Taylor principle, while the low-real-interest-rate
steady state will be stable if nominal policy interest rates setting locally does not satisfy the Taylor principle.
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In particular, Proposition 3 indicates that if the nominal interest rate setting is unconstrained

by an ELB and satisfies the Taylor principle, then the only equilibrium configuration that

can be stable is one where the steady state equilibrium real interest rate is equal to r ∗H .

Moreover, if the central bank targets that real natural rate, it will achieve its target for π.

Proposition 4 covers the converse case. It shows that if nominal interest rates are set at

the ELB, then the only possible configuration for a stable steady state equilibrium is one

where the real interest rate equals r ∗L.

Proposition 3. If it = iT + ψ(πt − πT ) and ψ > 1, the economy admits only one

stable steady state equilibrium.58 In this equilibrium, the real interest rate equals r ∗H . If

iT = r ∗H + πT , the central bank attains its inflation target.

See Appendix D.3 for the proof.

Proposition 4. If it = 0, the economy admits only one stable steady state equilibrium. In

this equilibrium, the real interest rate equals r ∗L and π = −r ∗L.

See Appendix D.4 for the proof.

To understand why the stability properties around two different equilibrium real interest

rates can depend on the monetary regime, it is helpful to recognize that when inflation is high

because consumption is high, endogenous dynamics must favor a reduction in consumption

to induce stability. This is actually the case behind both Propositions 3 and 4. However,

the underlying mechanisms are quite different. When the system is near the steady state

real rate r ∗H and nominal interest rates increase more than one-to-one with inflation, higher

inflation pushes real rates above r ∗H . With such higher real rates, consumption decreases

because the inter-temporal substitution force dominates the retirement motive near r ∗H .

This makes this combination — being near r ∗H and with real rates rising with inflation

— locally stable. In contrast, when the system is near the steady state real rate r ∗L

and it is at the ELB, higher inflation pushes down real rates. These lower real rates then

depress consumption near r ∗L because the retirement motive of savings dominates the inter-

temporal substitution motive. This makes the alternative combination — being near r ∗L

with real rates falling with inflation — locally stable.

58When referring to a stable equilibrium here we are referring to a saddle path stable equilibrium where
there are two roots of the system that are positive and one that is negative.
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Now we turn to looking at possible equilibrium configurations when the Taylor rule is

constrained by the ELB. To give more structure, let us assume that iT = r ∗H + πT ; that

is, the central bank targets a real rate (i.e., a natural interest rate) equal to r ∗H . Given

Propositions 3 and 4, one may think that two stable equilibrium configurations would now

always be possible with such a rule. However, that is not the case as implied by Proposition

5. Proposition 5 indicates that such a Taylor rule not only has the power to affect the

stability properties of different steady state equilibrium real interest rates, it also has the

power to affect which actually arise in equilibrium. In particular, if the policy is not very

aggressive, that is if ψ > 1 is sufficiently close to 1, then only one type of stable equilibrium

configuration will arise and that configuration has the real interest rate equal to r ∗H and

inflation on target. In contrast, if the policy is sufficiently aggressive (and πT is not too

small), then two stable equilibrium configurations are possible with two different real interest

rates. The low real rate equilibrium is accompanied by a nominal rate at the ELB, while

the high real rate equilibrium is accompanied by the nominal rate being at target.

Proposition 5. When it is set according to it = max
{

0, r ∗H + πT + ψ(πt − πT )
}

with

ψ > 1 and πT > −r ∗L, then there is a cutoff level of monetary tightness ψ̄ ≡ r∗H +πT

r∗L+πT > 1,

such that the following holds

• if ψ > ψ̄ (i.e., if monetary policy is sufficiently aggressive), the economy admits two

stable steady state equilibrium outcomes; one with the real interest rate equal to r ∗H

and one with the real rate equal to r ∗L. In the equilibrium with the real interest rate

equal to r ∗H , inflation is on target. In the equilibrium with the real interest rate equal

to r ∗L, inflation is below target and the policy rate it is at the ELB.

• If 1 < ψ < ψ̄, then the economy admits only one stable equilibrium. In this equilib-

rium the real interest rate is equal to r ∗H and inflation is on target.

See Appendix D.5 for the proof.

To understand why monetary policy has the power to affect long-run real interest rate

outcomes as indicated by Proposition 5, it is useful to recall how a constrained Taylor rule

translates inflation into real rates. This is illustrated in Figure 8. As is indicated on the

figure, the ELB constraint becomes binding at the inflation level πELB ≡ (ψ−1)πT−r∗H

ψ
. To

the right of this binding level of inflation, real rates are increasing with inflation, while to

the left, real rates are decreasing with inflation. A higher value of ψ implies that the ELB
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Figure 8
Link between real interest rates and inflation under a Taylor rule constrained by the ELB

constraint will become binding at higher levels of inflation. Therefore, a smaller ψ > 1

allows for a smaller range of real interest rates. Accordingly, with a ψ > 1 sufficiently close

to 1, r ∗L will not be feasible, while r ∗H would be feasible. As ψ increases, this allows for

a larger range of real rates and generally makes an equilibrium with the real rate at r ∗L

feasible (as long as πT > −r ∗L).59

4.2 Illustrating transitional dynamics and how monetary policy can affect basins

of attraction

We saw from Propositions 3, 4 and 5 that in the presence of multiple steady state

real interest rates r ∗, monetary policy can affect which real interest rate may arise in

equilibrium and what stability properties it may have. In this section, we illustrate the

transitional dynamics associated with the different possible outcomes. In particular, we

want to show how aggressive monetary policy can go beyond simply allowing a low real

interest rate equilibrium to emerge: it can also affect its basin of attraction and therefore

make it more likely to arise the more aggressive policy is (higher ψ).

An illustration of transitional dynamics associated with the case of one stable steady

state is represented in Figure 9, while the case with two stable steady states is represented

59From this diagram, one can also see that for a given feasible real rate, the system would allow for two
associated outcomes: one at the ELB and one above the ELB. Proposition 5 indicates that the stable one
will be the one above the ELB when the real rate is r∗H and the one at the ELB when the real rate is r∗L.
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Figure 9
Equilibrium trajectories when monetary policy follows a not too aggressive Taylor rule:

one stable steady state

in Figure 10. On this figure, we represent the steady state condition between c and π

implied by the ċt = 0 condition when Γ̇t = 0. This is best represented by pieces:

If π < πELB , the ċt = 0 curve is given by

c = B (δ1qs)−1/σ [ρ + δ1 + π]1/σ

[
ρ + δ2

σ
+

1− σ
σ

π

]
and if π ≥ πELB , the ċt = 0 curve is given by

c = B (δ1qs)−1/σ [ρ + δ1 − (i − π)]1/σ

[
ρ + δ2

σ
−
(

1− σ
σ

)
(i − π)

]

where i − π = r ∗H + (ψ − 1)(π − πT ).

On this figure, we also depict the steady state condition π̇t = 0 which corresponds to

c = Al̄−G . The crossings between these two curves give us the set of steady states. Finally,

on the figure, we plot transitional dynamics in blue which illustrate the stability properties

of the steady state. These transitional dynamics should be viewed as a projection of the

actual transitional dynamics which are in the three dimensional space {ct , πt , Γt}. Note

that the ċt = 0 curve almost mirrors itself around the cutoff πELB .
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Figure 10
Equilibrium trajectories when monetary policy follows a sufficiently aggressive Taylor rule:

two stable steady states

In Figure 9, E1 is the only stable steady state. E1 is a high-real-interest-rate (r ∗H)

with inflation on target. There is also a low-inflation steady state in Figure 9, but it is

not stable. The nominal interest rate at the unstable steady state in the figure is in the

ELB region since the level of inflation arising from that equilibrium point is less than πELB .

This type of configuration, where there is an unstable steady state at the ELB and a stable

steady state with i > 0, echoes what arises in a standard infinitely lived representative

agent environment (see Benhabib et al. (2001a)).60 In contrast, in Figure 10 we now have

two stable steady states. The high-real-rate stable steady state, denoted E1, remains, but

now we also have one low-real-rate (r ∗L), low-inflation stable steady state denoted E2. The

E2 steady state is in the ELB region, while the E1 steady state remains in the region where

i > 0 and where the Taylor principle is operative. Proposition 5 expresses this possibility.

