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Abstract 
We develop a corporate default model to forecast corporate loan losses of the Canadian 
banking sector under stress. First, we tackle a data gap by reconstructing historical default 
probabilities for banks’ loan portfolios. Second, we estimate tail elasticities to capture non-
linear relationships between macrofinancial conditions and default probabilities. By explicitly 
modelling default probabilities associated with macroeconomic tail events, this model 
significantly improves the Bank of Canada’s stress-testing infrastructure.  
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1 Introduction

Regulators routinely perform stress tests of financial institutions to assess the resilience

of banks’ balance sheets under extreme but plausible shocks, typically a severe reces-

sion. One of the main sources of losses for banks comes from credit risk—the risk

that borrowers fail to meet their contractual obligations. Unexpected credit losses

reduce banks’ capital directly, while expected credit losses generate higher loss provi-

sions, thereby limiting banks’ ability to deploy their capital to the real economy. In

both cases, large credit losses could impair banks lending ability and, in turn, the

functioning of the broader financial system.

In this report, we present a new credit risk model for the corporate loan portfolio of the

Canadian banking sector. The new Corporate Default Model (CDM) maps relevant

macroeconomic stress factors into aggregate and industry-specific default probabilities.

We use the model to forecast possible default probability paths under extreme but

plausible macrofinancial risk scenarios. The new model improves on the previous

corporate credit risk model described in the Framework for Risk Identification and

Assessment (FRIDA) in section 3.2 of MacDonald and Traclet (2018). FRIDA is a

suite of models used to conduct top-down macrofinancial stress tests at the Bank of

Canada (see Figure 1). The Risk Amplification Macro Model (RAMM) is the FRIDA

module that generates the macrofinancial risk scenarios that are fed into the CDM

module. We then use the implied corporate default probabilities in conjunction with

the household loan defaults obtained through the Household Risk Assessment Model

(HRAM) to compute scenario-consistent credit losses and assess the capital shortfall

on banks’ balance sheets.1

The new CDM improves corporate default probability modelling in four key dimen-

sions. First, we implement a novel filter for extracting default probabilities—the

variable of interest—from the stocks of total loans and impaired loans, which are

the variables available with sufficient coverage and industrial disaggregation. We can
1More details on FRIDA are in MacDonald and Traclet (2018); on RAMM, in Tuzcuoglu (forth-

coming); on HRAM, in Peterson and Roberts (2016); and on MFRAF, in Fique (2017a).
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Figure 1: Framework for risk identification and assessment—an overview
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then directly estimate the historical relationship between default probability and key

macrofinancial stress factors.

Second, we begin by modelling the aggregate default probability before providing an

industry decomposition anchored around that aggregate probability. This approach

is more robust to outliers and ensures consistency between simulations of aggregate

and industry-specific probabilities of default.

Third, we broaden the model’s set of potential macrofinancial stress factors by includ-

ing, for example, risk factors associated with the foreign exposures of Canadian banks.

To avoid overfitting, we use variable selection and cross-validation to maximize the

model’s out-of-sample performance, resulting in a parsimonious specification that can

replicate historical peaks in default probabilities.

Fourth, through a horse race between modelling techniques, we determine that quantile

regressions are the best at capturing the non-linearities that might exist in adverse

macrofinancial risk scenarios. The previous generation of the model, in contrast, relied

on linear regressions.

Our new corporate default model shows strong in-sample and out-of-sample perfor-
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mance.2 In simulation exercises, the linear version of the model can already reproduce

historical levels of probabilities of default, but with relatively narrow confidence bands.

In contrast, our non-linear model can generate larger probabilities of default because

we can rely on a stronger response in the tail of the distribution and a longer duration

of the tail event. This increased flexibility in crisis simulation allows us to generate

counterfactual probabilities of defaults that are more severe than the peaks observed

in our dataset. This is particularly important given that Canada has not recently

observed a severe banking crisis, so we would otherwise underestimate risks when

conducting stress tests.

The remainder of the paper is organized as follows. Section 2 discusses the implemen-

tation of our new methodology to filter probabilities of defaults. Sections 3 and 4

present our modelling strategy and report our estimation and simulation results both

for the aggregate corporate sector and by industry. An application is shown in section

5. Finally, section 6 concludes.

2 A new method to filter probabilities of default

Default probabilities are a key component of banks’ credit risk. Specifically, the

expected loss ELt in period t can be expressed as:

ELt = PDt · EADt · LGDt,

where PDt, EADt and LGDt represent the probability of default, exposure at de-

fault and loss given default, respectively. In this report, we focus on modelling and

predicting probabilities of defaults (PDs). We extract PDs that are useful for our

purposes from partial information because we do not observe them directly (except

in aggregate portfolios or in short time series from public reports).

In the past, several approaches tried to fill these gaps. For example, Misina, Tessier,
2Note that we estimate the model until 2019 to avoid the COVID-19 period, which has been

characterized by loan deferrals and extraordinary government support that distorted the statistical
relationship between default probabilities and economic conditions.
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and Dey (2006) and Djoudad and Bordeleau (2013) developed measures of default prob-

abilities by industry, based on bankruptcy rates. Unfortunately, because bankruptcy

is a narrow measure of default, these approaches do not explain expected losses. More-

over, because bankruptcies are the final stage in a default, they are reported with a

lag. Covas, Rump, and Zakrajšek (2014) used charge-offs, which are not observed

over a long enough time horizon for our purposes.

To quantify PDs, we use data on impaired loans because impaired loans data is

available over a long sample and available with an industry disaggregation. These

features enable us to estimate the relationship of PDs to macroeconomic conditions.

For example, the previous version of the CDM used the gross impaired loan ratio as

a proxy for the dynamics of PDs. An ad hoc formula converted the impaired loan

ratio to probabilities by accounting for a lag between the impairment and the loss of

a loan. However, we want to improve on the interpretation of this proxy to allow for

more rigorous non-linear models.

Thus, in this section, we present a novel filter for extracting probabilities of defaults

—the variable of interest—from the stock of total loans and impaired loans—the

variables with sufficient coverage and industry disaggregation.

2.1 Method

We define PDt as the (expected) share of the total loans that generate losses in period

t. That is:

PDt =
Dt

TLt
, (1)

where Dt denotes the loans that defaulted in period t, and TLt denotes the stock

of total loans in the same period. This definition differs slightly from credit-level

calculations in that it considers the entire loan portfolio of a given bank and sector.

This assumption is critical because there is insufficient data to estimate the number

of defaulted loans, and the probability of default cannot easily be derived from the

total number of defaulted loans.
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In line with the definition from the Bank for International Settlements (Basel Com-

mittee on Banking Supervision 2006), we understand an impaired loan as a loan that

is predicted to have worse future cash flows than initially expected. Given that the

worsening of expectations comes first, we assume that each loan that eventually de-

faults goes through the stage of being impaired first. Figure 2 illustrates the concepts

of flow and stock and introduces inflow iILt and outflow oILt of the impaired loan

stock. The figure depicts stock of loans by boxes, and flows of loans per period by

arrows. Dashes indicate that the number is not observed. This figure illustrates two

problems in deriving PDs from ILt. First, we define the unknown share of loans

that go from being impaired to defaulting as ρ, and the respective cure rate as 1− ρ.

Second, iILt and oILt are unobserved flow variables, while only the quarterly stock

of impaired loans ILt is available. In what follows, we show how we derive the inflow

and outflow from the observed stock.

Figure 2: Illustration of flow and stock concepts

Stock of
impaired
loans

Stock of
performing

loans

Stock of
defaulted
loansinflow of impaired loans

iILt

outflow as defaulted loans
Dt = ρ · oILt

outflow as recovered loans(
1− ρ

)
· oILt

Determining the PD path. We derive inflow and outflow from the differences in

the stock of impaired loans:

∆ILt = iILt − oILt = ILt − ILt−1. (2)

We assume that each loan in this stock faces an outflow probability that depends

solely on the timing of entering the stock. For example, assume a loan gets impaired

in period t; then it faces a positive outflow probability fλ(k) in period t+ k. In this

report, we use the Poisson distribution with mean λ.3 Formally, fλ(k) is the expected
3More generally, this method is applicable to any probability distribution with positive support.
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share of outflowing loans k periods after being impaired. For the set of loans, the

outflows can be written as:

oILt =
∞∑
k=0

fλ(k) · iILt−k.

By rearranging equation (2), we can calculate the inflows and thus also outflows

recursively:

iILt = ∆ILt + oILt = ∆ILt +
∞∑
k=0

fλ(k) · iILt−k,

=
1

1− fλ(0)

(
∆ILt +

∞∑
k=1

fλ(k) · iILt−k
)
.

Since in practice we have to provide an initial value of inflow, we impose some

boundaries on these numbers. This step makes the results more tractable and robust.

By definition, the outflow cannot be larger than the observed negative difference plus

the current inflow, and the inflows cannot be negative. That is:

oILt = min{
∞∑
k=0

fλ(k) · iILt−k, iILt −∆ILt}, (3)

iILt =
1

1− fλ(0)
max{∆ILt +

∞∑
k=1

fλ(k) · iILt−k, 0}. (4)

Equations (3) and (4) now recursively define the outflow and inflow of impaired loans.

