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Abstract 
We introduce behavioral learning equilibria (BLE) into a multi-variate linear framework and 
apply it to New Keynesian DSGE models. In a BLE, boundedly rational agents use simple but 
optimal first-order autoregressive (AR(1)) forecasting rules whose parameters are consistent 
with the observed sample mean and autocorrelation of past data. We study the BLE concept 
in a standard three-equation New Keynesian model and develop an estimation methodology 
for the canonical Smets and Wouters (2007) model. A horse race between rational 
expectations equilibrium (REE), BLE and constant gain learning models shows that the BLE 
model outperforms the REE benchmark and is competitive with constant gain learning 
models in terms of in-sample and out-of-sample fitness. Sample autocorrelation learning of 
optimal AR(1) beliefs provides the best fit when short-term survey data on inflation 
expectations are considered in the estimation. As a policy application, we show that optimal 
Taylor rules under AR(1) expectations inherit history dependence, requiring a lower degree of 
interest rate smoothing than REE. 

Topics: Business fluctuations and cycles; Inflation and prices; Economic models; Monetary policy 
JEL codes: C11, E62, E3, D83, D84 

Résumé 
Nous introduisons un équilibre basé sur l’apprentissage des comportements dans un cadre 
linéaire multivarié et l’appliquons à des modèles dynamiques stochastiques d’équilibre 
général (DSEG) de type Nouveaux Keynésiens. Dans un équilibre basé sur l’apprentissage des 
comportements, les agents dotés d’une rationalité limitée utilisent des règles d’anticipation 
de la forme des processus autorégressifs d’ordre 1 (AR (1)) simples mais optimales dans le 
sens où leurs paramètres correspondent à la moyenne de l’échantillon et à l’autocorrélation 
des données passées observées. Nous étudions le concept d’équilibre basé sur 
l’apprentissage des comportements à l’aide d’un modèle Nouveau Keynésien standard à trois 
équations et nous mettons au point une méthode d’estimation pour le modèle canonique de 
Smets et Wouters (2007). Une évaluation comparative entre le modèle d’équilibre basé sur 
des anticipations rationnelles (REE), le modèle d’équilibre basé sur l’apprentissage des 
comportements et les modèles d’apprentissage à gain constant montre que le modèle 
d’équilibre basé sur l’apprentissage des comportements fait mieux que le modèle à 
anticipations rationnelles de référence et est comparable aux modèles d’apprentissage à gain 
constant en termes d’adéquation statistique sur l’échantillon et hors échantillon. Lorsqu’on 
intègre au modèle les anticipations d’inflation à court terme tirées des données d’enquête et 
que les anticipations de la forme d’AR (1) évoluent grâce à un apprentissage de 
l’autocorrélation et de la moyenne, ces anticipations offrent la meilleure adéquation avec les 
données. Pour ce qui est de l’application empirique à la politique monétaire, nous montrons 
que la règle de Taylor, qui est optimale lorsque les anticipations sont formées avec des 
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modèles AR (1), intègre de la dépendance au sentier et nécessite de ce fait un degré plus 
faible de lissage des taux d’intérêt que le modèle avec anticipations rationnelles. 

Sujets : Cycles et fluctuations économiques; Inflation et prix; Modèles économiques; Politique 
monétaire 
Codes JEL : C11, E62, E3, D83, D84 

 



1 Introduction

Rational expectations (RE) is the workhorse approach for modeling expectations in

DSGE models, and it has been the dominant framework in macroeconomic modeling for

several decades since the work of Muth (1961) and Lucas (1972). The RE paradigm is

a model-consistent approach where, by construction, agents’ expectations are on average

confirmed by the realisations of the model. Nevertheless, some drawbacks of RE models

have been highlighted in recent literature. One of these shortcomings is matching the per-

sistence of macroeconomic variables. To do so RE models typically need to be augmented

by highly persistent exogenous shocks or other sources of persistence such as consumption

habits and indexation in prices and wages. Agents in RE models are assumed to know

a large number of state variables, shocks and parameters to form their expectations. In

medium- and large-scale DSGE models, such assumptions lead to implausibly large in-

formation sets. Some studies have also highlighted the failure of RE models to match

expectations data from standard surveys (Coibion et al., 2018).

In this paper, we propose a Behavioral Learning Equilibrium (BLE) as a plausible

and parsimonious alternative to RE that matches persistence and fits with survey data.

A BLE is one of the most parsimonious misspecification equilibria, where agents use a

simple forecasting model because the economy is too complex to fully understand its

structure. Along a BLE, agents forecast the states of the economy by simple, but optimal

univariate AR(1) rules.1 The AR(1) rules are optimal in the sense that the mean and

the first-order autocorrelation of all forecasts coincide with the actual mean and the first-

order autocorrelation of the realisations. Hommes and Zhu (2014) applied this idea in the

simplest framework of a linear univariate model driven by autocorrelated shocks. In this

paper, we extend it to multivariate linear systems and provide a method for approximating

and estimating a BLE in a general setup. We use Bayesian methods to estimate BLE

in the medium-scale Smets-Wouters (2007) DSGE model and compare the in-sample fit

and the out-of sample forecasting performance to the Rational Expectations Equilibrium

(REE) benchmark and alternative learning models.

One of the appealing features of RE models is that they remove all parameters and

degrees of freedom associated with expectations. RE are model-consistent and are deter-

mined by the structural parameters. A BLE is also subject to a set of restrictions and

therefore it is parameter-free and completely pinned down by structural parameters. In

this sense, a BLE is an equilibrium model where the parameters of the AR(1) rules have

been set optimally akin to a REE. The models only differ in terms of the information set

1Different types of misspecification equilibria have been proposed in the literature. A non-exhaustive
list includes Restricted Perceptions Equilibria (RPE), which generally refer to under-parameterized fore-
casting rules (see, e.g., Sargent, 1991; Evans and Honkapohja, 2001; Branch, 2004; Adam, 2007; Bullard
et al., 2008; Lansing, 2009; Branch and Evans, 2010; Lansing and Ma, 2017; Audzei and Slobodyan,
2017), and Natural Expectations (Fuster et al., 2010) where agents use autoregressive models with lower
orders than implied by the correct model. The closest misspecification equilibrium to our work is that of
Consistent Expectations Equilibria CEE (Hommes and Sorger, 1998), where agents use a simple linear
AR(1) rule in a non-linear model.
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or agents’ knowledge about the underlying system. In the linearized DSGE framework,

REE and BLE are both linear equilibrium models but they satisfy different fixed point

conditions. While REE assumes perfect knowledge of the underlying multi-variate linear

structure, BLE imposes observable consistency restrictions that the first two moments,

the mean and the first-order autocorrelation, must satisfy. These conditions imply that

the optimal AR(1) rules are unbiased and their forecast errors are uncorrelated with pre-

dictor variables, but these observable restrictions are less strong than the perfect fixed

point conditions for model-consistent REE.

Our paper makes theoretical and empirical as well as policy contributions. In terms

of theoretical contributions, we derive existence conditions of BLE in a general linear

framework and stability conditions for a natural learning process of BLE, the sample

autocorrelation (SAC-)learning. We then apply these results to the simplest New Keyne-

sian (NK) model (Woodford, 2003a), show that the Taylor principle is sufficient for the

existence of a BLE and study its E-stability under SAC-learning.

In terms of an empirical application, we use the Smets-Wouters (2007) DSGE model

as a test ground for a horse race between BLE, REE, several constant-gain recursive

least squares models (pseudo MSV, AR(2) and VAR(1)) and SAC-learning by comparing

the models across a multitude of dimensions. In particular, we compare the models in

terms of in-sample fitness and pseudo out-of-sample forecasting performance. We further

discuss their performance to match short-term inflation expectations by estimating the

models with data from the Survey of Professional Forecasters (SPF). We find that the

BLE model generally improves upon the REE benchmark in terms of both in-sample

fitness and pseudo out-of-sample forecasting performance, while learning models tend to

outperform the equilibrium models BLE and REE. Among the learning models, we find

that SAC-learning yields the best model fitness and matches short-term inflation survey

expectations data well.

In terms of policy application, we investigate optimal smoothing within the class of

standard Taylor rules and find that optimal interest rate smoothing is substantially lower

in the BLE model than in the REE model. This result extends to SAC-learning, while

the pseudo MSV-learning model yields an optimal smoothing degree closer to the REE

benchmark. This suggests that when expectations are persistent and backward-looking,

as in the case of BLE, the central bank does not need to introduce more persistence and

history-dependence through interest rate smoothing, as in the case of REE. We show that

the deployment by agents of simple backward-looking rules to forecast macroeconomic

aggregates makes the interest rate dependent on past data and thus adds history depen-

dence in policy rate setting. When agents are purely forward looking instead, as in REE,

interest rate smoothing is necessary in order for policy rate decisions to become history

dependent.2

2In the literature on the design of optimal monetary policy under rational expectations, history de-
pendence is also obtained through price level targeting instead of inflation targeting. For a more detailed
discussion, see Giannoni (2014) and the references therein.
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At the time of the writing of this paper, major central banks like the Federal Reserve

and the European Central Bank are reviewing their strategies. The fear of failing to

anchor inflation expectations well has led central banks to broaden the range of models

used for the analysis of monetary policy transmission. In particular, the analysis of

monetary policy transmission is deemed necessary in models where expectations are no

longer rational but feature bounded rationality and backward-looking behaviour.3 This

reveals that our analysis lies at the heart of current policy debates since we estimate one of

the most prominent models in central banking by accounting for various types of learning

as a deviation from the rational expectations benchmark.

The paper is organized as follows. Section 2 focuses on theory. It introduces the main

concepts of BLE in a general n-dimensional setup, presents the existence and stability con-

ditions of BLE in a multi-variate linear framework, applies BLE in the baseline 3-equation

NK model and presents a numerical method to approximate an E-stable BLE. Section 3 is

an empirical application using the Smets-Wouters NK model to run a horse race between

different equilibrium and learning models using a Bayesian estimation methodology. Sec-

tion 4 discusses a policy application of optimal interest rate smoothing, comparing the

equilibrium and some of the learning models. Finally, Section 5 concludes.

Related Literature

Applications of adaptive learning in macroeconomic models have been of great inter-

est to policymakers and academics alike. Our paper contributes to this growing line of

literature. See, e.g., Evans and Honkapohja (2001), Branch and Evans (2006), Bullard

(2006), Woodford (2013) and Angeletos and Lian (2016) for extensive reviews.4

A shortcoming of REE models that has received attention in the literature is their

failure to generate realistic expectation dynamics and being at odds with data coming

from survey expectations. For example, Canova and Gambetti (2010) revisit the great

moderation period and examine the role of expectations using reduced form methods.

By using data from SPF, they find an important role for expectations that did not sub-

stantially change over time. Adam and Padula (2011) estimate a forward-looking New

Keynesian Phillips Curve (NKPC) using data from the SPF (Croushore, 1993) as a proxy

for expected inflation and obtain reasonable estimates for the slope of the NKPC, which is

an improvement over the REE model. Along similar lines, Del Negro and Eusepi (2011)

use inflation expectations as an observed variable in their model estimations and find

evidence that the survey of expectations contains information not explained by other

3In her speech on September 30, 2020, at the ECB and its watchers XXI conference, Christine Lagarde
alluded to the relevance of models that depart from the rational expectations assumption by stating,
“while make-up strategies may be less successful when people are not perfectly rational in their decisions
– which is probably a good approximation of the reality we face – the usefulness of such an approach could
be examined.”

4There is a large body of literature on the analysis of learning in macroeconomic models (see Huang
et al., 2009; Marcet and Nicolini, 2003; Sargent et al., 2009 and Williams, 2003, among others.) In this
paper, we restrict ourselves to the literature on the analysis of monetary policy under learning.
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macroeconomic variables. Gennaioli et al. (2016) show, by using survey expectations,

that corporate investment plans depend on CFOs’ expectations of earnings growth. Fore-

cast errors in CFOs’ expectations are predictable, which provides evidence in support of

small extrapolative forecasting rules. Fuhrer (2017) shows that embedding survey data

into DSGE models helps in several directions, such as reducing reliance on ad-hoc sources

of persistence like habit and indexation. A common feature in these studies is that they

document the shortcomings of REE models along the expectations dimension and argue

for the usefulness of incorporating data from survey expectations into these models.

Much of the literature on adaptive learning focuses on dynamics under MSV-learning of

a correctly specified model (see, e.g., Marcet and Sargent, 1989; Evans and Honkapohja,

2001; Milani, 2007) and studies conditions under which the learning process converges

on the underlying REE. Orphanides and Williams (2004) study monetary policy under

MSV-learning and find that optimal policy is typically more aggressive to inflation under

learning. Milani (2007, 2011) considers the estimation of the baseline NK model and finds

that the model fit is improved under learning, while the dependence on some structural

parameters such as habit and indexation is substantially reduced. Berardi and Galimberti

(2017) consider model specifications with time-varying gains under MSV-learning and find

higher estimates for the gain parameter on inflation.

In a related study, Gaus and Gibbs (2018) consider models with Euler-equation learn-

ing (Evans and Honkapohja, 2003) and infinite-horizon learning (Preston, 2005) to com-

pare with the REE benchmark. They document that introducing adaptive learning in

DSGE models leads to a near-universal improvement in model fit, while the estimated

parameter bands remain mostly unchanged compared to REE. Gaus and Gibbs (2018)

then compare their learning models to fixed beliefs (FB) models and show that much of

the improved model fit is due to relaxing the cross-equation restrictions of REE. Our

approach complements and extends their analysis in several dimensions. First, Gaus and

Gibbs (2018) do not consider misspecified rules but use FB with a correctly specified

forecasting function (the MSV solution) with fixed parameters, which they set equal to

the estimated REE belief parameters. Our BLE concept with an AR(1) forecasting rule

is one of the most parsimonious misspecified rules (using only a constant [the mean] and

the lagged state variable, and no exogenous shocks). Second, we introduce a fixed beliefs

equilibrium, where the parameters of the AR(1) rule are optimized using the behavioural

restrictions imposed by BLE, namely that the mean and first-order autocorrelations are

correct. Hence, we study whether the behavioral equilibrium cross-equation restrictions

of a BLE improve the model fit. Third, BLE comes with a natural learning scheme:

SAC-learning. Therefore, we can disentangle the empirical fit of the behavioral BLE re-

strictions and its SAC-learning process and study whether learning adds to improving the

empirical fit.

A growing number of papers also consider small and/or misspecified forecasting rules as

a convenient alternative to RE and MSV-learning. Lansing (2009) constructs a consistent
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expectations equilibrium (CEE), similar in spirit to our BLE concept, where agents use

the optimal Kalman gain within their class of misspecified models. Along similar lines,

Lansing and Ma (2017) use a CEE concept to study exchange rate dynamics. Fuster et al.