In this setting, given the two stable steady states, the system will exhibit hysteresis.61 If

inflation starts above the level π̃ = πT + r∗L−r∗H

ψ−1
denoted on Figure 10, the system will

converge to E1, while if it starts below, it will tend to converge to E2. In this set-up we can

consider the effects of shocks, especially qs shocks which increase the desire to accumulate

more assets for retirement (precautionary) motives. For example, if the economy were

60Recall that we are assuming a backward-looking Phillips curve in the main body of the text. When
assuming a forward-looking Phillips curve, this equilibrium would exhibit indeterminacy.

61In the case where the parameter κ in the Phillips curve is negative, the same two steady states are
determinate stable, and the system would jump to one of them instead of exhibiting hysteresis.
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to start at E1, and there was a large temporary rise in qs , the steady state equilibrium

E1 could temporarily disappear — the reason being that there would then be too much

demand for assets relative to supply, which depresses demand. As a result, there would be

a contractionary period with deflation. Once the shock reverses itself, the level of inflation

would be starting from a lower level. If this new inflation level was below π̃, the economy

would converge to the long-run equilibrium at E2 even if it was at equilibrium point E1

before the temporary shock to qs .

In this setting, we can highlight the potential role of increasing the aggressiveness of

monetary policy—as captured by high values of ψ —in making the low-inflation equilibrium

outcome in Figure 10 more likely, that is, making it more likely that the economy converges

to a low real interest rate.62 Recall that we are always assuming that ψ > 1, so the Taylor

principle is active when not constrained by the ELB. If monetary policy is not too aggressive

in the sense of ψ not being much greater than 1, then the equilibrium configuration will

take the form we represented in Figure 9.63 So in this case with monetary policy not too

aggressive (but still satisfying the Taylor principle when above the ELB), the economy can

only converge to the E1 equilibrium. This has the desired outcome of supporting inflation

close to target. However, as ψ is increased the range of inflation that leads monetary

authorities to set i at the ELB increases. A rise in ψ can therefore be seen as changing the

equilibrium configuration from that depicted in Figure 9 to that depicted in Figure 10. In

fact, as ψ gets very high, the equilibrium dynamics can make the high-real-rate equilibrium

fragile. This can be seen in Figure 11. In this figure, we represent equilibria in the (i , π)

space as this offers an alternative perspective to discuss the dynamics. The two different

real rates are represented in the panels of this figure by lines with slope of one and with a

Taylor rule super-imposed. In this space, equilibrium dynamics can be summarized along

the π axis, as π is the only state variable and the dynamics are driven by the stability of the

different steady states for π. In Panel A of Figure 11, we represent the case where monetary

policy is not very aggressive and therefore permits only the high-real-rate equilibrium to

arise. In Panel B, monetary policy is more aggressive allowing two stable steady states to

arise. One at the high interest rate with inflation on target and one at the low interest rate,

where inflation is below target and the ELB is binding. As can also be seen in Figure 11

moving from Panel B to Panel C—that is, when monetary policy reacts more to below

62We also examined the effect on equilibrium outcomes of changing the inflation target πT . Among
other results, we find that increasing πT favors the status quo; that is, we find that the basin of attraction
of neither the stable ELB equilibrium nor the non-ELB equilibrium decreases when πT increases. Hence, if
an economy were caught in a low-inflation, low-real-rate trap, increasing πT would not help exit this trap.

63For this equilibrium configuration, we are assuming that πT > −r̄ and ψ > r∗H +πT

r̄+πT . See Appendix D.4.
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target inflation—leads the range of inflation rates above π̃ that support the higher-inflation

equilibrium E1 to become arbitrarily small. This implies that when an economy in Panel

C is subjected to shocks, even if it starts at the high-real-rate equilibrium with inflation

on target, it is likely to end up at the low-inflation ELB equilibrium. In this sense, a

high ψ policy of reducing interest rates aggressively in response to deviation of inflation

from target can contribute to the economy ending up at a low steady state real rate of

interest. It is worth emphasizing that at the low interest rate equilibrium, inflation is low

(possibly negative), but it is nonetheless stable even if the Taylor principle does not hold.

Proposition 5 confirms that the existence of the E2 equilibrium depicted in Figures 10 and

11 actually depends on ψ > 1 being sufficiently large. If ψ is not sufficiently large, the

configuration depicted in Figure 10 (and in Panels B and C of Figure 11) cannot arise.

4.2.1 Exiting the low-real-rate trap: the effects of inflation shocks and expan-

sionary fiscal policy

When the economy is in a low-real-rate trap, as represented by the equilibrium outcome

E2 shown in Figures 10 and 11, a sufficiently large exogenous shock to inflation could move

inflation above the central bank’s inflation target.64 If such a high rate of inflation were

to arise, the central bank would increase nominal interest rates aggressively causing real

rates to rise also. This would place the economy temporarily in recession in order to reduce

inflation. As inflation declines and the employment recovers, interest rates — both real and

nominal — gradually decrease. However, the economy would not return to E2. Instead, it

would converge to the steady state E1 with the high real rate. Hence, when the economy

is at E2 and there is a large inflation shock, this can cause the long-run real interest rate

to increase from r ∗L to r ∗H .

Fiscal policy can also help create an exit from the low-real-rate steady state, but this

exit has non-monotonic properties. An increase in government debt B corresponds to an

upward shift in the ċt = 0 in Figure 10. This implies that the long-run equilibrium point E2

will move to the right when B is larger, implying higher inflation and lower real interest rates

(see Lemma 2). This is expressed in Proposition 6. However, the effect of changes in B

on long-run interest rates and long run inflation will be discontinuous. As debt rises, there

will come a point where the E2 equilibrium will cease to exist, as r ∗L becomes too small to

be supported as an equilibrium for given ψ). At that point, the only stable equilibrium will

64We are interpreting an inflation shock as an unexpected shock to the production cost of firms, which
is passed through to prices. In other words, it is an unexpected shock to the Phillips Curve equation which
causes a discrete jump in inflation.
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Figure 11
The interaction of a Taylor rule with more than one equilibrium r ∗

be E1. Hence, both the long-run real interest rate and the long run rate of inflation in such

an economy can change discretely in response to a large fiscal expansion. A sufficiently

large increase in B can create a switch from the long-run equilibrium E2 to the long-run

equilibrium E1. Fiscal policy in this case, is pushing the economy out of the low-real-rate,

low-inflation steady state, but that is coming at the cost of a discrete jump in long-run

inflation and r ∗.65

Proposition 6. The inflation rate at the ELB stable steady state is increasing in government

65Acharya and Dogra (2022), Eggertsson and Mehrotra (2014), and Mian et al. (2021a) also find that
rising public debt favors an escape from the ELB.
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debt B, while real interest rates are decreasing. However, when B becomes sufficiently large,

the equilibrium at the ELB will cease to exist. At that point, long-run inflation and real

interest rates will exhibit a discontinuous jump to higher levels.

See Appendix D.6 for the proof.

5 Extending the Model to Include Productive Assets: Lucas Trees

Up to now, we have been examining the equilibrium determination of long-run real inter-

est rates—and the role of monetary policy—in the presence of only one asset: government

bonds. In this section, we enrich the environment by introducing a claim on a productive

asset, where the price of the asset increases when interest rates decrease, that is, we in-

troduce valuation effects into the analysis. As we shall see, valuation effects render the

analysis more complex but do not overturn our main results regarding both the possibility

of multiple r ∗ and the role of monetary policy in affecting which r ∗ is most likely to arise.

It is for this reason that we left the introduction of valuation effects until now.

To introduce a second asset into our set-up, suppose there is a mass s of Lucas trees

that produce a flow f of goods every period.66 In order to introduce the possibility of

something akin to a risk premium on these assets, we will assume that trees die at flow

rate ω ≥ 0 and that dead trees are continuously replaced with new trees redistributed in a

lump sum fashion to active households. In aggregate, trees are not risky, they simply decay

at rate ω. A household can now hold a combination of bonds and trees. If we denote by

zt the price of a mass of one of trees at time t, then arbitrage between the two assets will

cause zt to satisfy the following asset pricing relationship

żt

zt
=

f

zt
− (rt + ω),

and households will be indifferent between holding bonds or trees. The advantage of

allowing for trees to decay is that they permit situations where r can be zero and the

price of trees is still finite. The household consumption Euler equation in this case can be

re-written as

ċt

ct
=

rt − ρ− δ1

σ
+ δ1qs cσt

σ
Va(Ωt , Γt),

66A Lucas tree set-up is one where we have productive assets but these assets are not themselves
expandable. We have also explored the possibility of allowing for reproducible productive assets and have
not found it to give novel insights relative to the case analyzed here. For this reason, we chose to focus
on the simpler case.
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where Ω denotes household wealth which includes both the holdings of bonds and trees.