From equation (1) and Figure 2, we know that PDt = ρ·oILt
TLt

.4 The percentage change

of PDs therefore reads:

pPDt =
PDt

PDt−1
=
ρ · oILt · TLt−1
ρ · oILt−1 · TLt

=
oILt · TLt−1
oILt−1 · TLt

. (5)

We tried alternative specifications, but we do not observe data to formally assess one distributional
family against another. Still, the shape of the distribution lines up with expert judgement and
aggregate moments.

4We assume ρ to be an accounting-specific parameter that does not change over time. That is,
banks maintain the same accounting standards during times of stress, and changes in PDs are fully
attributable to changes in impaired loans.

6



As a result, equations (3) and (5) back out pPDt with inputs ∆ILt and TLt and

a certain level of outflow in period t = 0. The level of the PD, however, is still

undetermined and needs to be anchored.

Anchoring the PD path. To determine the level of PD, we use a shorter time

series of observed PDs—PDanchor
t from t = t∗, ..., T ∗—as an anchor for the level. This

anchor is used as the dependent variable in the regression

PDanchor
t︸ ︷︷ ︸
yt

= β ·
t∏

τ=t∗

pPDτ︸ ︷︷ ︸
xt

+εt, ∀t = t∗, ..., T ∗

estimated by the OLS. Given the new starting point β̂ = P̃Dt∗−1, we can develop the

PD path forward and backward, respectively:

P̃Dt = β̂ ·
t∏

τ=t∗

pPDτ , for t = t∗, ..., T,

P̃Dt = β̂ ·
t∗−2∏
τ=t

pPD−1τ , for t = 1, ..., t∗ − 2.

In a nutshell, the series P̃Dt is the full sample PD with dynamics determined by

pPDt and levels determined by PDanchor
t .

Initializing the filter. The previously described filter works recursively and requires

calibration of the initial inflow and outflow, which determine the size of the average

flow per period. While the size of the outflow gets cancelled out in equation (5),

it is important in the calculation of equations (3) and (4) because it determines

the sensitivity of the lower bound of inflows (i.e., all inflows must be positive). For

example, if the first inflow is set too large, a high inflow of impaired loans is possible

even with a strongly negative ∆ILt. As a result, we start the filter at the first tranquil

period and set the initial inflow and outflow equal to their sample averages.

To do so, we implement the following algorithm:
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1. Find O = argmint>3t · 1
(

1
3
ILt
TLt

> 1
3
ILt−3

TLt−3

)
to determine the first three-quarter

moving average minimum in the sample.

2. Set the initial relative outflow α to α = 0.5.

3. Set the inflow and outflow of period O: iILO = oILO = α
1−α · ILO.

4. Calculate the subsequent inflow and outflow with the recursive formula in equa-

tion (3).

5. Calculate the resulting relative outflow with α∗ = T−1
∑

t
oILt

(ILt+iILt)
.

6. If |α − α∗| > 1e − 8, set α = α∗ and repeat steps 3 to 6. Otherwise, end the

algorithm.

We backfill all values before the initialization, t < O, with the percentage growth rate

pPDt = ILt·TLt−1

ILt−1TLt
, which works reasonably well because we set O in a way that PDs

decrease before it.

2.2 Data

We use two different regulatory returns of domestic systemically important banks

(D-SIBs) for the calculation of PDs:5 (1) A2 for dynamics6 and (2) RAPID2 for levels

(also known as BF regulatory return).7 First, beginning in the second quarter of

1994, A2 reports impaired loans and total loans per quarter by industry for Canadian

D-SIBs.8 This return allows us to determine the dynamics of PDs for each bank and

industry separately.

Second, RAPID2 is a granular loan-level dataset that collects business loans worth

more than Can$10 million.9 It is available only from the first quarter of 2014 onward,
5The share of D-SIB loans to total bank loans is over 90%.
6See Non Mortgage Loans (A2) of the Office of the Superintendent of Financial Institutions.
7See Technical Specification (BF) of the Office of the Superintendent of Financial Institutions.
8We use the following industries: 1) natural resources, 2) mining, 3) manufacturing, 4) construc-

tion and real estate, 5) transportation, communications and utilities, 6) wholesale trade, 7) retail
trade, 8) services, 9) financial and 10) others. More details are provided in Appendix A. Appendix B
outlines extensions of our framework to the non-corporate sector, namely consumer loans, residential
mortgages and non-residential mortgages.

9RAPID2 provides time-series and cross-sectional data but does not cover loan-level data for

8
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so this shorter time series is used only as a level anchor when converting the impaired-

loans data from A2 into probabilities of defaults. The RAPID2 dataset contains the

borrower’s one-year probability of default as reported by the financial institution. We

convert it to quarterly levels using the formula:

PDq
i,t = 1− (1− PDy

i,t)
1
4 ,

where the superscripts q and y describe quarterly and yearly default probabilities,

respectively. Then we aggregate these probabilities to industry PDs by calculating

the weighted average within an industry. The PD for industry ind, which is then used

as the anchor for this industry-specific PDs, is:

PDanchor,ind
t =

∑
i∈ind

wi,tPD
q
i,t

with wi,t =
Li,t∑

j∈ind Lj,t
,

where Li,t refers to the outstanding Canadian-dollar amount of loan i.

The last free parameter in the filter is λ, the average stay of a loan in the impaired-

loan bucket. This parameter is mainly responsible for the smoothness of the filtered

probability of default and does not change its dynamics drastically. We set λ to

a value between one- and three-quarters based on Monte Carlo simulations of the

impaired-loan dynamics and on expert opinions, respectively. In the following section,

we present empirical results of the filter and investigate its robustness to the choice

of λ.

2.3 Results

Figure 3 shows the aggregated PD series for λ = {1, 2, 3, 4}, anchored to the shorter

PD series of RAPID2 over the first quarter of 2014 to the fourth quarter of 2019. The

dotted black line is the ratio of gross impaired loan (GIL) from the A2 dataset, and

smaller business loans; our results, therefore, might be biased downward if larger loans to larger
companies have systematically lower PDs.
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Figure 3: Historical default probabilities—aggregated corporate sector, all D-SIBS

the other lines are converted PDs with different λ. Finally, the thick bold line is the

anchor PD series as reported in the RAPID2 return. When this ratio is compared

with the new calculations of PDs, two things become clear. First, the level of the

converted PDs (for λ = 1) is about half of the GIL ratio. The anchoring of the

RAPID2 dataset, which reports PDs lower than the GIL ratio, is largely responsible

for this result. Second, the longer the loan is assumed to stay in the impaired bucket,

as parameterized by λ, the longer it takes before an impaired loan possibly defaults.

Thus the peak of the probability of default is delayed relative to the peak of the GIL

ratio, and increasingly so as λ increases.10

3 Modelling aggregate probability of default

We now turn to the modelling of aggregate PD (i.e., corporate sector–wide PD) under

various macrofinancial conditions. In this section, we present the macrofinancial
10In turn, the shock that triggers loan impairment usually precedes the peak in the GIL ratio.

Therefore, it is to be expected that a macrofinancial shock would predict relatively well subsequent
peaks in the probability of default. Given that losses take time to materialize on banks’ balance
sheets, a delay from the impaired-loans ratio to the PDs is desired.
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factors used to explain PDs and discuss how they were chosen for inclusion in the final

model. We take an agnostic approach, examining a wide range of potential explanatory

variables and keeping only those that contain the most relevant information. We also

present estimation and simulation results for the two chosen estimation methodologies,

an autoregressive model and a quantile regression model, which were chosen after

a horse race of linear and non-linear modelling techniques.11 Finally, we present

backtesting of historical PDs.

3.1 Which macrofinancial factors predict PDs?

Table 1 contains a complete list of the 25 macrofinancial factors considered as potential

explanatory variables of PDs, as well as their conventional signs.12 This selection

includes a wide range of domestic and foreign macroeconomic and financial explanatory

variables. We first collected the main drivers of credit risk identified in the literature13

and then selected those variables that are part of our macroeconomic models (like

RAMM) used to generate macrofinancial risk scenarios.

The 25 potential explanatory variables are divided into several categories. First, the

economic and financial cycle has an impact on loan quality. Deteriorating economic

and financial conditions, such as slow economic growth, rising unemployment, falling

asset prices or a sudden tightening of financial conditions, are associated with debt
11We present only the most relevant linear and non-linear models, but we also tested alternative

specifications: the vector autoregression model by modelling all industries jointly, but it did not beat
univariate models out of sample; the vector error correction model, but probabilities of default do
not exhibit unit roots; univariate and multivariate autoregressive Markov-switching models, but they
were more sensitive to the specification. For an assessment of different classes of models, including
model averaging and neural networks, see the contemporaneous work of Guth (2022). Our agnostic
approach also helps mitigate the concerns about model uncertainty when performing stress tests
(Gross and Población, 2019).

12Appendix A provides more details about the definitions of all potential explanatory variables
and the data sources. We use either the growth rate in log difference for variables expressed in
dollars or the level directly for ratios or rates.