(2010a, 2010b, 2012) study natural expectations characterized by an underestimation of

the degree of mean reversion, which arises when agents use lower order autoregressive

models than is warranted by the correct data generating process. As such, when applied

to models of higher order autoregressive processes, a BLE may be seen as the simplest

case of natural expectations. Ormeño and Molnár (2015) investigate whether an adaptive

learning model can fit the macroeconomic and survey data simultaneously and find that

this is true only when small forecasting rules are considered. The most relevant study

for this paper is Slobodyan and Wouters (2012a), where the authors show that an AR(2)

forecasting rule under Kalman gain learning substantially improves the model fit without

a large effect on parameter estimates. As such, this paper can be seen as extending

their work in several directions, where we disentangle the effects of the fixed equilibrium

beliefs, the timing of expectations and the learning algorithm on the model fit. Audzei

and Slobodyan (2022) consider a model where agents use misspecified models, and they

are allowed to evaluate and change their forecasting models over time. They find that

in some parameter regions, agents find it optimal to use their choice of a (misspecified)

AR(1) rule. Gelain et al. (2019) investigate hybrid expectations in the Smets and Wouters

(2007) model, where some agents use moving average rules. Hommes and Lustenhouwer

(2019) consider a NK model under heterogeneous expectations, with fundamentalists who

believe in the target of the central bank versus agents with naive expectations who believe

in a random walk. Along similar lines, some studies investigate ARIMA type forecasting

rules in an experimental setup with human subjects and find evidence of small forecasting

rules. See, e.g., Adam (2007), Beshears et al. (2013) and Assenza et al. (2021).

There is much literature on optimal monetary policy rules when agents are learning.

Evans and Honkapohja (2003, 2006) analyze the effects of learning on stability when

monetary policy is conducted according to optimal policy rules under discretion and

commitment and show that forward looking rules, where the policy maker observes and

incorporates agents’ expectations, can solve the problem of instability due to learning.5

Orphanides and Williams (2005) show that adaptive learning increases inflation persis-

tence, which warrants a stronger policy response to inflation in order to mitigate the

effects. Along similar lines, Preston (2006) reports that when monetary policy responds

to private agents’ learning behavior and decision rules, instability problems associated

with learning dynamics are largely avoided. Finally, Gaspar et al. (2010) analyze how the

optimal inflation and output trade-off changes when agents learn adaptively and show that

the optimal targeting rule under learning resembles the optimal rule under commitment

5In their seminal paper, Bullard and Mitra (2002) examine the stability of the REE under variants
of the standard Taylor rule and show that even when the system displays a unique, stable equilibrium
under rational expectations, the parameters of the policy rule have to be chosen appropriately to ensure
stability under learning.
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with rational expectations. Our contribution to this discussion in the literature is that we

restrict our focus on a specific interest rate rule that captures the trade-off between inter-

est rate smoothing and inflation/output gap stabilization and analyze how this trade-off

changes under learning. Contrary to the literature, we expand the loss function of the

central bank with an interest rate stabilization objective. We then derive numerically the

coefficients capturing the trade-off between smoothing and inflation/output gap stabiliza-

tion that minimizes the loss function for various weights of the interest rate stabilization

objective, both under learning and under rational expectations. We show that interest

rate fluctuations are more costly under learning since the central bank has to give up on

inflation and output stabilization faster as the weight on interest rate stabilization rises.

2 BLE in a Multivariate Framework

Hommes and Zhu (2014) introduced BLE in the simplest setting, a one-dimensional

linear stochastic model driven by an exogenous linear stochastic AR(1) process. In this

paper, we generalize BLE to n-dimensional (linear) stochastic models driven by exogenous

linear stochastic AR(1) processes of multiple shocks. To ease the exposition, we initially

follow the presentation in Hommes and Zhu (2014) but generalize their 1-dimensional

model to an n-dimensional framework. In addition, most macroeconomic models include

lagged state variables through features such as interest rate smoothing, habit formation in

consumption, investment adjustment costs or indexation in prices and wages. Therefore,

we further extend the model adding lagged state variables.

Let the law of motion of the economy be given by the stochastic difference equation

xxxt = FFF (xxxet+1, xxxt−1, uuut, vvvt), (2.1)

where xxxt is an n×1 vector of endogenous variables denoted by [x1t, x2t, · · · , xnt]′ and xxxet+1

is the expected value of xxx at date t + 1. Expectations may be nonrational. The map

FFF is a continuous n-dimensional vector function, uuut is a vector of exogenous stationary

variables and vvvt is a vector of white noise disturbances.

Agents are boundedly rational and do not know the exact form of the actual law of

motion (2.1). They only use a simple, parsimonious forecasting model, a univariate AR(1)

process for each variable to be forecasted.6 Thus agents’ perceived law of motion (PLM)

is assumed to be the simplest VAR model with minimum parameters, i.e., a restricted

VAR(1) process

xxxt = ααα + βββ(xxxt−1 −ααα) + δδδt, (2.2)

6As shown in Enders (2008), parameter uncertainty increases as the model becomes more complex,
and hence an estimated AR(1) model may forecast a real ARMA(2,1) process better than an estimated
ARMA(2,1) model. Numerous empirical studies show that overly parsimonious models with little pa-
rameter uncertainty can provide better forecasts than models consistent with the more complex actual
data-generating process (e.g., Nelson, 1972; Stock and Watson, 2007; Clark and West, 2007).
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where ααα is a vector denoted by [α1, α2, · · · , αn]′, βββ is a diagonal matrix7 denoted by
β1 0 · · · 0

0 β2 · · · 0
...

. . .
...

0 0 · · · βn


with βi ∈ (−1, 1), and {δδδt} is a white noise process; ααα is the unconditional mean of xxxt, and

βi is the first-order autocorrelation coefficient of variable xi. Given the perceived law of

motion (2.2), the 2-period ahead forecasting rule for xxxt+1 that minimizes the mean-squared

forecasting error is

xxxet+1 = α + β2(xt−1 − α)α + β2(xt−1 − α)α + β2(xt−1 − α). (2.3)

Combining the expectations (2.3) and the law of motion of the economy (2.1), we obtain

the implied actual law of motion (ALM)

xxxt = FFF (ααα + βββ2(xxxt−1 −ααα), xxxt−1, uuut, vvvt). (2.4)

In the case where the ALM (2.4) is stationary, let the variance-covariance matrix

ΓΓΓ(0) := E[(xxxt − xxx)(xxxt − xxx)′] and the first-order autocovariance matrix ΓΓΓ(1) := E[(xxxt −
xxx)(xxxt+1 − xxx)′], where xxx is the mean of xxxt. Let ΩΩΩ be the diagonal matrix in which the ith

diagonal element is the variance of the ith process, i.e, ΩΩΩ = diag[γ11(0), γ22(0), · · · , γnn(0)],
where γii(0) is the ith diagonal entry of ΓΓΓ(0). Let LLL be the diagonal matrix in which

the ith diagonal element is the first-order autocovariance of the ith process, i.e., LLL =

diag[γ11(1), γ22(1), · · · , γnn(1)], where γii(1) is the ith diagonal entry of ΓΓΓ(1). LetGGG denote

the diagonal matrix in which the ith diagonal element is the first-order autocorrelation

coefficient of the ith process xi,t. Hence,

GGG = LLLΩΩΩ−1. (2.5)

Behavioral Learning Equilibrium (BLE)

Extending on Hommes and Zhu (2014) and using the definitions of coefficients and

matrices above, the concept of BLE is generalized as follows.

Definition 2.1 A vector (µ,ααα,βββ) where µ is a probability measure, ααα is a vector and βββ

is a diagonal matrix with βi ∈ (−1, 1) (i = 1, 2, · · · , n) is called a Behavioral Learning

Equilibrium (BLE) if the following three conditions are satisfied:

S1 The probability measure µ is a nondegenerate invariant measure for the stochastic

difference equation (2.4);

7Chung and Xiao (2013) also argue that the simple AR(1) model is more likely to prevail in reality
because agents typically have restricted knowledge about the underlying system. In addition, short-term
forecasts based on an AR(1) model are often better than more general VAR models because in more
general VAR models too many parameters need to be estimated. Hence, coefficient uncertainty increases,
leading to a deterioration in forecasting performance.
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S2 The stationary stochastic process defined by (2.4) with the invariant measure µ

has an unconditional mean ααα, that is, the unconditional mean of xi is αi, (i =

1, 2, · · · , n);

S3 Each element xi for the stationary stochastic process of xxx defined by (2.4) with

the invariant measure µ has the unconditional first-order autocorrelation coefficient

βi, (i = 1, 2, · · · , n), that is, GGG = βββ, with G defined in (2.5).

In other words, a BLE is characterized by two natural observable consistency require-

ments: the unconditional means and the unconditional first-order autocorrelation coef-

ficients generated by the actual (unknown) stochastic process (2.4) coincide with the

corresponding statistics for the perceived linear VAR(1) process (2.2), as given by the pa-

rameters ααα and βββ. This means that in a BLE, agents correctly perceive the two simplest

and most important statistics, the mean and first-order autocorrelation (i.e., persistence)

of each relevant variable of the economy, without fully understanding its structure and rec-

ognizing all explanatory variables and cross-correlations. A BLE is parameter free, as the

two parameters of each linear forecasting rule are pinned down by simple and observable

statistics. Hence, agents do not fully understand the (linear) structure of the stochastic

economy, i.e., they do not observe the shocks and do not take the cross-correlations of

state variables into account. Rather they use a parsimonious, but optimal univariate

AR(1) forecasting rule for each state variable. A simple BLE may be a plausible outcome

of the coordination process of expectations of a large population.8

Furthermore, we note that along a BLE the orthogonality condition

E[xi,t − αi − βi(xi,t−1 − αi)] = 0,

E{[xi,t − αi − βi(xi,t−1 − αi)]xi,t−1} = E{[xi,t − αi − βi(xi,t−1 − αi)](xi,t−1 − αi)} = 0

is satisfied. That is, the forecast αi + βi(xi,t−1 − αi) is the linear projection of xi,t on

the vector (1, xi,t−1)
′. For each variable, agents cannot detect the correlation between

the forecasting error xi,t − αi − βi(xi,t−1 − αi) and the vector (1, xi,t−1)
′ in the forecast

model. The linear projection produces the smallest mean squared error among the class of

linear forecasting rules (e.g., Hamilton, 1994). Therefore, for each variable, agents use the

optimal forecast within their class of univariate AR(1) forecasting rules (Branch, 2004).

Sample autocorrelation learning

In the above definition of BLE, agents’ beliefs are described by the linear forecasting

rule (2.3) with parameters ααα and βββ fixed at their optimal values. However, the parameters

ααα and βββ are usually unknown to agents. In the adaptive learning literature, it is common to

8Laboratory experiments within the NK framework provide empirical support of the use of simple
univariate AR(1) forecasting rules to forecast inflation and output gap (Adam, 2007; Pfajfar and Žakelj,
2014; Assenza et al., 2021). See also Hommes (2021) for a recent survey of laboratory evidence for simple
forcasting heuristics such as AR(1) rules. In section 3.4 we will see that BLE also fits well with SPF data.
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assume that agents behave like econometricians using time series observations to estimate

the parameters as new observations become available. Following Hommes and Sorger

(1998), we assume that agents use sample autocorrelation learning (SAC-learning) to

learn the parameters αi and βi, i = 1, 2, · · · , n. That is, for any finite set of observations

{xi,0, xi,1, · · · , xi,t}, the sample average is given by

αi,t =
1

t+ 1

t∑
k=0

xi,k, (2.6)

and the first-order sample autocorrelation coefficient is given by

βi,t =

∑t−1
k=0(xi,k − αi,t)(xi,k+1 − αi,t)∑t

k=0(xi,k − αi,t)2
. (2.7)

Hence, αi,t and βi,t are updated over time as new information arrives. It is easy to check

that independently of the choice of the initial values (xi,0, αi,0, βi,0), it always holds that

βi,1 = −1
2
and that the first-order sample autocorrelation βi,t ∈ [−1, 1] for all t ≥ 1.

Similar to Hommes and Zhu (2014), we define

Ri,t =
1

t+ 1

t∑
k=0

(xi,k − αi,t)
2.

Then SAC-learning is equivalent to the following recursive dynamical system:9

αi,t = αi,t−1 +
1

t+ 1
(xi,t − αi,t−1),

βi,t = βi,t−1 +
1

t+ 1
R−1
i,t

[
(xi,t − αi,t−1)

(
xi,t−1 +

xi,0
t+ 1

− t2 + 3t+ 1

(t+ 1)2
αi,t−1 −

1

(t+ 1)2
xi,t
)

− t

t+ 1
βi,t−1(xi,t − αi,t−1)

2
]
,

Ri,t = Ri,t−1 +
1

t+ 1

[ t

t+ 1
(xi,t − αi,t−1)

2 −Ri,t−1

]
.

(2.8)

The actual law of motion under SAC-learning is therefore given by

xxxt = FFF (αααt−1 + βββ2
t−1(xxxt−1 −αααt−1), xxxt−1, uuut, vvvt), (2.9)

with αi,t, βi,t as in (2.8). In Hommes and Zhu (2014), F is a one-dimensional linear

function. In this paper, FFF may be an n-dimensional linear vector function and includes

the lagged term xxxt−1.

9The system in (2.8) is a decreasing gain algorithm, where all observations receive equal weight and
therefore the weight of the latest observation decreases as the sample size grows. There is also a constant
gain correspondence of SAC-learning, where past observations are discounted at a geometric rate. This
can be obtained by replacing the weights 1

t+1 by some (small) positive constant κ. See the online appendix
to Hommes and Zhu (2014) for further details.
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2.1 Main results in a multivariate linear framework

Assume that a reduced form model is an n-dimensional linear stochastic process xxxt

driven by an exogenous VAR(1) process uuut. More precisely, the actual law of motion of

the economy is given by the linear system

xxxt = FFF (xxxet+1, xxxt−1, uuut, vvvt) = bbb0 + bbb1xxx
e
t+1 + bbb2xxxt−1 + bbb3uuut + bbb4vvvt, (2.10)

uuut = aaa+ ρρρuuut−1 + εεεt, (2.11)

where xxxt is an n×1 vector of endogenous variables, bbb0 and aaa are vectors of constants, bbb1, bbb2

and bbb4 are n×n matrices of coefficients, bbb3 is an n×m matrix, ρρρ is an m×m matrix, uuut is

an m× 1 vector of exogenous variables, which is assumed to follow a stationary VAR(1)

as in (2.11), and vvvt is an n × 1 vector of i.i.d. stochastic disturbance terms with mean

zero and finite absolute moments and with variance-covariance matrix ΣvvvΣvvvΣvvv. Hence, all of

the eigenvalues of ρρρ are assumed to be inside the unit circle. In addition, εεεt is assumed

to be an m × 1 vector of i.i.d. stochastic disturbance terms with mean zero and finite

absolute moments. εεεt is independent of vvvt and its variance-covariance matrix is ΣεΣεΣε.