The main effect of introducing this second asset is that it causes the effective supply of

assets that must be held by the market, B + zts, to contain valuation effects. To present

this case more easily, it is helpful to recognize that the steady state of the consumption

Euler equation can be presented as expressing a household’s desired ratio of consumption-to-

wealth as a function of interest rates. Note that this is simply a reinterpretation of the steady

state condition for households’ consumption decision in the previous sections. Accordingly,

the desired consumption-to-wealth ratio maintains the hump shaped property because it

balances inter-temporal substitution effects and retirement incentives. Furthermore, the

desired consumption-to-wealth ratio maintains the property that it goes to zero as r goes

to either ρ + δ1 or to ρ+δ2

1−σ . Relative to our analysis with only bonds, household desired

wealth holding is unchanged with the introduction of trees. The feature that changes with

the introduction of productive assets is the properties of the feasible aggregate long-run

consumption-to-wealth ratio. Previously, the feasible long-run consumption-to-wealth ratio

was Al̄−G
B

and therefore independent of r . The economy’s feasible long-run consumption-

to-wealth ratios with trees is now given by

c

Ω
=

Al̄ + sf − G

B + sf
r+ω

,

where the numerator represents full employment output plus the flow of goods from

trees less government consumption and the denominator represents the total value of assets

in steady state. This is the aggregate consumption-to-wealth ratio that is consistent with

full employment and żt = 0. This feasible consumption-to-wealth ratio is increasing in r

for r > ω, and starts from zero when r = −ω. If s = 0, then this feasible consumption-to

wealth ratio is independent of interest rates and we are back to our previous analysis where

the only possible equilibrium configuration is one where there are two natural interest rates

r ∗. The introduction of trees increases the possible equilibrium configurations. This is due

to it changing the shape of the feasible consumption-to-wealth ratio. In the absence of

sticky prices, there now can be at least three equilibrium configurations. These depend on

slope of the feasible consumption-to-wealth ratio curve compared to the slope of desired

consumption-to-wealth ratio curve.

The dynamic equilibrium equations in the absence of sticky prices are now given by

ċt

ct
=

rt − ρ− δ1

σ
+ δ1qs cσt

σ
Va(Ωt , Γt),
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Γ̇t = −1 + Γt

[
ρ + δ2

σ
− 1− σ

σ
rt

]
Ω̇t

Ωt − B
=

fs

Ωt − B
− (rt + ω),

where r needs to adjust to satisfy the market clearing condition

ct = Al̄ + sf − G .

We refer to the desired consumption-to-wealth ratios as the consumption-to-wealth

ratios c/Ω that satisfy ċt = Ω̇t = Γ̇t = 0 for different levels of r . The feasible consumption-

to-wealth ratios are defined as the set of Ωt that satisfy Γ̇t = 0, Ω̇t = 0 and the market

clearing condition.

In the presence of productive assets, it can still be the case that only two steady state

values for r ∗ are possible. The analysis of the previous section extends directly to such a

case, with the only difference being that the consumption-to-wealth ratio is now lower at r ∗L

than at r ∗H . Given this minor difference, we will not dwell on this case in this section. With

productive assets, it is now also possible that there be only a unique equilibrium value of r ∗

despite the hump shape in desired consumption-to-wealth ratios. This was not possible in

the absence of valuation effects. Such a configuration will arise if desired wealth holdings

never outpace the valuation effects when r decreases. This case is important as it indicates

that even in the presence of C-shaped asset demands, there is not necessarily more than

one equilibrium. There can be a unique equilibrium if valuations effects play the right role.

Finally, Figure 12 illustrates the case where there are three possible values of r ∗. Since this

is the novel case, we will focus on it.

The important element to note in Figure 12 is the possibility of three real interest rates

(r ∗) compatible with full employment. There are two steady states which resemble E1

and E2 in terms of how the curves cross, but now a third equilibrium appears. This third

equilibrium, which we will denote E3, has an associated real interest rate which we denoted

by r ∗LL.67 This steady state equilibrium arises with both very low real interest rates and

high households’ asset holdings. The households exhibit a very low consumption-to-wealth

ratio in this equilibrium. In the absence of Lucas trees, this configuration was not possible

as the feasible consumption-to-wealth ratio did not change with r . However, with the Lucas

trees, the high demand for assets at r ∗LL is satisfied by the high valuation of Lucas trees

67Note that r∗LL may be negative.
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Figure 12
Steady state equilibrium outcomes in the presence of Lucas trees as a function of the size

of dividend flow f : three potential steady states

which acts as to endogenously increase the supply of assets.

Assuming that the real side of the economy takes the form as in Figure 12 , we can

re-introduce sticky prices and a Taylor rule to look at the joint determination of ct and πt

as we did before.68

There are now two sub-cases to consider. The easy case is when r ∗LL is small relative

to the inflation target πT in the Taylor rule, that is, when r ∗LL < −πT . In such a case,

monetary policy is ruling out the E3 type equilibrium, and all our previous results again

carry over. In particular, if monetary policy is not very aggressive (but still satisfying

the Taylor principle), then there can be only one stable steady state equilibrium and that

corresponds to the high-real-rate equilibrium E1. As monetary policy gets more aggressive,

68In the presence of Lucas trees, the set of dynamic equations representing the equilibrium with sticky
prices and a Taylor rule can be reduced to

ċt

ct
=

it − πt − ρ− δ1

σ
+ δ1q

s c
σ
t

σ
Va(Ωt , Γt),

π̇t = κ(ct + G − Al̄ − fs), κ > 0

Γ̇t = −1 + Γt

[
it − πt + δ2

σ
− 1− σ

σ
(it − πt)

]
Ω̇

Ωt − B
=

fs

Ωt − B
− (it − πt + ω).

it = max
{

0, r∗H + πT + ψ(πt − πT )
}

ψ > 1
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the equivalent of equilibrium E2 will appear as a stable steady state of the system with

nominal frictions.69 E2 will again be associated with the nominal interest rate being at the

ELB. And as monetary policy becomes gradually more aggressive, the basin of attraction

of this E2 equilibrium will expand while that of E1 will become small. In this sense, our

previous analysis with only bonds extends directly to this case as long as r ∗LL < −πT .

Now if r ∗LL > −πT , then the equilibrium dynamics can get more complex than that

presented with only bonds. For example, it can take the form as given in Figure 13. In

this case, it is possible to have three stable steady states with different levels of inflation

and different real rates. The high-real-rate equilibrium corresponding to E1 remains. As

before, an ELB equilibrium with a low real rate at r ∗L will also be present when monetary

policy is sufficiently aggressive. This is point E2. But, now we get the possibility of a

third equilibrium; this one implements the real rate r ∗LL and is not in the ELB region. This

equilibrium has a low real rate — even lower than that of the E2 equilibrium — even though

the nominal interest rate is positive. The price of the Lucas trees at the E3 equilibrium,

which is given by z = f
ω+i−π in steady state, will be higher in the E3 equilibrium than in both

the E2 and E1 steady state equilibria. The inflation at E3 is given by π = πT− r∗H−r∗LL

ψ−1
. With

such a configuration, if the economy were to start in the E1 equilibrium and be subject to a

set of negative inflation shocks70, it would likely go from E1 to E3, with a drop in inflation

and a rise in asset prices.

Let us now examine how the equilibrium configuration depicted in Figure 13 changes

as monetary policy gets more aggressive. This is depicted in Figure 14. Like previously,

we return to representing equilibria in the (i , π) space. The three different real rates are

represented in the panels of Figure 14 as before by lines with slope of one and with a

Taylor rule super-imposed. In this space, equilibrium dynamics can be summarized along

the π axis, as π is the only state variable and the dynamics are driven by the stability of

the different steady states for π. As can be seen in Figure 14, when policy becomes more

aggressive (ψ > 1 becomes larger, i.e., moving from Panel A to Panel B), the inflation

level at the E3 steady state equilibrium gets closer and closer to that at the E1 equilibrium.