13In addition to the sources singled out in the main text, we also used the following: Makri,
Tsagkanos, and Bellas (2014); Godlewski (2005); García-Marco and Robles-Fernández (2008); Louzis,
Vouldis, and Metaxas (2012); Radivojevic and Jovovic (2017); Salas and Saurina (2002); Espinoza
and Prasad (2010); Babouček and Jančar (2005); Rinaldi and Sanchis-Arellano (2006); Nkusu (2011);
Mileris (2012); Figlewski, Frydman, and Liang (2012); Jovovic (2014); Škarica (2014); Beck, Jakubik,
and Piloiu (2015); Rajan and Dhal (2003); Hoggarth, Logan, and Zicchino (2005); Jiménez and
Saurina (2006); Saba, Kouser, and Azeem (2012); De Bock and Demyanets (2012); Pouvelle (2012);
Shu (2002).
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service issues and may foreshadow higher PDs (Beck et al., 2015; Nkusu, 2011).

Monetary policy and interest rate factors also have an impact on PDs, particularly

those that represent the cost of borrowing because they have a direct impact on

borrowers’ debt-servicing capacity (e.g., five-year Government of Canada (GoC) bonds,

six-month treasury bills, term premium, corporate spread). Inflation, in contrast, has

a more ambiguous impact. While inflation can make servicing local currency debt

easier by lowering its real value, it can also lead to higher nominal and real interest

rates, raising debt servicing costs.

Moreover, the level of debt held by firms and other economic agents is a potentially

important explanatory factor. High credit growth could indicate a credit boom with

poor credit quality, resulting in higher future PDs (Schularick and Taylor, 2012;

Danielsson, Valenzuela, and Zer, 2018; Kirti, 2018). In contrast, during a crisis, credit

expansion can provide the liquidity required to keep firms from defaulting.

Aggregate financial conditions in the banking sector, particularly those related to

banks’ profitability and cost-efficiency (e.g., net income, return on equity) and assets

and liabilities (e.g., total assets, total-assets-to-capital ratio, equity), could also be

drivers of PDs (Podpiera and Weill, 2008) but have ambiguous relationships (Berger

and DeYoung, 1997).14

Finally, total trade between Canada and the United States, the drop in oil prices

from its two-year peak and the nominal USD/CAD exchange rate are used to capture

foreign trade conditions. A decrease in total trade may lead to an increase in PDs

due to lower firm revenues and profits. The relationship between the exchange rate

and PDs is more ambiguous. On the one hand, it can cushion the decline in economic

activity during times of stress, thereby aiding in the stabilization and reduction of
14Note that we do not estimate bank-specific models and focus instead on aggregate macrofinancial

variables only. Thus, if bank-specific characteristics matter, they would not be captured here.
Differences in the sector composition of the loan books across banks are captured afterward since we
decompose aggregate default probabilities into sectoral components. For instance, the PD of a bank
b could be computed as follows, given the bank-specific exposure to each industry i ∈ ind and the
industry-specific PDi,t: PDb,t =

∑
i∈ind wi,b,t · PDi,t with wi,b,t =

Li,b,t∑
j∈ind Lj,b,t

and Li,b,t referring
to the outstanding Canadian-dollar amount of loans to industry i by bank b.
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PDs. A depreciation, on the other hand, may reduce borrowers’ ability to repay

foreign currency–denominated debt.

We also consider foreign equivalents of some of the domestic factors, i.e., US industrial

production, the US financial stress index and the US term premium.

Table 1: Macrofinancial predictors considered with expected signs

Canadian factors

Economic conditions: real GDP (-), unemployment rate (+)

Credit aggregates: total private credit-to-GDP ratio (?), business credit-to-GDP ratio (?),
real business credit (?), residential mortgage to household disposable income ratio (?),
consumer credit to household disposable income ratio (?)

Trade: Total trade (-), USD/CAD rate (?)

Asset prices and financial conditions: corporate spread (+), TSX index (-),
Real house prices (-), financial stress index (+)

Monetary policy and interest rates: inflation rate (?), 6-month t-Bills (+),
5-year GoC bonds (+), term premium (+), CA-US MP rate (+)

Banking: total assets (+), total assets-to-equity ratio (+), shareholders’ equity (-),
return on equity (-), net income (-)

US (foreign) factors

Economic conditions: industrial production (-)

Commodity prices: drop in oil prices (+)

Asset prices and financial conditions: financial stress index (+)

Monetary policy and interest rates: term premium (+)

Note: When the literature has reached a consensus on a sign, it is indicated in parentheses.
When the expected sign is not well defined, a question mark is provided, as several different
transmission channels leading to opposite signs have been identified in the literature.

3.2 How do we select the predictors?

Given the relatively small number of observations (from the first quarter of 1997 to

the fourth quarter of 2019),15 the limited number of historic financial crises, the large

number of potential explanatory variables and the potential relevance of different lag

orders, we face the risk of in-sample overfitting with poor out-of-sample performance.
15We have data starting a few quarters earlier, but they display a decreasing trend for some sectors

that were recovering from the recession in the early 1990s. Including only part of the recovery phase
of this business cycle would blur the relationship we aim to estimate.

13



We overcome this problem by using elastic net regularization (Zou and Hastie, 2005)

as a model selection method, as well as expert judgement, to identify the most

informative combination of PD predictors.

Elastic net regularization reduces the number of predictors by penalizing parameter

fitting. It is a state-of-the art estimation procedure that extends the least squared

objective by a penalization term based on the coefficient size. In other words, the pro-

cedure prevents overfitting by lowering the absolute value of the coefficients, partially

setting them to zero, and thus including model selection.16

We select the model based on three criteria. First, based on the mean squared error

(MSE), the selected model must either minimize the out-of-sample MSE (Min-MSE)

or come within one standard deviation of it (1se-MSE). The latter is a conventional

method for selecting predictors in a conservative manner. The 10-fold cross-validation

technique is used to compute the out-of-sample MSEs.17 The model’s output must then

be robust in terms of sign and variable selection for the majority of the λ = {1, 2, 3, 4},

the free parameter calibrated as part of the PD filtration process. Furthermore, the

coefficients’ signs must be as expected, or they can be rationalized.

Table 2 displays the Min-MSE and 1se-MSE for an autoregressive model of order

up to 2 for various combinations of the regressors shown in Table 1: (1) current

values; (2) current and first lagged values; and (3) current, first and second lagged

values. Several results stand out. First, most MSE specifications provide comparable

out-of-sample predictions. Second, because the Min-MSE specifications yield only

a slight gain of about 2% on average when compared with the 1se-MSE, we take a

conservative approach in terms of the number of predictors chosen. Third, while the

specification with up to two lagged values has a better MSE on average, it has fewer

common explanatory variables across values of λ, and some signs are inconsistent with
16The penalty parameter is a linear combination of the L1 and L2 penalties of the lasso (Tibshirani,

1996) and ridge (Hoerl and Kennard, 1970a, 1970b) methods.
17This method randomly divides the dataset into 10 different subsets. One of the subsets is kept

as the validation set, and the model is trained (estimated) on the remaining 9 sets. We repeat this
process using each of the 10 subsets as a validation set, resulting in 10 estimates of the MSE for each
parameter value. The reported estimation is simply the average value of the 10 estimates.
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expectations.

Table 2: Elastic net—MSEs

Criterion X included PDλ=1 PDλ=2 PDλ=3 PDλ=4

Min-MSE t 0.1640 0.1183 0.0928 0.0738
Min-MSE t, t-1 0.1652 0.1187 0.0923 0.0720
Min-MSE t, t-1,t-2 0.1626 0.1130 0.0886 0.0722

1se-MSE t 0.1663 0.1202 0.0943 0.0747
1se-MSE t, t-1 0.1679 0.1208 0.0937 0.0729
1se-MSE t, t-1, t-2 0.1663 0.1146 0.0897 0.0730

Note: Elastic net with 10-fold cross-validation and a maximum
number of non-zero coefficients of 15. λ is the Poisson parameter
explained in section 2.

Overall, we select the specification of 1se-MSE for parsimony with up to one lag of

macrofinancial explanatory variables. Table 3 reports the full results for the selected

specification for all λ = {1, 2, 3, 4}. According to this specification, the PDs are best

explained by:

1. an AR(1) process

2. the current values of the unemployment rate, the real business credit, the policy

rate differential between Canada and the United States, and the Canadian term

premium

3. the first lagged values of the real business credit, the CAD/USD exchange rate,

the five-year GoC bond yield, and the US financial stress index

Expert judgement is also used to guide the final specification. Because most stress

test scenarios are designed around a GDP path, we do not penalize Canadian real

GDP and US industrial production, and we include their lagged values. We also

overrule the elastic net by including a second PD lag to remove serial correlation

in the residuals. However, as a result of these modifications, the current Canadian

term premium no longer bears the correct sign. Thus, we use its lagged value instead,

rendering the US financial stress index obsolete (i.e., with a marginal impact on the

out-of-sample performance). Table 4 displays the final list of variables.
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Table 3: Elastic Net—coefficients of 1se-MSE with up to 1 lag
Variables Transf. PDλ=1 PDλ=2 PDλ=3 PDλ=4