Rational expectations equilibrium

Assume that agents are rational. The perceived law of motion (PLM) corresponding

to the minimum state variable REE of the model is

xxx∗t = ccc0 + ccc1xxx
∗
t−1 + ccc2uuut + ccc3vvvt. (2.12)

Assuming that shocks uuut are observable when forecasting xxxt+1, the 1-step ahead forecast

is

Etxxx
∗
t+1 = ccc0 + ccc2aaa+ ccc1xxx

∗
t + ccc2ρρρuuut, (2.13)

and the corresponding actual law of motion is

xxx∗t = bbb0 + bbb1(ccc0 + ccc2aaa+ ccc1xxx
∗
t + ccc2ρρρuuut) + bbb2xxxt−1 + bbb3uuut + bbb4vvvt. (2.14)

The REE is the fixed point of

ccc0 − bbb1ccc1ccc0 − bbb1ccc0 = bbb0 + bbb1ccc2aaa, (2.15)

ccc1 − bbb1ccc
2
1 = bbb2, (2.16)

ccc2 − bbb1ccc1ccc2 − bbb1ccc2ρρρ = bbb3, (2.17)

ccc3 − bbb1ccc1ccc3 = bbb4. (2.18)
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A straightforward computation (see Appendix A.1) shows that the mean of the REE xxx∗

satisfies

xxx∗ = (III − bbb1 − bbb2)
−1[bbb0 + bbb3(I − ρρρ)−1a(I − ρρρ)−1a(I − ρρρ)−1a], (2.19)

where III denotes a conformable identity matrix throughout the paper. In the special case

of ρρρ = ρIII and bbb2 = 000, the rational expectations equilibrium xxx∗t satisfies
10

xxx∗t = (III − bbb1)
−1bbb0 + (III − bbb1)

−1bbb1(III − ρbbb1)
−1bbb3aaa+ (III − ρbbb1)

−1bbb3uuut + bbb4vvvt. (2.20)

Thus its unconditional mean is

xxx∗ = E(xxx∗t ) = (1− ρ)−1(III − bbb1)
−1[bbb0(1− ρ) + bbb3aaa]. (2.21)

Its variance-covariance matrix is

ΣΣΣxxx∗ = E[(xxx∗t − xxx∗)(xxx∗t − xxx∗)
′
] = (1− ρ2)−1(III − ρbbb1)

−1bbb3ΣεεεΣεεεΣεεε[(III − ρbbb1)
−1bbb3]

′
+ bbb4ΣvΣvΣvbbb

′
4.(2.22)

Furthermore, the first-order autocovariance is

ΣΣΣxxx∗xxx∗1 = E[(xxx∗t − xxx∗)(xxx∗t+1 − xxx∗)
′
] = ρ(1− ρ2)−1(III − ρbbb1)

−1bbb3ΣεεεΣεεεΣεεε[(III − ρbbb1)
−1bbb3]

′
. (2.23)

The first-order autocorrelation of the i-th-element x∗i of xxx
∗ is the i-th diagonal element of

matrix ΣΣΣxxx∗xxx∗1 divided by the corresponding i-th diagonal element of matrix ΣΣΣxxx∗ . Further-

more, if ΣvvvΣvvvΣvvv = 000, then the first-order autocorrelation of the i-th element xi of xxx is equal to

ρ. In this case the persistence of the i-th variable x∗i in the REE coincides exactly with

the persistence of the exogenous driving force ui,t. That is, in this case the persistence in

the REE only inherits the persistence of the exogenous driving force.

Existence of BLE

Assume that agents are boundedly rational and do not recognize that the economy

is driven by an exogenous VAR(1) process uuut but use simple univariate AR(1) rules to

forecast the state xxxt of the economy. Given that agents’ perceived law of motion is a

restricted VAR(1) process as in (2.2), the actual law of motion is linear and given by

xxxt = bbb0 + bbb1[ααα + βββ2(xxxt−1 −ααα)] + bbb2xxxt−1 + bbb3uuut + bbb4vvvt, (2.24)

with uuut given in (2.11). If all eigenvalues of bbb1βββ
2 + bbb2 for each βi ∈ [−1, 1], 1 ≤ i ≤ n lie

inside the unit circle, then the system (2.24) of xxxt is stationary and hence its mean xxx and

first-order autocorrelation GGG exist.

10Note that ρρρ is a matrix while ρ is a scalar number, throughout the paper.
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The mean of xxxt in (2.24) is computed as

xxx = (III − bbb1βββ
2 − bbb2)

−1[bbb0 + bbb1ααα− bbb1βββ
2ααα + bbb3(III − ρρρ)−1aaa]. (2.25)

Imposing the first consistency requirement of a BLE on the mean, i.e., xxx = ααα, and solving

for ααα yields

ααα∗ = (III − bbb1 − bbb2)
−1[bbb0 + bbb3(III − ρρρ)−1aaa]. (2.26)

Comparing this with (2.19), we conclude that in a BLE the unconditional mean ααα∗ coin-

cides with the REE mean. That is to say, in a BLE the state of the economy xxxt fluctuates

on average around its RE fundamental value xxx∗.

Consider the second consistency requirement of a BLE on the first-order autocorrela-

tion coefficient matrix βββ of the PLM. The second consistency requirement yields

GGG(βββ) = βββ, (2.27)

where GGG = LLLΩΩΩ−1, as in (2.5), and βββ are diagonal matrices. Since the actual law of

motion in (2.24) is linear, the diagonal matrix GGG(β) may be computed explicitly (see

Appendix A.2). For convenience, let Gi denote the i-th diagonal element of the matrix

GGG in (2.5). Assuming that all of the eigenvalues of bbb1βββ
2 + bbb2 for each βi ∈ (−1, 1)(i =

1, 2, · · · , n) lie inside the unit circle, using the theory of stationary linear time series,

Gi(β1, β2, · · · , βn) ∈ (−1, 1) and is a continuous function with respect to (β1, β2, · · · , βn)
and other model parameters (see Appendix A.2).11 Based on Brouwer’s fixed-point the-

orem for (G1, G2, · · · , Gn), βββ
∗ = (β∗

1 , β
∗
2 , · · · , β∗

n) exists with each β∗
i ∈ [−1, 1], such that

GGG(β∗β∗β∗) = β∗β∗β∗. We conclude:12

Proposition 1 If all eigenvalues of bbb1βββ
2 + bbb2 for each βi ∈ [−1, 1] are inside the unit

circle, at least one behavioral learning equilibrium (ααα∗,βββ∗) exists for the economic system

(2.24) with ααα∗ = (III − bbb1 − bbb2)
−1[bbb0 + bbb3(III − ρρρ)−1aaa] = xxx∗.

Stability under SAC-learning

Next, we study the stability of BLE under SAC-learning. The ALM of the economy

under SAC-learning is given by{
xxxt = bbb0 + bbb1[αααt−1 + βββ2

t−1(xxxt−1 −αααt−1)] + bbb2xxxt−1 + bbb3uuut + bbb4vvvt,

uuut = aaa+ ρρρuuut−1 + εεεt,
(2.28)

11For example, refer to the expression (3.9) in Hommes and Zhu (2014) for the special 1-dimensional
case n = 1 and bbb2 = 000. In Subsection 2.2 we consider the NK model with two forward-looking variables,
and in Appendix A.5 we compute the (complicated) expressions of G1(β1, β2) and G2(β1, β2) explicitly.

12The Schur-Cohn criterion theorem provides necessary and sufficient conditions for all eigenvalues to
lie inside the unit circle (see Elaydi, 2005). For specific models, one may find sufficient conditions that
are independent of βββ to guarantee that all eigenvalues of bbb1βββ

2 + bbb2, for each βi ∈ [−1, 1], are inside the
unit circle. For example, in the case of the NK model, the Taylor principle is a sufficient condition to
ensure that all eigenvalues of bbb1βββ

2 + bbb2 lie inside the unit circle for all βi ∈ [−1, 1] (see Subsection 2.2.2,
Corollary 1, and Appendix A.4).
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with αααt, βββt updated based on the realized sample average and sample autocorrelation as in

(2.8). Appendix A.3 shows that the E-stability principle applies and that stability under

SAC-learning is determined by the associated ordinary differential equation (ODE):13
dααα

dτ
= xxx(ααα,βββ)−ααα = (III − bbb1βββ

2 − bbb2)
−1[bbb0 + bbb1ααα− bbb1βββ

2ααα + bbb3(III − ρρρ)−1aaa]−ααα,

dβββ

dτ
= GGG(βββ)− βββ,

(2.29)

where xxx(ααα,βββ) is the mean given by (2.25) and GGG(βββ) is the diagonal first-order autocorre-

lation matrix. A BLE (ααα∗,βββ∗) corresponds to a fixed point of the ODE (2.29). Moreover,

a BLE (ααα∗,βββ∗) is locally stable under SAC-learning if it is a stable fixed point of the ODE

(2.29). Therefore, we have the following property of SAC-learning stability:

Proposition 2 A BLE (ααα∗,βββ∗) is locally stable (E-stable) under SAC-learning if

(i) all eigenvalues of (III − bbb1βββ
∗2 − bbb2)

−1(bbb1 + bbb2 − III) have negative real parts, and

(ii) all eigenvalues of DDDGGGβββ(βββ
∗) have real parts less than 1, where DDDGGGβββ is the Jacobian

matrix with the (i, j)-th entry ∂Gi
∂βj

.

Proof. See Appendix A.3.14

Recall from the discussion above that Gi(β1, β2, · · · , βn) ∈ (−1, 1), so that at least one

BLE exists. Proposition 2 states when the BLE is E-stable under SAC-learning.

2.2 Application of BLE in the Baseline NK Model

In this section, before considering an empirical assessment of BLE, we apply our results

within the framework of a standard NK model along the lines of Gali (2008) and Woodford

(2003a), in order to provide an analytical comparison between BLE and REE. Consider a

simple version without price indexation and habit persistence linearized around the zero

inflation steady state, given by{
yt = yet+1 − φ(rt − πet+1) + uy,t,

πt = λπet+1 + γyt + uπ,t,
(2.30)

where yt is the output gap, πt is the inflation rate, and yet+1 and π
e
t+1 are expected output

gap and expected inflation, respectively. The absence of lagged state variables allows us to

derive some analytical results in order to compare the BLE to the REE in this framework.

The terms uy,t, uπ,t are stochastic shocks and are assumed to follow AR(1) processes

uy,t = ρyuy,t−1 + εy,t, (2.31)

uπ,t = ρπuπ,t−1 + επ,t, (2.32)

13See Evans and Honkapohja (2001) for a discussion and mathematical treatment of E-stability.
14The Routh-Hurwitz criterion theorem provides sufficient and necessary conditions for all the n eigen-

values having negative real parts (see Brock and Malliaris, 1989).
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where ρi ∈ [0, 1) and {εi,t} (i = y, π) are two uncorrelated i.i.d. stochastic processes with

zero mean and finite absolute moments with corresponding variances σ2
i .

The first equation in (2.30) is an IS curve that describes the demand side of the econ-

omy. In an economy of rational or boundedly rational agents, it is a linear approximation

of a representative agent’s Euler equation. The parameter φ > 0 is related to the elasticity

of intertemporal substitution in the consumption of a representative household, while its

inverse denotes relative risk aversion. The second equation in (2.30) is the NKPC, which

describes the aggregate supply relation. This is obtained by averaging all firms’ optimal

pricing decisions. The parameter γ is related to the degree of price stickiness in the econ-

omy, and the parameter λ ∈ [0, 1) is the subjective discount factor of the representative

household.

We supplement the equations in (2.30) with a standard Taylor-type policy rule, which

represents the behavior of the monetary authority in setting the nominal interest rate:

rt = ϕππt + ϕyyt, (2.33)

where rt is the deviation of the nominal interest rate from the value that is consistent

with inflation at target and output at the steady state. The parameters ϕπ, ϕy, measuring

the response of rt to the deviation of inflation and output from long run steady states,

are assumed to be non-negative.

Substituting the Taylor-type policy rule (2.33) for (2.30) and writing the model in

matrix form gives {
xxxt = BBBxxxet+1 +CCCuuut,

uuut = ρρρuuut−1 + εεεt,
(2.34)

where xxxt = [yt, πt]
′,uuut = [uy,t, uπ,t]

′, εεεt = [εy,t, επ,t]
′,BBB = 1

1+γφϕπ+φϕy

[
1 φ(1− λϕπ)

γ γφ+ λ(1 + φϕy)

]
,

CCC = 1
1+γφϕπ+φϕy

[
1 −φϕπ
γ 1 + φϕy

]
, ρρρ =

[
ρy 0

0 ρπ

]
.

Before turning to BLE, we first consider the Rational Expectations Equilibrium (REE).

2.2.1 Rational Expectations Equilibrium

Comparing the NK model (2.34) with the general framework summarized by (2.10)

and (2.11), we note that aaa = 000, bbb0 = 000 and bbb2 = 000. The REE fixed point in (2.15–2.18) is

then simplified to

(III −BBB)ξξξ = 000 (2.35)

ηηη = Bηηηρρρ+C. (2.36)
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Bullard and Mitra (2002) show that the REE is unique (determinate) if and only if

γ(ϕπ − 1) + (1− λ)ϕy > 0. The REE is then the stable stationary process with mean

x∗ = 0. (2.37)

In the symmetric case ρi = ρ for i = {y, π}, the REE x∗
t satisfies

x∗
t = (I− ρB)−1Cut. (2.38)

Thus its covariance is

ΣΣΣx∗ = E(x∗
t − x∗)(x∗

t − x∗)
′

= (1− ρ2)−1(I− ρB)−1CΣεεεΣεεεΣεεε[(I− ρB)−1C]
′
. (2.39)

Furthermore, the first-order autocorrelation of the i-element xi of x is equal to ρ. That

is, in this case the persistence of the REE coincides exactly with the persistence of the

exogenous driving force ut, and the first-order autocorrelations of output gap and inflation

are the same, i.e., symmetric, equal to the autocorrelation in the driving force. Therefore,

in the baseline NK model without habits in consumption and price indexation, inflation

and output gap inherit the persistence of the shocks under RE.

2.2.2 Behavioral learning equilibrium

As in the general setup in Section 2, we assume that agents are boundedly rational

and use simple univariate linear rules to forecast the output gap yt and inflation πt of

the economy. Therefore, we deviate from Bullard and Mitra (2002) in two important

ways: (i) our agents cannot observe or do not use the exogenous shocks uuut, and (ii) agents

do not fully understand the linear stochastic structure and do not take into account the

cross-correlation between inflation and output. Rather, our agents learn simple univariate

AR(1) forecasting rules for inflation and output gap, as in (2.2). However these AR(1)

rules indirectly, in a boundedly rational way, take exogenous shocks and cross-correlations

of endogenous variables into account as agents learn the two parameters of each AR(1)

rule consistent with the observable sample averages and first-order autocorrelations of the

state variables inflation and output gap.15

The actual law of motion (2.34) becomes{
xxxt = BBB[ααα + βββ2(xxxt−1 −ααα)] +CuCuCut,

uuut = ρρρut−1 + εεεt.
(2.40)

For the actual law of motion (ALM) (2.40), the REE determinacy condition γ(ϕπ −
1)+ (1−λ)ϕy > 0 implies that the ALM is stationary for all βββ (see Appendix A.4). Thus

the means and first-order autocorrelations are

15The use of a simple AR(1) rule is supported by evidence from the learning-to-forecast laboratory
experiments in the NK framework in Adam (2007), Pfajfar and Žakelj (2014) and Assenza et al. (2021).
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xxx = (III −BBBβββ2)−1(BBBααα−BBBβββ2ααα),

GGG(ααα,βββ) =

[
G1(βy, βπ) 0

0 G2(βy, βπ)

]
=

[
corr(yt, yt−1) 0

0 corr(πt, πt−1))

]
.