Hence, with very aggressive monetary policy we can get a situation where the two steady

state equilibria E1 and E3 are very close together in terms of inflation outcomes, but far

apart in real interest rate outcomes. This arises because the nominal rate is much lower

at the E3 equilibrium than at the E1 equilibrium since monetary policy is very aggressive

in cutting rates when inflation is below target. Furthermore, in this case, both E3 and E1

69The proof of the stability of these steady states is similar to that in Propositions 3-5. It is available
upon request.

70We are interpreting inflation shocks as shocks that change the initial level of inflation.
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Figure 13
Equilibrium trajectories in the presence of Lucas trees when the inflation target is

sufficiently high: three stable steady states

inherit a fragility property. As seen previously, the steady state E1 becomes fragile with

respect to downward shocks to inflation. In contrast, the E3 equilibrium will be quite robust

to downward shocks to inflation as its basin of attraction to its left actually expands as

policy gets more aggressive. However, when the policy is very aggressive, the E3 equilibrium

will become fragile to positive shocks to inflation as the relevant basin of attraction to its

right can become arbitrarily small.

When the economy is at E3 or E1, it could still be pushed to the ELB equilibrium at E2.

This would require a sufficiently large downward shock to inflation. A move from E3 to E2

would cause a drop in inflation, but it would also be associated with a fall in asset prices.

The mechanism could also work in reverse. If the economy is at either E3 or E2 and there

were a sufficiently large exogenous positive shock to inflation, then the economy could find

itself back to E1.

In summary, the presence of a productive asset in the form of a Lucas tree enriches

our previous analysis but it does not change the basic messages. Because there can be

more than one real natural interest rate r ∗, monetary policy becomes an important force
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Figure 14
Equilibrium trajectories in the presence of Lucas trees when the inflation target is

sufficiently high and monetary policy is very aggressive

in determining long-run real rate outcomes. In particular, the more monetary policy ag-

gressively targets inflation, the more likely it is to cause the high-real-rate equilibrium to

be fragile to negative shocks to inflation. This makes the economy likely to converge to

a low-real-rate equilibrium. The main additional property that arises with the presence of

a Lucas tree is that a lower-real-rate equilibrium does not necessarily happen only at the

ELB. It can also arise with nominal interest rates above the ELB and with inflation close

to target. Hence this set-up offers an explanation for why economies can get stuck with

low real interest rates at either the ELB or above the ELB, where in both cases we would

have a high valuation of productive assets.

6 Back to full model

In the previous sections we have been analyzing the monetary policy implications of

having C-shaped asset demands by active households, where the C-shape arose due to the

competing motives of inter-temporal substitution and retirement. However, we have been

conducting most of our analysis under the simplifying assumption that active households

were actually the only type of living households. Recall that we assumed toward the end of

Section 4 that active households perceived a risk of needing assets to pay for retirement,
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Figure 15
Multiple equilibrium real interest rates in the general model with both active households

and retirees

but that they actually died before needing these funds. This gave rise to a perpetual youth

type setup where households always stayed young but nevertheless saved for a possible

retirement that never actually happened. In introducing this assumption we claimed that it

was not driving our main results. In this Section, we return to the more general case where

we remove this assumption and allow active and retired households to co-exist. Our goal

in this section is to illustrate why our results carry through to this more general case.

The implications of dropping this assumption (i.e., dropping qs 6= q) can most easily be

seen on Panel A of Figure 15. In this figure, we plot the desired long-run consumption-to-

wealth ratio of active households against real interest rates. This locus, which is in black, is

now familiar and it is not changed with the drop of the assumption. The red line represents

the feasible long-run consumption-to-wealth ratio of active households, where now the

feasible outcome includes the fact that retired individuals are both consuming resources

and holding assets. This figure is abstracting from sticky prices and we are allowing for

both bonds and productive assets to be present.71 This figure is very similar to that we

71The equilibrium behavior is now described by the following system of four dynamic equations:

ċt

ct
=

rt − ρ− δ1

σ
+

cσt
σ
δ1qVa(Ωt , Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
rt

]
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presented in Section 5 where we introduced productive assets. However, there is one main

difference which relates to the precise properties of the feasibility locus. Previously, this

feasibility locus was monotonically increasing in r and concave. However, in the more

general model this feasibility locus can be less well behaved, leading it to potentially cross

the locus of desired consumption-to-wealth ratio of active households several times. To be

clear, in the more general case, there may still only be two or three crossings as before, but

we can’t rule out more crossings. Hence, as shown in the figure, we could, for example,

have five crossings.

In Panel B, we translate this five equilibrium example in Panel A into its implications

in terms of feasible stable steady state equilibria in the presence of sticky prices and an

ELB constrained monetary policy. The five parallel red lines in Panel B represent the five

potential real interest rates from Panel A, while the two different blue lines represent two

different monetary policy rules, one being more aggressive than the other (both reflecting

our previous specification of a Taylor rule satisfying the Taylor principle when not constrained

by the ELB). The black dots at the intersections of the lines represent stable outcomes. In

this more general set-up, we can see the main properties we have previously emphasized.

First, the stability around the different real interest rates depends on the local property

of monetary policy. The highest rate will be stable if monetary policy locally satisfies the

Taylor principle; the next highest real rate will be stable if monetary policy locally does

not satisfy the Taylor principle as is the case at the ELB.72 Any additional potential real

rate equilibrium will reflect the same pattern, alternating between being stable under a

monetary policy that satisfies the Taylor principle or the inverse. The second feature is how

monetary policy affects the set of effective steady state equilibria. If monetary policy is not

too aggressive, then the set of steady state equilibria will be more limited. In the figure, the

light blue line represents a monetary policy with limited aggressiveness which results in only

one equilibrium. The dark blue line reflects a more aggressive monetary policy and results

in four possible steady states: two above the ELB and two at the ELB. In this later case,

Ω̇t = w + rtΩt +
(B + zts − Ωt)δ2

φ
− G + Brt

φ
− ct

żt

zt
=

f

zt
− (rt + ω)

plus the goods market clearing condition φct = φw −G − (B + zts − φΩt)Γ−1
t . This system governs asset

holdings across active and retired households. However, it does not give a breakdown of holdings of trees
versus bonds, as the two are perfect substitutes in equilibrium. An easy fix to this indeterminacy is to
assume that both active households and retirees hold the same fraction of wealth in bonds and trees.

72The proof of this statement is available from the authors.
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the lowest real rate from Panel A remains unattainable as part of a nominal equilibrium

with this particular monetary policy.73

The main message to convey from Figure 15 is that much of our previous analysis–

which relied on an assumption that eliminated retirees but not retirement savings– provided

insights regarding monetary policy that are robust to eliminating the assumption.

7 Conclusion

The idea that monetary policy may have contributed to the secular decline in real

interest rates is a popular theme among many financial market participants and economic

commentators. However, evaluating this type of claim is difficult without first specifying

the mechanisms that could in theory generate such an outcome. Motivated by observations

regarding within-group changes in wealth-to-income ratios since the late 1980s, we showed

how savings behavior which is influenced by both inter-temporal substitution and retirement

motives could support/rationalize such claims. Specifically, we highlighted how such savings

behavior can give rise to long-run asset demands that are C-shaped with respect to real

interest rates and favor multiple steady state equilibrium real rates. Moreover, we showed

that in such an environment, an aggressive inflation targeting can render the high-real-rate

equilibrium fragile and favor the convergence to a low-real-rate trap. However, the resulting

low-real-rate trap is not insurmountable. In particular, we found that the economy may

return to a high-real-rate equilibrium if it is subjected to either a large exogenous increase

in inflation or to a large increase in public debt. Since both these forces are currently at

play, it raises the possibility that the future could involve a much higher real rate.

73One aspect that is more complicated to present in this general case is the basin of attraction of the
different steady states because the state space is larger.
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Appendix

A Data

For the main analysis we use four waves of the US Survey of Consumer Finances for 1989, 1992,
2016 and 2019. The 1989 and 2019 SCFs are used for the wealth-to-income ratio decomposition
into between- and within-group components, while the 1989-1992 and 2016-2019 SCFs are used
in the construction of saving rates corresponding to the beginning (1989) and the end (2019) of
our period of interest for the joint analysis of changes in wealth-to-income ratios and saving rates.
We further supplement the findings using SCF micro-data alone with the results that combine
SCF with household-level aggregates reported in the US Flow of Funds Accounts and the National
Income and Product Accounts.

