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Abstract 
High-value payment systems (HVPSs) are typically liquidity-intensive because the payment 
requests are indivisible and settled on a gross basis. Finding the right order in which payments 
should be processed to maximize the liquidity efficiency of these systems is an NP-hard 
combinatorial optimization problem, which quantum algorithms may be able to tackle at 
meaningful scales. We develop an algorithm and run it on a hybrid quantum annealing solver 
to find an ordering of payments that reduces the amount of system liquidity necessary without 
substantially increasing payment delays. Despite the limitations in size and speed of today’s 
quantum computers, our algorithm provides quantifiable efficiency improvements when 
applied to the Canadian HVPS using a 30-day sample of transaction data. By reordering each 
batch of 70 payments as they enter the queue, we achieve an average of Can$240 million in 
daily liquidity savings, with a settlement delay of approximately 90 seconds. For a few days in 
the sample, the liquidity savings exceed Can$1 billion. This algorithm could be incorporated as 
a centralized preprocessor into existing HVPSs without entailing a fundamental change to their 
risk management models. 

Topics: Digital currencies and fintech; Financial institutions; Financial services; Financial system 
regulation and policies; Payment clearing and settlement systems  
JEL codes: C61, C63, D83, E42, E58 

Résumé 
Les systèmes de paiement de grande valeur (SPGV) sont généralement exigeants en liquidités, 
car les demandes de paiement sont indivisibles et réglées sur une base brute. Trouver l’ordre 
dans lequel les paiements devraient être traités pour maximiser l’efficience des liquidités de 
ces systèmes est un problème d’optimisation combinatoire NP-difficile que des algorithmes 
quantiques pourraient être en mesure de résoudre à une échelle significative. Nous élaborons 
un algorithme et l’exécutons sur un calculateur quantique à recuit simulé par l’intermédiaire 
d’un solveur hybride. L’objectif est de trouver la séquence des paiements en attente de 
règlement qui permet de réduire le montant de liquidités nécessaire dans le système sans faire 
augmenter cette attente de façon considérable. Même si les ordinateurs quantiques 
d’aujourd’hui sont limités par leur taille et leur vitesse, notre algorithme apporte des 
améliorations quantifiables de l’efficience lorsqu’il est appliqué au SPGV du Canada sur un 
échantillon de 30 jours de données de transactions. En réorganisant chaque lot de 
70 paiements une fois qu’ils sont placés dans la file d’attente de règlement, nous réalisons des 
économies quotidiennes de liquidités de 240 millions de dollars canadiens en moyenne, et ce, 
en ne faisant augmenter que de 90 secondes environ le temps de règlement. Certains jours, 
ces économies dépassent 1 milliard de dollars canadiens. Cet algorithme pourrait être intégré 
aux SPGV existants pour être utilisé à des fins de prétraitement sans entraîner de changement 
fondamental à leurs modèles de gestion des risques. 

Sujets : Institutions financières; Monnaies numériques et technologies financières; 
Réglementation et politiques relatives au système financier; Services financiers; Systèmes de 
compensation et de règlement des paiements 
Codes JEL : C61, C63, D83, E42, E58 



1 Introduction

High-value payments systems (HVPS), used to settle transactions between large financial institu-
tions, are part of the core financial infrastructure of every country. Central banks that operate or
oversee these systems are mandated to ensure their safety and efficiency. Most HVPSs around the
world—including Canada’s Lynx, the US’s Fedwire, and the Eurosystem’s TARGET2—are real-
time gross settlement (RTGS) systems that settle each payment request on an individual basis,
i.e., without netting the offsetting positions of participants. These systems are liquidity-intensive:
participants are required to have liquidity before payments are processed.1 Liquidity has an op-
portunity cost, incentivizing participants to wait for incoming payments before making their own.
This behaviour reduces the efficiency of a system and can cause delays in payments and even
gridlock (Bech and Garratt 2003).

Given the systemic importance of HVPSs, improving their efficiency is an important area of
research for central banks and academics alike (Martin and McAndrews 2008b; Rivadeneyra and
Zhang 2020; Alexandrova-Kabadjova et al. 2022). Improving the liquidity efficiency of an HVPS
can be done in two ways. The first is to change the incentives of the participants for the timing
of payment submissions, so that payments are more coordinated. The second, once payments have
been submitted to the system, is to change the order in which payments will be settled into a
sequence with lower liquidity demand. Inherently, reordering payments requires some delay in
payments.

In this paper we take the second approach. We propose a novel algorithm that can reduce
the liquidity requirements in HVPSs without significantly increasing the delay of payments. Our
algorithm searches over the space of orderings of payment requests. Reordering payments leads to
an NP-hard combinatorial optimization problem that grows to an enormous size with just a few
outstanding payments (O(n!)).2 Quantum techniques, though not expected to be able to solve
such problems in polynomial time, are nonetheless well suited to tackle this problem by providing
speedup via heuristics, leading to near-optimal solutions. Following recent technical advances,
quantum computing, especially when combined with classical computing in a hybrid algorithm, is
reaching a stage where it can provide superior solutions to some of these problems compared with
classical-only approaches (National Academies of Sciences 2019; Egger et al. 2020; Hull et al. 2020).

Economically, the proposed algorithm can be interpreted as a centralized payments pre-processor.
In this setup, participants submit their payment requests to this algorithm before submitting them
to the actual system. Subsequently, after the optimization using quantum computing, our algo-
rithm returns to the participants a suggested ordering of payments that reduces the total liquidity
required to settle those payments relative to settling them in the original order in which they were
submitted. While participants could effectively veto the proposal by not submitting their payments
in the suggested order, in practice, if the suggested re-orderings almost always reduce aggregate
liquidity demands, participants are unlikely to do so strategically.3 The proposed setup as pre-
processing algorithm provides a simple way to incorporate such algorithms into existing payment
systems.

1To get a sense of their importance, Canada’s HVPS processes payment values equivalent to annual GDP every
week. In 2021, Canadian financial institutions participating in HVPS allocated Can$15-20 billion in daily liquidity
to process around forty thousand payments each day.

2Our problem has factorial time complexity similar to that of the well-known traveling salesman problem, which
is an NP-hard combinatorial optimization problem (Jünger et al. 1995).

