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Abstract 
This paper proposes a unique approach to simulate intraday transactions in the Canadian retail 
payments batch system. Such transactions are currently unobtainable. The simulation 
procedure, though demonstrated in the realm of payments systems, has tremendous potential 
for helping with data-deficient problems where only high-level aggregate information is 
available. The approach uses the concept of integer composition in combinatorics to break 
down the daily total value and volume (available) into individual data points (unavailable) 
throughout the day. The algorithm also introduces a technique to incorporate any intraday 
timing pattern (known or hypothetical) to make simulated data closer to reality. Simulation 
results show that the probability distribution of individual payment values is remarkably stable 
through repeated random sampling. This suggests a high degree of accuracy and viability of 
this simulation method. In addition, the densities of simulated intraday transactions are found 
to be invariably skewed to the left of the mean payment value, which reflects the nature of 
retail payments systems. 

Topics: Financial Markets, Payment clearing and settlement systems  

JEL codes: C, C63, E42, E58 

Résumé 
Cette étude propose une méthode inédite pour simuler les transactions intrajournalières dans 
le système canadien de traitement par lots des paiements de détail. Il est actuellement 
impossible d’obtenir des données sur de telles transactions. Bien que la méthode de simulation 
soit démontrée dans le domaine des systèmes de paiement, elle se révèle très prometteuse 
pour combler le manque de données détaillées quand on dispose uniquement de 
renseignements généraux agrégés. La méthode fait appel au concept de composition des 
nombres entiers en analyse combinatoire pour diviser la valeur et le volume totaux quotidiens 
(disponibles) en points de données individuels (non disponibles) au cours de la journée. 
L’algorithme applique également une technique pour intégrer tout profil chronologique 
intrajournalier (connu ou hypothétique) afin de rapprocher les données simulées de la réalité. 
Les résultats de la simulation montrent que la distribution des probabilités de la valeur des 
paiements individuels est remarquablement stable dans les échantillonnages aléatoires 
répétés. On peut donc supposer que cette méthode de simulation offre un haut niveau de 
précision et qu’elle est très viable. De plus, les densités des transactions intrajournalières 
simulées sont invariablement étalées vers la gauche de la valeur moyenne des paiements, ce 
qui illustre la nature des systèmes de paiement de détail. 

Sujets : Marchés financiers, Systèmes de compensation et de règlement des paiements 
Codes JEL : C, C63, E42, E58 



1 Introduction

In the modern digitized world, data has proven more important than ever and infor-

mation is the key to success. However, despite the unprecedented efforts to collect,

store and manage data, data is not always available because of restricted access,

cost concerns, the technical challenges of extracting data from legacy systems, or

the simple fact that it is impossible to collect every bit of information that surrounds

one. For example, the financial industry lacks data on the linkages between financial

institutions and risk exposures across all sector members. In the context of pay-

ments systems, especially in retail payments systems, not every single transaction

is recorded due to the extremely large number of such transactions. However, such

information can be crucial in understanding system characteristics and participants’

payment behaviours and in examining intraday risk exposures.

This paper proposes a unique approach of reconstructing unknown individual

data entries based on aggregate statistics, such as daily total value and volume.

The general objective of this algorithm is to simulate the unknown underlying mi-

cro data that generates the aggregate information seen. The study demonstrates

this simulation technique using the transaction records in the Canadian Automated

Clearing and Settlement System (ACSS).

In ACSS, a tremendous number of paper and electronic-based payments are

exchanged continuously every day. Payments are exchanged bilaterally outside the

central platform, and for every direct clearer in the system, all of the payments

sent to various other system members are then collected into a single payment

(i.e., a batch total) at the end of day for clearance and settlement. The system

contains 22 ∼ 25 payment streams, and a separate batch total is calculated for

each payment stream. For most payment streams, such batch-total entries are then

further aggregated into a multilateral net position for each system direct clearer

(DC) for that day.2 Currently, the most detailed levels of data extracted from

ACSS are daily total transaction value and volume between bilateral pairs of DCs

2There are 13 DCs in ACSS including Bank of Canada, among which 12 are direct participants
in the new Canadian large-value payments system, LYNX (having replaced the old system LVTS
in August 2022). The number of payment streams in ACSS varies throughout the history of
the system. Five payment streams, mostly related to Government of Canada transactions, settle
bilaterally directly through LYNX (historically in LVTS); i.e., the bilateral net balances between
DCs are not included in the final multilateral ACSS positions. Interested readers can find more
detailed information about ACSS in Arjani and McVanel (2006).
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in each payment stream on a given business day. Individual retail payments are

never obtainable.

The first step in the proposed approach is to break up the total transaction value

into a series of smaller values, on the condition that (i) these smaller values sum

to the daily total amount and (ii) the number of these smaller values is equal to

the daily total volume observed in the data. The second step is to randomly pair

up each simulated individual transaction with a transaction time stamp, which is

generated according to a given intraday payment timing pattern. In the next step,

the payment profiles of every stream between each participating pair of DCs are

then combined to create a single transaction data file for the entire system during

a given sample period, which is then sorted by transaction time upon merging. By

construction, these simulated individual intraday payments satisfy the constraint

such that, at any time of day and for any given DC, its intraday maximum net debit

position (NDP) never exceeds its daily total value sent.