For the NK model in this section without any lagged state variables, focusing on

the symmetric case with ρy = ρπ = ρ, we can obtain expressions for G1(βy, βπ) and

G2(βy, βπ), which are provided in Appendix A.5. The resulting expressions depend on

eight parameters φ, λ, γ, ϕy, ϕπ, ρ, σ
2
π and σ

2
y. Having analytical expressions for G1(βy, βπ)

and G2(βy, βπ) allows us to narrow down the existence and stability conditions in this

special case. Hence, using Proposition 1 and Proposition 2 we have the following properties

for the NK model:

Corollary 1 Under the Taylor rule (2.33), if γ(ϕπ − 1) + (1 − λ)ϕy > 0, then at least

one BLE (ααα∗,βββ∗) exists, where ααα∗ = 000 = xxx∗.

Corollary 2 Under the Taylor rule (2.33) and the condition γ(ϕπ − 1) + (1− λ)ϕy > 0,

a BLE (ααα∗,βββ∗) is locally stable under SAC-learning if all eigenvalues of DDDGGGβββ(βββ
∗) =(

∂Gi
∂βj

)
βββ=βββ∗

have real parts less than 1.

Proof. See Appendix A.6.

These results serve as a useful starting point to discuss some properties of BLE in a

baseline setup. For the general n-dimensional case, we rely on a numerical algorithm to

approximate a BLE, which is explained in Section 2.3.

To illustrate the typical output-inflation dynamics under BLE, we present a calibration

exercise for empirically plausible parameter values. As in the Clarida et al. (1999) calibra-

tion, we fix φ = 1, λ = 0.99. We fix γ = 0.04, which lies between the calibrations γ = 0.3

in Clarida et al. (1999) and γ = 0.024 in Woodford (2003a). For the exogenous shocks,

we set the ratio of shocks σπ
σy

= 0.5, which is within the possible range suggested in Fuhrer

(2006). We consider the symmetric case ρy = ρπ = ρ = 0.5, with weak persistence in the

shocks. The baseline parameters on the policy response to inflation deviation and output

gap are in line with much of the literature, ϕπ = 1.5, ϕy = 0.5 (see, e.g., Fuhrer, 2006,

2010). At these parameter values, the two eigenvalues of the Jacobian matrix DDDGGGβββ(βββ
∗)

are 0.5012± 0.7348i (with real parts less than 1), which implies that the BLE is E-stable

under SAC-learning based on our theoretical results. The numerical results shown below

are robust across a range of plausible parameter values.

Figure 1 illustrates the unique E-stable BLE (β∗
y , β

∗
π) = (0.9, 0.9592). In order to

obtain (β∗
y , β

∗
π), we numerically compute the corresponding fixed point β∗

π(βy), satisfy-

ing G2(βy, β
∗
π) = β∗

π for each βy, and the corresponding fixed point β∗
y(βπ), satisfying

G1(β
∗
y , βπ) = β∗

y for each βπ, as illustrated in Figure 1. Hence their intersection point

(β∗
y , β

∗
π) satisfies G1(β

∗
y , β

∗
π) = β∗

y and G2(β
∗
y , β

∗
π) = β∗

π.
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Figure 1: A unique BLE (β∗
y , β

∗
π) = (0.9, 0.9592) obtained as the intersection point of the

fixed point curves β∗
π(βy) and β

∗
y(βπ). The BLE exhibits strong persistence amplification

compared to REE (red dot, with ρ = 0.5). Parameters are: λ = 0.99, φ = 1, γ = 0.04, ρ =
0.5, ϕπ = 1.5, ϕy = 0.5, andσπ

σy
= 0.5.

A striking feature of the BLE in this setup is that the first-order autocorrelation

coefficients of output gap and inflation (β∗
y , β

∗
π) = (0.9, 0.9592) are substantially higher

than those at the REE, that is, the persistence is much higher than the persistence ρ(= 0.5)

of the exogenous shocks. We refer to this phenomenon as persistence amplification. Agents

fail to recognize the exact linear structure and cross-correlations of the economy but rather

learn to coordinate the mean and the first-order autocorrelations of inflation and output

gap on simple univariate AR(1) rules consistent with simple observable statistics. As a

result of this self-fulfilling mistake, shocks to the economy are strongly amplified.

Figure 2 illustrates how these results depend on the persistence ρ of the exogenous

shocks. The figure shows the BLE, i.e., the first-order autocorrelations β∗
y of the output

gap and β∗
π of inflation, as a function of the parameter ρ. This figure clearly shows the

persistence amplification along BLE, with much higher persistence than under RE, for all

values of 0 < ρ < 1. Especially for ρ ≥ 0.5, we have β∗
y , β

∗
π ≥ 0.9, implying that the output

gap and inflation have significantly higher persistence than the exogenous driving forces.

Figure 2 (right plot) also illustrates the volatility amplification under BLE compared to

REE. For the output gap, the ratio of variances σ∗2
y,BLE/σ

∗2
y,REE reaches a peak of about

2.5 for ρ ≈ 0.75, while for inflation the ratio of variances σ∗2
π,BLE/σ

∗2
π,REE reaches its peak

at about 3.5 for ρ ≈ 0.65.
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Figure 2: BLE (β∗
y , β

∗
π) as a function of the persistence ρ of the exogenous shocks. (a)

β∗
i (i = y, π) with respect to ρ; (b) the ratio of variances (σ∗2

y,BLE/σ
∗2
y,REE, σ

∗2
π,BLE/σ

∗2
π,REE)

of the BLE (β∗
y , β

∗
π) w.r.t. the REE. Parameters are: λ = 0.99, φ = 1, γ = 0.04, ϕπ =

1.5, ϕy = 0.5, σπ
σy

= 0.5.

2.3 How to find an E-stable BLE

This section discusses how to appproximate a BLE. The perceived mean values α∗α∗α∗ of

a BLE are characterized by the same unconditional means as the underlying REE. There-

fore, without loss of generality we may assume α∗α∗α∗ = 0. The first-order autocorrelation

coefficients βββ∗ in a BLE are functions in terms of the structural parameters µµµ, which sat-

isfy the nonlinear equilibrium conditions G(βββ∗,µµµ) = βββ∗ in (2.27), without a closed-form

solution. In this section, we use the concept of Iterative E-stability (Evans, 1985) to find

E-stable BLE for a given set of structural parameters µµµ.

Iterative E-stability is a simple fixed-point iteration to evaluate the mapping from

perceived first-order autocorrelations βββ to the actual first-order autocorrelations G(β, µβ, µβ, µ).

Given some initial conditions β(1)β(1)β(1), the iteration works as follows:

β(k+1)β(k+1)β(k+1) = G(β(k)β(k)β(k),µµµ), 1 ≤ k ≤ N, (2.41)

where k denotes the current iteration index, N is the total number of iterations, and µµµ

denotes the vector of structural parameters. A BLE (000,β∗β∗β∗) is locally stable under (2.41)

if all eigenvalues of DGβββ(β
∗β∗β∗) lie inside the unit circle. This is known as the iterative

E-stability condition. There is a simple connection between E-stability and iterative E-

stability of β∗β∗β∗: The former requires that the real parts of all eigenvalues of DGβββ(β
∗β∗β∗) must

be less than one. The latter requires that all eigenvalues of DGβββ(β
∗β∗β∗) lie inside the unit

circle. It follows that iterative E-stability is a stronger condition than E-stability, which

leads to the following corollary:

Corollary 3 Iterative E-stability of β∗β∗β∗ implies E-stability of β∗β∗β∗. Therefore if the iteration

in (2.41) converges, it converges to an E-stable BLE.
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The details of the iteration procedure are discussed in Appendix B. Other practical issues

in the context of estimation such as the initial values β(1)β(1)β(1) and the number of fixed-point

iterations N can also be found in Appendix B.16 An advantage of using this approach as

an equilibrium approximation method is that it can only converge to E-stable equilibria,

which eliminates all E-unstable equilibria without additional computational steps. As

a result, a BLE that converges with (2.41) is guaranteed to be stable under learning

algorithms such as constant gain recursive least squares and SAC-learning.

3 Empirical Application: The Smets-Wouters Model

In this section, we estimate the BLE model for the canonical Smets and Wouters

(2007) NK model (henceforth referred to as SW07) and consider a horse race between

BLE, REE and a variety of constant-gain Euler-equation learning models that have been

used in the literature.17

We refer to BLE and REE as equilibrium models, where agents’ PLM coefficients are

fixed at their equilibrium values: the REE is pinned down by the fixed-point conditions

in (2.15)–(2.18), whereas the BLE is pinned down by the fixed-point condition in (2.27).

In this respect, the main difference between REE and BLE concerns knowledge about the

underlying system. In a REE, agents have perfect structural knowledge of the model. In

a BLE, agents do not know the cross-correlations among the variables and do not observe

the shocks but use parsimonious univariate AR(1) rules and know the correct mean and

first-order autocorrelation coefficients.

Our paper aims to distinguish the long-run equilibrium effects from the transient effects

of learning. Adaptive learning models deviate from equilibrium models by introducing

time-varying beliefs. Rather than fixing the belief coefficients at the equilibrium values,

learning models allow the agents to act like econometricians and update their belief co-

efficients every period as new observations become available. Below we first introduce

some notation to make an explicit distinction between equilibrium models BLE and REE

and adaptive learning models. We then discuss the learning models that are used in our

estimation exercise.

Equilibrium Models

The REE and BLE models differ in terms of equilibrium computation. Once the

equilibrium is solved for, each model can be represented as a recursive linear system

XXX t = ÂAA+ B̂BBXXX t−1 + ĈCCηηηt, (3.1)

16Fixed-point iteration algorithms of this type have been used as an eductive learning approach in
earlier literature (see e.g., DeCanio, 1979; Bray, 1982; Evans, 1985).

17Alternatively, one could consider constant-gain infinite horizon learning as in Preston (2005). In this
paper we only focus on Euler-equation learning models. A comparison of Euler-equation and infinite-
horizon learning can be found in Gaus and Gibbs (2018).
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with XXX t = [xxx′t,uuu
′
t]
′, the vector of endogenous variables and exogenous AR(1) shocks, ηηηt,

the vector of i.i.d. shocks, B̂BB, ĈCC, conformable matrices in terms of structural parameters,

and ÂAA, a vector of constants. BLE and REE differ in terms of B̂BB and ĈCC, since they satisfy

different fixed-point conditions. Derivations of the matrices for both models are provided

in Appendix C.1.

Adaptive Learning Models

In adaptive learning models, agents act like econometricians and update the belief

coefficients of their PLM in every period as new observations become available. We

consider a variety of learning models:

• SAC-learning, as described in Section 2, is the natural learning process of a BLE

model where agents use a univariate AR(1) rule for every variable and update their

beliefs about the mean and persistence in every period as new observations become

available. Agents’ PLM and the associated 2-step ahead expectations every period

are given by xxxt = αααt−1 + βββt−1(xxxt−1 −αααt−1),

Etxxxt+1 = αααt−1 + βββ2
t−1(xxxt−1 −αααt−1),

(3.2)

where the coefficients αααt−1 and βββt−1 are updated every period using SAC-learning

(2.6–2.7) or in recursive form (2.8).

• AR(2)-learning with constant gain least squares is a univariate learning rule used

in Slobodyan and Wouters (2012a). Agents use the following algorithm to update

their beliefs for every forward-looking variable xi,t−1:Ri,t = Ri,t−1 + γ(Yi,tY
′
i,t −Ri,t−1),

θi,t = θi,t−1 + γR−1
i,t Yi,t(xi,t − θi,t−1Yi,t),

(3.3)

with θi,t = [αi,t, β1,i,t, β2,i,t], Yi,t = [1, xi,t−1, xi,t−2]
′ and Ri,t the perceived variance of

the variable xi,t.
18 A potential advantage of this PLM over the AR(1) rule is that

it can generate an extrapolation bias in beliefs, where the most recent observation

receives more weight relative to its AR(1) counterpart and the second lagged variable

gets negative weight.19

• Pseudo MSV-learning with constant-gain least squares where agents use the cor-

rectly specified functional form associated with a REE, namely the MSV solution of

18A generalization of the SAC-learning algorithm to other types of PLMs, such as AR(2), is undertaken
in Branch et al. (2014). In this paper, we apply this learning method to AR(1)-learning only and use the
standard constant-gain recursive least squares for other learning models.

19Empirical evidence in favor of such an extrapolation bias has been found in, e.g., Fuster et al. (2010)
and Bordalo et al. (2020). An assessment of alternative theoretical approaches that support extrapolating
expectations, with an initial under-reaction to shocks followed by a delayed over-reaction, can be found
in Angeletos et al. (2021).
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the model, but are uncertain about its parameters. Their PLM and the associated

2-step ahead expectations at period t are given byxxxt = γ0,t−1 + γ1,t−1xxxt−2 + γ2,t−1uuut−1,

Etxxxt+1 = γ0,t−1 + γ1,t−1xxxt−1 + γ2,t−1ρρρuuut−1,
(3.4)

which depends on both state variables xxxt−1 and exogenous AR(1) shocks uuut−1.

Agents’ learning algorithm assumes the same functional form as in (3.3) in multi-

variate form: Rt = Rt−1 + γ(YtY
′
t −Rt−1),

θt = θt−1 + γR−1
t Yt(xt − θt−1Yt),

(3.5)

where Yt consists of a 14× 1 vector of endogenous variables, exogenous shocks and

an intercept. θt is a 14× 14 matrix of PLM coefficients.20

• VAR(1)-learning with constant gain least squares where agents use only the state

variables. This has been referred to as Limited Information Learning (Xiao and Xu,

2014) in the literature and corresponds to a restricted version of the MSV-learning

model described above. In VAR(1)-learning, agents use the following PLM and

2-step ahead expectations:xxxt = γ0,t−1 + γ1,t−1xxxt−2

Etxxxt+1 = γ0,t−1 + γ1,t−1xxxt−1.
(3.6)

Agents’ learning algorithm assumes the same functional form as in (3.5), where

Yt consists of an 8 × 1 vector of endogenous variables and an intercept. θt is an

8×8 matrix of PLM coefficients. This specification helps us bridge the gap between

univariate AR(1)-AR(2) models and the REE-consistent knowledge. Compared to

BLE, VAR(1) takes the cross-correlations into account, while BLE uses univariate

AR(1) rules.

Similar to the equilibrium models, learning models can be represented as a recursive linear

system after plugging in the expectations:

XXX t = ÂAAt−1 + B̂BBt−1XXX t−1 + ĈCCt−1ηηηt, (3.7)

with time-varying matrices B̂BBt−1, ĈCCt−1 and perceived mean vector ÂAAt−1, where the time-

variation comes from agents’ PLM coefficients. Derivations of the matrices for all learning

models are provided in Appendix C.2.

20This corresponds to 7 state variables, 7 exogenous shocks and the intercept in the context of the SW07
model. The government spending shock gt in the model is highly correlated with output yt. Therefore,
we exclude gt from agents’ regression model (3.5) when estimating the model in practice, which improves
the performance of the pseudo-MSV learning model.
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3.1 Estimation Methodology and Other Practical Issues

Timing of Expectations and the Kalman Filter

Both BLE and REE equilibrium models admit a multi-variate linear structure and

therefore the likelihood function can be evaluated using standard Kalman filter recursions.