3Participants chose their daily liquidity allocation using risk-management models attempting to cover a range of
scenarios of liquidity needs. In other words, participants’ choices are driven by expected daily liquidity needs (Bank
of England 2021). On an intraday basis, liquidity is rarely managed by choosing specific payments to delay. Likewise,
we think it is unlikely that participants would evaluate the algorithm proposal batch by batch.
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We formulate the reordering of payments in an HVPS as a mixed binary optimization (MBO)
and translate it into a quadratic unconstrained binary optimization (QUBO) format for processing
on a generic quantum device.4 Due to the size of the problem (pertaining to the use of realis-
tic dataset) compared with the current quantum annealer topology (number and connectivity of
qubits), the final problem is posed as a constrained quadratic model (CQM) and optimization per-
formed on D-Wave Systems’ infrastructure using their hybrid quantum solver for CQMs (D-Wave
Systems 2021). The algorithm is run on a sample of 30 days of non-urgent transactions from the
Canadian HVPS.5

Our algorithm significantly improved the payments system’s efficiency by reducing the required
liquidity to process payments with minimal added settlement delay. The input for the optimizer is
a given number of queued payments (a “batch size”). While the set of potential re-orderings grows
with the batch size—potentially offering greater improvements in liquidity efficiency—a larger batch
size also requires a longer wait to accumulate the payments into the batch and a longer processing
time for the algorithm. Among a variety of queue sizes, a batch size of 70 payments strikes a balance
between optimizing liquidity savings and minimizing introduced delay in settlements. With that
batch size, we find liquidity savings in 26% of them, providing an average daily savings of C$240
million. On average, the added settlement delay is 90 seconds, mainly due to the time required to
accumulate the batch of 70 payments (the time required to run the algorithm in this case is only
5 seconds). On half of the days in the sample, savings exceed C$107 million, and on three days,
C$997 million. We also observe that the total liquidity saved for each participant is proportional
to the participants’ total incoming and outgoing transaction values.

The batch size is constrained by the current size and speed limitations of D-Wave’s CQM hybrid
solver used in this analysis.6 To test capabilities of different batch sizes, we run the algorithm on two
typical days in our sample using batches of 140 payments. We achieve significantly higher savings
on those days (C$326 and C$94 million above the savings of the 70-payment batch size) with an
average delay of 3 minutes per batch (to accumulate the batch of 140 payments). This suggests
that liquidity savings could increase substantially as the capabilities of quantum computers scale,
and that the more relevant limitation for this algorithm could be the time required to accumulate
larger batches of payments.7

We proceed as follows. In Section 2, we discuss the related literature. We discuss the method-
ology in Section 3 and present an overview of RTGS payment systems and the schematic of the
proposed algorithm as a centralized payment preprocessor. In the same section, we present the
payments queue optimization algorithm and discuss the quantum annealing based hybrid solver
used to solve this optimization problem. In Section 4 we provide a brief overview of the sample
of the data from Canada’s HVPS used to test the quantum algorithm. The results and discus-
sion follow this in Section 5, where we investigate the performance of our algorithm. Finally, in
Section 6 we conclude by discussing the opportunities and challenges of the proposed algorithm
and the scope for future research. Appendix A provides further details of the formulation of the
objective function.

4MBO problems arise in cases with discrete and continuous variables or in the cases with inequality constraints;
in our case, we have inequality constraints (see Equation 17). Also, transformation to QUBO is necessary due to the
binary nature of quantum bits (or qubit) states and their physical coupling. See Lucas (2014); Glover et al. (2019);
Hull et al. (2020) for further details on QUBO formulation. Note the qubit is the fundamental unit of quantum
computing—the quantum version of the classic binary bit.

5Note, we use randomly chosen days and settlement data from LVTS—Canada’s HVPS before Lynx.
6The CQM hybrid solver can handle a model with 100,000 constraints and 500,000 binary and integer variables (D-

Wave Systems 2021).
7In our case, the time required to accumulate payments grows linearly with batch size (see Figure 3).
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2 Literature Review

The problem of liquidity intensity of RTGS systems is well-known, and alternatives have been
explored, in particular liquidity-saving mechanisms (LSM) (Martin and McAndrews 2008b; Diehl
and Schollmeyer 2009; Davey and Gray 2014; Atalay et al. 2010). The purpose of LSMs is to
reduce the liquidity requirements of an HVPS without the credit risks associated with delay net
settlement models8. LSMs temporarily accumulate payment requests in a queue until potential
offsetting positions are found and settlement occurs. Theoretically, the efficiency improvements
of LSMs depend on the liquidity regime (Martin and McAndrews 2008a,b, Jurgilas and Martin
2013), and empirically, new evidence is emerging that questions their effectiveness for improving
the efficiency of the HVPS (Alexandrova-Kabadjova et al. 2022).

In practice, LSMs are designed using heuristics and evaluated using simulation approaches;
therefore, they do not search the entire solution space to find the optimal solution (Galbiati and
Soramaki 2010; Rivadeneyra and Zhang 2020, 2022). Compared to the LSM literature, our approach
is more direct and transparent: our algorithm attempts to evaluate the entire space of re-orderings
looking for liquidity savings.

A newer strand of literature explores an alternative approach, by taking seriously the incen-
tives of the participants arising from the costs they face for liquidity provision and the benefits
of settling their payments. Garratt (2019) proposed a mechanism using the Shapley value cost
allocation method. In their mechanism, to ensure that the welfare-maximizing netting proposals
are always accepted, participants receive take-it-or-leave-it offers to contribute the needed liquidity.
The challenges of this approach are that it requires knowing the valuation of the individual benefits
of settling each payment, and calculating Shapley values becomes computationally intensive for
large sets of payments.

Quantum computing technology is evolving rapidly, and there is growing interest in its poten-
tial for solving certain classes of problems, such as optimization, faster than classical computers
(National Academies of Sciences 2019). Using the quantum properties of superposition, entan-
glement, and tunneling, quantum computers can search large input parameter spaces faster than
any classical computer could even theoretically achieve (Steane 1998; Hidary 2019). Researchers
have begun exploring using quantum computing to solve various problems arising in economics—
including queuing problems that arise in financial markets (Egger et al. 2020; Hull et al. 2020).
Closely related to our application, Braine et al. (2021) extend an algorithm for an MBO problem
applied to transaction settlement. They optimize small batches of securities trading transactions
using gate-based quantum computing. However, their optimization focuses on determining the
number of transactions that can be settled while allowing for netting, when the latter does not
apply to RTGS systems.

3 Methodology

In this section, we first provide an overview of a typical HVPS to understand the incentives of
participants and argue how a pre-processing algorithm could be incorporated into the settlement
process. Next, the rationale for choice of computational resources is described. We then show how
such an optimization problem can be generically solved using quantum computing resources, alone
or in conjunction with a hybrid solver incorporating classical resources too. We present the most

8An alternative type of payment system is a deferred net settlement (DNS). In these systems, payments are
submitted by participants and accepted by the system but not settled in that moment. Instead, payment exposures
are accumulated and settled at given intervals after calculating the net positions of the participants, therefore creating
credit risk. See Norman 2010 for an overview of LSMs.
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general QUBO form of the objective function, which could be used by any quantum or classical
solver, as well as the input format required for the specific CQM hybrid annealing solver we opted
to use due to current physical limitations of quantum computing hardware. Lastly, we describe
the outputs of the CQM solver, and how these outputs are converted to a final solution for the
pre-processing of the payments in a given batch.