This approach draws heavily on the theory of integer composition in combina-

torics. According to number theory, there are a finite number of ways of writing an

integer n as the sum of exactly m number of positive integers. For example, one day

in ACSS, in stream A, direct clearer B sends three payments having a total value

of 5 to direct clearer C. There are six possible distinct ways of splitting the 5 into

three individual payments, each of which is an integer number of cents: {3, 1, 1},
{2, 2, 1}, {2, 1, 2}, {1, 3, 1}, {1, 2, 2}, and {1, 1, 3}. Note that some of the sequences

are identical in value but differ only in the order of elements. This is because in

payments systems, the order of payments is influential in a participant’s intraday

funds positions and liquidity recycling in the system as a whole.

In the method developed in this paper, a random composition is chosen with

an equal probability of 1/N , where N denotes the total number of all possible

compositions of a given integer n. An efficient search algorithm is utilized in finding

where dividing lines can be drawn to generate a sequence of smaller-value integers

that satisfy all of the economic constraints in the known data. Transaction values,

formulated as dollars and cents in the input data are first converted into an integer

in denomination of cents only, and then, in the last step of algorithm, changed back

to dollars and cents in the output.

The results of this remarkably stable simulation suggest a high degree of accu-

racy, especially in the scenarios where the daily total volume of transactions is very
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large relative to the daily total value. The random selection process is repeated

1, 000 times, and the density of payment value is examined across the sampling dis-

tribution. The results show that the probability of individual payment values within

a small window appearing in any randomly chosen composition is quite stable and

that probability becomes more stable as the daily total volume (i.e., the number of

individual payments we are aiming to break up the total value into) increases. The

intuition behind this finding is simple and rather obvious. For example, if a total of

$10 is split into three payments, e.g., {$2, $3, $5}, {$1, $2, $7}, or {$3, $3, $4}, then
the probability of having $1 as the value of one of the three individual payments

ranges from 0 to 58.3%. However, if, instead of three payments, a composition of

$10 into eight individual payments is sought, then the probably of having $1 as one

part of the composition has become a certainty—and, in fact, the probability of

having any number greater than 3 in the composition is also a certainty: equal to

0. To illustrate, there are only two possible partitions (Recall that compositions are

permutations of partitions.):

10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 3

= 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2

This unique method can be a viable, useful and powerful tool for simulating a

level of detail in the data that is otherwise unobtainable, or simply un-collectable

(e.g., due to sheer quantity) when aggregate information is somehow available. The

algorithm proposed here executes reasonably quickly. In this study, more than 4.6

billion individual transactions were generated in a time frame of about 90 minutes.

Furthermore, this approach can be applied to any data set in any field of study, not

only to payments systems in the financial sector.

The fundamental difference between this paper and Saiz et al. (2018), which also

looked into profiling ACSS intraday payments, is that the simulation here generates

every individual payment with an associated time stamp rather than snapshots of

participants’ intraday net funds positions at various times of day. This provides the

first advantage of the method, as complete and high time-resolution transaction data

(e.g., available for LYNX) proves to be extremely useful and important in conducting

research and analyses that otherwise are not feasible, such as intraday liquidity

distribution, participants’ payment behaviours, and intraday risk exposures. Saiz
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et al. (2018) argue that in ACSS, each individual payment follows a distribution

with unknown mean and variance. However, based on the Central Limit Theorem

(CLT), it can be derived that the sum of payments sent by a participant over a

period of time, which is essentially this participant’s net funds position at a certain

point of time, follows a normal distribution characterized by the parameters that can

be computed from the observable data (e.g., the total number of payments in that

given time period, the daily average net funds positions, and the variance of these

net positions). Random draws are then made to generate intraday net positions for

various lengths of time intervals ranging from 1 minute to 6 hours.

The second advantage of this simulation technique is its updatability and flex-

ibility. It is able to incorporate additional information (e.g., if new data surfaces

later on) to produce a more representative and accurate data set. For example, if it

were known that transactions in one ACSS stream were all in multiples of $1,000,
then that can, hypothetically, be easily incorporated into the algorithm to make the

simulation results satisfy this additional constraint. It would be much harder to

achieve this with the model suggested by Saiz et al. (2018).

The concept of integer composition is used widely in other scientific fields, such

as statistical mechanics, string theory in mathematical physics, biology, and non-

parametric statistics. To the best of my knowledge, this paper may be the first

application of this particular aspect of number theory in payments systems.

The rest of the paper proceeds as follows: section 2 contains a brief description

of the concept of integer composition; section 3 provides implementation details of

applying this number theory to ACSS data; section 4 presents the simulation results;

and section 5 concludes.