PDλt−1 level 0.8416 0.8431 0.8347 0.8368
PDλt−2 level 0 0 0 0
Real GDPt g.r. 0 0 0 0
Real GDPt−1 g.r. 0 0 0 0
Unemployment ratet level 0.0001 0.0098 0.0108 0
Unemployment ratet−1 level 0 0 0 0.0071
Total private credit-to-GDP ratiot g.r. 0 0 0 0
Total private credit-to-GDP ratiot−1 g.r. 0 0 0 0
Business credit-to-GDP ratiot g.r. 0 0 0 0
Business credit-to-GDP ratiot−1 g.r. 0 0 0 0
Real business creditt g.r. -0.0005 -0.0007 -0.0001 0
Real business creditt−1 g.r. 0 -0.0029 -0.0070 -0.0069
Total tradet g.r. 0 0 0 0
Total tradet−1 g.r. 0 0 0 0
USD/CAD ratet level 0 0 0 0
USD/CAD ratet−1 level -0.2539 -0.1573 -0.1234 -0.0580
Corporate spreadt level 0 0 0 0
Corporate spreadt−1 level 0 0 0 0
TSX indext g.r. 0 0 0 0
TSX indext−1 g.r. 0 0 0 0
Real house pricest g.r. 0 0 0.0005 0.0020
Real house pricest−1 g.r. 0 0 0 0.0010
Financial stress indext level 0 0 0 0
Financial stress indext−1 level 0 0 -0.0399 -0.1390
Inflation ratet level 0 0 0 0
Inflation ratet−1 level 0 0 0 0
6-month t-Billst level 0 0 0 0
6-month t-Billst−1 level 0 0 0 0
5-year GoC bondst level 0 0 0 0
5-year GoC bondst−1 level 0.0051 0.0020 0.0059 0.0068
Term premiumt level 0.0691 0.0662 0.0603 0.0410
Term premiumt−1 level 0 0 0.0110 0.0229
CA-US MP ratet level 0.0121 0.0093 0.0235 0.0300
CA-US MP ratet−1 level 0 0 0 0
Total assetst g.r. 0 0 0 0
Total assetst−1 g.r. 0 0 0 0
Total assets-to-equity ratiot level 0 0 0 0
Total assets-to-equity ratiot−1 level 0 0 0 0
Shareholders’ equityt g.r. 0 0 0 0
Shareholders’ equityt−1 g.r. 0 0 -0.0008 -0.0015
Return on equityt level 0 0 0 0
Return on equityt−1 level -1.0186 -0.2569 0 0
Net incomet g.r. 0 0 0 0
Net incomet−1 g.r. 0 0 0 0
US industrial productiont g.r. 0 0 0 0
US industrial productiont−1 g.r. 0 0 0 0
Oil pricest g.r. 0 0 0 0
Oil pricest−1 g.r. 0 0 0 0
US financial stress indext level 0 0 0 0.0253
US financial stress indext−1 level 0.2251 0.1454 0.0865 0.0772
US term premiumt level 0 0 0 0
US term premiumt−1 level 0 0 0 0
Note: Elastic net with 10-fold cross-validation and a maximum number of nonzero coefficients of 15. λ is
the Poisson parameter explained in section 2.
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3.3 Linear model: Autoregressive model

The final linear model, an autoregressive model of order 2 with additional predictors

in the vector X (henceforth ARX), takes the following form:

PDλ
t = α +

2∑
i=1

βiPD
λ
t−i + γXt + εt. (6)

Table 4 shows our estimates for equation (6) for PDλ
t with the free parameter for

the PD filtration λ = {1, 2, 3, 4}. The majority of our estimates are consistent with

our beliefs. First, the persistence of PDλ
t is high, with estimates ranging from 0.87

for λ = 1 and 0.93 for λ = 4.18 Second, the coefficient for the unemployment rate

is positive, whereas those for real GDP and US industrial production are negative,

indicating that an improvement in economic conditions reduces PDλ
t . Next, the

interest rates (i.e., five-year GoC bonds and US term premium) are positive, indicating

that PDλ
t will rise as the cost of borrowing rises. Finally, tighter credit conditions,

as measured by a decrease in real business credit, increase PDλ
t , implying that access

to additional credit lines is advantageous and outweighs, at least in the short term to

medium term, the financial vulnerability channel represented by increased business

indebtedness.

The autoregressive coefficients are statistically significant, while most other variables

are not. The p-values report the level of marginal significance, which is based on

an in-sample goodness-of-fit measure. However, in the context of a stress test, the

objective of our model is to produce out-of-sample prediction. Table 5 compares the

performance of our model with that of a simple AR(2) model to assess the value added

by the additional predictors. It presents the average root mean squared forecast error

(RMSE) of rolling 12-quarter-ahead forecasts made over the period t = 10 through

the end of the sample. The first row contains the full ARX model, which takes the

exogenous regressors over the projection horizon as given; and the second row contains
18The persistence is the sum of the coefficients on the lagged endogenous variables.
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Table 4: Estimated parameters—ARX

Variables Transf. PDλ=1 PDλ=2 PDλ=3 PDλ=4

PDλ
t−1 level 1.4235∗∗∗ 1.5542∗∗∗ 1.5832∗∗∗ 1.5868∗∗∗

PDλ
t−2 level -0.5585∗∗∗ -0.6567∗∗∗ -0.6687∗∗∗ -0.6598∗∗∗

Unemployment ratet level 0.0107 0.0095 0.0092 0.0081∗∗∗

Real business creditt g.r. -0.0117 -0.0153∗∗ -0.0132∗∗ -0.0098
CA-US MP ratet level 0.0452 0.0185 0.0090 0.0044
Real GDPt−1 g.r. -0.0227 -0.0198 -0.0116 -0.0095
Real business creditt−1 g.r. -0.0049 -0.0035 -0.0056 -0.0058∗∗∗

USD/CAD ratet−1 level -0.2525∗ -0.0939 -0.0442 -0.0268
5-year GoC bondst−1 level 0.0230∗∗ 0.0135∗∗ 0.0090 0.0060∗∗∗

Term premiumt−1 level 0.0591∗ 0.0308 0.0209 0.0182
US industrial productiont−1 g.r. -0.0129 -0.0080 -0.0080 -0.0063

Note: Results from estimation of equation (6). All models include an intercept. The symbols
*, ** and *** indicate statistical significance of the coefficient at the 10%, 5% and 1% levels,
respectively. λ is the Poisson parameter explained in section 2.

the simple AR(2) model. The ARX model outperforms in this projection, with a gain

of over 60% in the last quarter.

Table 5: h-quarter-ahead forecast RMSE—ARX versus AR(2)

h-quarter 1 2 3 4 5 6 7 8 9 10 11 12
ahead

ARX 0.06 0.10 0.15 0.17 0.19 0.20 0.21 0.20 0.20 0.19 0.19 0.18
AR(2) 0.07 0.13 0.20 0.25 0.31 0.36 0.40 0.43 0.46 0.47 0.48 0.48

Note: Results from simulations of equation (6) for λ = 3. Results are similar for λ = {1, 2, 4}.

Figure 4 provides a visualization of the performance of the model by presenting its

predictions with the fitted values, as well as projections of PDs conditional only on

the observed predictors in X.19 The figure shows that the full ARX model has an

excellent in-sample fit. The ARX model fits the levels and timing of the swings in

PDs better than the simpler AR(2) model.
19Except for the first two periods, which are used to initialize the projections, we use the projected

values of PDs of the previous periods as lagged explanatory variables for the next period, not the
observed one. Therefore, when we roll the projections forward, the projection errors are accumulated
over time.
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Figure 4: Model fit—ARX

Note: Results from estimation of equation (6) for λ = 3. Results are similar for λ = {1, 2, 4}.

3.4 Non-linear model: Quantile Regression Model

Although the autoregressive model predicts well, a linear specification is restrictive. It

implies, among other things, that shock responses will be symmetric (i.e., the impact

of positive and negative shocks of the same magnitude will be the same in absolute

terms) and independent of history (i.e., the impact does not depend on the starting

point).

To overcome these constraints, we model the non-linear and non-normal responses

of PDs using conditional quantile regressions, an extension of standard linear regres-

sions. This is especially helpful in understanding outcomes that are asymmetrically

distributed and have non-linear relationships with predictor variables. It allows us

to relax the assumption that the dynamics of PDs are the same at the distribution’s

upper and lower tails. We can also determine which factors are most important in

causing the large increase in PDs, which is useful for stress testing.
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Equation (6) is reformulated into a quantile regression (QR) framework. Formally,

the QR estimators minimize:

Q(βq) =
∑

t:PDλt ≥P̂Dλt

q|PDλ
t − P̂Dλ

t |+
∑

t:PDλt <P̂D
λ
t

(1− q)|PDλ
t − P̂Dλ

t |, (7)

where P̂Dλ
t = αq +

∑2
i=1 βi,qPD

λ
t−i + γqXt is the fitted value for quantile q, which

takes values from 0.1 to 0.9. Equation (7) is estimated using the majorize-minimize

method of Hunter and Lange (2000).20

In Figure 5, we compare the estimated parameters of the autoregressive parameters

(represented by the horizontal dashed-dotted black lines) with those of quantile re-

gression (represented by the solid black lines), which differ by quantile from 0.1 to

0.9.

We find these dynamics particularly interesting. First, the autoregressive process

is more persistent in the upper tail than in the lower tail, implying that PDs rise

faster and are more persistent during a crisis than in normal times. Furthermore, the

unemployment rate and US industrial production have an impact that is two to six

times greater on PDs in the upper quantiles than in the lower quantiles. On the other

hand, the effects of real GDP and real business credit seem muted in the upper tails.