3.1 High-Value Payment Systems

In an HVPS, the participating institutions process the payment requests received from their clients.
To do so, they apportion collateral to the central bank in exchange for the liquidity necessary to
settle those payment requests. The system settles the payments in the order they arrive to the
system if they satisfy risk controls. The efficiency of these systems is determined by the amount of
liquidity that the participants choose to allocate to the system and by the timing of their payment
requests. Participants can delay submitting their payments to await for incoming payments to
fund their own payments, reducing the need for their initial liquidity allocation. Such incentives
create a trade-off between liquidity and delay (Bech and Garratt 2003; Castro et al. 2020). Our
algorithm seeks to find better solutions to the liquidity management problem by optimizing the
order of payments without significantly increasing the settlement delay.

Figure 1 is a stylized schematic of a wholesale payment system. The figure also shows a generic
quantum optimizer as a central pre-processing mechanism between participants and the payment
system. A key challenge for new algorithms seeking to improve the efficiency of existing payments
systems is how to incorporate them without incurring a fundamental change to the system. As a
pre-processor, quantum optimization algorithms could be used to propose orderings that tangibly
benefit the participants, incentivizing them to submit the payments to the system in the order
suggested by the algorithm.

Figure 1: Schematic of the quantum optimizer as a pre-processor to the payment system. There are N participating
banks; they receive multiple payment requests from their clients throughout the day. Banks submit payments to the
central queue in the order {P1, P2, . . . , Pn}. The quantum optimizer then processes those payments and proposes a
new order {Q1, Q2, . . . , Qn}. If each bank accepts the proposal, those payments will be submitted to the HVPS. Each
participant’s initial and intraday liquidity positions (updated after collateral apportionment at the start of the day
or after payment settlement throughout the day) are provided to the quantum optimizer by the payment system.
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Therefore, in our approach, each participant submits payment requests to a centralized queue
denoted in the ordered set {P1, P2, . . . , Pn}. Each element in this set contains information about
the value of the payment, the two participants involved (payer and payee), and the time the
request was submitted. Once there are enough payments in the queue (a batch), the quantum
optimizer processes those payments and provides a proposal for an optimized queue in the order
{Q1, Q2, . . . , Qn} that minimizes liquidity requirements and contains the new submission timing. If
all banks accept the proposal, those payments are submitted to the system in the new order proposed
by the quantum optimizer. As payments are settled throughout the day, each participant’s liquidity
position (balance) changes; this information—necessary for the optimization process—is fed to the
quantum optimizer by the payment system.

Our approach is to have a fixed size n of the batch of payments that will be optimized by the
quantum optimizer. Once the number of payments received reaches that size, the optimization is
triggered. Since the flow of payment requests varies though the day, the optimization occurs with
varied frequency (see Figure 3). To evaluate the algorithm we report delay statistics that consider
the time needed to collect enough payments (wait time) for the batch and the time required by the
combined compute resources—a hybrid of quantum and classical—to evaluate the optimized queue
(processing time). Given the wait time, we choose to test the algorithm on non-urgent payments.9

3.2 Quantum Formulation of Queue Optimization Algorithm

The goal of the optimization is to minimize the aggregate liquidity needed in the system to settle
a given set of payments, ordered with index i = 1 . . . n. To measure the liquidity used in the
system, we start by defining N(i) as a participant’s net position before a payment i is settled.
A participant’s net position is their liquidity balance accounting for all incoming and outgoing
payments up to that time in the day.

Next, we define mNDP as the maximum net debit position experienced by a participant at any
time thus far in the day. If a participant begins the day with N = $0, then the end-of-day mNDP
after all payments have settled measures the minimum liquidity a participant would have required
to process its payments without incurring a negative position. We can therefore think of mNDP as
equivalent to a participant’s minimum liquidity requirements. Reducing the sum of mNDP across
all participants, holding payment values and settlement delay fixed, represents an improvement in
the liquidity efficiency of the system. Further, let b represent a participant’s liquidity allocation.

The quantum optimizer pre-processor rearranges the queue of payment instructions with an
alternative index t = 1 . . . n that meets the goal of minimizing total liquidity needs, subject to the
constraints that no participant gets into a negative liquidity position at any point in time and that
no payment remains in the queue.

We can construct a Hamiltonian in QUBO format, which aligns the minimum energy of a
quantum annealing system to the optimal queue order. While some problems have a mapping
already known in the literature, for example Lucas 2014, our problem did not. Thus we derived a
formulation in Appendix A for a QUBO which is the most general form of a problem which can be

9Our approach with a fixed batch size is potentially not suitable for urgent payments, because it requires some
wait time until a batch of payments of a given size has accumulated. This problem can be alleviated to a certain
extent using flexible batch sizes. In the Canadian HVPS, however, urgent payments typically represent only about
1.5% of the total volume of payments, and they are typically very large in value and usually come at specific times
of the day.
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easily run on any type of current quantum computer or even classical solvers10

H =
∑
α

bα + λ1

∑
α,t

bα +Nα(0) +mNDPα +
∑
i

∑
τ≤t

f(α, i)xi,τ − sα(t)

2

+ λ2

∑
i

(
1−

∑
t

xi,t

)2

+ λ2

∑
t

(
1−

∑
i

xi,t

)2

, (1)

where:
bα is the participant α’s liquidity allocation. When minimized, it is the

amount of additional liquidity that α would need to have to permit settle-
ment of the payments in that batch (i.e., to avoid gridlock). Equivalently,
it is the increase of mNDPα after this batch is settled

Nα(0) is participant α’s net position immediately before this batch is settled
mNDPα is participant α’s maximum net debit position incurred during previous

batches earlier in the day
xi,t is a binary decision variable that indicates whether payment i is settled

(xi,t = 1) or not (xi,t = 0) at position t in the final queue
sα(t) is a non-negative real number acting as a slack variable that permits the

enforcement of an inequality
f(α, i) is a function that returns v (the value or amount of payment i) if α is the

payee; −v if α is the payer; and 0 otherwise
λ1, λ2 are Lagrange multipliers that enforce constraints as quadratic penalty

terms.
Minimizing H over the set of variables {bα, xi,t, sα(t)} ∀α, i, t finds the optimal ordering {xi,t} that
requires the least increase to the aggregate mNDP . Note that the optimal ordering may be many
times degenerate.

3.3 Quantum Annealing and Hybrid Solvers

To solve an optimization problem, several tested commercial and open-source optimization software
packages represent the state of the art. They implement pre-solvers and heuristics to simplify
the problem and find a solution (SCIP, CPLEX, and Gurobi are some of the most popular; see
Bestuzheva et al. 2021; Vigerske and Gleixner 2018; Anand et al. 2017). In addition, they greatly
simplify many technical issues in solving these optimizations, especially the non-linear restrictions,
and allow for greater focus on their modelling. However, as stated earlier, for problems that scale
with the number of variables as ours does, classical computing resources begin to fall short; hence
the desire to explore quantum methods.