Household wealth in the SCF is defined to include all assets of households (both real and
financial) net of their liabilities. On the one hand, household non-financial (real) assets include
primary and other residential real estate, non-residential real estate equity, as well as equity
holdings in privately held businesses (both corporate and non-corporate) and other non-financial
assets. Financial assets, on the other hand, include fixed-income assets, e.g. bonds, deposits, as
well as mutual fund holdings, and directly and indirectly held stocks, and other financial assets.
The split into fixed-income vs. equity components also covers defined contribution pensions of US
households. While SCF collects information about the types of pensions households are entitled
to (account or traditional pensions), the estimates of the wealth in defined benefit plans are
not directly available. Given the importance of these plans in household pension wealth, we use
estimates from Sabelhaus and Volz (2020) to construct a measure of wealth in SCF that includes
defined benefit pensions, and use aggregate shares from detailed FFA pension accounts to split
them into fixed-income vs. equity components, similar to defined contribution account pensions.
Unlike other papers, we also do not exclude vehicles as a measure of consumer durables from
household wealth in the SCF, given its importance for less wealthy households, which makes our
measure of saving closer to the concept used by the Flow of Funds Accounts. On the liability
side, we include both mortgage and non-mortgage household debt obligations.

When combining SCF with household-level aggregates from the Flow of Funds Accounts,
we follow the literature in consistently defining detailed asset and liability classes in SCF and
aggregate data, and then creating a larger number of asset/liability classes (see, for example,
Mian et al. (2021b)), for which group ownership shares can be defined. The same grouping into a
larger number of asset/liability classes is also useful for the construction of saving rates in raw SCF
data, given that pure inflation factors from Mian et al. (2021b) are defined for the same asset and
liability classes. We then construct each group’s share in the total value of each asset/liability
category and distribute FFA aggregates between groups using these shares. Each group’s net
worth is summed up using the values for each component. On the income side, we follow a similar
approach by aggregating each group’s income from its components, e.g., wages, business income,
interest and dividend income, etc., which, in particular, allows us to be consistent with the balance
sheet composition of households, at least on the asset side and the incomes generated by these
assets. Similar to the assets/liabilities we do adjustments to the income components reported
in SCF to make them consistent with their aggregate counterparts. See Feiveson and Sabelhaus
(2019) for the discussion of the comparison between different components of wealth/income
reported in FFA/NIPA and SCF.

When reporting results, we prefer using the SCF-based results given that they allow us to
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construct consistent wealth-to-income ratios and saving rates (in particular, adjusting for net
bequests, which can only be constructed in SCF) from the same data source. However, we
also show that our wealth-to-income ratio decomposition results are largely unchanged when we
use scaled SCF (aggregate) estimates, consistent with the literature. The scaled results in the
aggregate do provide a better fit with the saving rates obtained from NIPA/FFA, which is why
together with the main results for correlations between group-wise changes in wealth-to-income
ratios and changes in saving rates using both raw and scaled SCF data, we provide additional
evidence using scaled data as well.

Other data we use for the empirical analysis include pure price inflation factors from Mian
et al. (2020), whose replication package provides them until 2016. We extend the series until 2019
using their methodology for different asset categories.74 Since Mian et al. (2020) measures of
wealth and saving do not include consumer durables, we also use an additional factor for consumer
durables, and test the results for robustness to its different values.

B Robustness results for the wealth-to-income ratio change decomposition

B.1 Shift-share decomposition: alternative groupings

In this section, we present robustness results associated with using a different number of
income-age groups (in Table B1) and using 2019 as a base-year (in Table B2) for the decomposition
results.

Table B1
Shift Share Decomposition of the Change in the Aggregate Wealth-to-Income Ratio Between

1989 and 2019: Robustness to number of age-income groups

Grouping Total Change Within, % Between, %

10 inc gr x 6 age gr 2.82 59.4 40.6
12 inc gr x 6 age gr 2.82 54.9 45.1
15 inc gr x 5 age gr 2.82 51.8 48.2

The 10 income groups are defined as follows: 0-20, 20-40, 40-60, 60-80, 80-120, 120-160,
160-200, 200-250, 250-500, 500+ (000, in 2019 $); while in the 12 income groups the top group
is also split into the following additional groups: 500-750, 750-1250, 1250+ (000, in 2019 $). The
15 income groups further split the top 1250+ bracket into 1250-1750, 1750-3000, 3000-15000,
and 15000+ (000, in 2019 $). The six age groups split the 65+ age category into 65-74 and 75+
years.

In the first panel of Table B2 for comparison with Auclert et al. (2021) we present results for
12 age groups; in the second panel of the table we report results for different combinations of age
and income groups.

74For the pure inflation factors on the liability side, however, we are unable to extend the series, and use
the last available data point from 2016 for the additional years of interest.
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Table B2
Shift Share Decomposition of the Change in the Aggregate Wealth-to-Income Ratio Between

1989 and 2019: Robustness to base year of income/wealth profiles

Definition Total Change Within Between

(%) (%)

12 Age groups
1989 base 2.82 65.1 34.9
2019 base 2.82 52.1 47.9

30 Income-age groups
1989 base 2.82 61.6 38.4
2019 base 2.82 42.9 57.1

60 Income-age groups
1989 base 2.82 59.4 40.6
2019 base 2.82 45.5 54.5

72 Income-age groups
1989 base 2.82 54.9 45.1
2019 base 2.82 46.2 53.8

75 Income-age groups
1989 base 2.82 51.8 48.2
2019 base 2.82 42.8 57.2

B.2 Regression-based decomposition approach

As the alternative approach to the simple shift-share decomposition presented in the main
text, we use the 1989 cross section to estimate a wealth holding function, which we denote by
F89(age, y), where as previously age represents the age of the household head and y represents
real income of a household. Function F can take different forms. In this section, we focus on
the polynomial function F in income and age.75 Then, for each household in the 2019 cross
section, we use estimated function F89(age, y) to create a predicted wealth holding, which we
denote by ŵ19. These predicted wealth levels allow us to create a predicted wealth-to-income
ratio in 2019 by adding up ŵ19 across households, and by dividing it by the aggregate income

in 2019 (denoted
(

ŵ
y

)
19

). By using the same prediction function for the wealth in 2019, as in

1989, the predicted ratio reflects only the changes in the proportions of different groups in the
population. Accordingly, the fraction of the change in the wealth-to-income ratio explained by
the within component can be expressed as

75We have run our predictive regressions using polynomials of order 3, 4, and 5. Polynomial function of
order 5 delivers the best prediction. In Appendix B.3 we show that these results are also similar to using a
regression with a set of dummy variables for income and age groups, which we refer to as a step-function
regression approach.
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In Table B3, we also report the results of this exercise using our two measures of wealth,
which both include defined benefit pensions, but differ in terms of the inclusion of the primary
housing wealth. Using a fifth order polynomial in income and age to build predicted wealth,
we find that the between component accounts for between 40 and 42 percent of the change in
the aggregate wealth-to-income ratio, leaving the within component again accounting for slightly
under 60 percent of the rise. While these findings still support an important role of changes in
demographics and income inequality in explaining movements in the wealth-to-income ratio, they
indicate that an even greater share is due to changes in wealth holdings keeping income and age
constant.

Table B3
Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019 and the

Fraction of the Change due to Within and Between Effects: Decomposition Based on
Regression

Definition Total Change Within Between

(%) (%)

Wealth (baseline) 2.819 59.8 40.2
Wealth less housing 2.649 57.2 42.8

B.3 Step-function regression decomposition approach and relationship with the
shift-share analysis

The regression approach to estimating the between component using a function F with a set
of age and income group dummies produces the first term in the decomposition below:

(
w

y

)
19

−
(
w

y

)
89

=
∑

i

[
w̄i ,89Ni ,19

y19
− w̄i ,89Ni ,89

y89

]
+
∑

i

(
Ni ,19

y19

)
[w̄i ,19 − w̄i ,89] (B2)

Table B4 reports the shares of within and between components using this decomposition.
These shares are very similar to those obtained using both a baseline shift-share decomposition
and a regression approach using continuous age and income variables. In fact, the decomposition
in (B3) can be written in a manner that makes it easy to compare with our baseline shift-share
decomposition:
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(
w

y

)
19

−
(
w

y

)
89

=
∑

i

w̄i ,89

ȳi ,89

[
Θ
yi ,19

y19
− yi ,89

y89

]
+
∑

i

(
Ni ,19ȳi ,89

y19

)[
ȳi ,19

ȳi ,89

w̄i ,19

ȳi ,19
− w̄i ,89

ȳi ,89

]
(B3)

where Θi ≡ Ni ,19ȳi ,89

Ni ,19ȳi ,19
. If the average within group income ȳi doesn’t change much over time,

then Θi will be close to 1, making the two decompositions very close.