2 Integer Composition

The composition of an integer n is a characterization of n as a sum of smaller positive

integers. Each component element is called a part of the composition. Let us use the

function c(n) to denote the number of compositions of the integer n: for example,
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c(3) = 4. Below are all the four compositions of the integer n = 3:

3 = 3

= 2 + 1

= 1 + 2

= 1 + 1 + 1

Partitions of an integer, similar to compositions, are various ways of writing it

as a sum of positive integers; however, the order of the parts are ignored. In the

example above, 1 + 2 and 2 + 1 are two distinct compositions, but they are both

considered the same partition of 3.3 In this paper, I choose integer composition as

the base of my approach because the order of transactions is crucial in payments

systems. Different ordering can generate ripple effects and result in drastically dif-

ferent outcomes in terms payment timing, liquidity usage, and liquidity recycling for

individual participants as well as for the system as a whole. For instance, participant

A sends to participant B a payment of $5 first and $1 second. Upon receiving $5,

participant B, with no money in store, is able to send a payment of $3 to participant

C. If A had sent $1 first, B would not have had enough liquidity to send the $3 that

enables C to send its own payments.

Each positive integer n has 2n−1 distinct compositions, which contain sequences

of parts of various lengths. The number of compositions of a positive integer n into

exactly m parts is given by the binomial coefficient,

c(n,m) =

(
n− 1

m− 1

)
=

(n− 1)!

(m− 1)!(n−m)!

Note that summing over all possible numbers of parts m, we get 2n−1 as the total

number of distinct compositions of n:

n∑
m=1

(
n− 1

m− 1

)
= 2n−1

3The theory of integer partitions was first pioneered by Leonhard Euler in 1748, and it is an
evolving theory that still has many unsolved problems, such as finding criteria for determining
whether the number of partitions of an integer is odd or even. Interested readers can refer to
Andrews (1998), Glaisher (1883), and Cohen (1981).
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Broadly speaking, there are two distinct methods of obtaining compositions of an

integer: the algebraic approach based on generating functions and the combinatorial

method. This paper proposes an algorithm that is built on a pure combinatorial

foundation; the details of the algorithm are elaborated in section 3.2.

The basic idea of the combinatorial method is simple, and the results of function

c(n) can be generated in the following way. If we write n as the sum of 1’s, then

we have n− 1 spaces between each pair of adjacent 1’s; imagine that in each of the

spaces, we can insert a barrier, which grants us a total of 2n−1 of all possible ways of

inserting partitioning barriers. All the individual 1’s between any two barriers are

summed up and the sum is considered as one part of the composition. For example,

c(3) = 4 can be illustrated as below:

3 = 1 1 1 = (3)

= 1 ♦ 1 1 = (1, 2)

= 1 1 ♦ 1 = (2, 1)

= 1 ♦ 1 ♦ 1 = (1, 1, 1)

3 Implementations

The simulation of individual intraday transactions in ACSS consists of two steps.

First, we develop a complex algorithm that randomly chooses, with equal probability

among all possibilities, one composition of a daily total transaction value into a

sequence of individual payments, the number of which is equal to the daily total

volume. For the purpose of handling integers, transaction values are first converted

into cents, and then back to dollars in the simulation output. The challenge is that

as the daily total value n and/or daily total volume m increases, the number of all

possible compositions of n into exactlym parts, i.e., c(n,m) = (n−1)!
(m−1)!(n−m)!

, increases

exponentially: for example,

c(10, 3) = 36

c(100, 3) = 4, 851

c(100, 30) = 8.8e+ 24
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On a typical day, in a relatively small payment stream of ACSS, one observes a

total transaction volume of 200 and a total transaction value of 68 million; in bigger

payment streams, the daily total volume can amount to 5 million and the daily total

value reaches 540 million. In such cases, c(n,m) is simply an uncomputable figure,

too large to have a name for. A detailed description of data used in this study is

provided in section 3.1.

To deal with this challenge, an algorithm is designed and implemented that

is sufficiently efficient to carry out such cumbersome calculations in a reasonable

amount of time. Furthermore, the algorithm needs to be “smart” in the sense that it

does not actually lay out all the possible compositions in memory and literally choose

one impartially. Rather, it achieves the goal of choosing a random composition with

an equal probability such that the algorithm can be proven mathematically to be

theoretically equivalent to the mechanical process. As shown clearly in the examples

above, in the cases where n and m are very large, it is absolutely impossible and

impractical to list out all the possible compositions, even for computers.

The second step in the simulation is to assign a time stamp to each individual

payment, based on a given intraday timing pattern of a retail payments system. Un-

fortunately, no such data is available yet in ACSS. This study borrows the intraday

timing pattern of the U.K. Faster Payments (shown in Figure 1), and this data set

can be easily replaced with Canadian data in the future when it becomes available.

The timing distribution data illustrates how many transactions are conducted on av-

erage during each hour of the day. The fundamental idea of generating time stamps

based on the volume time distribution is that when more payments are made at a

certain time of day, that time is, in general, considered to be a more probable time

for transactions to occur. Details of this simulation process are further explained in

section 3.3.