A variety of different technologies are being explored as the best means to build quantum
hardware, but they are primarily classified into universal gate-based quantum computers, which
can process logic and run general algorithms, and quantum annealers, which are used exclusively
to solve optimization problems. While both technologies can theoretically solve the optimization
problems explored here, currently available quantum annealers can solve much larger optimization

10We use H to represent the objective to be minimized over, as in quantum annealing it is the energy being
minimized, analogous to applying the Hamiltonian operator to the state space. Note that this Hamiltonian is
slightly different from the one encountered in economic applications of optimal control theory, which often contains a
discount factor and hence needs transformation, and the new operator is commonly referred to as the current-value
Hamiltonian (Chiang 1992; Cass and Shell 2014).
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problems than gate-based quantum computers can, and their hybrid solver counterparts larger
problems still (D-Wave Systems 2021).

D-Wave Systems’ latest quantum annealer (also known as a quantum processing unit, or QPU),
accessible via the cloud, has more than 5,000 qubits with 15-way qubit-to-qubit connectivity (the
“pegasus” topology). In addition to their quantum annealer, D-Wave Systems offers access to 3
hybrid solvers which make use of both classical and quantum compute resources: the constrained
quadratic model (CQM), binary quadratic model (BQM), and discrete quadratic model (DQM).
Each of these solvers allows for different levels of flexibility in the construction of the models,
numbers and types of variables, and numbers of constraints.

In the case of the variable matrix mapping i to t, the number of variables to be considered
here grows as the square of the batch size, quickly overwhelming the size of the QPU. Thus, for
our problem, as the number of payments to be reordered increases, even 5,000 qubits with 15-way
connectivity (which equates to around 180 fully connected qubits or variables) are not enough to
embed the problem in order to perform the anneal. Since the CQM hybrid solver can handle more
constraints (100,000) and binary and integer variables (500,000) than any other available quantum
hardware, we opted to use it.11

The CQM solver takes objectives and constraints directly as inputs; thus, the problem was
submitted specifically as:

Objective: min
∑
α

bα (2)

Subject to: bα +Nα(0) +mNDPα +
∑
i

∑
τ≤t

f(α, i)xi,τ ≥ 0, ∀α (3)

∑
i

xi,t = λ,∀t (4)∑
t

xi,t = λ,∀i (5)

negating the need for slack variables and one Lagrange parameter on the user’s end. The explanation
of variables from Section 3.2 otherwise remains the same, including that xi,t are binary decision
variables.

The economic intuition of the problem is neatly summarized by the main constraint of the
problem (Equation 3). There, an increase in the first term indicates a deterioration in the solution
to the problem by requiring additional liquidity in the system above the mNDP observed up to
the processing of that batch. The last term in that constraint is the value of settled payments,
which is the product of the variable that indicates if a payment has settled or not (xi,t) and the
function of the value of the payment (f). Although this term changes discretely, it is useful to
think in marginal terms. A marginal increase in this term indicates that more payment value is
settled, which, if the constraint binds, can only be satisfied by increase in liquidity, worsening the
solution. Therefore, by searching over different sets {xi,t}, the optimizer explores the trade-off
between settling more payment value and increasing the liquidity necessary to do so.

Note that, using the CQM solver, each batch is processed as if it were happening in real time, and
only analyzed to yield aggregate results afterwards. That is, we do not look ahead to use knowledge

11The main downside to using CQM hybrid solvers is that the details of their inner workings are not known. On
D-Wave Systems’ QPU, parameters such as annealing time, number of reads, and annealing path can be controlled.
For the hybrid solvers, these parameters are tuned automatically, and the only input parameter (optional) is a time
limit for the calculation. Aside from the returned solutions, only the amount of QPU time used per calculation can
be retrieved.
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of what would come later in the day to organize each earlier batch. Thus, our method, while true
to what could be achieved in real-world scenarios, optimizing batch by batch, doesn’t always result
in achieving the minimum liquidity requirements over the course of a full day. To achieve these
would require, among other things, predicting which payments may appear in subsequent batches.
As we will show, on average, institutions are nonetheless still positively affected, proportional to
the value of the transactions they conduct.

3.4 From CQM Solver Results to the Optimal Queue Order

Finding a solution amounts to finding the matrix that represents the reordering of the payments
from i to t, i.e., {xi,t}. For example, if there are seven payments in a queue, the CQM solver might
return:

{xi,t} =



0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0


(6)

which would mean that the fourth payment in the original queue should be processed first, then
the payment at the top of the queue, and so on. To find these solutions, our algorithm takes the
payments in the batch, generates the objective and constraints imposed by each payment in that
batch, and runs several times, returning a reordering solution {xi,t} each time.

The reason for multiple runs is the nature of quantum computation. Each run of the annealer
potentially ends in a different state based on the length of the anneal (analogous to “cooling time” in
a physical anneal) and the underlying probability distribution of the states (the lower the energy of
the final state, the higher its probability of occurring)12. In practice, time constraints mean that we
may reach the near-optimal, but not best, solution in a given run. However, more solutions provide
more confidence based on the statistics of the solution set that one of the optimal reorderings was
found (there may be multiple reorderings which are equally good).

Our first step in processing the set of returned reordering solutions is to check if any violated
the constraints in the Hamiltonian, i.e., if it is an infeasible solution.13 This information is provided
by the CQM solver. If so, those infeasible solutions are discarded. The remaining feasible solutions
are then searched classically for the ones that provided the most savings, yielding our final result
and the payments processing order for that batch.

The optimality of the quantum solution is challenging to quantify for larger problems, since
optimal solutions become too computationally expensive to verify (the reason we turn to quantum
computation in the first place). However, an approximate measure of optimality can be inferred
from the number of feasible candidate solutions returned from the CQM solver. The CQM solver’s

12The problem is run on the quantum annealers by first starting from the state where all qubits are in a superposition
of the basis states |0⟩ and |1⟩. This corresponds to the lowest energy state of the initial “tunneling” or “mixing”
Hamiltonian. This initial Hamiltonian is then evolved to a Hamiltonian encoding the problem that is being solved
(in this case given by Equation 1, enacted through coupling parameters and biases on the qubits. If this change is
slow enough, the adiabatic theorem guarantees that the system will end up in the lowest energy state of the final
Hamiltonian, which corresponds to an optimal solution to the problem, the number of which corresponds to the
degeneracy of the ground state.

13For instance, if there are more than one non-zero elements in each row or column of the output matrix in Equa-
tion 6 then that is an infeasible solution.
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default run time for batches of 70 payments, for example, provides about 50-70 solutions. However,
as the problem gets larger with queue size, fewer feasible solutions come back from CQM. This
indicates that the quality of the solutions goes down. Thus, if the CQM solver returns a histogram
with many (few) feasible results, it should correlate with a better (worse) solution. Indeed, we
observe this correlation (see Figure 5).