Given that the model will be used in the context of stress testing, with scenarios that

are frequently in the upper tail of the distribution, these accentuated reactions in the

upper quantiles are better suited to simulations than to a linear model.

Despite the fact that the differences in estimated parameters between quantiles appear

to be minor, they are statistically significant. The test statistics and p-values of a

Wald test for equality of slope coefficients between quantiles with the null hypothesis

of no significant difference are shown in Table 6. The p-values show that the upper

quantile differs significantly from the lower quantiles.
20The results are similar using the interior point algorithm of Koenker and Park (1996) for the

quantile regression.
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Figure 5: Estimated parameters—QR versus ARX models

Note: Results from estimation of equation (6) and equation (7) with λ = 3. Results are similar for
λ = {1, 2, 4}.

Table 6: Quantile slope equality test

Tests Q95–Q50 Q90–Q50 Q90–Q10 Q95–Q05 Q50–Q10 Q50–Q05

χ2 statistics 7.18 9.78 17.51 22.96 17.27 19.00
p-values 0.78 0.55 0.09 0.02 0.10 0.06
Note: Wald test of equality of the slope parameters between two quantiles.

3.5 Backtesting historical PDs

We now provide a backtesting of the models in equations (6) and (7) to evaluate how

they would have performed if they had been available at different times, particularly

during stressful periods. The goals are to assess the models’ viability and gain

confidence in their use in the future, as well as to help calibrate the future stress test

scenario analysis to specific quantiles capable of replicating past crisis periods.

Figure 6 depicts the ability of the models to replicate the level of PDs observed

during the two main peaks. Panel a of the figure depicts the dynamics of the ARX
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model, whereas panel b depicts the various dynamics that can be generated using

the quantile models. The figure shows that the ARX model performs well, with the

upper confidence interval reproducing the historical PD peaks. However, simulating a

severe crisis for stress-testing purposes with a linear model based on mild crises may

underestimate the increase in PDs.

In contrast, the dynamics implied by the quantile models can generate even larger PDs

during the crisis. This is due to the accentuated responses in the tail of the distribution,

and the fact that we iterate the simulation forward using the values projected for the

quantile of the PD at the previous period. For instance, the simulation of the 90th

percentile in panel b assumes that the dynamics of the PD remain those of the 90th

percentile throughout the whole simulation—that is, it uses the elasticities estimated

with the quantile regression of the 90th percentile of the distribution. In a simulation,

if we keep for an extended period of time the dynamics of the PD to be those of a

crisis period, we can then simulate extreme PD paths previously unobserved. This is

especially important given that Canada has not experienced a severe banking crisis

in recent history.

The dashed line in panel b shows a combination of quantiles from the QR model,

starting the simulation at the 70th percentile and then gradually moving to the 20th

percentile (a proxy for a tranquil period) of the PD distribution. This simulation

is able to reproduce historical stress episodes. It suggests that, for stress-testing

purposes, when designing scenarios we should use at least the 70th quantile of the

QR-ARX model.

4 Modelling industry probability of default

In this section, we model PDs for each of the 10 industries. This modelling strategy

proceeds in a fashion similar to the aggregate presented in section 3, with three

variations.

First, we perform variable selection for each industry using the elastic net regular-

ization procedure described in section 3. However, the set of potential predictors is
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Figure 6: Backtesting—ARX and QR
(a)

(b)
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limited to those chosen for the aggregate PD, to which we add a few variables that

may have an industry-specific impact (e.g., house prices for construction and real

estate; the drop in oil prices from their maximal values over two years for mining,

quarrying and oil).

Second, we also include two aggregate PD lags as potential predictors to anchor the

dynamic of the industry-specific PDs around the aggregate.

Finally, we focus on a linear autoregressive model for industries, because we account for

non-linear dynamics by including lagged aggregate PDs from the quantile regressions.

The final linear model, an autoregressive model of order 2 with additional predictors

(henceforth Ind-ARX), takes the following form:

PDλ,ind
t = α +

2∑
i=1

βindi PDλ,ind
t−i +

2∑
i=1

βiPD
λ
t−i + γXt + εt, (8)

where PDλ,ind is the industry-specific PD and PDλ is the aggregate PD. The final

selection of predictors, along the estimated parameters, is presented in Table 7 for

each industry for PDλ
t with λ = 3.21

Several outcomes should be highlighted. First, the persistence of industry-specific PDs

is heterogeneous, with the majority being lower than the persistence of the aggregate

PD process. This is most likely due to the inclusion of the latter as an anchor that

captures a portion of the persistence.22 Second, for most industries, an improvement

in economic conditions reduces PDs, an increase in borrowing costs increases PDs,

and a credit tightening through a decrease in real business credit raises PDs. Third,

some of those patterns differ, especially for the mining, quarrying and oil industries.

Higher domestic borrowing costs are associated with lower PDs, but this is likely

because international funding conditions and the price of oil in US dollars are what

matter most, as reflected by the significant effect of the USD/CAD exchange rate.
21Results are similar for λ = {1, 2, 4}.
22Lags of the industry-specific PDs are always selected when included as potential predictors in

the elastic net regularization procedure for each industry.
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Table 7: Estimated parameters—industry-specific ARX

Variables Natural Mining, Manufacturing Construction Transportation,
Resources Quarrying, and Real Estate Communications,

and Oil and Utilities

PDλ=3,ind
t−1 1.0369∗∗∗ 1.5404∗∗∗ 1.3762∗∗∗ 1.7783∗∗∗ 1.4171∗∗∗

PDλ=3,ind
t−2 -0.2964∗∗∗ -0.6674∗∗∗ -0.4399∗∗∗ -0.8577∗∗∗ -0.5441∗∗∗

PDλ=3
t−1 0.0409 0.2210 0.1984 0.0256 0.1956

PDλ=3
t−2 0.0449 -0.0796 -0.2571 -0.0310 0.0803

Unemployment ratet 0.0650∗∗∗ 0.0103 0.0469∗∗

Real business creditt -0.0104 -0.0130 -0.0250
Real house pricest -0.0033
CA-US MP ratet -0.0472 0.0060 -0.0189 0.1205∗

Real GDPt−1 -0.0262 -0.0823
Real business creditt−1 -0.0142 -0.0731∗∗∗ 0.0090 -0.0143∗ -0.0275
USD/CAD ratet−1 -0.7466∗∗ 0.0390 0.3542∗∗ -0.9079∗∗

5-year GoC bondst−1 0.0300∗∗∗ -0.0611∗∗ 0.0145 -0.0025 0.0395
Term premiumt−1 0.0590∗ 0.0045
US Industrial productiont−1 -0.0196∗

Oil price dropt−2 0.2664

Variables Wholesale Retail Service Other Financial
Trade Corporates Institutions

PDλ=3,ind
t−1 1.2206∗∗∗ 1.1094∗∗∗ 1.3582∗∗∗ 1.4898∗∗∗ 1.2206∗∗∗

PDλ=3,ind
t−2 -0.2987∗∗∗ -0.3152∗∗∗ -0.4844∗∗∗ -0.6012∗∗∗ -0.3556∗∗∗

PDλ=3
t−1 0.3390∗∗∗ -0.0022 0.1423 0.0269 0.0180∗

PDλ=3
t−2 -0.3545∗∗∗ 0.0087 -0.1139 -0.0680 -0.0196∗∗

Unemployment ratet 0.0101 0.0685∗∗∗ 0.0162 0.0002 0.0038∗∗∗

Real business creditt 0.0062 0.0088 -0.0071 -0.0356∗∗∗

Real house pricest
CA-US MP ratet -0.0129
Real GDPt−1 -0.0096 -0.0061
Real business creditt−1 -0.0034 0.0132 -0.0054 -0.0058
USD/CAD ratet−1 0.3025∗∗

5-year GoC bondst−1 0.0007 0.0235∗∗∗ 0.0222∗∗∗ 0.0001
Term premiumt−1 0.0113 0.0331 0.0156 0.0748∗∗∗

US Industrial productiont−1 -0.0102
Oil price dropt−2

Note: Results from estimation of equation (8) for λ = 3. Results are similar for λ = {1, 2, 4}. All models include
an intercept. The symbols *, ** and *** indicate statistical significance of the coefficient at the 10%, 5% and 1%
levels, respectively.

As expected, a persistent drop in oil prices compared with the peak reached over the

previous two years increases PDs in this sector. However the increase is not significant,

likely because of the importance of the oil sector for the Canadian economy: when oil

prices are low, that already tends to depreciate the Canadian dollar, which is already

reflected in the USD/CAD exchange rate.

Figure 7 depicts the performance of the industry-specific models by displaying fitted

values as well as projections conditional solely on the observed external predictors
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X.23 The figure shows that the majority of the industry-specific ARX models have a

good in-sample fit and can fit both the levels and the timing of the swings in industry

PDs.