For the learning models, we assume a sequential timing of intra-period events as follows:

1. Shocks uuut are realized.

2. Expectations Etxxxt+1 are formed based on the previous period’s state variables xxxt−1,

exogenous shocks uuut−1 and belief coefficients θt−1.

3. State variables xxxt are realized.

4. Belief coefficients θt are updated based on period t realizations of xxxt and shocks uuut.

This structure assumes that expectations and belief coefficients are pre-determined before

the state variables are realized. This is known as t − 1 timing of expectations in the

literature. The advantage of this approach is that it allows for a conditionally linear

model structure and therefore the likelihood function for learning models can be evaluated

using the standard Kalman filter. Similar assumptions have been used elsewhere in the

literature to make use of standard likelihood methods, such as Milani (2005), Slobodyan

and Wouters (2012a, 2012b) and Jääskelä et al. (2010). The details of the Kalman filter

recursions are discussed in Appendix D.

Note that the timing structure of expectations in our learning models differs from the

t-timing of expectations that is often assumed in REE models. In a REE, expectations and

state variables are jointly realized, i.e., agents fully internalize period t information when

forming their expectations.21 More recent studies such as Carvalho et al. (forthcoming)

have combined t-timing of expectations in learning models with a particle filter to account

for the fully non-linear structure. In our paper, we abstract away from these considerations

and use the term pseudo MSV-learning to make a clear distinction between our approach

and learning with fully rational knowledge about the structure of the underlying system.

Initial Beliefs

A practical issue when it comes to estimating adaptive learning models is the initial-

ization of beliefs. Many studies have shown that initial beliefs matter when it comes to

empirical performance of learning models, e.g., Slobodyan and Wouters (2012b), Berardi

and Galimberti (2017) and Gaus and Gibbs (2018), among others. In particular, Gaus

21Previous studies in the literature such as Milani (2005) and Slobodyan and Wouters (2012b) have
used pre-determined belief coefficients together with a joint determination of expectations and state
variables. While this approach still admits a conditionally linear structure that can be used with a
Kalman filter, it introduces a timing inconsistency for the agents: While their expectations are based on
period t information, their belief coefficients are based on period t−1. Therefore, we assume t−1 timing
on both ends for all models considered to have a consistent treatment.
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and Gibbs (2018) decompose the improvements associated with learning models into two

components: the role of initial beliefs and the role of time-variation in beliefs. They find

that within the class of PLMs that nest the MSV solution in their model, initial beliefs

play a more important role in driving model fitness than the time-variation in beliefs.

Our goal in this paper is not to assess the impact of initial beliefs on the performance of

learning models. Rather, we are interested in using a reasonable initialization benchmark

for learning models to compare against the equilibrium models BLE and REE. There-

fore, we adopt a practical regression-based approach to initialize the learning models:

we simulate data from our estimated BLE and REE models and run a regression to ob-

tain initial beliefs consistent with the knowledge about the economy associated with each

learning model. For SAC- and AR(2)-learning (models with univariate learning rules), we

use simulated data from BLE to initialize them. For pseudo MSV- and VAR(1)-learning

(models with multivariate learning rules), we use simulated data from REE. Using an un-

derlying equilibrium concept for belief initialization is consistent with the approaches in

Slobodyan and Wouters (2012a, 2012b). Further, Berardi and Galimberti (2017) suggest

that equilibrium-related initialization methods result in more robust parameter estimates

and are less prone to small sample size issues compared to other alternatives.

Projection Facilities

Another practical matter in learning models is the implementation of projection facili-

ties. When estimating these models, some parameter and shock combinations may lead to

updates in learning coefficients that imply explosive dynamics and unstable outcomes. A

standard approach in learning literature is to discard the updates on learning coefficients

if the new draws generate explosive dynamics (see, e.g., Milani, 2005 and Slobodyan and

Wouters, 2012b). In this paper, we follow a similar approach and discard belief updates

that generate unstable ALMs.22

Model, Priors and Measurement Equations

We use quarterly U.S. data over the period 1966:I–2007:IV to estimate the models.

We repeat the estimation exercise with two sets of observable variables with and without

inflation survey expectations:

• First, we follow the original Smets and Wouters (2007) model structure and use

7 observable variables: the (log-) difference of real GDP, real consumption, real

investment, real wages, (log-) hours worked, CPI inflation23 and the federal funds

rate.

22Note that for SAC-learning a projection facility is not needed, as the autocorrelation coefficients
always lie in the interval [−1,+1].

23Note that Smets and Wouters (2007) use the GDP deflator as their inflation measure. We use CPI
inflation in our estimations in order to make use of the survey data available in the SPF.
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• Second, we re-estimate the models by additionally including short-term (1-quarter

ahead) inflation expectations from the SPF (Croushore, 1993). This approach fol-

lows Carvalho et al. (forthcoming), where the models are estimated using short-term

inflation expectations data only.24

We treat the model with the original set of observables as our baseline specification to

evaluate the in-sample and pseudo out-of-sample forecasting performance of the models.

In Section 3.4 we use the re-estimation results with inflation expectations to discuss how

the models fit survey data.

Our model follows the original Smets and Wouters (2007) structure with minor devi-

ations (see Appendix E for further details). The model consists of 13 equations with 7

forward-looking variables, 7 exogenous AR(1) shocks and 7 state variables. There are 35

estimated parameters including the constant gain for the adaptive learning models. We

leave further details of the model, measurement equations and the prior distributions to

Appendix E.

Both equilibrium and adaptive learning models are estimated using a standard Kalman

filter combined with Bayesian likelihood methods. For all models, we first obtain the

posterior mode using Sims’ (1999) csminwel algorithm. We use the estimated posterior

as a candidate density to initialize the Monte Carlo Markov Chains (MCMC), where we

use a random-walk Metropolis-Hastings algorithm. For each model, we use two parallel

Markov Chains where the scale coefficient of the covariance matrix is used to obtain an

acceptance ratio between 30 and 45%. Each Markov Chain contains 500000 draws, where

the first half is discarded as a burn-in sample and the second half is used to compute the

posterior moments and Modified Harmonic Mean (MHM) estimates. Further details of

the Kalman filter and the estimation procedure for both equilibrium and learning models

are outlined in Appendix D.

3.2 Baseline Estimation Results

Table 1 shows the posterior mean estimates for all 6 models in our baseline setup. We

discuss the estimation results along two dimensions: model fitness, based on the MHM,

and differences in the estimated parameter values. We introduce Bayes Factors relative

to the REE benchmark in the last row of the table.25

The overall pattern in model fitness suggests that the BLE model, as well as all learning

models, outperforms the REE benchmark, with all Bayes Factors exceeding 4. The BLE

model yields a fitness comparable to pseudo MSV- and AR(2)-learning models, while

24Carvalho et al. (forthcoming) use their estimates to evaluate the models’ performance in matching
long-run inflation expectations. Here, we abstract away from a formal evaluation of long-run expectations
and discuss the implications for this only qualitatively.

25The Bayes Factors are computed as the likelihood (MHM) ratio of each model relative to REE,
normalized by common logarithm base 10. We use Jeffrey’s Guidelines (Greenberg, 2012) to compare the
Bayes Factors, which suggests that a Bayes Factor larger than 2 can be interpreted as providing decisive
support for the model under consideration, relative to the REE benchmark.
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SAC- and VAR(1)-learning models generate the best outcomes in terms of model fitness.26

These results suggest that (i) the knowledge about the underlying system on expectations

(BLE vs. REE), in isolation from any learning effects, plays an important role in driving

the model fit, and (ii) learning improves the fit, but the degree of improvements in the

learning models depends on the degree of knowledge about the underlying system that

the agents are using. In particular, BLE explains about 75% of the improved fit under

SAC-learninig (Bayes Factors 6.87 vs. 9.30).

In order to discuss differences in parameter estimates across models, we divide the

parameters into four main buckets: structural parameters that determine endogenous

persistence and slopes in Euler equations and Phillips curves; monetary policy parameters

that appear in the Taylor rule reaction function; parameters related to steady-state and

measurement equations of the model; and shock persistence and standard deviations.

For monetary policy and steady-state groups, we do not observe important differences

in parameter estimates across the models, and all models feature HPD intervals well within

the range of each other. There are some differences in the estimated shock persistence

and structural parameter groups. To understand the intuition behind these differences,

we first cover the main portion of the model that interacts with expectations.27 The

consumption Euler equation in the model is given byct = c1ct−1 + (1− c1)Etct+1 + c2(lt − Etlt+1)− c3(rt − Etπt+1) + ϵbt ,

ϵbt = ρbϵ
b
t−1 + ηbt ,

(3.8)

with c1 =
λ
γ
/(1+ λ

γ
),c2 = (σc−1)(wsslss/css)/(σc(1+

λ
γ
)),c3 = (1− λ

γ
)/((1+ λ

γ
)σc). Similarly,

the investment Euler equation is given byit = i1it−1 + (1− i1)Etit+1 + i2qt + ϵit,

ϵit = ρiϵ
i
t−1 + ηit,

(3.9)

with i1 =
1

1+β̄γ
, i2 =

1
(1+β̄γ)(γ2ϕ)

, where β̄ = βγ−σc . The price NKPC equation isπt = π1Etπt+1 − π2µ
p
t + ϵpt ,

ϵpt = ρpϵ
p
t−1 + ηpt ,

(3.10)

with π1 = β̄γ ,π2 = (1 − βγξp)(1 − ξp)/[ξp((ϕp − 1)ϵp + 1)]. The wage Phillips curve

26Our results on pseudo MSV-learning are in line with previous estimates reported in Milani (2007) and
Slobodyan and Wouters (2012b). The Bayes Factors implied by their results are 2.8 and 5.1, respectively.
As such, our estimate of 4.72 falls within this range.

27The remaining model equations can be found in Appendix E.
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Equilibrium Models Learning Models

Pseudo
Parameter REE BLE SAC MSV VAR(1) AR(2)

Structural Parameters

ϕ (Capital adj. cost) 5.68 2.12 1.38 5.17 2.23 2.21
σc (Inv. elasticity of subs.) 1.3 0.5 0.52 1.69 0.9 0.6
λ (Habit formation) 0.77 0.83 0.71 0.71 0.69 0.8
ξw (Wage Calvo) 0.74 0.72 0.73 0.69 0.71 0.68
σl (Elasticity of labor supply) 1.29 2.5 2.81 1.87 2.29 1.27
ξp (Price Calvo) 0.59 0.71 0.52 0.67 0.61 0.54
ιw (Wage indexation) 0.31 0.14 0.16 0.35 0.2 0.16
ιp (Price indexation) 0.2 0.5 0.46 0.39 0.46 0.33
ψ (Elasticity of capital util.) 0.55 0.5 0.47 0.33 0.47 0.46
ϕp (Production fixed costs) 1.65 1.41 1.36 1.59 1.54 1.47
α (Capital share of output) 0.17 0.14 0.13 0.18 0.16 0.15

Monetary Policy

ϕπ (Inflation reaction) 1.51 1.51 1.61 1.46 1.41 1.46
ρ (Smoothing) 0.86 0.91 0.91 0.91 0.92 0.9
ϕy (Output gap reaction) 0.11 0.11 0.14 0.13 0.11 0.11
ϕ∆y (Output gap growth reaction) 0.15 0.13 0.14 0.13 0.12 0.12

Steady-State

π̄ (Inflation S.S.) 0.69 0.77 0.74 0.77 0.77 0.74
β̄ (Discount factor) 0.17 0.27 0.28 0.27 0.26 0.31
l̄ (Hours worked S.S.) 1.2 -0.12 -0.3 -0.62 -1.12 -2.04
γ̄ (S.S. growth rate) 0.4 0.41 0.42 0.41 0.42 0.4

Shock Persistence

ρa (TFP) 0.92 0.93 0.94 0.91 0.93 0.93
ρb (Risk premium) 0.34 0.32 0.46 0.19 0.18 0.4
ρg (Gov. spending) 0.99 0.98 0.97 0.97 0.97 0.97
ρi (Investment) 0.8 0.44 0.55 0.58 0.46 0.5
ρr (Monetary policy) 0.08 0.11 0.1 0.1 0.11 0.11
ρp (Price mark-up) 0.59 0.08 0.12 0.46 0.1 0.07
ρw (Wage mark-up) 0.84 0.3 0.38 0.86 0.13 0.25
ρga (TFP impact on Gov.) 0.5 0.54 0.54 0.54 0.54 0.52

Shock St. Dev.

ηa (Productivity) 0.45 0.48 0.5 0.45 0.46 0.47
ηb (Risk premium) 2.35 4.4 2.57 2.74 3.21 4.24
ηg (Gov. spending) 0.56 0.5 0.49 0.51 0.5 0.5
ηi (Investment) 0.39 1.5 1.55 1.76 1.69 1.58
ηr (Monetary policy) 0.22 0.21 0.21 0.22 0.21 0.21
ηp (Price mark-up) 0.21 0.53 0.53 0.23 0.5 0.53
ηw (Wage mark-up) 0.11 0.58 0.61 0.11 0.58 0.59

constant gain 0.006 0.008 0.024 0.008

(Log-) likl at mode -1069.08 -1049.35 -1043.59 -1055.02 -1049.4 -1049.34
MHM -1143.09 -1127.26 -1121.66 -1132.21 -1122.34 -1130.82
Bayes Factor 0 6.87 9.30 4.72 9.01 5.33

Table 1: Estimation results (posterior means) with 7 observables – no inflation expecta-
tions.
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equation is wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2µ
w
t + ϵwt ,

ϵwt = ρwϵ
w
t−1 + ηwt ,

(3.11)

with w1 = 1/(1 + β̄γ) and w2 = ((1 − β̄γξw)(1 − ξw)/(ξw(ϕw − 1)ϵw + 1)). Finally, the

capital asset pricing equation (Tobin’s q) is

qt = q1Etqt+1 + (1− q1)Etrkt+1 − (rt − Etπt+1) +
1
c3
ϵbt , (3.12)

with q1 = β̄(1 − δ). Among the shock persistence terms, investment shock ϵit and wage

mark-up shock ϵwt are more persistent under REE compared to BLE and all 4 learning

models. These shocks enter the model through investment Euler equation (3.9) and the

wage Phillips curve (3.11), respectively. The results suggest that both backward-looking

expectations in BLE and time-varying expectations in learning models are able to capture

some of the exogenous persistence in these equations through the expectation terms. The

remaining shocks are comparable across all models in terms of persistence and volatility.