4 Data

To test the performance of the proposed quantum algorithm, we randomly sample 30 days
from Canada’s LVTS settlement data between Jan 2015 to Dec 2017. From those 30 days, we use
only non-urgent payment requests made between 8 am and 6 pm.14 In our chosen sample, after
excluding non-urgent payments, we have approximately 23,000 transactions per business day. On
some busy days, however, the LVTS processed a higher volume of transactions.15 Therefore, to
test the benefits of a quantum optimizer on such days, we ensure that ten high-volume days are
included in our 30-day sample.16

In our sample, the frequency at which payment requests are submitted varies with the time of
day, as shown in Figure 2 (left). We see a much higher volume of payments settled between 8 to 9
am. The number of payment requests remains steady from about 9 am until about 4 pm, before
they taper down towards the end of the day. On the other hand, the payment amount submitted
to the system varies almost uniformly throughout the day. However, the share of the number of
payments with high value is slightly higher towards the end of the day in our sample, as shown
in Figure 2 (right).

Figure 2: (Left) the number of payments and (right) payment amount submitted to the system over time for each
day in our sample.

14In the LVTS, non-urgent payment requests are submitted to Tranche 2, and urgent payment requests are sub-
mitted to Tranche 1. The urgent payments could have a high cost of delay; therefore, we exclude them from the
sample. The payment requests submitted after 6 pm and before 8 am are special transactions; therefore, they are
also excluded from the chosen sample (see Arjani and McVanel 2006).

15On average, the LVTS processes approximately 37,000 transactions per business day. However, on some busy
days, such as the end of the month, quarter, or the day after a national holiday, the LVTS processes about 45,000 to
50,000 transactions.

16Before randomly sampling 30 days, we exclude a few days from our sample on which volume is minimal, for
instance, on Canadian provincial or US national holidays.
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5 Results and Discussion

This section presents the results of various simulation exercises performed on the 30 days sam-
pled from Canada’s LVTS settlement data using the D-Wave system’s CQM hybrid solver. First, we
present the results concerning the computational time to accumulate and solve queue optimization
problems for different batch sizes. Next, we examine the solution quality of the quantum optimizer.
This is followed by the performance of the quantum algorithm on the entire sample. Finally, we
investigate the performance of the quantum algorithm for a chosen day in our sample.

5.1 Computation Time

The reordering of a queue using the quantum optimizer consists of the following steps:

1. accumulating the batch of payments in the order they arrive

2. building the CQM object formulated in Section 3.3

3. sending the object to D-Wave Systems’ hybrid CQM solver to perform optimization

4. post-processing the solver’s output to extract the solution.

For step 1, the wait time to collect a batch of payments grows linearly with the batch size (Figure 3).
However, for steps 2 and 3, the processing time and memory required by the CQM object grow
cubically with batch size. Figure 4 shows the time to compile and solve the CQM object versus
queue size ranging between 20 and 700 payments. The cubic growth is due to the scaling of the
number of biases, which grows like O(n3) in Equation 1. Finally, in step 4 the CQM solver’s output
is processed to get the best solution, i.e., the order in which to submit the payments.

Figure 3: Average waiting time to fill a queue for a given queue size. The orange star highlights the queue size of
70 payments.

For real-world applications of such algorithms, solving the quantum reordering should not take
longer than collecting the batch of transactions in order to avoid added delays. For a queue
size ranging between 20 and 700 payments, the average wait time ranges from 1 to 15 minutes
(Figure 3). However, this wait time varies with the time of day because the frequency at which
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Figure 4: Time needed to compile the CQM object (blue) and then find the solution using D-Wave Systems’ hybrid
CQM solver (red), along with a best fit. Note that the same day’s payments are used to compute the time, but
truncated to the desired queue size.

payment requests are submitted changes throughout the day (Figure 2, left). For a batch of 70
payments, the average wait time is about 90 seconds, and average compiling and processing time
is 5 seconds each. The cubic growth in time shown in Figure 4 limits the maximum queue size
to around 140 transactions, which takes on average about 115 seconds to compile and solve the
problem. However, there is room for potential improvement by calculating the CQM on more
powerful computers with multiprocessing and reducing network latency by calculating the problem
on servers physically closer to the solvers. This could be explored in the future.

5.1.1 Classical Comparison

To compare our optimization with a classical solver, we formulate our algorithm to run on
SCIP, a non-commercial solver for mixed-integer nonlinear programming (Bestuzheva et al. 2021;
Vigerske and Gleixner 2018). It utilizes pre-solving and heuristics to divide the problem into
subproblems and tighten domain variables to solve recursively, similar to CPLEX (Anand et al.
2017). Unfortunately, depending on the set of transactions submitted, the structure of the network
graph, and the mNDP’s lower bound, it generally takes more than 2 hours to solve and occasionally
fails after more than 24 hours for a batch size of 70, run on a R5.4xlarge AWS instance (16 vCPUs
at 3.1GHz, 128GB RAM). This suggests that our problem is better suited to being run on DWave’s
hybrid quantum and classical solver.

5.2 Solution Quality

Using a representative set of 700 payments, Figure 5 shows the aggregate mNDP versus batch
size for single queues containing the first n payments, with n ranging from 70 to 700, (black dots).
The comparison to a FIFO queue arrangement is also shown (blue line), as well as the number
of feasible solutions returned by the CQM solver (red bars). Up to and including a batch size of
300, the solution from the CQM solver is better than FIFO; however, the results become worse
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than FIFO as batch size continues to increase. This decline in quality of results corresponds
to a drastic decrease in the number of feasible results returned. For batch sizes above 250, the
default time limit parameter for the calculation (chosen algorithmically by the CQM solver based
on multiple properties of the CQM input) was not enough to obtain any feasible results and had
to be overwritten.

The data point corresponding to a batch size of 700 used 3 hours of hybrid quantum computation
time—set manually—to achieve a solution that is superior to FIFO. These results suggest that we
have found the maximum problem size (n ≲ 200) that current hybrid classical-quantum annealing
technology can solve in a reasonable amount of time. However, it also implies that as the technology
continues to develop and scale, future hybrid solvers or quantum annealers with more entangled
qubits, which can search larger state spaces, will be able to handle larger queues.

Figure 5: The aggregate maximum net debit position (mNDP; left) and number of feasible solutions (right) with
respect to batch size. The mNDP of FIFO is included for reference (blue line). Note that the hybrid CQM solver
computation time limit for batches of size 300, 400 and 500 was set to 5, 11 and 26 minutes, respectively (2 times
the CQM default setting). For the batch size of 700, a time limit of 3 hours was used (6 times the default).

5.3 Performance of Quantum Algorithm on the Entire Sample

As mentioned earlier, we optimize the settlement order by dividing each day into batches and
solving each batch on the CQM solver. These batches are solved using information (each partici-
pant’s mNDP and net position) from the previous batch. The summary of the results for the entire
sample is presented in Table 1 and 2 for a batch size of n = 70. Note that these tables represent
two different scenarios. For Table 1, we run a horse race between the FIFO and CQM. They both
start with the same initial conditions (for instance, the same mNDP at 8 am). Consequently, every
batch throughout the day is the same for both FIFO and CQM. At the end of the day (6 pm), we
report the results (mNDP). However, for Table 2, we run the batch-by-batch horse race between
FIFO and CQM. In both FIFO and CQM, we start with the same initial conditions for every batch,
check which gives a better result, and report those results.