Table B4
Total Change in the Aggregate Wealth-to-Income Ratio Between 1989 and 2019 and the

Fraction of the Change due to Within and Between Effects: Decomposition Using Step-function
Regression Approach

Definition Total Change Within Between

(%) (%)

Wealth plus DB 2.819 64.8 35.2
Wealth plus DB less housing 2.649 63.7 36.3

Note: DB refers to the value of defined benefit pension schemes. The decomposition is done for 30 groups which
are the product of 5 age groups and 6 income groups. The age groups are: 18-34, 34-35, 35-44, 45-54, 54-64,
65+ and the income groups (in thousands) are: 0-20, 20-40, 40-60, 60-80, 80-120, 120+.

C Asset-demand interest-rate link holding income constant in standard models

Consider a household facing an inter-temporal problem of the form∫ ∞
0

e−(δ+ρ)t

[
c1−σc

t

1− σc
+ Λ

a1−σa

1− σa

]
dt, σc ,σc > 0, Λ ≥ 0.

where ct is consumption, ρ is the discount rate, δ is a death rate, at is asset holdings, and Λ a1−σa

1−σa

represents any potential additional gains associated with holding asset. Kumhof et al. (2015),
Mian et al. (2021a), Michaillat and Saez (2018), De Nardi (2004), and Straub (2019) also allow
assets to directly affect utility.

The budget constraint facing the household is given by:

ȧt = yt − ct

where income yt is total income and is given by yt = wt + rtat with rt being the return on asset
at and wt being non-asset income.

Then the steady state asset demand for this problem is given by

ass = Λ
1
σa [ρ+ δ − r ]

−1
σa y

σc
σa .
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The effect of a change in r on asset ass keeping income y constant is given by

∂ass

∂r
=

1

σa
Λ

1
σa [ρ+ δ − r ]

−1
σa
−1 y

σc
σa =

ass

σa
[ρ+ δ − r ]−1

which is always positive as long as r ≤ ρ + δ and goes to infinity as r goes to ρ + δ. For
r > ρ+ δ, the solution to this problem is not well-defined as asset demands go to infinity creating
the absence of a steady state. So signing ∂ass

∂r only applies when r ≤ ρ+ δ. Hence, no member of
this class of problems appear well suited to explain the observation that households with similar
incomes want to hold more assets in a low interest rate environment than in a higher interest rate
environment. While this discussion is in partial equilibrium, note that this difficulty remains in a
general equilibrium setting where the fall in asset returns is endogenous – due to a change in the
composition of the population – and creates valuation effects.

D Proofs of Propositions and Lemmas

D.1 Proof of Proposition 1

We first prove that asset holdings of active households converge to the long-run asset holdings
aa,ss(y , r) and then characterize the properties of aa,ss(y , r).

Convergence of active households’ asset holdings to aa,ss(y , r). Let’s recall the dynamics
of the optimization problem

ċt =

(
rt − ρ− δ1

σ1

)
ct +

cσ1+1
t

σ1
δ1qa

−σ2
t Γσ2

t ,

ȧt = rtat + wt − Tt − ct ,

Γ̇t = −1 + Γt

[
ρ+ δ2

σ2
− 1− σ2

σ2
rt

]
.

Linearizing this system around the steady state (ċt = 0, ȧt = 0, and Γ̇t = 0) with rt = r
leads to the dynamic system:


˙̂ct

˙̂at

˙̂Γt

 =


ρ+ δ1 − r −σ2

σ1

c
a (ρ+ δ1 − r) σ2

σ1

c
Γ (ρ+ δ1 − r)

−1 r 0

0 0 ρ+δ2

σ2
− 1−σ2

σ2
r


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


ĉt

ât

Γ̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x , and ρ+ δ1− r =
δ1qc

σ1a−σ2Γσ2 .
The determinant of the 3x3 Jacobian J is given by

det(J) = (ρ+ δ1 − r)

(
ρ+ δ2

σ2
− 1− σ2

σ2
r

)(
r − σ2

σ1

c

a

)
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If r < σ2
σ1

c
a , then det(J) < 0, implying that the steady state is saddle stable since det(J) = λ1λ2λ3

and the eigenvalues (λ1,λ2,λ3) have opposite signs.
Combining ρ+ δ1 − r = δ1qc

σ1a−σ2Γσ2 and Γ−1 = ρ+δ2
σ2
− 1−σ2

σ2
r leads to

c

a
=

[(
ρ+ δ1 − r

δ1q

)(
ρ+ δ2

σ2
− 1− σ2

σ2
r

)σ2
] 1

σ1

a
1−σ2

σ1 .

Note that this equation also defines the implicit the long-run asset holdings aa,ss(y , r) where the
disposable income y equal c .

Therefore, the convergence condition toward aa,ss(y , r) is

r <

[(
ρ+ δ1 − r

δ1q

)(
ρ+ δ2

σ2
− 1− σ2

σ2
r

)σ2
] 1

σ1
(
σ2

σ1

)
a

1−σ2
σ1 .

This represents a necessary condition. A sufficient condition is

max{r , 0} <
[(

ρ+ δ1 − r

δ1q

)(
ρ+ δ2

σ2
− 1− σ2

σ2
r

)σ2
] 1

σ1

,

where max{r , 0} guarantees consumption to be non-negative.

Properties of aa,ss(y , r). Recall the steady state asset holdings

aa,ss(y , r) = (δ1q)
1
σ2

[
ρ+ δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ+ δ1 − r ]
−1
σ2 y

σ1
σ2 .

Let us take the derivative of aa,ss with respect to income y

daa,ss

dy
=
σ1

σ2
(δ1q)

1
σ2

[
ρ+ δ2

σ2
− 1− σ2

σ2
r

]−1

[ρ+ δ1 − r ]
−1
σ2 y

σ1
σ2
−1

.

daa,ss

dy > 0 since r ∈
(
−ρ+δ2
σ−1 , ρ+ δ1

)
. Hence, the long-run asset holdings of active households are

increasing in income y .
Taking the derivative of aa,ss with respect to r , we have

daa,ss

dr
= (δ1q)

1
σ2 (ρ+ δ1 − r)

−1
σ2
−1

y
σ1
σ2

(
1

ρ+ δ2 + (σ2 − 1)r

)[
1− σ2(σ2 − 1)(ρ+ δ1 − r)

ρ+ δ2 + (σ2 − 1)r

]
.

If σ2 ≤ 1, daa,ss

dr ≥ 0 and hence the steady state asset holdings of active households are
increasing in the interest rate.

Now let us assume that σ2 > 1. When r = r̄ , we have daa,ss

dr = 0 where

r̄ ≡ σ2(σ2 − 1)(ρ+ δ1)− (ρ+ δ2)

(σ2 − 1)(σ2 + 1)
.

If r > r̄ , daa,ss

dr > 0. And if r < r̄ , daa,ss

dr < 0. As a result, aa,ss is increasing (decreasing) in the
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interest rate when r is above (below) r̄ . Hence, aa,ss is C-shaped in the space (r , a).
Q.E.D.

D.2 Proof of Proposition 2

In the steady state ċt = 0, Γ̇t = 0, and ȧt = 0. Combining ċt = 0 and Γ̇t = 0 we obtain the
desired consumption-to-wealth ratio (c/a):

c

a
= (δ1q)−

1
σ (ρ+ δ1 − r)

1
σ

[
ρ+ δ2

σ
− 1− σ

σ
r

]
≡ D(r), (D4)

where we denote the desired consumption-to-wealth ratio D(r).
Combing the asset ([φ+ (1− φ)]a = B) and goods (φc = φw − G − (B − φa)Γ−1) markets

clearing conditions leads to the feasible consumption-to-wealth ratio (c/a)

c

a
=

y

B

[
1 +

(1− φ)

φ
g(r)

]
− (1− φ)

φ
g(r)Γ−1 ≡ F (r), (D5)

where F (r) represents the feasible c/a ratio, Γ =
[
ρ+δ2
σ − 1−σ

σ r
]−1

, g(r) = δ2σ
ρ+δ2−r+σδ2

, and

y = φw − G .