The autoregressive coefficients, like the aggregate PD model, are statistically sig-

nificant, whereas the majority of the other variables are not. Table 8 assesses the

value added of the two aggregate PD lags and the exogenous variables as predic-

tors compared with a simple AR(2) model. It displays the industry-specific average

RMSE of rolling 12-quarter-ahead forecasts made from the first quarter of 1999 to

the fourth quarter of 2019. The use of a 12-quarter projection horizon is consis-

tent with what is typically used in stress-testing exercises. The first row shows the

RMSE for the industry-specific ARX models. The second row shows the RMSE of the

industry-specific AR(2) models that include the two aggregate PD lags but exclude

the exogenous regressors (denoted AR(2)+PDλ). The third row shows the RMSE of

the simple industry-specific AR(2) models that exclude the aggregate PD lags and the

exogenous regressors (denoted AR(2)). We find that the Ind-ARX model improves

upon the AR(2)+PDλ model for all industries, and, in turn, the AR(2)+PDλ model

improves upon the simple AR(2) models. However, the difference is less significant

for the financial institutions, owing to the lower level of the PD in this industry and

less volatility to explain over time.

Aggregate industry-specific PDs. While the aggregate PD is used as an anchor

in each industry-specific model, there are no constraints in the estimation that ensure

the industry-specific PD projections are consistent with the aggregate PD projection

for the same stress-test scenario.

To address this inconsistency, we first compute a weighted average of industry-specific

PDs:

PDλ,wa
T+h =

∑
ind

PDλ,ind
T+h

TLindT
TLT

,

23The projections are generated the same way as for the aggregate PD projections of Figure 4,
with projection errors accumulating progressively as the time horizon expands.
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Table 8: h-quarter-ahead forecast RMSE—industry-specific ARX versus AR(2)+PDλ

vs AR(2)

h-quarter 1 2 3 4 5 6 7 8 9 10 11 12
ahead

Natural resources

Ind-ARX 0.09 0.12 0.14 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
AR(2)+PDλ 0.10 0.14 0.19 0.21 0.23 0.25 0.26 0.27 0.27 0.27 0.27 0.27
AR(2) 0.10 0.15 0.21 0.25 0.29 0.32 0.36 0.38 0.39 0.40 0.41 0.42

Mining, quarrying and oil

Ind-ARX 0.25 0.42 0.56 0.66 0.70 0.71 0.71 0.71 0.71 0.71 0.72 0.72
AR(2)+PDλ 0.29 0.56 0.81 1.03 1.19 1.29 1.33 1.35 1.34 1.32 1.31 1.32
AR(2) 0.29 0.56 0.84 1.08 1.27 1.40 1.47 1.50 1.49 1.47 1.47 1.49

Manufacturing

Ind-ARX 0.12 0.21 0.27 0.31 0.35 0.37 0.38 0.38 0.37 0.36 0.35 0.33
AR(2)+PDλ 0.13 0.23 0.31 0.36 0.40 0.42 0.44 0.44 0.44 0.43 0.41 0.39
AR(2) 0.13 0.25 0.35 0.43 0.51 0.55 0.58 0.60 0.61 0.61 0.60 0.58

Construction and real estate

Ind-ARX 0.08 0.16 0.24 0.29 0.31 0.33 0.33 0.33 0.32 0.31 0.30 0.30
AR(2)+PDλ 0.10 0.21 0.35 0.47 0.56 0.65 0.72 0.78 0.82 0.85 0.87 0.89
AR(2) 0.10 0.22 0.36 0.48 0.58 0.67 0.75 0.81 0.86 0.89 0.91 0.92

Transportation, communications and utilities

Ind-ARX 0.30 0.52 0.71 0.78 0.79 0.78 0.77 0.76 0.75 0.74 0.74 0.74
AR(2)+PDλ 0.34 0.63 0.93 1.11 1.23 1.30 1.35 1.39 1.41 1.42 1.42 1.42
AR(2) 0.35 0.70 1.09 1.37 1.60 1.77 1.93 2.06 2.17 2.25 2.31 2.34

Wholesale trade

Ind-ARX 0.08 0.13 0.16 0.17 0.18 0.19 0.20 0.21 0.21 0.20 0.20 0.19
AR(2)+PDλ 0.08 0.13 0.17 0.18 0.19 0.20 0.21 0.21 0.21 0.20 0.20 0.19
AR(2) 0.09 0.16 0.22 0.26 0.30 0.32 0.34 0.35 0.36 0.36 0.35 0.35

Retail

Ind-ARX 0.09 0.14 0.16 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.14
AR(2)+PDλ 0.10 0.17 0.22 0.25 0.28 0.29 0.29 0.29 0.29 0.29 0.28 0.27
AR(2) 0.10 0.18 0.24 0.28 0.33 0.35 0.36 0.36 0.37 0.37 0.36 0.35

Service

Ind-ARX 0.07 0.12 0.15 0.16 0.17 0.18 0.18 0.18 0.17 0.16 0.16 0.16
AR(2)+PDλ 0.08 0.14 0.18 0.22 0.25 0.28 0.29 0.31 0.32 0.33 0.33 0.34
AR(2) 0.08 0.14 0.20 0.24 0.29 0.32 0.35 0.37 0.38 0.39 0.40 0.41

Other corporates

Ind-ARX 0.10 0.17 0.22 0.26 0.29 0.29 0.28 0.27 0.26 0.26 0.26 0.26
AR(2)+PDλ 0.12 0.22 0.30 0.36 0.40 0.42 0.42 0.42 0.41 0.42 0.42 0.43
AR(2) 0.13 0.24 0.34 0.43 0.50 0.55 0.58 0.60 0.61 0.62 0.63 0.64

Financial institutions

Ind-ARX 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01
AR(2)+PDλ 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
AR(2) 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Note: Results from estimation of equation (8) for λ = 3. Results are similar for λ = {1, 2, 4}.
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Figure 7: Model fit by industry

Note: Results from estimation of equation (8) with λ = 3. Results are similar for λ = {1, 2, 4}.

where h is the quarter ahead in the projection and the weights are the share of loans

of each industry ind over total loans for the most recently observed quarter, which

are then assumed to be invariant for the period of the projection.
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We then compare the aggregate PDs with the weighted average of projected industry-

specific PDs:

PDRλ
T+h =

PDλ,wa
T+h

PDλ
T+h

For each period, if the weighted average of industry-specific PDs is below or above

the aggregate PDs, then we respectively scale up or down the industry-specific PDs

by PDRλ
T+h. This adjustment ensures that the aggregation of industry-specific PDs

matches the aggregate PD.

5 Application

We now provide an example of credit risk assessment under an extreme but plausible

macroeconomic scenario using RAMM (Tuzcuoglu, forthcoming). We simulate a

scenario from the first quarter of 2021 onward until the end of 2024. This fictitious

scenario describes economic developments in Canada and around the world.

Macrofinancial scenario. The severity and persistence of our scenario is aligned

with the 1981–82 recession, the worst recession experienced in Canada (Table 9). The

simulated peak-to-trough contraction of real GDP is -5.4% over six quarters, which

generates low inflation pressures. Unemployment reaches a peak of 13%, an increase

of nearly 4.5 percentage points over the fourth-quarter 2020 level. This recession

is broad-based and synchronized with a global recession as well as with heightened

stress in residential and commercial real estate, commodity prices and corporate debt

markets. Given the period of low rates at the beginning of the scenario compared with

other recession episodes, the three-month treasury rate remains near zero with the

five-year Government of Canada bond yield averaging 0.5% over the scenario period.

Finally, we assume tighter borrowing conditions for corporates, resulting in a sharp

deleveraging of businesses.

Assessment of credit risk. Figure 8 depicts the impact of this extremely severe

but plausible macrofinancial scenario on banks’ aggregate corporate probabilities of

default. The projected PD for the linear ARX model is represented by a solid black
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Table 9: Hypothetical risk scenario—overview and comparisons
Scenario 1981-82 1990-91 2008-09

recession recession recession

Real GDP contraction (peak −5.4 −5.4 −3.4 −4.5
to trough, %)

Recession duration (# of consecutive 6 6 4 3
quarters of negative growth)

Peak unemployment 13.0 13.0 11.7 8.6
5-year GoC bond yields 0.5 15.0 10.6 2.25
Real business credit contraction (peak −3.5 −6.0 −5.0 −0.5

to trough, %)

line, along with its 80% confidence bands represented by dotted black lines. The PDs

for the non-linear QR models are represented by dashed black lines for the 10th and

90th percentiles. For this simulation, we use as a starting point the probability of

default in the third and fourth quarters of 2020 as filtered by our new method.24

Two key aspects stand out. First, when using the linear model, the projected PD

already increases significantly. After two years, the PD reaches about 1.6% before

gradually declining. As expected, using the quantiles of the QR models yields a

broader range of potential projections. We can project a higher and more persistent

PD by using higher quantiles, as shown by the 90th percentile.

Second, the projected PD reaches levels comparable to the worst historical episodes.