As summarized in Table 1, the quantum solver can provide significant end-of-day liquidity
savings—averaged at $239.9M with a median of 128.8M across 30 days and following an exponential
distribution. The most significant savings is $1.26B on 2016-07-15. However, out of the 9,717
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Table 1: Summary statistics of the sample data showing the total value of payments settled in Tranche 2 between 8
am and 6 pm. The days are sorted in descending order of total number of batches, where each batch contains n = 70
payments. A batch is considered optimizable if settlement by the original order in which they came, (i.e., FIFO),
increases the aggregate mNDP. The improved batches column shows the number in which the quantum optimizer
using the CQM solver was able to reduce the aggregate mNDP. The last column shows the total liquidity saved by
the end of the day using the CQM solver.

Date
Value Settled

($Bn)
Total

Batches
Improved
Batches

End-of-Day
Savings ($Mn)

2017-06-30 158.00 492 89 70.76

2017-12-22 116.70 392 80 160.92

2017-06-01 136.88 390 70 -21.27

2015-03-31 163.12 387 102 30.44

2017-05-31 142.81 387 64 40.17

2016-01-29 150.80 386 88 997.39

2017-12-01 123.99 378 77 212.67

2016-07-15 138.24 371 78 1,264.70

2016-06-01 140.73 369 92 65.04

2015-01-30 139.19 360 55 406.47

2016-12-30 126.59 346 97 1,104.92

2017-06-15 130.75 336 87 57.54

2017-11-15 108.92 335 95 56.13

2015-05-15 128.94 317 97 24.32

2017-02-21 120.83 311 86 206.77

2015-04-02 111.10 306 91 52.29

2015-04-15 133.56 300 85 40.38

2015-12-16 153.42 300 85 14.40

2015-10-26 123.29 296 76 299.37

2017-11-28 91.92 290 83 371.20

2017-09-20 167.21 284 51 33.35

2017-11-16 107.90 282 62 56.09

2017-09-26 101.61 276 72 213.15

2017-10-12 92.62 275 84 97.37

2016-01-08 103.40 271 65 170.64

2015-04-20 117.34 265 73 241.88

2015-03-26 111.17 262 87 167.41

2015-03-23 112.44 257 102 60.53

2015-03-04 117.99 256 95 160.16

2015-02-23 101.36 240 84 542.75

Average 125.76 323 81 239.93
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Table 2: Comparison of the results across the batches of n = 70 payments on each day in the sample using the order
from CQM solver against original FIFO order. Average and median savings are calculated using only the batch of
payments that saw improvement (for example, using 89 improved batches on 2017-06-30 in Table 1). The number of
worsened batches using CQM settlement compared to FIFO are due to stochastic noise in the quantum solver. In
these 30 days, out of the 9,717 batches tested, only 7 come back worse than FIFO (0.072% error rate). These errors
could be easily identified and corrected by re-running the batches.

Date
Average
Savings
($Mn)

Median
Savings
($Mn)

Maximum
Savings
($Mn)

Num.
Worsened
Batches

Additional
Liquidity

Required ($Mn)

2017-06-30 8.24 0.51 195.91 - - - -

2017-12-22 17.76 1.02 536.12 - - - -

2017-06-01 13.37 0.57 446.99 1 -0.0060

2015-03-31 8.59 1.01 129.17 - - - -

2017-05-31 11.99 0.45 205.99 - - - -

2016-01-29 19.93 0.64 568.12 - - - -

2017-12-01 5.85 0.38 150.78 - - - -

2016-07-15 20.52 0.42 1,289.03 - - - -

2016-06-01 6.20 0.31 92.39 - - - -

2015-01-30 9.48 0.48 387.78 - - - -

2016-12-30 17.00 0.43 929.20 - - - -

2017-06-15 9.31 1.71 141.24 - - - -

2017-11-15 5.60 0.36 331.91 - - - -

2015-05-15 6.52 0.68 163.31 - - - -

2017-02-21 14.79 0.46 266.57 - - - -

2015-04-02 22.44 1.40 597.34 - - - -

2015-04-15 10.71 1.45 295.93 1 -0.0012

2015-12-16 15.12 0.44 318.21 - - - -

2015-10-26 11.44 0.87 234.21 1 -0.0084

2017-11-28 13.61 1.43 200.57 - - - -

2017-09-20 21.71 2.18 331.22 - - - -

2017-11-16 14.78 0.91 219.75 - - - -

2017-09-26 13.14 0.50 361.89 1 -2.96

2017-10-12 8.22 0.32 171.14 1 -0.0076

2016-01-08 12.68 0.62 457.88 1 -0.0013

2015-04-20 23.63 0.25 334.58 - - - -

2015-03-26 13.48 1.02 190.14 - - - -

2015-03-23 15.47 1.65 241.80 - - - -

2015-03-04 8.52 0.62 139.14 - - - -

2015-02-23 17.29 0.60 253.94 1 -0.21

Average 13.25 0.79 339.41 0.16% -0.11
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batches examined across these days, 49% have no participants who moved their mNDP, and thus no
rearrangement could provide liquidity savings. 25.3% of batches have an optimized rearrangement
that provided liquidity savings. The remaining 25.7% have participants that grew their mNDP
but are not optimizable for reasons such as the participants having only outgoing payments, FIFO
already being an optimal solution, or a large payment that could not be offset.

As summarized in Table 2, on a typical day, an optimized batch saves $13.25M on average,
with a median of $0.79M and a maximum of $339.41M. Overall, the maximum savings achieved
by any one batch is $1.29B on July 15, 2016. Occasionally, the order returned by the CQM
hybrid solver results in less efficient liquidity usage than FIFO. This occurs only seven times out
of the 9,717 batches and never occurs more than once on any day. The loss in savings is less than
$10k in 5 of those instances and reaches as high as $2.96M (Table 2). These instances can be
attributed to stochastic noise in the quantum annealer and could easily be removed in a practical
implementation of this system by immediately re-running the affected batches (if time allowed) or
defaulting to FIFO.

To examine how equally the savings were distributed across participants, in Figure 6 we compare
each participant’s liquidity savings (using a batch size of 70) to their total transaction participation.
The percentage of the total amount saved for each participant is compared to their percentage of
total incoming and outgoing transactions. The Pearson’s correlation coefficient between percent
saved and percent of incoming and outgoing transactions is r=0.961 and 0.967, respectively. This
high correlation implies the savings are somewhat fairly distributed based on how much liquidity
each participant moves. In other words, if a participant is involved in payments responsible for half
of the total settled value in a day, they will likely see about half the savings achieved for that day.