3.1 Data

To carry out the simulation in this study, a sample of ACSS data is used that

spans from March 2, 2020, to September 3, 2021, containing a total of 383 business

days. During this period, more than 12.1 billion transactions worth $11.9 trillion

in total settled in the Canadian retail batch payments system.4 The beginning of

4That is, on average each day, ACSS settles about 32 million transactions totaling $31 billion in
value. In contrast, in Canada’s large value payment system (Lynx), the daily settlement is around
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Figure 1: Intraday Timing Pattern—U.K. Faster Payments

This graph illustrates timing distribution of payment volume in the U.K. Faster Payments system. The
horizontal axis is the time of day, with a resolution of 1 hour. The vertical axis shows the average number
of real-time payments made during each hour duration on a typical day. Source: Accenture (Accenture)

Table 1: Pairwise Daily ACSS Data per Payment Stream

Date Sender Receiver Stream Stream name Volume Value ($)
20200601 DC A DC B C C-AFT credit 80,733 289,552,539.17
20210721 DC C DC D D D-AFT debit 94,969 75,565,233.85
20201216 DC E DC F E E-Encoded paper 109 401,144.26
20210720 DC G DC H N N-Shared network 1,796 343,280.00
20201230 DC I DC J O O-Images 25,183 214,586,801.08
20210223 DC A DC K Q Point of service 2,612 181,538.04

the sample period is determined by the earliest day on which ACSS weekly data

extracts became available, and the end of the sample is around the time when this

study was conducted.

The weekly extracts are one of the most comprehensive data sets currently avail-

able in ACSS. Each line of data contains the total value and number of transactions

sent by one ACSS direct clearer to one other, in one particular payment stream on

a specific day. A partial example of this data is given in Table 1.

43, 061 in volume and $472 billion in value in the same time period.
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3.2 Generating Payments: The Algorithm

This section describes the algorithm created to break down a daily total transaction

value into a known number of individual payments.

When an integer n is written as a composition of m parts, by construction, the

number of all possible positions for inserting partitioning barriers between parts is

n− 1 and the number of barriers needed is m− 1. For example, the composition of

3 into exactly two parts provides 3− 1 = 2 places for inserting partitioning barriers,

and only 2 − 1 = 1 barrier is needed in this case. Hence, the algorithm consists

of two steps. First, we randomly choose m − 1 partitioning positions with equal

probabilities; specifically, the probability of any available position being chosen for

inserting a barrier is equal to 1/C, where C is the total number of vacant candidate

positions remaining. Second, we count the number of 1’s between each pair of

barriers or to the left (right) of the first (last) barrier, and let the sum of 1’s be the

corresponding part of the composition of n in that position.

3.2.1 Positioning Barriers

The algorithm chooses a set of m − 1 partitioning positions one at a time. Each

selection is made from all the remaining vacant positions (i.e., not yet chosen). The

first position p1 can be any position from 1 to n− 1; each subsequent pi can be any

choice among all n − 1 − i remaining candidate positions, excluding those already

occupied by the i− 1 previous selections.

Let ri be any position in all remaining n − 1 − i possibilities, and ri can be

generated randomly from a uniform distribution. An essential part of our integer-

composition algorithm involves a bijective mapping function that maps from a local

index number (i.e., ri) in a set of all remaining vacant positions to its corresponding

global location (i.e., pi) in the entire array of n− 1 possible partitioning positions.

To illustrate, I use an example of composing integer n = 8 into at least four parts

m ≥ 4. Specifically, there are seven possible positions for inserting barriers, and we

need at least three barriers.

Table 2 captures a zoomed-in snapshot of the state of the variables in the interim

step of mapping from r3 to p3, after p1 and p2 have already been selected. Previously

selected positions are marked by solid diamonds at position #2 and #5 in this

example; vacant positions are indicated by grey-coloured diamonds. The first row

9



Table 2: Mapping from r3 to p3 after p1,2 Have Been Selected

1 ♦ 1 ♦ 1 ♦ 1 ♦ 1 ♦ 1 ⋆ 1 ♦ 1
r3 1 Occupied 2 3 Occupied 4 5
p3 1 2 3 4 5 6 7

of the table shows that after p1 and p2 are chosen, the remaining vacant positions

are indexed by 1, 2, 3, 4 in the local order. The second row of the table lists the

indices of all possible locations for barrier insertion in the global order from 1 to 7.

If the third barrier is randomly chosen to be at r3 = 4, marked by a solid star, then

the bijective mapping function is used to map from 4 to 6 because p3 = 6.

It can be seen that the value of pi must be larger than ri by the cardinality of the

set of pj where j < i and pj < pi, because the set of r keeps altering each time after

a new position is chosen whereas p never changes. As r skips the previously chosen

positions, ri and pi begin to differ at first by 1 and later on by more. However, when

the algorithm operates, the corresponding pi is not yet known in the scope of the

remaining vacant positions; we need to calculate pi from rj such that j ≤ i. This

problem is compounded by the fact that the size of pi can be very large (recall that

some large streams have a volume of 5, 000, 000)—practically unsolvable. Hence, the

following iterative procedure is suggested so that the algorithm runs in a reasonable

amount of time for fairly large values of i and n. Let k(h) be a candidate position for

pi, where h is the iteration index. L(h) is the number of previously chosen positions

that precede k(h):

k(0) ← ri

L(0) ← 0

repeat for h = 1, 2, 3, · · ·
L(h) ← {pj|j < i ∧ pj ≤ k(h−1)}
k(h) ← k(h−1) +

(
L(h) − L(h−1)

)
until k(h) = k(h−1)

pi ← k(h)

Take the previous example of choosing r3 = 4 (i.e., Table 2). The goal of each

iteration is to find the number of elements in the set of {pj} that k(h) is greater than

or equal to, where j ≤ 3. Initially, k(0) is set to r3 = 4 and L(0) is set to 0.
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Next, a few steps are repeated such that L(1) is set to the number of {pj} that
precede 4: There is one such pj, at position #2, therefore L(1) is set to 1. k(1) is

then given the value of k(0) plus the difference between L(1) and L(0), hence, k(1) is

4 + 1 = 5.