It is driven by the small increase in PDs at the beginning of the simulation period

via the autoregressive parameters, the high rate of unemployment in the scenario and

the sharp decrease in the level of business credit.
24Other data sources can be used as starting points for projections as long as they represent a

quarterly PD and contain the industry decomposition, such as RAPID2 or the newly published IFRS
9 reports.
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Figure 8: Projections of aggregate PD—hypothetical scenario

Figure 9 displays the projected PDs now split by industry. The line labelled “aggregate”

is the aggregate PD, computed as a linear combination of the models of the 70th and the

20th quantiles as suggested in section 3.5. The same aggregate PD line is reproduced

on each sub-figure for reference, along with the industry-specific PDs. The original

industry-specific PD before adjustment is the dotted black line (i.e., the pure output of

the industry model that may not perfectly aggregate up to the output of the aggregate

model). The adjusted industry-specific PD (the dash-dotted line) is such that, by

construction, the weighted average of the adjusted industry-specific PDs perfectly

matches the aggregate PD. Recall that the aggregate PD is used as an explanatory

variable in the industry-specific models. This implies that the industry dynamics of

the PDs are broadly consistent with the aggregate dynamics. This desirable feature

ensures that the industry models usually behave well (non-negative and non-explosive

paths), thereby reducing the need for additional judgement if industry models were

estimated less precisely.25

25Note that the PD of loans to financial institutions is very low and very stable across the business
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Figure 9: Projections of industry-specific PD—hypothetical scenario

cycle. Thus, we do not adjust it upward as part of our effort to reconcile the average sectoral PD
and the aggregate PD. As a result, the lines "industry original" and "industry adjusted" on Figure 9
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6 Conclusion

We present the new corporate default model used in the Bank’s macrofinancial stress-

testing tool kit. The model forecasts possible default probability paths of the corporate

loan portfolio of Canadian banks under extreme but plausible macrofinancial risk

scenarios.

Because we can rely on stronger elasticities in the tail of the distribution, our non-linear

model can generate higher default probabilities than observed in-sample. Average

elasticities estimated from a linear model, in contrast, would be less consistent with

the severity of the scenarios typically simulated for stress testing.

Nevertheless, there are a few limitations to be aware of. First, we reconstruct time

series of default probabilities, which would otherwise be unavailable over a sufficiently

long time span. However, by doing so, we may introduce some model uncertainty

related to the specification of the filtering method we use. Second, while our non-linear

model helps address the lack of extreme events in our sample, we still need to decide

how far out in the tail the elasticities should be estimated.

are very similar for the PD of the loans to financial institutions.

33



A Data sources and definitions

Table 10: Data sources, coverage and definitions for total loans and gross impaired
loans

Corporate Sector’s Industries
Source: OSFI A2 Return, starts in 1994Q2, all DSIBs, all currencies

Natural Resources (sum of (1) Agriculture, (2) Fishing and trapping, and
(3) Logging and forestry)

Mining, quarrying and oil wells

Manufacturing

Construction and real estate

Transportation, communications and other utilities

Wholesale trade

Retail trade

Service

Other corporates (sum of (1) Multiproduct conglomerates, (2) Others, and
(3) Lease receivables)

Financial institutions

Retail
Source: OSFI N3 Return, starts in 1997Q1, all DSIBs, all currencies

Consumer Loans (sum of (1) Personal loans, and
(2) Other personal credit)

Residential Mortgages (sum of (1) Insured residential mortgages, and
(2) Uninsured residential mortgages)

Non-Residential Mortgages (sum of (1) Insured non-residential mortgages, and
(2) Uninsured non-residential mortgages)

Note: Corporate Sector’s Industries classified under Standard Industrial Classification
(SIC).
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Table 11: Definitions and sources of macrofinancial factors

Category/Variable Definition Source

Canadian

Economic conditions
Real GDP Gross domestic product at market prices (chained 2012 dollars, s.a.a.r) Statistics Canada
Unemployment Rate Unemployment rate (both sexes, 15 years and over, s.a.) Statistics Canada

Credit aggregates
Private credit-to-GDP ratio Ratio of the sum of total credit liabilities of households and Statistics Canada

private non-financial corporations to GDP
Business credit-to-GDP ratio Ratio of total credit liabilities of private non-financial Statistics Canada

corporations to GDP
Real business credit Total credit liabilities of private non-financial Statistics Canada

corporations, deflated by consumer price index
Residential mortgage-to-household Statistics Canada

disposable income ratio
Consumer credit-to-household Statistics Canada

disposable income ratio

Trade
Total trade Sum of total import and export (s.a.a.r) Statistics Canada
USD/CAD rate Spot exchange rates (monthly average) Wall Street Journal

Asset prices and financial conditions
Corporate spread ICE BofA Canada Corporate Non-Financial Index BoA
TSX index Standard and Poor’s/Toronto Stock Exchange Composite Index Statistics Canada
Real house prices Residential sale price, average (s.a.) CREA
Financial stress index See Duprey (2020) Bank of Canada

Monetary policy and interest rates
Inflation Rate Annual growth rate of Consumer Price Index (s.a.) Statistics Canada
6-month T-Bills Treasury bills, 6 month Statistics Canada
5-year GoC bonds Selected Government of Canada benchmark bond yields, 5 year Statistics Canada
Term premium 5-year GoC bonds - 6-month T-Bills
CA-US MP rate Bank of Canada Overnight Rate - US Fed Funds Rate Statistics Canada

Continued on next page
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Table 11: continued from previous page
Category/Variable Definition Source

Canadian

Banking
Total assets Total assets of the DSIBs OSFI
Total assets to equity ratio Ratio of total assets of DSIBs to total shareholders’ equity of DSIBs OSFI
Equity Total shareholders’ equity of DSIBs OSFI
Return-on-equity Ratio of net income applicable to common share of DSIBs to OSFI

total shareholders’ equity
Net income Net income applicable to common share OSFI

US (Foreign)

Economic conditions
US Industrial Production US Total Industrial Production Index (2017=100, s.a.) Federal Reserve Board

Commodity prices
Oil price drop US refiners’ acquisition cost of crude oil Energy Information

(including transportation and other fees, dollars per barrel) Administration
Computed as 1− current oil price

maximal oil price over past two years

Asset prices and financial conditions
US Financial stress index See Duprey, Klaus, and Peltonen (2017) Bank of Canada

Monetary policy and interest rates
US Term premium US 5-year Gov. Bond - US 3-month T-Bill Federal Reserve Board

Note: We either use the growth rate in log difference for variables in dollar or the level directly for ratios or rates, except for oil prices that are transformed
as the deviation from the local maximum.
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B Extension to consumer loans, residential mortgages and non-

residential mortgages

We develop an extension that allows simulations of default probabilities for consumer

loans, residential mortgages and non-residential mortgages. These extensions are

primarily intended to compute the PD distribution required for MFRAF (see section

3.1 of Fique, 2017b), but they can also be used as stand-alone models.

We use the same methodology to develop these models as we did for the corporate

sector’s default probabilities. First, the PDs for each of these loan types are filtered

from the total loans and non-performing loans available in the OSFI N3 return26

using the methodology described in section 2. Second, we take into account the same

macrofinancial predictors that are discussed in section 3.1. Third, the methodology

for selecting the most relevant predictors is the same as in section 3.2. We do not,

however, perform a new horse race of modelling techniques and use the same ARX

and QR models as those selected for the corporate sector. All the results presented

in this appendix are for λ = 3, but the dynamics are similar for λ = {1, 2, 4}.

B.1 Consumer loans

According to the methodology described in this report, the PDs for consumer loans

are best explained by:

1. an AR(1) process

2. the current values of the ratio of consumer credit to household disposable income,

the TSX index and the US financial stress index

3. the first lagged values of inflation, the policy rate differential between Canada

and the United Sates, US industrial production and the growth of oil prices

Figure 10 presents the estimated parameters of the linear autoregressive model (repre-

sented by the horizontal dash-dotted black lines) with those of the quantile regressions
26See Loans in Arrears (N3) of the Office of the Superintendent of Financial Institutions.
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model (represented by the solid black lines), which differ by quantile from 0.1 to 0.9.

Figure 10: Estimated parameters for the PDs for consumer loans—ARX versus QR
models

Figure 11 depicts the impact of the risk scenario introduced in section 5 on probabilities

of default for the non-residential mortgages on banks’ loan portfolios.
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Figure 11: Projections of PDs for consumer loans under risk scenario

B.2 Residential mortgages

The PDs for residential mortgages are best explained by:

1. an AR(2) process

2. the current values of the six-month T-bills, the USD/CAD rate, the growth of

oil prices, and the term premium

3. the first lagged values of real GDP, the ratio of residential mortgage to household

disposable income, the policy rate differential between Canada and the United

States, the US financial stress index, and the ratio of business credit to GDP

Figure 12 presents the estimated parameters of the linear autoregressive model (repre-

sented by the horizontal dash-dotted black lines) with those of the quantile regressions

model (represented by the solid black lines), which differ by quantile from 0.1 to 0.9.
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Figure 12: Estimated parameters for the PDs for residential mortgages—
ARX versus QR models

Figure 13 depicts the impact of the risk scenario introduced in section 5 on probabilities

of default for the non-residential mortgages on banks’ loan portfolios.
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Figure 13: Projections of PDs for residential mortgages under the risk scenario

B.3 Non-residential mortgages

The PDs for non-residential mortgages are best explained by:

1. an AR(2) process

2. the current values of inflation, real house prices, the USD/CAD exchange rate

and the US financial stress index

3. the first lagged values of the PDs for residential mortgages, the policy rate

differential between Canada and the United States

4. the second lagged values of the unemployment rate, and US industrial production

Figure 14 presents the estimated parameters of the linear autoregressive model (repre-

sented by the horizontal dash-dotted black lines) with those of the quantile regressions

model (represented by the solid black lines), which differ by quantile from 0.1 to 0.9.
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Figure 14: Estimated parameters for the PDs of non-residential mortgages—
ARX versus QR models

Figure 15 depicts the impact of the risk scenario introduced in section 5 on probabilities

of default for the non-residential mortgages on banks’ loan portfolios.
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Figure 15: Projections of the PDs for non-residential mortgages under the risk
scenario

43



44 

References 
Baboucek, I. and M. Jancar. 2005. “Effects of Macroeconomic Shocks to the Quality of the 

Aggregate Loan Portfolio.” Czech National Bank Working Paper No. 1/2005. 