Figure 6: Amount of liquidity saved per bank as a percentage of total savings incurred (red) compared with the
percentage of the total value of incoming (gold) and outgoing (green) payments using a fixed batch size.

In most cases, including ours, the payment values follow a Pareto distribution, maintained in
the total settled values for each batch (Figure 7, left). In our sample, the average value settled for
a batch size of 70 is $0.4 billion, but some settle for $3.5 billion. The non-normal distribution of
payments makes it difficult to find bilateral or multilateral netting opportunities. To further reduce
the optimization capability, most batches have more payees than payers. Figure 7 (right) shows
the number of payees and payers per batch using transparency to represent their frequency. On
average, there are eleven payers and eight payees. The presence of a lone payee in batches acts as a
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liquidity sink removing it from the liquidity pool. We infer that a strongly interconnected network
of equal value payments in each batch would provide an opportunity for larger liquidity savings.

Figure 7: (Left) total value (in CAD) settled per batch in our sample. (Right) the scatter plot of the number of
unique payers and payees involved in each batch in our sample (darker blue dots show more repetitions and lighter
blue dots shows fewer repetitions).

5.4 Performance of Quantum Algorithm on a Chosen Day

Next, as an example, we show the evolution of the aggregate mNDP for a typical day (Sept 20,
2017) in our sample in Figure 8 for a batch size of n = 70. At the start of the day, as participants
send their payments, we see a sharp rise in aggregated mNDP. As the day progresses, however, we
see a slower increase in aggregated mNDP. For many batches during the day, no participant had
moved their mNDP, and thus no rearrangement could provide liquidity savings. These are seen as
flat sections in the aggregate mNDP curve in Figure 8.

Sometimes, a large payment (or group of payments) in a single batch can cause the aggregate
mNDP to converge for the CQM solver and FIFO, erasing savings that the CQM had achieved
earlier in the day. Examples of this can be seen at 14:20 and more extremely at 16:05 in Figure 8.
This erasure cannot be avoided without increasing the queue size or using a more complicated
queue-building algorithm that allows payments to move between queues to create larger graph
cycles and offset the required liquidity needed to settle the large payment(s). Clearly, for a chosen
batch size, there is significant heterogeneity across the batches, and there are limitations on the
improvements which can be achieved with this simple pre-processing setup.

To help visualize the queue reordering process in a typical batch of 70 payments (on Sept 20,
2017), each participant’s debit and credit balance evolution is shown in Figure 9. The top chart
uses the FIFO order, and the bottom chart is for the order proposed by quantum optimization.
Each line represents each bank’s balance as the transactions are completed sequentially in the
prescribed order. Since we optimize the aggregate mNDP, we want to limit the depth to which the
participants drop below zero. In this example, the mNDP for Bank 14 was originally $17 million.
The optimization rearranges the transactions to prevent Bank 14 (blue line) from taking any debit
position while not penalizing other participants. Doing so, and reordering other banks’ payments,
saves the system 18 million in aggregate mNDP over these 70 transactions. However, it should be
noted that not all transactions in this batch can be optimized. Two examples are banks 13 (teal)
and 16 (orange), which have only outgoing payments; therefore, no scope exists for optimizing their
mNDP through queue reordering any of their transactions in this batch.

To understand the network effects in terms of the number of payees and payers per batch,
in Figure 10 we show the participants that cause the aggregate mNDP to increase (if at all) for
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Figure 8: The aggregate max net debit position (mNDP) versus time of the day for Sept 20, 2017. The blue line
shows the original payment order (FIFO); the orange and green lines respectively show the orders returned from the
quantum annealers, with the day divided into batch sizes of 70 and 140 payments.

Figure 9: The change in individual banks’ credit or debit position for a given queue of 70 transactions immediately
after each payment settlement for Sept 20, 2017. The top is for FIFO order ($73 million aggregate mNDP), and the
bottom is for the order proposed by the hybrid quantum CQM solver ($55 million aggregate mNDP).

each batch as a stacked bar plot with FIFO settlement on Sept 20, 2017. The increase is usually the
result of only one participant (a notable exception is batch 98, for example). Therefore, minimizing
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these participants’ mNDP would provide the most significant liquidity savings. However, the queue
rearrangement can do little if the participants have a large negative change to their net position in
a single batch, i.e., they do not have incoming payments to offset their one or more large outgoing
payments. For this reason, FIFO and CQM with 70 and 140 queue size track each other with
varying offsets and can exhibit the convergence that erases gains discussed above (see Figure 8).
Also evident are groupings throughout the day where one participant moves the aggregate mNDP
in succession. These are cycles where participants have repeated outgoing transactions and a low
balance.

Figure 10: The change in aggregate max net debit position against the accumulated batches of payments for Sept
20, 2017. The blue line represents the aggregated mNDP (on the left axis) and stacked bars represents magnitude of
the change in mNDP caused by the individual participants (on the right axis).

Finally, we run the algorithm by doubling the batch size to n = 140 for two test days: Sept
20 and Oct 12, 2017. Similar to Table 1, we run a horse race between the FIFO and CQM, where
they both start with the same initial conditions and settle every batch throughout the day using
FIFO and CQM order, and at the end of the day, we report the mNDP. As detailed in Table 3, the
increase in batch size produces substantial improvements in savings, as expected. Most notably,
the number of batches that see higher savings over FIFO increases by close to 15% for both days
with respect to the number of batches that could potentially be optimized. This is certainly due to
the increase in both the amount of liquidity available for recycling and the increased connectivity
between payers and payees in a single batch’s network graph.

On Sept 20, 2017, we see an impressive improvement in average, median, and maximum savings
of approximately 45%, 172%, and 53%, respectively. On Oct 12, 2017, we see an even greater
improvement in its average and median savings of approximately 105% and 263%, respectively,
while its maximum savings see a negligible improvement of less than 1%. However, maximum
savings as a performance metric is the most dependent on how (and if) the day’s largest payments
are grouped into the queues, and it is expected to be the least consistent of the three measures.

Arguably, the most encouraging improvement is in the end-of-day savings, where these two days
see an increase of approximately $326M (978%) and $192M (97%), respectively. These dramatic
changes can be attributed to both the overall superior performance of the larger queue size, as well
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Table 3: Comparison of the results for two days using the order proposed by the CQM hybrid solver and the original
order (FIFO) with batch size n = 140. The improvements over the same method using the the batch size of n = 70
are shown in bold.

Date
Num. of
Batches

Optimizable
Batches

Num.
Improved
Batches

Average
Savings ($1M)

Median
Savings ($1M)

Maximum
Savings ($1M)

End-of-Day
Savings ($1M)

2017-09-20 142 87 50 31.46 5.93 508.41 359.56

Improvement Over n=70: +13.9% +9.75 +3.75 +177.19 +326.21

2017-10-12 138 110 73 16.84 1.16 171.15 191.84

Improvement Over n=70: +14.5% +8.62 +0.84 +0.01 +94.47

as a reduction in the loss of mid-day savings. This is particularly evident for 20 Sept, 2017, also
depicted in Figure 8.