Among the structural parameters, capital adjustment cost ϕ and the inverse of the

elasticity of intertemporal substitution σc stand out as the biggest differences among the

models, where both parameters are smaller under the BLE and learning models com-

pared to REE. σc has a two-fold effect: First, it determines the feedback from the real

interest rates (rt − Etπt+1) on consumption and Tobin’s q, as shown in (3.8) and (3.12),

respectively. The estimated parameter is smaller in the BLE and learning models, which

translates into a stronger feedback channel. Second, σc determines the relation between

expected change in hours worked (lt − Etlt+1) and consumption. σc > 1 implies comple-

mentarity between expected change in hours worked and consumption, whereas σc < 1

implies that they are substitutes. The results suggest that they are complements un-

der REE and MSV-learning, whereas they are substitutes under BLE and other learning

models. The key driver for these results is how the shocks interact with expectations and

model equations: in REE and pseudo MSV-learning models, the shocks enter the model

equations through the expectation terms, which introduces a positive correlation between

consumption and expected change in hours worked in REE and pseudo MSV-learning

models. When we use an AR(1), AR(2) or VAR(1) information set instead, the mean-

reversion in hours worked plays a stronger role and drives the negative correlation between

hours worked and consumption. For the remaining structural parameters, in particular

the Calvo probabilities and indexation terms, there are no systematic differences between

REE, BLE and learning models.

Taken together, we find that both BLE and learning models improve the model fit

relative to REE, without substantially affecting most parameter estimates. These results

are consistent with the findings in Jääskelä et al. (2010) and Slobodyan and Wouters

(2012a,b). Our results also complement the analysis in Gaus and Gibbs (2018), who
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document that initial beliefs play a more important role in driving the model fit than the

time-variation in beliefs within the class of PLMs that take the form of an MSV solution.

We show that similar results hold for AR(1) beliefs that do not nest the MSV solution.

Replacing the REE-consistent PLM with simple AR(1) beliefs (REE vs. BLE) improves

the fit more than introducing time-variation in AR(1) beliefs (BLE vs. SAC).

3.3 Pseudo Out-of-Sample Forecasts

In this section, we use the 6 models presented in Table 1 and consider a pseudo

out-of-sample forecasting (POOS) exercise. For each model, we use a rolling-window

estimation starting with the 20-year period 1966:I–1986:IV. We re-estimate the models at

each quarter by rolling forward the estimation window and compute the associated out-

of-sample forecast errors up to 12 quarters ahead for all observable variables. In learning

models, the initial beliefs are updated every period using the same methodology as in

Section 3.2. As such, we first re-estimate the REE and BLE models for each period. Then

we update the initial beliefs for learning models using simulated data from re-estimated

REE and BLE models at every period.

We compute the forecast errors associated with each model and report the percentage

changes in RMSEs relative to REE for the BLE and learning models in Table 2. The

relative RMSEs are computed as the percentage difference in RMSEs between the REE

benchmark and each model: A positive (negative) number in Table 2 reflects the percent-

age gains (losses) in forecasting performance for the associated model relative to REE. The

last column in Table 2 reports a summary statistic for each model using the uncentered

log-determinant of the forecast error covariance matrix of all 7 observable variables.28

The forecasting performance of both the BLE and learning models relative to REE is

characterized by an inverse U-shaped pattern: All models outperform the REE benchmark

up to 4Q ahead, resulting in performance gains of up to 17%. The forecasting performance

typically deteriorates at longer horizons, and the forecasts are generally worse than the

REE with 88 and 12-quarter ahead forecasts. These results are consistent with the find-

ings reported in Slobodyan and Wouters (2012b), which compare an AR(2) model with

Kalman-gain learning to the REE benchmark. The results suggest that cross-restrictions

imposed by the REE model are useful particularly over longer horizons, while the BLE

and learning models with limited knowledge about the underlying system provide more

accurate forecasts over shorter horizons.

Looking at the relative RMSEs for individual variables reveals that output, consump-

tion, investment and wage growth forecasts are generally comparable to or better than

REE, both in the short- and long run, for both the BLE and learning models, while the

trade-off between the short- and long run is driven mainly by inflation and interest rate

forecasts. With the exception of the pseudo MSV model, all models outperform inflation

and interest rate forecasts of REE in the short run, while they are outperformed in the

28The summary statistic measure follows the approach in Smets and Wouters (2007).
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BLE

Horizon ∆yt ∆ct ∆invt ∆wt πt rt lt Summary

1Q -0.48 8.11 0.92 4.86 17.91 22.62 18.59 12.28
2Q -2.75 19 -6.93 2.62 27.28 30.92 15.75 13.71
4Q 1.27 23.52 -1.66 1.7 34.15 29.66 3.09 17.05
8Q 10.8 23.59 2.13 -1.27 -6.15 7.51 -5.61 0.14
12Q 6.75 15.94 0.04 -6.66 -32.4 -13.06 0.95 -6.77

pseudo MSV

Horizon ∆yt ∆ct ∆invt ∆wt πt rt lt Summary

1Q -3.59 5.86 -10.7 0.12 -11.6 1.77 10.91 2.55
2Q -5.49 12.37 -15.4 -1.46 -10.9 8.48 12.09 4.2
4Q 1.57 19.44 -5.64 -4.81 -21 3.35 5.46 6.32
8Q 9.86 15.95 3.82 0.82 -70.5 -18.63 6.48 -4.23
12Q 2.4 3.11 2.12 1.33 -91.4 -36.07 4.2 -9.07

SAC

Horizon ∆yt ∆ct ∆invt ∆wt πt rt lt Summary

1Q 4.08 2.06 1.56 -2.83 21.82 19.06 17.65 9.36
2Q 3.64 9.91 -3.18 -3.32 29.16 26.28 17.37 11.53
4Q 7.79 16.72 -0.39 -0.13 33.45 22.87 9.9 14.86
8Q 12.8 18.97 2.68 0.17 4.87 2.8 9.1 2.84
12Q 5.68 8.46 1.52 -0.4 -29.1 -16.96 15.36 -4.7

pseudo-VAR(1)

Horizon ∆yt ∆ct ∆invt ∆wt πt rt lt Summary

1Q -1.24 10.72 -1.11 2.06 17.16 18.16 13.41 8.7
2Q -2.85 15.48 -6.4 0.4 14.9 26.13 12.25 8.05
4Q 1.83 21.56 -6.65 1.09 3.74 21.61 1.75 6.88
8Q 13.3 21.48 0.49 0.92 -19.7 -2.85 -7.48 -2.43
12Q 11.2 10.82 8 0.2 -41.2 -31.27 8.78 -4.24

AR(2)

Horizon ∆yt ∆ct ∆invt ∆wt πt rt lt Summary

1Q -1.41 4.79 0.57 -5.44 10.98 16.62 15.52 7.63
2Q -5.98 14.4 -6.51 -6.59 26.36 21.05 9.95 10.72
4Q -2.62 20.47 -3.9 -3.98 30.92 12.42 -7.58 13.25
8Q 6.84 21.27 1.81 0.64 -0.24 -24.67 -24.23 -0.26
12Q 3.12 12.9 1.55 0.08 -35 -58.67 -17.48 -9.3

Table 2: Percentage differences in RMSEs relative to the Rational Expectations model. A
positive (negative) number reflects the percentage gains (losses) in forecasting performance
relative to REE.
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long run.

An important takeaway from the POOS exercise is that the forecasting performance of

the BLE model is competitive with learning models, and both BLE and learning models

improve the forecasting performance relative to REE up to 4 quarters ahead. This suggests

that when deviating from the REE benchmark, both the time-variation in beliefs and the

degree of knowledge about the underlying system imposed on the agents play an important

role. In the next section, we extend the baseline estimation results reported in Table 1 to

incorporate short-term inflation survey expectations.

3.4 Inflation Expectations

In this section we extend the baseline estimation results reported in Table 1 to incor-

porate short-term inflation expectations. In particular, we use 1-quarter ahead inflation

expectations from the SPF for the U.S. For each model, we use the following identity to

link the model-implied inflation expectations to the data:{
πSPFt+1 = Etπt+1 + η

πexp
t , (3.13)

with πSPFt+1 referring to the SPF forecasts, Etπt+1, the model-implied 2-step ahead inflation

expectations and η
πexp
t , an IID measurement error. We use the same estimation period

1966:I–2007:IV. Since SPF data is only available from 1983:III onwards, we treat inflation

expectations as unobserved for the earlier sample period 1966:I–1982:II.29

Table 3 reports the estimation results and posterior means for all models. The param-

eter estimates are generally in line with those in Table 1, suggesting that the inclusion of

short-term inflation expectations data does not lead to substantial differences in the model

structure. Some notable exceptions among the structural parameters include the Calvo

probabilities, price and wage indexations, and the elasticity of labor supply. These pa-

rameters interact directly with inflation expectations through the price and wage NKPCs

(3.10) and (3.11), respectively. In particular, for the REE model, the wage NKPC be-

comes steeper (lower wage Calvo parameter, ξw), while the price NKPC becomes flatter

(higher price Calvo parameter, ξp). The same pattern is also evident for the pseudo MSV-

learning model as regards the price NKPC, while the changes in the respective parameter

estimates in the BLE and the other learning models are negligible.

The Bayes Factors in Table 3 with expectations survey data are significantly larger

than those in Table 1 without survey expectations: while the Bayes Factors in Table 1

without inflation expectations range between 4.72 and 9.30, the range in Table 3 increases

to 35.47–53.54. This suggests that the gap in model fitness relative to the REE benchmark

29In this paper we only consider an analysis of survey data on inflation expectations. Since we consider
a deviation from rational expectations for all forward-looking variables in our BLE and learning models,
a similar analysis can also be extended to expectations on aggregate consumption, investment and all
other forward-looking variables depending on the availability of data. We leave these considerations to
future work and only focus on inflation dynamics in this paper.
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Equilibrium Models Learning Models

Pseudo
Parameter REE BLE SAC MSV VAR(1) AR(2)

Structural Parameters

ϕ (Capital adj. cost) 5.04 1.36 1.84 4.78 3.37 2.49
σc (Inv. elasticity of subs.) 1.4 0.51 0.68 0.98 0.79 0.63
λ (Habit formation) 0.71 0.75 0.72 0.69 0.74 0.77
ξw (Wage Calvo) 0.45 0.73 0.68 0.63 0.68 0.73
σl (Elasticity of labor) 2.89 1.9 2.24 1.72 1.31 1.64
ξp (Price Calvo) 0.86 0.72 0.6 0.82 0.55 0.56
ιw (Wage indexation) 0.12 0.22 0.22 0.15 0.32 0.31
ιp (Price indexation) 0.22 0.4 0.28 0.52 0.19 0.24
ψ (Elasticity of capital util.) 0.44 0.49 0.5 0.49 0.47 0.52
ϕp (Production fixed costs) 1.71 1.42 1.53 1.56 1.55 1.51
α (Capital share of output) 0.2 0.14 0.16 0.17 0.16 0.15

Monetary Policy

ϕπ (Inflation reaction) 1.61 1.56 1.5 1.51 1.66 1.46
ρ (Smoothing) 0.85 0.9 0.9 0.9 0.9 0.89
ϕy (Output gap reaction) 0.11 0.11 0.13 0.08 0.13 0.12
ϕ∆y (Output gap growth reaction) 0.16 0.14 0.13 0.11 0.13 0.13

Steady-State

π̄ (Inflation S.S.) 0.8 0.84 0.63 0.49 0.77 0.72
β̄ (Discount factor) 0.25 0.24 0.26 0.29 0.26 0.26
l̄ (Hours worked S.S.) 1.32 -0.52 -0.2 2.37 0.86 -1.08
γ̄ (S.S. growth rate) 0.45 0.42 0.43 0.53 0.28 0.4

Shocks

ρa (Productivity) 0.95 0.94 0.95 0.99 0.99 0.93
ρb (Risk premium) 0.19 0.31 0.39 0.2 0.15 0.19
ρg (Gov. spending) 0.97 0.98 0.98 0.98 0.95 0.98
ρi (Investment) 0.72 0.43 0.66 0.56 0.49 0.09
ρr (Monetary policy) 0.07 0.1 0.1 0.12 0.09 0.1
ρp (Price mark-up) 0.04 0.1 0.17 0.12 0.12 0.18
ρw (Wage mark-up) 0.97 0.33 0.38 0.87 0.18 0.1
ρga (TFP impact on Gov.) 0.56 0.56 0.53 0.58 0.53 0.54

Shock St. Dev.

ηa (TFP) 0.45 0.48 0.47 0.47 0.48 0.47
ηb (Risk premium) 2.14 2.87 3.16 2.57 3.3 3.6
ηg (Gov. spending) 0.57 0.5 0.5 0.51 0.5 0.51
ηi (Investment) 0.45 1.51 1.61 1.66 1.64 1.58
ηr (Monetary policy) 0.22 0.21 0.21 0.21 0.21 0.21
ηp (Price mark-up) 0.39 0.4 0.39 0.36 0.35 0.38
ηw (Wage mark-up) 0.18 0.56 0.57 0.47 0.56 0.58
ηπexp (Inflation expectations) 0.21 0.23 0.18 0.17 0.25 0.23

constant gain 0.044 0.005 0.03 0.006

(Log-) likl at mode -1045.22 -977.92 -959.1 -981.96 -992.44 -990.68
MHM -1156.11 -1057.68 -1032.82 -1074.43 -1072.53 -1067.11
Bayes Factor 0 42.74 53.54 35.47 36.3 38.65

Table 3: Estimation results (posterior means) with 8 observables, including 1-quarter
ahead inflation expectations.
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widens for the BLE and all learning models. The results on learning models suggest

that time-varying dynamics help to capture the expectation dynamics better, which is

consistent with the findings in Carvalho et al. (forthcoming), Slobodyan and Wouters

(2012b, 2017) and Ormeño and Molnár (2015). A novelty of our results is that the BLE

model, an equilibrium model with fixed beliefs, is competitive with learning models even

after inflation expectations survey data are included as observables. BLE explains about

80% of the improved fit of SAC-learning (Bayes Factors 42.74 vs. 53.54).

To understand how well the models fit inflation expectations data, we show the model-

implied inflation expectations against survey data in Figure 3 and some correlation statis-

tics in Table 4.30 A noticeable feature of both BLE and learning models is that they all

captured high inflation expectations during the 70s and 80s in the pre-great moderation

period without using any input on survey expectations over that period. To distinguish

how well each model tracks inflation survey expectations over the period where expecta-

tions data is available, we report two statistics for each model in Table 4. The first column

reports the correlation between survey expectations πSPFt+1 and model-implied inflation ex-

pectations Etπt+1. SAC- and AR(2)-learning models yield the highest correlations and

improve upon the REE benchmark, whereas the BLE, pseudo MSV- and VAR(1)-learning

models yield lower values compared to REE. Hence, in terms of capturing the level of in-

flation expectations, the REE benchmark is competitive and outperforms BLE and two of

the learning models. The shortcoming of the REE model is its failure to capture expecta-

tion errors: in the second column of Table 4, we report the correlation between empirical

inflation expectation errors πdatat+1 − πSPFt+1 (the difference between realized inflation and

survey expectations) and model-implied expectation errors πdatat+1 − Etπt+1 (the difference

between realized inflation and model-implied inflation expectations). In this case the REE

benchmark yields a low correlation with 0.17, whereas BLE and learning models all yield

higher values ranging between 0.8 and 0.95. Looking at both Tables 3 and 4 suggests that

the SAC-learning model has the best fit in terms of inflation survey expectations.