In the next iteration, h = 2 and k(h−1) = 5. As well as position 2, position #5

now precedes k(h−1); therefore, L(2) = 2. Since L(2) − L(1) = 2− 1 = 1, k(2) = 6. At

this point, the algorithm does not yet terminate, because k(2) is larger than k(1).

Iterations continue. Now h = 3; with k(2) = 6, only position #2 and position #5

precede k(h−1). So L(3) = 2, which is the same value as L(2). Since the difference is

0, k(3) = k(2) and p3 = k(3). The finding of p3 is now complete, with its value being

6.

Note that in the algorithm presented, it can be time consuming to count each

element of the set pj and see if pj ≤ k(h), because it would require time proportional

to the magnitude of i, a number that can potentially be enormous. Instead, the

values of pj are stored in a red-black tree Bayer (2004) that is designed to have each

node contain a subtree size. Each time the tree is modified, i.e., when insertions

and/or deletions occur, a new tree will be generated by rearranging and recoloring all

the stored information (to either red or black) to make sure the search tree remains

balanced. Such re-balancing operation is executed in log(n) time. Specifically, in

this study, using a red-black tree allows us to look up each intermediate position

k(h) in the amount of time proportional to log(i).

3.2.2 Constructing Parts

Once a set {pj|1 ≤ j ≤ M} is determined, the composition parts can be found in

the spaces between each successive pair of p values, with the exception of the very

first and very last value. The first part of the composition is the number of 1’s

before the first barrier p1 and the last part is the sum of 1’s after the last barrier.

Formally, the composition part i can be calculated as follows:

C(i) =


p1 if i = 1

n− pm−1 if i = m

pi+1 − pi otherwise

11



3.3 Generating Time Stamps

As mentioned earlier, this study utilizes the timing distribution of transaction vol-

ume over the course of day in the U.K. Faster Payments system for the purpose

of simulating a time stamp for each individual simulated payment in the Canadian

ACSS. One caveat is that timing distributions of two different payments systems

in two different countries can be very different; in addition, all payment streams

within the ACSS itself may not even exhibit the same timing patterns, e.g., cheques

versus point-of-sales. The U.K. timing data was adopted because of the lack of the

Canadian equivalent, and the suggested simulation framework can later be easily

updated with any new information.

In this study, this timing distribution is considered a probability density function

(PDF) of payments in the realm of time. It follows that the transaction volume at

a certain time of day represents the probability that this particular time will be

chosen as a payment time: the higher the transaction volume at a given time, the

more likely a payment in general will be made at that time.

The first step is to normalize the timing distribution of payment volume such

that the area under the curve is equal to 1. Next, this normalized PDF is converted

into a cumulative distribution function (CDF), because CDFs provide cumulative

probabilities of a payment being settled prior to and up to a given time, not only

exactly at that point of time. As shown in Figure 1, the timing profile of the U.K.

Faster Payments System provides transaction volume only during each hour of a day.

Positions between two hours are linearly interpolated between the hour values such

that a cumulative probability can be constructed for every second of the 24-hour

period. Given this piece-wise linear function, we first calculate the area under the

curve for each hour duration, and then integrate the areas over the course of day.

The integration results in a piece-wise quadratic CDF, and mathematical details are

provided in Appendix A.

Finally, for each simulated individual payment, a number i ∈ [0, 1] is randomly

drawn from the uniform distribution, and the inverse CDF is used to map from that

random number to a time stamp. After the whole payments profile is created, all

payments from all participants are combined in all streams and sorted strictly by

the payment times.
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4 Simulation Results

After the simulation is carried out in its entirety, a complete payment profile of

exactly 12, 158, 962, 927 ACSS transactions is generated.

One of the most interesting aspects of the simulation results is that, given a

pair of daily total value (n) and daily total volume (m) of payments sent by one

ACSS direct clearer to the other in a given stream, repeated random sampling yields

a remarkably stable distribution of individual payment values across all randomly

generated compositions. In this repeated sampling exercise, six lines of data entries

(shown in Table 3) were chosen to serve as examples in this paper, such that the

daily total payment volumes for the six are the median, 75th, 90th, 95th, 99.99th

percentiles and the maximum in the sample period, respectively. Payment volume,

rather than value, is the main selection criterion in choosing these six examples

because the algorithm is essentially a volume-based approach. Recall that we first

look for potential positions to insert barriers between parts, and the number of

barriers needed is m − 1; so the size of m plays a critical role in the proposed

algorithm in terms of the number of iterations and the run time of execution.