Basel Committee on Banking Supervision. 2006. Sound Credit Risk Assessment for Valuation and 
Loans. Basel, Switzerland: Bank for International Settlements. 

Beck, R., P. Jakubik and A. Piloiu. 2015. “Key Determinants of Non-performing Loans: New 
Evidence from a Global Sample.” Open Economies Review 26 (3): 525–550. 

Berger, A. N. and R. DeYoung. 1997. “Problem Loans and Cost Efficiency in Commercial Banks.” 
Journal of Banking and Finance 21 (6): 849–870. 

Covas, F. B., B. Rump and E. Zakrajšek. 2014. “Stress-Testing US Bank Holding Companies: A 
Dynamic Panel Quantile Regression Approach.” International Journal of Forecasting 30 
(3): 691–713. 

Danielsson, J., M. Valenzuela and I. Zer. 2018. “Learning from History: Volatility and Financial 
Crises.” Review of Financial Studies 31 (7): 2774–2805. 

De Bock, M. R. and M. A. Demyanets. 2012. “Bank Asset Quality in Emerging Markets: 
Determinants and Spillovers.” International Monetary Fund Working Paper No. 12/71. 

Djoudad, R. and É. Bordeleau. 2013. “Méthodologie de construction de séries de taux de défaut 
pour l’industrie canadienne.” Bank of Canada Staff Discussion Paper No. 2013-2. 

Duprey, T. 2020. “Canadian Financial Stress and Macroeconomic Condition.” Canadian Public 
Policy 46 (S3): S236–S260. 

Duprey, T., B. Klaus and T. Peltonen. 2017. “Dating Systemic Financial Stress Episodes in the EU 
Countries.” Journal of Financial Stability 32 (C): 30–56. 

Espinoza, M. R. A. and A. Prasad. 2010. “Nonperforming Loans in the GCC Banking System and 
Their Macroeconomic Effects.” International Monetary Fund Working Paper No. 10/224. 

Figlewski, S., H. Frydman and W. Liang. 2012. “Modeling the Effect of Macroeconomic Factors 
on Corporate Default and Credit Rating Transitions.” International Review of Economics 
and Finance 21 (1): 87–105. 

Fique, J. 2017. “The MacroFinancial Risk Assessment Framework (MFRAF), Version 2.0.” Bank of 
Canada Technical Report No. 111. 

García-Marco, T. and M. D. Robles-Fernández. 2008. “Risk-Taking Behaviour and Ownership in 
the Banking Industry: The Spanish Evidence.” Journal of Economics and Business 60 (4): 
332–354. 

 



45 

Godlewski, C. J. 2005. “Bank Capital and Credit Risk Taking in Emerging Market Economies.” 
Journal of Banking Regulation 6 (2): 128–145. 

Gross, M. and J. Población. 2019. “Implications of Model Uncertainty for Bank Stress Testing.” 
Journal of Financial Services Research 55 (1): 31–58. 

Guth, M. 2022. “Predicting Default Probabilities for Stress Tests: A Comparison of Models.” 
Working paper. 

Hoerl, A. E. and R. W. Kennard. 1970a. “Ridge Regression: Applications to Nonorthogonal 
Problems.” Technometrics 12 (1): 69–82. 

Hoerl, A. E. and R. W. Kennard. 1970b. “Ridge Regression: Biased Estimation for Nonorthogonal 
Problems.” Technometrics 12 (1): 55–67. 

Hoggarth, G., A. Logan and L. Zicchino. 2005. “Macro Stress Tests of UK Banks.” BIS Papers, No. 
22, 392–408. 

Hunter, D. R. and K. Lange. 2000. “Quantile Regression via an MM Algorithm.” Journal of 
Computational and Graphical Statistics 9 (1): 60–77. 

Jiménez, G. and G. Saurina. 2006. “Credit Cycles, Credit Risk and Prudential Regulation.” 
International Journal of Central Banking 2 (2): 65–98. 

Jovovic, J. 2014. “Determinants of Non-performing Loans: Econometric Evidence Based on 25 
Countries.” PhD thesis, Master Thesis, City University London. 

Kirti, D. 2018. “Lending Standards and Output Growth.” International Monetary Fund Working 
Paper No. 2018/023. 

Koenker, R. and B. J. Park. 1996. “An Interior Point Algorithm for Nonlinear Quantile Regression.” 
Journal of Econometrics 71 (1–2): 265–283. 

Louzis, D. P., A. T. Vouldis and V. L. Metaxas. 2012. “Macroeconomic and Bank-Specific 
Determinants of Non-performing Loans in Greece: A Comparative Study of Mortgage, 
Business and Consumer Loan Portfolios.” Journal of Banking and Finance 36 (4): 1012–
1027. 

MacDonald, C. and V. Traclet. 2018. “The Framework for Risk Identification and Assessment.” 
Bank of Canada Technical Report No. 113. 

Makri, V., A. Tsagkanos and A. Bellas (2014): “Determinants of Nonperforming Loans: The Case 
of Eurozone.” Panoeconomicus 61 (2): 193–206. 

Mileris, R. 2012. “Macroeconomic Determinants of Loan Portfolio Credit Risk in Banks.” 
Engineering Economics 23 (5): 496–504. 

Misina, M., D. Tessier and S. Dey. 2006. “Stress Testing the Corporate Loans Portfolio of the 
Canadian Banking Sector.” Bank of Canada Staff Working Paper No. 2006-47. 



46 

Nkusu, M. 2011. “Non-performing Loans and Macrofinancial Vulnerabilities in Advanced 
Economies.” International Monetary Fund Working Paper No. 11/161. 

Peterson, B. and T. Roberts. 2016. “Household Risk Assessment Model.” Bank of Canada 
Technical Report No. 106. 

Podpiera, J. and L. Weill. 2008. “Bad Luck or Bad Management? Emerging Banking Market 
Experience.” Journal of Financial Stability 4 (2): 135–148. 

Pouvelle, M. C. 2012. “Bank Credit, Asset Prices and Financial Stability: Evidence from French 
Banks.” International Monetary Fund Working Paper No. 12/103. 

Radivojevic, N. and J. Jovovic. 2017. “Examining of Determinants of Non-Performing Loans.” 
Prague Economic Papers 26 (3): 300–316. 

Rajan, R. and S. C. Dhal. 2003. “Non-performing Loans and Terms of Credit of Public Sector 
Banks in India: An Empirical Assessment.” Reserve Bank of India Occasional Papers 24 
(3): 81–121. 

Rinaldi, L. and A. Sanchis-Arellano. 2006. “Household Debt Sustainability: What Explains 
Household Non-performing Loans? An Empirical Analysis.” European Central Bank 
Working Paper No. 570. 

Saba, I., R. Kouser and M. Azeem. 2012. “Determinants of Non-performing Loans: Case of US 
Banking Sector.” Romanian Economic Journal 15 (44): 125–136. 

Salas, V. and J. Saurina. 2002. “Credit Risk in Two Institutional Regimes: Spanish Commercial 
and Savings Banks.” Journal of Financial Services Research 22: 203–224. 

Schularick, M. and A. M. Taylor. 2012. “Credit Booms Gone Bust: Monetary Policy, Leverage 
Cycles, and Financial Crises, 1870-2008.” American Economic Review 102 (2): 1029–1061. 

Shu, C. 2002. “The Impact of Macroeconomic Environment on the Asset Quality of Hong Kong’s 
Banking Sector.” Hong Kong Monetary Authority Research Memorandums (December). 

Škarica, B. 2014. “Determinants of Non-performing Loans in Central and Eastern European 
Countries.” Financial Theory and Practice 38 (1): 37–59. 

Tibshirani, R. 1996. “Regression Shrinkage and Selection Via the Lasso.” Journal of the Royal 
Statistical Society: Series B (Methodological) 58 (1): 267–288. 

Tuzcuoglu, K. Forthcoming. “The Risk Amplification Macro Model (RAMM).” Bank of Canada 
Technical Report. 

Zou, H. and T. Hastie. 2005. “Regularization and Variable Selection via the Elastic Net.” Journal 
of the Royal Statistical Society: Series B (Statistical Methodology) 67 (2): 301–320. 

 


	Acknowledgements
	Abstract
	Bruneau-Duprey-Hipp_updated_noFrontPage.pdf
	Introduction
	A new method to filter probabilities of default
	Method
	Data
	Results

	Modelling aggregate probability of default
	Which macrofinancial factors predict PDs?
	How do we select the predictors?
	Linear model: Autoregressive model
	Non-linear model: Quantile Regression Model
	Backtesting historical PDs

	Modelling industry probability of default
	Application
	Conclusion
	Data sources and definitions
	Extension to consumer loans, residential mortgages and non-residential mortgages
	Consumer loans
	Residential mortgages
	Non-residential mortgages