The function D(r) has the following properties

• D is hump shape and continuous over the interval [ρ+δ2
1−σ , ρ + δ1]. D(r̄) = 0, if r < r̄ ,

D ′ < 0 and if r > r̄ , D ′ > 0,

• D(ρ+ δ1) = 0 and D
(
ρ+δ2
1−σ

)
= 0.

Similarly, the function F (r) has these properties

• F is continuous over the interval [ρ+δ2
1−σ , ρ+ δ1],

• F (ρ+ δ1) > 0 if B
y <

1+ (1−φ)
φ

g(ρ+δ1)

(1−φ)
φ

Γ−1
and F

(
ρ+δ2
1−σ

)
> 0.

The steady state equilibrium is obtained when the desired and feasible consumption-to-wealth
ratios cross, that is, when D(r) = F (r).

Given that F
(
ρ+δ2
1−σ

)
> 0 = D

(
ρ+δ2
1−σ

)
, if D and F cross once, they must cross at least one

more time again since F and D are continuous over the interval [ρ+δ2
1−σ , ρ+ δ1], D is hump shape

and F
(
ρ+δ2
1−σ

)
> 0 = D

(
ρ+δ2
1−σ

)
. Q.E.D.

62



D.3 Proof of Proposition 3

Recall that πELB = (ψ−1)πT−r∗H

ψ where the ELB constraint is binding when π ≤ πELB and it

is non binding when π > πELB . πELB is increasing in ψ. Assume that the ELB constraint is not
binding and hence the Taylor rule is given by it = r∗H + πT +ψ(πt − πT ) with ψ > 1. Let’s also
recall the equilibrium dynamics for the economy with nominal wage rigidities is now governed by
the following dynamic system

π̇t = κ(ct + G − ȳ)

ċt

ct
=

it − πt − ρ− δ1

σ
+

cσt
σ
δ1q

sVa(B, Γt)

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
− 1− σ

σ
(it − πt)

]
In the steady state, π̇t = 0, ċt = 0, and Γ̇t = 0. The π̇t = 0 curve is given by c = ȳ − G .

The Γ̇t = 0 curve is Γ =
[
ρ+δ2
σ + 1−σ

σ π
]−1

, while the ċt = 0 curve (together with Γ̇t = 0) is

given by

c = (δ1q
s)−1/σB

[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

]1/σ[
ρ+ δ2

σ
−
(

1− σ
σ

)
(r∗H + (ψ − 1)(π − πT ))

]
. (D6)

Some properties of the ċt = 0 curve. We denote the ċt = 0 curve F c (π). When π > πELB ,

c = 0 if π = πT + ρ+δ1−r∗H

ψ−1 > πT . The derivative of F c (π) with respect to π is

F c′(π) = −(δ1q
s)−

1
σ B
[
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

] 1
σ−1

(
ψ − 1

σ2

)
[
ρ+ δ2 − (1− σ)(r∗H + (ψ − 1)(π − πT )) + σ(1− σ)

(
ρ+ δ1 − r∗H − (ψ − 1)(π − πT )

)]
,

where F c ′(π) = 0 when πopt = πT + r̄−r∗H

ψ−1 .

If π < πopt , F c ′ > 0 and if π > πopt , F c ′ < 0. Hence, the ċt = 0 curve is hump
shaped in π with the optimal consumption being equal to F c (πopt) = (δ1q)−1/σB(ρ + δ1 −
r̄)1/σ

[
ρ+δ2
σ − 1−σ

σ r̄
]

. The ċt = 0 curve (given by F c ) and the π̇t = 0 curve are displayed in

Figures 9 and 10.

Existence of steady state equilibria. A steady state equilibrium is determined by the inter-
section of the π̇t = 0 and ċt = 0 curves, that is F c(π) = ȳ − G .

A necessary condition for an equilibrium to exist is 0 < ȳ − G < F c (πopt) which is satisfied
when

B > (δ1q
s)1/σ(ρ+ δ1 − r̄)−1/σ

[
ρ+ δ2

σ
− 1− σ

σ
r̄

]
≡ B̄.
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It is helpful to consider two cases for the discussion of the equilibrium. In the first case, we assume
that F c (πELB) < ȳ − G (see the proof of Proposition 5 for the condition). We start with the
scenario where π > πopt and F c is strictly decreasing in π. Since 0 < ȳ − G < F c (πopt) and F c

is decreasing, there is an equilibrium inflation π1 = F c−1(ȳ −G ). We denote this equilibrium E1.
We also consider the scenario where πELB < π < πopt and F c is strictly increasing in π. Similarly,
since F c is strictly increasing there is a second equilibrium π̃ = F c−1(ȳ −G ) (see Section D.4 for
the value of π̃). We denote this equilibrium Ẽ1. The first case shows that there are two equilibria.
In the second case where F c (πELB) > ȳ − G , only equilibrium E1 exists.

Real rate and inflation at equilibrium E1. Are r∗H and πT the real interest rate and inflation
rate at E1 respectively? To answer this question, first recall that the r∗H (in the model without
nominal rigidities) is determined by the following equations

F (r) ≡ (δ1q
s)−1/σB [ρ+ δ1 − r ]1/σ

[
ρ+ δ2

σ
−
(

1− σ
σ

)
r

]
= ȳ − G ,

r∗H = F−1(ȳ − G ) > r̄ ,

F ′(r) < 0 if r > r̄ .

Now note that F (i − πT ) = F c(πT ). Hence i − πT = F−1(ȳ − G ) = r∗H and the inflation rate
at the equilibrium E1 is π1 = πT . We also need to check whether r∗H is higher r̄ in the presence
of nominal rigidities. We know that at the equilibrium E1, πT > πopt and i − πT < i − πopt .
Using the definition of πopt , we obtain i − πT = r∗H > r̄ . Therefore, at the equilibrium E1,
inflation is at target π = πT and as a result the real interest rate is r∗H > r̄ .

Stability. The stability analysis of these two steady states is given by the following system:


˙̂πt

˙̂ct

˙̂Γt

 =


0 κ 0

(ψ−1)c
σ J22 J23

−Γ(ψ − 1)
(

1−σ
σ

)
0 J33


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


π̂t

ĉt

Γ̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x ,

J22 = (ρ+ δ1)− (r∗H + (ψ − 1)(π − πT )),

J23 = [(ρ+ δ1)− (r∗H + (ψ − 1)(π − πT ))]
c

Γ
,

and

J33 =
ρ+ δ2

σ
− 1− σ

σ
(r∗H + (ψ − 1)(π − πT )).

The determinant of the 3x3 Jacobian J is given by

det(J) = −κ(ψ − 1)c

σ2[
ρ+ δ2 − (1− σ)(1 + σ)(ψ − 1)(π − πT )− (1− σ)(1 + σ)r∗H + σ(1− σ)(ρ+ δ1)

]
.
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If π > πopt , then det(J) < 0, implying that the steady state equilibrium E1 is saddle stable
since det(J) = λ1λ2λ3 and the eigenvalues (λ1,λ2,λ3) have opposite signs. If π < πopt , then
det(J) > 0, meaning that the steady state with π̃1 < πopt is unstable. Hence, only one stable
steady state equilibrium exists. Q.E.D.

D.4 Proof of Proposition 4

This proof is similar to that of Proposition 3 except that now π < πELB and it = 0. Let’s
recall the equilibrium dynamics for the economy is governed by the following system

π̇t = κ(ct + G − ȳ),

ċt

ct
=
−πt − ρ− δ1

σ
+

cσt
σ
δ1q

sVa(B, Γt),

Γ̇t = −1 + Γt

[
ρ+ δ2

σ
+

1− σ
σ

πt

]
.

In the steady state, π̇t = 0, ċt = 0, and Γ̇t = 0. The π̇t = 0 curve is given by c = ȳ − G .

The Γ̇t = 0 curve is Γ =
[
ρ+δ2
σ + 1−σ

σ π
]−1

, while the ċt = 0 curve (together with Γ̇t = 0) is

c = (δ1q
s)−1/σB [ρ+ δ1 + π]1/σ

[
ρ+ δ2

σ
+

(
1− σ
σ

)
π

]
≡ Hc (π). (D7)

The ċt = 0 curve given by Hc and the π̇t = 0 are displayed in Figures 9 and 10.