Table 3: Pairs of Payment Value and Volume Chosen for 1,000 Repeated
Sampling (Daily totals between two DCs in a given stream)

Percentiles in volume Pairwise daily volume Pairwise daily value ($)
Median 204 401,371,039.41
75th 5,393 80,112,015.37
90th 40,259 278,591,400.00
95th 98,414 53,866,775.14
99.99th 3,710,789 155,841,997.80
Maximum 7,888,726 61,592,565.34

If there are multiple entries containing this same magnitude of daily total vol-

ume (m) that corresponds to one of the targeted percentiles, the data entry with the

maximum daily total value (n) is chosen for the given m to serve as the example.

The rationale is to maximize the variations in potential compositions, testing the

algorithm to the maximum degree based on the given data. Variations in composi-

tions typically increase when the difference between n and m becomes larger. For

example, if one wants to split a total of $2 into two payments, there is only one

way of doing so ($1 + $1); however, if one seeks two payments out of a total of $10,

13



suddenly there are many possibilities: ($2 + $8), ($3 + $7) or ($1 + $9), etc.
For each pair of payment value (n) and volume (m) in Table 3, the algorithm was

run 1,000 times to generate 1, 000 random compositions of n into exactly m parts.

Every sample of the compositions provides an empirical distribution of individual

payment values that any one part of the composition can take; for each of the

empirical distributions, a probability density function was estimated that indicates

the likelihood that any one part of the composition of n will be a particular payment

value x. Repeated sampling provides a distribution of probability densities at every

level of individual payment values. These density functions are portrayed in Figure

2 for all the six simulation cases.

The black lines in the graphs trace out the median probabilities of every payment

value in all 1, 000 densities. The grey band represents a 95% confidence interval,

with the upper bound specifying the probabilities at the 97.5th percentiles and the

lower bound corresponding to the 2.5th percentiles. These results show that, as

the transaction volume increases, the confidence interval grows narrower, indicating

that the probability distribution of individual payment values in ACSS becomes

increasingly stable. For example, when the daily total transaction volume (m) is

above the level of its 95th percentile in the sample, the probability of any one part of

the composition (of the daily total value) taking a given payment value x is almost

fixed.

In contrast, in this repeated sampling exercise, we are not controlling for the

changes in daily total payment value (n), which suggests that the magnitude of

n does not seem to contribute to the stability of the composition. The red line

marks the mean payment value (known from the data, i.e., daily total value divided

by daily total volume) that one ACSS direct clearer sends to another in a given

payment stream on a given day. The simulation results show that the probability

distribution of individual payment values in ACSS is not only remarkably stable

but also invariably skewed to the left of the mean payment value. This is very

interesting because it defies the most common and typical presumption that the

probability distribution of payment values is likely bell-shaped and centred around

the mean. However, it does reflect the very nature of retail payments systems,

which is that the majority of the retail transactions are small in value; occasionally,

bigger-value payments move the average payment value to the right of the centre of

the density.
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Figure 2: Density of Individual Payment Values—1, 000 Repeated Sampling
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(a) Median Volume: 204
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(b) 75th Percentile Volume: 5,393

This graph illustrates the distribution of probability densities at every level of individual payment val-
ues, based on 1, 000 compositions generated by repeated random sampling. The horizontal axis is the
individual payment value in dollars. The vertical axis is the probabilities. The simulation results in-
terestingly show that the probability distribution of payment values in ACSS is rather stable, and it
becomes increasingly so as the volume of transactions expands. In addition, these densities are found to
be invariably skewed to the left of the mean payment value, which reflects the nature of retail payments
systems.
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Figure 2: Density of Individual Payment Values—1, 000 Repeated Sampling
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(c) 90th Percentile Volume: 40,259

0 2000 4000 6000

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

Individual Payment Value ($)

P
ro

b
a

b
ili

ty

Mean Payment Value: $547.35
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This graph illustrates the distribution of probability densities at every level of individual payment val-
ues, based on 1, 000 compositions generated by repeated random sampling. The horizontal axis is the
individual payment value in dollars. The vertical axis is the probabilities. The simulation results in-
terestingly show that the probability distribution of payment values in ACSS is rather stable, and it
becomes increasingly so as the volume of transactions expands. In addition, these densities are found to
be invariably skewed to the left of the mean payment value, which reflects the nature of retail payments
systems.
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Figure 2: Density of Individual Payment Values—1, 000 Repeated Sampling
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(e) 99.99th Percentile Volume: 3,710,789
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This graph illustrates the distribution of probability densities at every level of individual payment val-
ues, based on 1, 000 compositions generated by repeated random sampling. The horizontal axis is the
individual payment value in dollars. The vertical axis is the probabilities. The simulation results in-
terestingly show that the probability distribution of payment values in ACSS is rather stable, and it
becomes increasingly so as the volume of transactions expands. In addition, these densities are found to
be invariably skewed to the left of the mean payment value, which reflects the nature of retail payments
systems.
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Various checks are also performed to examine how reasonable and reliable this

simulated data is. First, typically in a payments system, every participant’s out-

going payments are intertwined with their incoming receipts throughout the course

of a day; hence, any participant’s intraday maximum NDP should not exceed its

total value of payments sent, which could result from a highly unlikely scenario

where a financial institution sends out all its outgoing payments before receiving

anything back from its fellow system participants. In this paper, net debit position

is defined as, at any given point of time, the total value of payments sent by a

financial institution minus the total value of payments it has received. Figure 3 (as

well as Figure 7, presented in Appendix B) shows that for every 11 ACSS direct

clearers (excluding the Bank of Canada), the intraday maximum NDP is well below

the theoretical threshold throughout the sample, indicating that all the simulated

individual transactions are interwoven properly with each other over the course of

each day, as they should be in real operations.