6 Conclusions and Future Work

We show that substantial liquidity savings can be achieved with the addition of a pre-processing
layer where payments are placed in a queue and reordered using an algorithm that makes use of
hybrid quantum-classical resources before being submitted to the RTGS for settlement. Using
conventional computing hardware, optimizing the queue requires prohibitively long computation
times to achieve results for all but trivial queue sizes. However, quantum computing via hybrid
annealing reduces computation times such that queues that are large enough to provide significant
savings potential can be optimized. In a sample of 30 representative days of transactions from
Canada’s HVPS, we demonstrate such improvements for queue sizes of 70 and 140, with average
aggregate daily liquidity savings of C$239.93M and C$275.70M, respectively. Furthermore, these
savings tend to be distributed proportionately to the participants’ payments values.

Although much larger savings are achieved on an intraday basis (one batch reached nearly
C$1.3B), the limit in the potential savings is set by the timing and structure of payment flows be-
tween participants, especially when large payments appear in queues with few or no other payments
involving that payer. In such cases, only minimal improvements are possible. Such challenges sug-
gest avenues for future improvements, for example, combining a bypass component (used today in
traditional LSMs) that sets aside larger payments, allowing other payments to be optimized. Like-
wise, the progress of quantum technology will permit optimizing larger queue sizes in the future,
which could help overcome such limitations. Lastly, we may extend our algorithm to implement a
flexible batch size, based on a combination of queue time, the value to process, and the balance of
payers and payees, to improve the chances of offsetting payments occurring in the same batch.

In the end, we found the answer that we sought: quantum technologies readily available today
can be used to optimize the order of payments. While the trade-off of liquidity and delay remains,
the small delay required by our quantum pre-processor can provide substantial liquidity savings
in payment systems. Ultimately, we demonstrate that a quantum method could reduce liquidity
usage without significantly increasing settlement delay, and this paves the way for future research
as these technologies mature.

PIVOT

Through the Partnerships in Innovation and Technology Program (PIVOT), the Bank of Canada
works with innovators in the private sector and academia to experiment with digital tools and
technologies. This report is the result of a PIVOT collaboration between the Bank and GoodLabs
Studio, a startup with expertise in fintech, AI, HPC, and other emerging technologies.
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A Formulation of the Objective Function

Queue optimization is done analytically through minimizing an objective function. A number
of payments, n, are collected in a queue. The payments are ordered with index i = 1 . . . n, while the
rearranged queue has the alternative index t = 1 . . . n. The optimization of the Hamiltonian returns
the mapping i → t that minimizes the amount of liquidity needed in the system (the aggregate
max net debit position). We define a participant α’s net position in the final queue at position t as
Nα(t). Each participant’s maximum net debit position incurred from previous batches is included
as mNDPα (zero for the initial batch). Thus, the collateral needed by each participant to ensure
that they do not go into a negative liquidity position is

mNDPα = |min{Nα(previous queues), 0}|. (7)

The participant can access liquidity from eitherN(t) (if their position happens to be a net credit)
or this collateral. More precisely, their total liquidity available to settle payment t is effectively

ℓα(t) = Nα(t) +mNDPα. (8)

A participant’s instantaneous net position can be calculated using

Nα(t) = Nα(0) +
n∑

i=1

t∑
τ=1

f(α, i)xi,τ , (9)

where Nα(t) ≥ −mNDPα, Nα(0) is participant α’s net position immediately before the settlement
of this batch (starting balance), xi,τ is a binary decision variable that indicates whether payment
i is settled (xi,τ = 1) or not (xi,τ = 0) at position τ in the final queue,

f(α, i) =


v, if α is the payee of payment i

−v, if α is the payer of payment i

0, otherwise

, (10)

and v is the value of payment i.
Ideally, we seek a mapping i → t such that ℓα(t) ≥ 0 ∀α, t. However, such a mapping may

not exist for a given batch. For the general case, we define the positive real number bα that is a
hypothetical amount of liquidity one would need to add to participant α’s account in order to keep
their balance non-negative for all payments t. We now have the inequality

bα +Nα(0) +mNDPα +
n∑

i=1

t∑
τ=1

f(α, i)xi,τ ≥ 0 (11)

that can always be satisfied for the trivial case bα → ∞. The optimal mapping occurs when bα is
collectively minimized across α. Quite simply,

min
bα,xi,t

∑
α

bα. (12)

Note that the optimal bα represents the required change that will have to be made to mNDPα

before the next queue is optimized. Equivalently, this is the additional collateral that the central
bank will demand from the participant α to provide the liquidity before it allows settlement of the
current queue to commence.
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This problem is of the mixed binary optimization (MBO) type where the optimization is over
both continuous (bα) and binary (xi,t) variables. We can easily transform this into a quadratic
unconstrained binary optimization (QUBO) problem for processing on a quantum device (Glover
et al. 2019; Lucas 2014). First, the inequality constraint given in Equation 11 must be written as
an equality constraint with the addition of a slack variable sα(t):

bα +Nα(0) + mNDPα +

t∑
τ

τ∑
i=1

f(α, i)xi,τ − sα(t) = 0 (13)

where sα(t) ≥ 0 is an additional continuous variable over which optimization must occur. Second,
this constraint must be enforced in the QUBO as a quadratic penalty term with a Lagrange multi-
plier. Third, all continuous variables (bα, sα(t)) must be discretized to the nearest cent (or larger
base value with the loss of some resolution) and then represented with the so-called “log trick.”
For example, bα is replaced with the sum of a geometric series of binary variables βα,

bα =
∑
j

2jβ(j)
α , (14)

where β
(0)
α represents the least-significant digit in the binary representation of bα, β

(1)
α the second-

least-significant digit, etc.
Finally, two more constraints must be added to ensure that every payment is settled exactly

once; to guarantee the mapping i → t is one-to-one. To ensure that every i corresponds to exactly
one t, we have

1−
∑
t

xi,t = 0 ∀i, (15)

and similarly that every t corresponds to exactly one i, we have

1−
∑
i

xi,t = 0 ∀t. (16)

In the end, we are left with the equation

H =
∑
α

bα +
∑
α,t

λ1

bα +Nα(0) + mNDPα +
∑
i

∑
τ≤t

f(α, i)xi,τ − sα(t)

2

+
∑
i

λ2

(
1−

∑
t

xi,t

)2

+
∑
t

λ2

(
1−

∑
i

xi,t

)2

, (17)

where the log trick has been omitted for brevity. Minimizing this Hamiltonian over all variables

min
bα, xi,t, sα(t)

H (18)

yields the optimal reordering of the payment queue. (Note that the same Lagrange multiplier, λ2,
can be assumed for both one-to-one constraints without loss of generality due to their symmetry.)
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