Some properties of ċt = 0 curve. When π < πELB , c = 0 if π = −(ρ + δ1). The derivative
of Hc (π) with respect to π is

Hc′(π) = (δ1q
s)−

1
σ B [ρ+ δ1 + π]

1
σ−1

(
1

σ2

)
[ρ+ δ2 + (1− σ)π + σ(1− σ) (ρ+ δ1 + π)] .

Hc ′(π̃opt) = 0 where π̃opt = −(ρ+δ2)−σ(1−σ)(ρ+δ1)
(1−σ)(σ+1) = −r̄ .

If π < π̃opt , Hc ′ > 0 and if π > π̃opt , Hc ′ < 0. Hence the ċt = 0 curve is hump shaped

in π with maximal being given by Hc (π̃opt) = (δ1q
s)−1/σB(ρ + δ1 − r̄)1/σ

[
ρ+δ2
σ − 1−σ

σ r̄
]
.76 In

this configuration, the condition π̃opt < πELB must hold since the ELB binds. This is satisfied if
πT > −r̄ and ψ > r∗H +πT

r̄+πT .

Existence of equilibria. The steady state equilibrium is determined by the intersection of the
π̇t = 0 and ċt = 0 curves, that is Hc (π) = ȳ − G . A necessary condition for an equilibrium to
exist is 0 < ȳ − G < Hc(π̃opt) which is satisfied when B > B̄.

It is useful to consider two cases for the discussion of the equilibrium. In the first case, we
assume that Hc (πELB) < ȳ −G (see the proof of Proposition 5 for the condition). We start with
the scenario where π > π̃opt and Hc is strictly decreasing in π. Since 0 < ȳ −G < Hc (π̃opt) and

76Note that Hc (π̃opt) = F c (πopt).
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Hc is decreasing, there is an equilibrium inflation π2 = Hc−1(ȳ −G ). We denote this equilibrium
E2. We also consider the scenario where πELB < π < π̃opt and Hc is strictly increasing in π.
Similarly, since Hc is strictly increasing there is a second equilibrium π

′
2 = Hc−1(ȳ − G ). We

denote this equilibrium Ẽ2. The first case shows that there are two equilibria. In the second case
where Hc(πELB) > ȳ − G , only equilibrium Ẽ2 exists.

Real rate and inflation at equilibrium E2. We now show that at the equilibrium E2, inflation
π = −r∗L where the r∗L is the low real interest rate. To do so, first recall that the r∗L (in the
model without nominal rigidities) is determined by the following equations

F (r) ≡ (δ1q
s)−1/σB [ρ+ δ1 − r ]1/σ

[
ρ+ δ2

σ
−
(

1− σ
σ

)
r

]
= ȳ − G ,

r∗L = F−1(ȳ − G ) < r̄ ,

F ′(r) > 0 if r < r̄ .

Now note that F (−π) = Hc(π). Hence, in equilibrium −π = F−1(ȳ − G ) = r∗L. Since
π < π̃opt = −r̄ we also have that −π < r̄ . As a result, in equilibrium E2, inflation π = −r∗L.

Stability. The stability analysis of these two steady states is given by the following system:


˙̂πt

˙̂ct

˙̂Γt

 =


0 κ 0

− c
σ ρ+ δ1 + π (ρ+ δ1 + π) c

Γ

Γ
(

1−σ
σ

)
0 ρ+δ2

σ + 1−σ
σ π


︸ ︷︷ ︸

J Jacobian evaluated at the steady state


π̂t

ĉt

Γ̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The determinant
of the 3x3 Jacobian J is given by det(J) = κc

σ2 [(1− σ)(1 + σ)π + ρ+ δ2 + σ(1− σ)(ρ+ δ1)] .
If π > π̃opt , then det(J) < 0, implying that the steady state equilibrium E2 is saddle stable

since det(J) = λ1λ2λ3 and the eigenvalues (λ1,λ2,λ3) have opposite signs. If π < π̃opt , then
det(J) > 0, meaning that the steady state with π̃2 < π̃opt is unstable. Hence only the steady
state equilibrium E2 is stable.

Note to find π̃. At π̃, we must have F c (π̃) = Hc (−r∗L). Rearranging this equation leads to77

π̃ = πT +
r∗L − r∗H

ψ − 1
, where π̃ < πopt = πT + (r̄ − r∗H)/(ψ − 1).

Q.E.D.

D.5 Proof of Proposition 5

This proof builds on the proofs of Propositions 3 and 4. We start by noting that at πELB ,
F c(πELB) = Hc (πELB) where F c and Hc are given by equations (D6) and (D7) respectively.78

77Note that π̃ also solves the following equation in π: r∗L + π = r∗H + πT + ψ(π − πT ).
78Note that at the πELB , the real interest rates are identical: −πELB = r∗H + (ψ − 1)(πELB − πT ).
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Recall that πELB = (ψ−1)πT−r∗H

ψ and is increasing in ψ.
From the proofs of Propositions 3 and 4, we know that the steady state equilibrium E1 is always

stable. For the second stable steady state equilibrium E2 to exist, we must have Hc (πELB) < ȳ−G .
Since πELB > π̃opt = −r̄ , Hc is decreasing which implies that πELB > Hc−1(ȳ − G ). Using the

definition of πELB , we obtain ψ > r∗H +πT

πT−Hc−1(ȳ−G)
. Knowing from the proof of Proposition 4 that

Hc−1(ȳ − G ) = −r∗L implies that ψ > r∗H +πT

r∗L+πT .

Hence there exists a threshold79 ψ̄ ≡ r∗H +πT

r∗L+πT > 1 such that if ψ > ψ̄, there are two stable

steady state equilibria given by E1 and E2. If ψ < ψ̄ only equilibrium E1 exists. Q.E.D.

D.6 Proof of Proposition 6

The proof is similar to the proof of Proposition 5. Recall that the inflation rate at the ELB
stable steady state (E2) is −r∗L. Since r∗L < r̄ we have dr∗L

dB < 0. Hence, the inflation rate −r∗L
at the equilibrium is increasing in government debt B.

First, note that Hc (π;B) ≡ F̂ (B) increases with B for any inflation rate π. It is also important

to note that ∂F̂ (B)
∂B = ∂Hc (πELB ;B)

∂B +∂Hc (πELB ;B)
∂πELB

∂πELB

∂B > 0 since πELB > π̃opt , ∂Hc

∂πELB < 0, ∂π
ELB

∂B < 0,

and ∂r∗H

∂B > 0. Therefore, F̂ (B) is strictly increasing in B.
For the ELB equilibrium (E2) to cease to exist, the following relationship must hold:

Hc (πELB ;B) ≡ F̂ (B) > ȳ − G .

This implies that B > F̂−1(ȳ − G ) ≡ Bcutoff . Consequently, when B > Bcutoff , the ELB
equilibrium ceases to exist. If B < B̄, limB→Bcutoff (π) = πELB . At the cutoff Bcutoff , there is a
discontinuity and the stable ELB equilibrium disappears. Q.E.D.

D.7 Proof of Lemma 2

Recall the Euler equation in the steady state which includes the asset and goods market

clearing conditions ρ+ δ1 − r = δ1qc
σB−σ

[
ρ+δ2
σ − 1−σ

σ r
]−σ

.

The derivative of this equation with respect to B is dr
dB = −σB−1(ρ+δ1−r)(ρ+δ2−(1−σ)r)

(1−σ)(1+σ)r+σ(σ−1)(ρ+δ1)−(ρ+δ2) .

The numerator is negative, so the sign of dr
dB depends on the denominator. Hence, we have:

dr∗H

dB
> 0 if r∗H > r̄ and

dr∗L

dB
< 0 if r∗L < r̄ .

Second, we show how r∗L and r∗H change with δ2: dr
dδ2

= −σ(ρ+δ1−r)
(1−σ)(1+σ)r+σ(σ−1)(ρ+δ1)−(ρ+δ2) .

Similarly dr∗H

dδ2
> 0 if r∗H > r̄ and dr∗L

dδ2
< 0 if r∗L < r̄ .

Q.E.D.

79Note that ψ > r∗H +πT

r∗L+πT > r∗H +πT

r̄+πT > 1 as r∗L < r̄ < r∗H . This shows that if ψ > ψ̄, both Hc (πELB ) >

ȳ − G and π < πELB .
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