Next, we take a closer look at every ACSS direct clearer’s intraday max NDP

during each hour throughout the day for every day in the data sample. Although

we do not have a presumption of what the hourly maximum NDP should look like

intraday, these 3-dimensional (3D) visualizations suggest that the simulation results

are reasonable and plausible in the general context of any payments system.

As shown in Figure 4, there are no observed abrupt swings from positive to

negative funds positions, or vice versa. Each day, every participant starts with zero

dollar in funds balances. At some point of time during the day, after many payment

exchanges, an ACSS participant usually enters into an either positive or negative

funds position, and typically this state persists throughout the remaining hours of

the day. This result reflects one of the defining features of the retail payments

system; i.e., on average payments are small in size compared with transactions in

large value payments system, for example. In order for a positive NDP at moment

ti (NDPti) to overturn quickly, immediately subsequent incoming payments at time

t(i + 1), t(i + 2), and t(i + 3) . . . need to be sufficiently large to offset the positive

NDP.

It is worth noting that this finding is independent of the structure imposed by

the input data of intraday payment timing distribution; the assumption of timing

patterns affects only the actual shapes of these NDP curves, e.g., how far up a

net positive funds position can go at a given time of day. By construction, three
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Figure 3: Simulated Intraday Maximum Net Debit Positions of ACSS Direct Clearers (Direct
Clearers: E and I)
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(a) Direct Clearer E
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(b) Direct Clearer I

The intraday maximum net debit position is expressed as a percentage of the daily total payment value
sent. The horizontal axis is 383 days across the sample. The vertical axis is percentage. The simulation
results show that simulated transactions are interwoven properly in time throughout the day.
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Figure 4: Simulated Intraday Maximum Net Debit Positions across All Sampled Days (Direct
Clearers: D and H)

(a) Direct Clearer D

(b) Direct Clearer H

The graph provides a 3-dimensional visualization of an ACSS direct clearer’s intraday maximum net
debit positions over the course of day and across all the days in the sample period. The vertical axis (z-
axis) is the intraday maximum net debit position (NDP) in million dollars. The horizontal axis (x-axis)
shows 1, 440 minutes of a day. The y-axis is marked with all the 383 days in the sample. The simulation
results show a trend of either steady increase or persistent decline in intraday maximum NDPs, which
clearly reflects the fact that in retail payments systems, the majority of transactions are small in value,
unlikely to trigger abrupt swings from positive to negative during the course of a day.
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variables are fixed in this method: (i) the start of each line, i.e., the initial funds

position at time 0 (NDPt0 = 0); (ii) the end of each line, the end-of-day funds

position (NDPEOD =
∑

(outEOD)−
∑

(inEOD), where out and in are, respectively,

the cumulative sum of all payments sent and received by an ACSS participant at the

end of each day); and (iii) a time window during which variations of the intraday

funds positions are allowed to happen. How these intraday net funds positions

vary (i.e., the total amount of ”wiggling” of the lines) is intrinsically controlled by

payment volume, which comes directly from actual data.

The 3D illustrations for Direct Clearer D and H are presented here in the main

text (the same results for the remaining nine ACSS direct clearers are included in

in Figure 8, Appendix C).

Lastly, Figure 5 illustrates the timing distribution of payment volume over the

course of day that is generated on more than 12 billion simulated ACSS intraday

transactions. For each 1-minute time interval of the 24 hours each day, we compute

the total number of transactions exchanged during that minute and then take the

average across all 383 days in the data sample. The graph shows a pattern that

is almost identical to the intraday timing distribution of the U.K. Faster Payments

System, which is used as an input for the simulation. This indicates that all the

steps taken in the algorithm to apply a structure of timing distribution in the process

of generating a time stamp for every individual payment are implemented properly.

This is somewhat to be expected; however, the result shows that the randomness

introduced in the process of generating the time stamps is not enough to cause

the simulated timing pattern to deviate significantly from the underlying shape.

The results also suggest that the proposed algorithm is highly flexible and able to

incorporate any payment timing pattern into simulation, as long as such data is

available.