To understand the dynamics around inflation expectations and distinguish the marginal

contribution of learning dynamics, we plot the perceived mean and perceived persistence

coefficients for the BLE and SAC-learning models, in Figure 4. The equilibrium percep-

tion of inflation persistence β∗β∗β∗ under the BLE model is 0.74. The time-varying perception

in SAC-learning oscillates around the BLE-consistent value for most of the sample, start-

ing to decline only after 2000 towards the end of the sample period. The main difference

between BLE and SAC-learning comes from the perceived mean values; while the equi-

librium value under BLE α∗α∗α∗ is fixed at 0, the SAC-learning model displays a large degree

of time-variation in the mean. In particular, the high-inflation period of the 70s and 80s

mainly transmits through the perceived mean in the learning model, which helps capture

the inflation expectation dynamics better overall.

Our results are in line with Eusepi and Preston (2018) and Eusepi et al. (2019), who

30For model-implied expectations, we refer to Etπt+1 in (3.13) in the absence of any measurement
errors.
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show that beliefs under a constant-gain infinite-horizon learning approach fit U.S. data on

inflation and interest rate expectations better than a rational expectations model. Our

results confirm that learning dynamics continue to be important in capturing expectation

dynamics when we replace the MSV-consistent PLM with an AR(1) heuristic.

Finally, we informally discuss the models’ ability to capture movements in long-term

inflation expectations, which generally remain firmly anchored in REE models even during

periods of high and volatile inflation. Our BLE model suffers from the same shortcoming

as REE models: since expectations are pinned down purely through the persistence coef-

ficient β∗β∗β∗ and the perceived mean is anchored at α∗α∗α∗ = 0, long-term inflation expectations

remain stable in our BLE model. Given our median estimate of β∗β∗β∗ = 0.74, expecta-

tions beyond 3 years remain firmly anchored regardless of the level of inflation. This is

what distinguishes learning models from equilibrium models, where time-varying belief

coefficients, in particular the perceived mean, can generate trend inflation and capture

periods of de-anchored long-term inflation expectations, as discussed in Carvalho et al.

(forthcoming).31

Model Correlation between SPF and Correlation between realized and
model-implied inflation expectations model-implied inflation expectation errors

corr(πSPFt+1 ,Etπt+1) corr(πdatat+1 − πSPFt+1 , π
data
t+1 − Etπt+1)

SAC 0.857 0.946
AR(2) 0.69 0.87
VAR(1) 0.371 0.798
BLE 0.496 0.837
REE 0.61 0.17

Pseudo MSV 0.59 0.818

Table 4: Correlations between survey- and model-generated inflation expectations and
expectation errors. πSPFt+1 denotes 1-quarter ahead inflation expectations from the SPF.
Etπt+1 denotes model-implied 1-quarter ahead inflation expectations. πdatat+1 denotes real-
ized inflation at period t+ 1.

31Gaus and Gibbs (2018) suggest that Euler-equation learning models such as those considered in this
paper produce better short-term inflation expectations. Infinite-horizon learning as in Preston (2005)
and Carvalho et al. (forthcoming) is more in line with long-run inflation expectations. They further note
that infinite-horizon learning tends to improve the model fit more compared to Euler-equation learning.
A more comprehensive horse race that includes infinite-horizon learning models is beyond the scope of
our paper, and we leave a comparison of this to BLE (and extensions thereof) to future work.
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Figure 3: Model implied inflation expectations (blue) and expectations from the SPF
(red).
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Figure 4: Belief coefficients αtαtαt and βtβtβt under SAC-learning, with BLE α∗α∗α∗ = 0 and β∗β∗β∗ =
0.74.

4 Policy Application: Optimal Smoothing

In this section, we analyze the monetary policy implications for some of the estimated

models.32 A number of papers in the adaptive learning literature explore optimal mon-

etary policy within the class of standard Taylor rule policies and look into the trade-off

between inflation/output gap stabilization and central bank learning.33 Our main focus in

this section is the trade-off between interest rate smoothing and output/inflation stabiliza-

tion, rather than the trade-off between inflation and output gap stabilization. Therefore,

we fix the reaction coefficients on inflation, output gap and output gap difference at their

estimated values and focus on the interest rate smoothing parameter ρ. Woodford (2003b)

shows that under REE with forward-looking agents, optimal interest rate smoothing is

typically high and close to unity across a wide range of specifications. In this section,

we analyze how these results change with a backward-looking AR(1) rule under BLE and

SAC-learning. Since our focus is on optimal interest rate smoothing, we use the following

modified Taylor rule for monetary policy:

rt = ρrt−1 + ϕπ

(
(1− ρ)(πt + ϕyyy) + ϕ∆y∆yt

)
+ ϵrt . (4.1)

In the analysis below, we first fix the reaction parameters in all models at the estimated

values under REE, ϕy = 0.11, ϕ∆y = 0.15 and ϕπ = 1.51 in order to abstract away from

any impact that the estimated parameter differences might have on the results. For the

remaining parameters in BLE and REE, we leave the values at their posterior mean as

reported in the baseline estimation Table 1. For the SAC- and pseudo MSV-learning

cases, we use the parameter values associated with BLE and REE models, respectively,

32We leave the VAR(1)- and AR(2)-learning models out of this analysis and focus on the equilibrium
models REE and BLE, against their learning counterparts SAC- and pseudo MSV-learning.

33A non-exhaustive list includes Orphanides and Williams (2005, 2006, 2008), Evans and Honkapohja
(2003), Preston (2006) and Gasteiger (2014).
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which helps us focus on disentangling the effects of learning from equilibrium models in

isolation from the differences in the estimated parameter values. Furthermore, in order

to prevent the presence of the projection facility in the learning models from affecting

the optimal policy results, we fix the constant gain value in both models at a value of

0.001, which is sufficiently small to allow us to simulate the models without any projection

facilities.34

For this exercise, we use a grid of 500 points for the policy parameters ρ in each

model, using a simulation length of 5000 periods in each case. For the BLE specification,

we use N = 200 fixed-point iterations to calculate the equilibrium values β∗β∗β∗ for each value

of the policy parameter, as in the likelihood evaluation in Section 3.2. The number of

periods is sufficient to ensure convergence of the learning parameters. In order to avoid

any effects of the transient learning dynamics, we discard the initial 80% of the sample

in each simulation and use the remaining 20% (1000 periods) to compute the associated

moments of inflation, output gap and interest rate.

Figure 5 reports the percentage change in the standard deviations of the output gap,

inflation and interest rate as a function of the interest rate smoothing parameter ρ. Under

REE and pseudo MSV-learning models, smoothing is beneficial in terms of stabilizing vari-

ation in the output gap, yt, and inflation, πt, up to a point. Under BLE and SAC-learning

specifications, we observe a different pattern where the stabilizing effects disappear and

both inflation and output gap become more volatile as the smoothing parameter increases.

To formalize this, we introduce an ad-hoc loss-function E[L] in terms of the discounted

sum of weighted squared inflation, output gap growth and interest rate:

E[L] = (1− ϑ)E
[
Σ∞
t=0ϑ

t[ωππ
2
t + ωy∆y

2
t + ωrr

2
t ]
]
= ωπσ

2
π + ωyσ

2
∆y + ωrσ

2
r , (4.2)

with ωπ, ωy and ωr the weights on inflation, the growth of the output gap and the

interest rate, respectively. In this paper, following the approach in Slobodyan andWouters

(2012a), we model the output gap as the deviation of output ỹt from the underlying

productivity process ϵat , i.e., yt = ỹt − Φpϵ
a
t with Φp the estimated value of production of

fixed costs for each model.

Table 5 reports the optimal smoothing values ρ∗ for 3 combinations of these weights,

where we normalize ωπ = 1. The optimal smoothing ρ∗ under BLE and SAC-learning

is lower than REE and pseudo MSV-learning models for all combinations, and the REE

model always yields the highest optimal ρ∗. Of particular interest is the point where the

weight on nominal interest rate stabilization in the objective funtion is zero, ωr = 0. In

this case, the BLE model implies an optimal smoothing equal to 0.

One reason for this result is that backward-looking agents do not consider the move-

ments in the interest rate when forming their expectations. As the smoothing coefficient

34Different gain values can also have important implications on the optimal parameters in learning
models, as shown in Orphanides and Williams (2004). Our main focus in this section is how the degree
of knowledge about the underlying system under BLE affects the monetary policy implications relative
to REE. Therefore, we abstract away from such considerations.
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Figure 5: Standard deviations (y-axis) as a function of interest rate smoothing ρ (x-
axis). Solid lines correspond to equilibrium models (BLE and REE), while dashed lines
are learning models (SAC- and pseudo MSV-learning). Red lines correspond to a PLM
with AR(1) rule (BLE and SAC), whereas black lines correspond to REE-consistent rules
(REE and pseudo MSV-learning).
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Model ωπ ωy ωr Optimal ρ∗
REE

1 0.048 0 0.91
1 0.048 0.1 0.92
1 0.1 0.1 0.91

BLE
1 0.048 0 0
1 0.048 0.1 0.79
1 0.1 0.1 0.82

SAC
1 0.048 0 0.6
1 0.048 0.1 0.79
1 0.1 0.1 0.77

pseudo MSV
1 0.048 0 0.75
1 0.048 0.1 0.82
1 0.1 0.1 0.84

Table 5: Optimal smoothing parameter for some cases.

increases, the contemporaneous reaction of the interest rate to inflation and the output

gap decreases. Agents do not internalize future movements of the interest rate. As a re-

sult, higher smoothing is interpreted as a weaker reaction to inflation and output growth

fluctuations on their part, which leads to higher volatility in inflation and output gap.

Since agents do not internalize the stabilizing effect of the policy rate smoothing (as would

be the case under REE and pseudo MSV-learning), fluctuations in the policy rate may

become less and less costly, thereby resulting in less smoothing. A similar argument ap-

plies to the SAC learning model. But the main reason behind the substantially lower

smoothing under the BLE and SAC-learning lies in the persistence inherent in the model

when agents are purely backward looking. To see that, consider the 3-equation purely

forward looking NK model in (2.30) with the following simple Taylor rule, where for the

sake of exposition we assume that the central bank targets inflation only:

it = ρit−1 + ϕππt. (4.3)

Considering the REE model, by iterating the above interest rate rule backwards and using

the forward looking Phillips curve, the rule writes as follows:

it =
ϕπγ

1− ρλ

∞∑
s=0

λsyt+s+1 +
ϕπγρ

1− ρλ

∞∑
s=0

ρs−1yt−s. (4.4)

As argued by Giannoni (2014), the optimal monetary policy under commitment in a

purely forward looking model results in a bounded solution where the endogenous variables

depend not only upon expected future values of disturbances, but also on predetermined
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variables. This means that optimal policy introduces history dependence, something that

is missing in simple interest rate rules without smoothing and pure inflation targeting.

More importantly, Giannoni (2014) shows that an optimal interest rate rule that is not

only inertial but also super-inertial can be derived from the first-order conditions of the

optimal policy problem of the central bank. As (4.4) reveals, interest rate smoothing,

captured by ρ, is necessary in order to introduce history dependence in a purely forward

looking model. Clearly, setting ρ = 0 in (4.4) shuts down dependence on past data and

makes the rule implicitly purely forward-looking in nature. This is why the REE requires

a higher smoothing parameter.

Let us now consider BLE or SAC learning in the same simple 3-equation NK model

with the above rule (4.3) but now without smoothing (i.e., ρ = 0). In this case, the Phillips

curve after plugging inflation expectations (assuming zero mean in inflation expectations)

takes the following form:

πt = λβπt−1 + γyt. (4.5)

Plugging the above expression in (4.4) and iterating backwards, we get

it = ϕπγ
∞∑
s=0

(λβ)s yt−s. (4.6)

As equation (4.6) reveals, the backward-looking nature of expectations introduces persis-

tence in the model that makes the interest rate depend on current and past information

only. As such, interest rate smoothing is not necessary, nor does it add further information

in interest rate setting. That explains why our simulations find that zero or substantially

lower smoothing is required under the BLE or SAC learning.

In the literature, the observed rate of interest rate smoothing in the historical data

has been attributed to the presence of forward-looking agents (Woodford, 2003b), where

a high degree of smoothing helps introduce history dependence into agents’ beliefs and

steers private-sector expectations of future policy in the right direction. High interest

rate smoothing or first difference rules have also been found beneficial in models with

central bank uncertainty and learning about the data or model parameters (Sack and

Wieland, 2000), as well as in studies where both agents and the central bank use adaptive

learning (Orphanides and Williams, 2007; Woodford, 2013). Our results here suggest that

smoothing is not desirable with boundedly rational agents in the absence of central bank

learning, which supports the argument that high degrees of smoothing in the data can be

largely attributed to central bank learning instead of private sector learning. We leave a

further exploration of this topic to future research.

5 Concluding Remarks

In this paper, we generalize the BLE concept with optimal AR(1) beliefs to an n-

dimensional linear stochastic framework and provide an approximation and estimation
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method for it. We apply the concept to a simple NK model to derive analytical results and

build intuition. We then estimate BLE in the workhorse Smets and Wouters (2007) model

and compare the in-sample fit and out-of-sample forecasting performance of different

learning models. In this way, we disentangle the effects of the degree of knowledge about

the underlying economy and of learning on the model fit. We find that replacing the cross-

restrictions of REE with those implied by BLE plays an important role in improving

in-sample fitness and pseudo out-of-sample forecasting performance up to 4 quarters.

Introducing learning with AR(1) expectations improves the fitness further, particularly

when the model is re-estimated with short-term inflation expectations from survey data.

In particular, SAC-learning with AR(1) beliefs provides the best fit among the constant-

gain learning models considered in this paper when short-term survey data on inflation

expectations are taken into account.

Our work opens up several important avenues of future research. First, our results

call attention to the general class of Restricted Perceptions Equilibria that consider dif-

ferent degrees of misspecification and accompanying solution algorithms to empirically

estimate these equilibria. Second, sample-autocorrelation learning, which is based on a

method-of-moments estimator for the AR(1) rule, should be extended and generalized as

an alternative to the constant-gain recursive least squares learning in order to account

for any class of PLM and to complement the corresponding Restricted Perceptions Equi-

librium concepts. In general, estimation methods of optimal forecasting heuristics within

macroeconomic models seem a plausible and empirically relevant avenue for future work.

Policy analysis under optimal forecasting heuristics is an important application of these

theoretical and empirical tools. Finally, while the empirical horse race in this paper is

limited to Euler-equation learning models, extending the analysis to other approaches

such as infinite-horizon learning is an important topic for future work.
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Appendix

A Theoretical Results

A.1 Mean of the rational expectations equilibrium

Using (2.10–2.11) and (2.15–2.18), the mean of the REE satisfies

x∗ = (III − ccc1)
−1(ccc0 + ccc2uuu)

= (III − ccc1)
−1(III − bbb1ccc1 − bbb1)

−1(bbb0 + bbb1ccc2aaa) + (III − ccc1)
−1ccc2(III − ρρρ)−1aaa

= (III − ccc1)
−1(III − bbb1ccc1 − bbb1)

−1[bbb0 + (bbb1ccc2(III − ρρρ) + (III − bbb1ccc1 − bbb1)ccc2)(III − ρρρ)−1aaa]

= [(III − bbb1ccc1 − bbb1)(III − ccc1)]
−1[bbb0 + bbb3(III − ρρρ)−1aaa]

= (III − bbb1 − bbb2)
−1[bbb0 + bbb3(III − ρρρ)−1aaa].