5 Concluding Remarks

In the current era of information technology advancing at lightning speed, data

has proven to be more important than ever in businesses, academic research, and

activities in virtually every aspect of people’s lives. However, data is not always

available—for example, because proprietary information cannot be disclosed to third

parties or because records do not exist. Situations often arise where aggregated
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Figure 5: Intraday Timing Pattern—Simulated ACSS Transactions
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This graph illustrates the timing distribution of payment volume in Canada’s ACSS, based on simulated
intraday transactions during the period between March 02, 2020 and September 03, 2021. The timing
pattern presented here is almost identical to that of the U.K. Faster Payments system, which is used as
an input in the simulation. The horizontal axis is the time of day, with a resolution of 1 minute. The
vertical axis shows the average number of payments made during each minute duration on a typical day.

data is easy to find but more detailed information is unobtainable. This is because

detailed data frequently contains confidential information in relation to, for example,

customers’ identities, personal finances or registered trade secrets. The Canadian

ACSS, which began operations in 1984, is a good example. The most comprehensive

data currently available for this system is aggregate transaction value and volume

on a daily basis.

This paper proposes a simple yet unique and useful method to simulate detailed

data based on aggregate statistics. Based on integer composition in number theory,

the proposed approach breaks down the daily total transaction value in ACSS into

a set of intraday individual payments, the number of which is equal to the daily

total volume. The suggested algorithm is also able to assign a time stamp to each

individual payment according to a known intraday payment timing pattern to create

a wholesome payment profile for the system. The simulation results revealed that

the distribution of individual payment values is remarkably stable. Specifically, by

conducting 1, 000 repeated random sampling on compositions of the same pair of

total value and volume, the analysis demonstrated that as the transaction volume

22



grows larger, the probability of any one part of the composition taking a given

payment value x is almost fixed. Moreover, the study showed that the distribution

of payment values in a retail payments system like ACSS is invariably skewed to

the left of the mean, which is contrary to the common expectations that it might

be bell-shaped and centre around the mean. Overall, this analysis strongly suggests

that the proposed simulation method is a viable and powerful tool to disaggregate

data when the summary statistics are the only information at hand.
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Figure 6: Piecewise Linear Function

A Deriving the Piece-wise Quadratic CDF and

Its Inverse

Illustrated in Figure 6 is a linear function y = a + bx. x1, x2, y1 and y2 are the

known data points. This line segment represents any portion of the graph (Figure

1—the hourly timing distribution of payment volume of the U.K. Faster system),

between any two adjacent hours, e.g. between the 11th and 12th hour.

Point (xt, yt) represents one of the many missing elements in data that could

potentially provide the time for payments that are settled on a particular second

during any given hour range. However, we can construct these missing points using

linear interpolation. For instance, in this illustration, xt represents one of the 3, 600

seconds during the one-hour period between x1 and x2. Let us suppose the area

under the line segment, bounded by x1, xt, y1 and yt, is A.

Given y = a+ bx, we know that

a = y1 − bx1

and

b =
y2 − y1
x2 − x1

.

Therefore, the area A can be computed as follows:
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A =

∫ xt

x1

(
y1 − bx1 + bx

)
dx

=

{
bx2

2
+
(
y1 − bx1

)
x

}∣∣∣∣xt

x1

=
b

2
x2
t +

(
y1 − bx1

)
xt +

(
bx2

1

2
− x1y1

)
Solving for xt:

xt = x1 −
y1
b
±

√
y21 + 2bA

b
(1)

Equation 1 provides a one-to-one mapping between a defined area under a line

segment and the independent variable x. In this study, the area under the curve

of the timing distribution of payment volume, up to and including A (i.e., between

midnight and any given point of time) is the CDF of that time.
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B Simulated Intraday Maximum NDPs

Figure 7: Simulated Intraday Maximum Net Debit Positions of ACSS Direct Clearers
(Direct Clearers: A, B, C, D, F, G, H, J and K)
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(a) Direct Clearer A
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(b) Direct Clearer B
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(c) Direct Clearer C
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(d) Direct Clearer D

0
1

0
2

0
3

0
4

0

Date

%

20200302 20200501 20200630 20200829 20201028 20201227 20210225 20210426 20210625 20210824

(e) Direct Clearer F
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(f) Direct Clearer G
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(g) Direct Clearer H
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(h) Direct Clearer J
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(i) Direct Clearer K

The intraday maximum net debit position is expressed as a percentage of the daily total payment value
sent. The horizontal axis is 383 days across the sample. The vertical axis is percentage. The simulation
results show that simulated transactions are interwoven properly in time throughout the day.
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C Intraday Max NDPs across Days

Figure 8: Simulated Intraday Maximum Net Debit Positions across All Sampled Days
(Direct Clearers: A, B, C, E, F, G, I, J and K)

(a) Direct Clearer A (b) Direct Clearer B (c) Direct Clearer C

(d) Direct Clearer E (e) Direct Clearer F (f) Direct Clearer G

(g) Direct Clearer I (h) Direct Clearer J (i) Direct Clearer K

The graph provides a 3-dimensional visulization of an ACSS dicrect clearer’s intraday maximum net
debit positions over the course of day and across all the days in the sample period. The vertical axis
(z-axis) is the intraday maximum NDP in million dollars. The horizontal axis (x-axis) shows 1, 440
minutes of a day. The y-axis are marked with all the 383 days in the sample. The simulation results
show a trend of either steady increase or persistent decline in intraday maximum NDPs, which very well
reflects the fact that in retail payments systems, the majority od transactions are small in value, unlikely
to trigger abrupt swings from positive to negative during the course of day.
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