A.2 Autocorrelations in the multivariate linear model

The purpose of this appendix is to compute the first-order autocorrelation coefficients

of the linear stochastic stationary system (2.24) and to show that these are continuous

functions with respect to (β1, β2, · · · , βn) and the other parameters.

Define XXX ′
t = [xxx′t,uuu

′
t]− [xxx′,uuu′]. Rewrite model (2.24) as

XXX t = B̂BB(βββ)XXX t−1 + ĈCCηηηt, (A.1)

where ηηη′t = [vvv′t, εεε
′
t], B̂BB(βββ) =

(
b1βb1βb1β

2 + bbb2 b3ρb3ρb3ρ

0 ρρρ

)
, ĈCC =

(
bbb4 bbb3

0 I

)
. The variance-covariance

matrix Γ̂ΓΓ(0) and the autocovariance matrix Γ̂ΓΓ(1) satisfy

Γ̂ΓΓ(0) = E[XXX tXXX
′
t] = B̂BB(βββ)Γ̂ΓΓ(0)B̂BB

′
(βββ) + ĈCCΣΣΣηηηĈCC

′
, (A.2)

Γ̂ΓΓ(1) = E[XXX tXXX
′
t+1] = Γ̂ΓΓ(0)B̂BB

′
(βββ), (A.3)

where ΣΣΣηηη =

(
ΣΣΣvvv 0

0 ΣΣΣεεε

)
.

In order to obtain an expression for Γ̂ΓΓ(0), we use column stacks of matrices. Suppose

vec(KKK) is the vectorization of a matrix KKK and ⊗ is the Kronecker product.35 Under the

assumption that all eigenvalues of b1βb1βb1β
2 + bbb2 and ρρρ are inside the unit circle, based on a

property of Kronecker product,36 it is easy to see that all eigenvalues of B̂BB(βββ)⊗ B̂BB(βββ) lie

35One property of column stacks is that the column stack of a product of three matrices is vec(ABC) =
(C ′⊗A)vec(B). For more details on this and related properties, see Magnus and Neudecker (2019, Chapter
2) and Evans and Honkapohja (2001, Section 5.7).

36The eigenvalues of Ǎ⊗ B̌ are the mn numbers λrµs, r = 1, 2, · · · ,m, s = 1, 2, · · · , n where λ1, · · · , λm
are the eigenvalues ofm×m matrix Ǎ and µ1, · · · , µn are the eigenvalues of n×n matrix B̌ (see Lancaster
and Tismenetsky, 1985 ).
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inside the unit circle and hence [III − B̂BB(βββ)⊗ B̂BB(βββ)]−1 exist. Therefore,

vec(Γ̂ΓΓ(0)) = [III − B̂BB(βββ)⊗ B̂BB(βββ)]−1(ĈCC ⊗ ĈCC)vec(ΣΣΣηηη). (A.4)

From (A.4) we can obtain an expression for Γ̂ΓΓ(0), and using (A.3), an expression for Γ̂ΓΓ(1)

can be obtained.

Based on the properties of matrix operations, it is easy to see that the entries of matri-

ces Γ̂ΓΓ(0) and Γ̂ΓΓ(1) are continuous functions with respect to (β1, β2, · · · , βn) and the other

parameters. Let ΩΩΩ = diag[γ11(0), γ22(0), · · · , γnn(0)] (a diagonal matrix), where γii(0)(i =

1, · · · , n) are the first n diagonal entries of Γ̂ΓΓ(0). Let LLL = diag[γ11(1), γ22(1), · · · , γnn(1)]
(a diagonal matrix), where γii(1)(i = 1, · · · , n) are the first n diagonal entries of Γ̂ΓΓ(1).

Thus the first-order autocorrelation coefficients of the linear stochastic stationary system

(2.24) GGG = LLLΩΩΩ−1 are continuous functions with respect to (β1, β2, · · · , βn) and the other

parameters.

For example, in the case n = 1, following the procedures above with Mathematica or

Matlab software, one obtains

G(β) =
(b23σ

2
ε + b24σ

2
v)(b1β

2 + b2) + (b23σ
2
ε − b24σ

2
v(b1β

2 + b2)
2)ρ− b24σ

2
v(b1β

2 + b2)ρ
2 + b24σ

2
v(b1β

2 + b2)
2ρ3

b23σ
2
ε(1 + (b1β2 + b2)ρ) + b24σ

2
v(1− (b1β2 + b2)ρ)(1− ρ2)

.

In the special case b2 = 0 and b4 = 1, this expression is exactly the same as the first-order

autocorrelation in Hommes and Zhu (2014), which was calculated using another approach.

A.3 Proof of Proposition 2 (stability under SAC-learning)

This appendix derives the E-stability conditions for a BLE (ααα∗,βββ∗). Set γt = (1+t)−1.

For the learning dynamics in (2.28) and (2.8),37 since all functions are smooth, the SAC-

learning rule satisfies the conditions (A.1–A.3) of Section 6.2.1 in Evans and Honkapohja

(2001, p. 124). In order to check the conditions (B.1–B.2) of Section 6.2.1 in Evans and

Honkapohja (2001, p. 125), we rewrite the system in matrix form as

XXX t = ÃAA(θθθt−1)XXX t−1 + B̃BB(θθθt−1)WWW t,

where θθθ′t = (αααt,βββt,RRRt),XXX
′
t = (1,xxx′t,xxx

′
t−1,uuu

′
t) and WWW

′
t = (1, vvv′t, εεε

′
t),

ÃAA(θθθ) =


0 0 0 0

b0 + b1(I − β2)α + b3ab0 + b1(I − β2)α + b3ab0 + b1(I − β2)α + b3a b1β
2 + b2b1β
2 + b2b1β
2 + b2 0 b3ρb3ρb3ρ

0 I 0 0

a 0 0 ρρρ

 ,

37For convenience of theoretical analysis, one can set St−1 = Rt.
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B̃BB(θθθ) =


1 0 0

0 b4b4b4 b3b3b3

0 0 0

0 0 I

 .

Based on the properties of eigenvalues (see, e.g., Evans and Honkapohja, 2001, p. 117), all

the eigenvalues of ÃAA(θθθ) include 0 (multiple n+1), the eigenvalues of ρρρ and b1βb1βb1β
2+b2b2b2. Thus,

based on the assumptions, all the eigenvalues of ÃAA(θθθ) lie inside the unit circle. Moreover,

it is easy to see all the other conditions in Section 6.2.1 in Evans and Honkapohja (2001)

are also satisfied.

Since xxxt is stationary, then the limits

σ2
i := lim

t→∞
E(xi,t − αi)

2, σ2
xixi,−1

:= lim
t→∞

E(xi,t − αi)(xi,t−1 − αi)

exist and are finite. Hence, according to Section 6.2.1 in Evans and Honkapohja (2001,

p. 126), the associated ODE is

dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= RRR−1[LLL− βΩβΩβΩ] = RRR−1ΩΩΩ[LLLΩΩΩ−1 − βββ],

dRRR

dτ
= ΩΩΩ−RRR,

(A.5)

where RRR is a diagonal matrix with the i-th diagonal entry Ri and ΩΩΩ, LLL are also diagonal

matrices, as defined in Section 2. As shown in Evans and Honkapohja (2001), a BLE

corresponds to a fixed point of the following ODE (A.6):
dααα

dτ
= xxx(ααα,βββ)−ααα,

dβββ

dτ
= GGG− βββ.

(A.6)

Note that βββ and GGG are both diagonal matrices. The Jacobian matrix of A.6 is, in fact,

equivalent to (
(III − bbb1βββ

∗2 − bbb2)
−1(bbb1 + bbb2 − III) ϱϱϱ

000 DDDGGGβββ(βββ
∗)− III

)
,

where DDDGGGβββ is a Jacobian matrix with the (i, j)-th entry ∂Gi
∂βj

, and the form of matrix

ϱϱϱ is omitted since it is not needed in the proof. Therefore, if all the eigenvalues of

(III−bbb1βββ∗2−bbb2)−1(bbb1+bbb2−III) have negative real parts and all the eigenvalues of DDDGGGβββ(βββ
∗)

have real parts less than 1, the SAC-learning (αααt,βββt) converges to the BLE (ααα∗,βββ∗) as

time t tends to ∞.
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A.4 Eigenvalues of matrix BBBβββ2 inside the unit circle

This appendix shows the sufficiency condition for the existence of a BLE of (2.40) in

Corollary 1. The characteristic polynomial of Bβββ2 is given by h(ν) = ν2+ c1ν+ c2, where

c1 = −
β2
y + [γφ+ λ(1 + φϕy)]β

2
π

1 + γφϕπ + φϕy
, c2 =

λβ2
yβ

2
π

1 + γφϕπ + φϕy
.

Both of the eigenvalues of Bβββ2 are inside the unit circle if and only if both of the following

conditions hold (see Elaydi, 2005):

h(1) > 0, h(−1) > 0, |h(0)| < 1.

It is easy to see h(−1) > 0, |h(0)| < 1 for any βi ∈ [−1, 1]. Note that

h(1) =
(1− β2

y)(1− λβ2
π) + γφϕπ + φϕy − (γφ+ λφϕy)β

2
π

1 + γφϕπ + φϕy
,

≥ φ[γ(ϕπ − 1) + (1− λ)ϕy]

1 + γφϕπ + φϕy
.

Thus, if γ(ϕπ − 1) + (1− λ)ϕy > 0, then h(1) > 0. Therefore, both eigenvalues of Bβββ2 lie

inside the unit circle for all βi ∈ [−1, 1].

A.5 First-order autocorrelations in the baseline NK model

This appendix gives the expressions for the first-order autocorrelation coefficients for

the output gap and inflation in the NK baseline model. Through complicated calculations,

the following expressions in terms of the structural parameters are obtained:

G1(βy, βπ) =
f̃1
g̃1
, (A.7)

G2(βy, βπ) =
f̃2
g̃2
, (A.8)
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where

f̃1 = σ2
y

{
(ρ+ λ1 + λ2 − λβ2

π)[1− λβ2
π(ρ+ λ1 + λ2)] + [λβ2

π(ρλ1 + ρλ2 + λ1λ2)−

ρλ1λ2][(ρλ1 + ρλ2 + λ1λ2)− λβ2
πρλ1λ2]

}
+ σ2

π

{
(φϕπ(ρ+ λ1 + λ2)− φβ2

π))

[φϕπ − φβ2
π(ρ+ λ1 + λ2)] + [φβ2

π(ρλ1 + ρλ2 + λ1λ2)− φϕπρλ1λ2]

[φϕπ(ρλ1 + ρλ2 + λ1λ2)− φβ2
πρλ1λ2]

}
,

g̃1 = σ2
y

{
[(1 + λ2β4

π)− 2λβ2
π(ρ+ λ1 + λ2) + (1 + λ2β4

π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[(1 + λ2β4
π)(ρ+ λ1 + λ2)− 2λβ2

π(ρλ1 + ρλ2 + λ1λ2) + (1 + λ2β4
π)ρλ1λ2]

}
+σ2

π

{
[((φϕπ)

2 + φ2β4
π)− 2φϕπφβ

2
π(ρ+ λ1 + λ2) + ((φϕπ)

2 + φ2β4
π)(ρλ1 + ρλ2 + λ1λ2)]

−ρλ1λ2[((φϕπ)2 + φ2β4
π)(ρ+ λ1 + λ2)− 2φϕπφβ

2
π(ρλ1 + ρλ2 + λ1λ2)

+((φϕπ)
2 + φ2β4

π)ρλ1λ2]
}
, (A.9)

f̃2 = σ2
y

{
γ2[(ρ+ λ1 + λ2)− ρλ1λ2(ρλ1 + ρλ2 + λ1λ2)]

}
+ σ2

π

{
[(1 + φϕy)(ρ+ λ1 + λ2)− β2

y ] ·

[(1 + φϕy)− β2
y(ρ+ λ1 + λ2)] + [β2

y(ρλ1 + ρλ2 + λ1λ2)− (1 + φϕy)ρλ1λ2] ·

[(1 + φϕy)(ρλ1 + ρλ2 + λ1λ2)− β2
yρλ1λ2]

}
,

g̃2 = σ2
y

{
γ2[1 + ρλ1 + ρλ2 + λ1λ2 − ρλ1λ2(ρ+ λ1 + λ2)− (ρλ1λ2)

2]
}

+σ2
π

{
[((1 + φϕy)

2 + β4
y)− 2(1 + φϕy)β

2
y(ρ+ λ1 + λ2) + ((1 + φϕy)

2 + β4
y)

(ρλ1 + ρλ2 + λ1λ2)]− ρλ1λ2[((1 + φϕy)
2 + β4

y)(ρ+ λ1 + λ2)− 2(1 + φϕy)β
2
y ·

(ρλ1 + ρλ2 + λ1λ2) + ((1 + φϕy)
2 + β4

y)ρλ1λ2]
}
, (A.10)

λ1 + λ2 =
β2
y + (γφ+ λ+ λφϕy)β

2
π

1 + γφϕπ + φϕy
, (A.11)

λ1λ2 =
λβ2

yβ
2
π

1 + γφϕπ + φϕy
. (A.12)

From these expressions, it is easy to see that G1(βy, βπ) and G2(βy, βπ) are analytic

functions with respect to βy and βπ, independent of ααα.

Finally, the covariance between output gap and inflation is given as
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E(ytπt) =
(
− σ2

yγ
(
− (1 + γφϕπ + φϕy)(1 + γφϕπ + φϕy + β2

yρ) + β4
πλ(1 + γφϕπ

+φϕy + β2
yρ)(λ+ γφ+ λφϕy) + β2

πρ[β
4
yλ+ β2

yλρ(1 + γφϕπ + φϕy) + γφ

(−1 + λϕπ)(1 + γφϕπ + φϕy)]− β2
yβ

6
πλ

2ρ(β2
yλ+ ρ(λ+ γφ+ λφϕy))

)
+ σ2

πφ(
− ϕπ(1 + γφϕπ + φϕy)[−β4

y − β2
yγρφϕπ + (1 + φϕy)(1 + γφϕπ + φϕy)] + β2

yβ
6
πλρ

[−γφ(−β2
y + ρ+ ρφϕy) + λρ(β4

y − (1 + φϕy)
2)] + β4

π

(
γφ(1− β2

yρ+ φϕy)(1 + γφϕπ

+φϕy) + λ(−1 + β2
yρ− φ(γϕπ + ϕy))(β

4
y − (1 + φϕy)

2) + β2
yλ

2ρϕπ(−β4
y +

(1 + φϕy)
2)
)
+ β2

πρ[−β6
yλρϕπ + β2

yλρϕπ(1 + φϕy)(1 + γφϕπ + φϕy)− (−1 + λϕπ)

(1 + φϕy)
2(1 + γφϕπ + φϕy) + β4

y(−1− φ(γϕπ + φy) + λ(ϕπ + φϕπϕy))]
))/(

(−1 + ρ2)(−1 + β2
yβ

2
πλ− φ(γϕπ + ϕy))(1 + β2

yρ(−1 + β2
πλρ) + γφϕπ + φϕy

−β2
πρ(λ+ γφ+ λφϕy))

(
β4
y(−1 + β4

πλ
2) + 2β2

yβ
2
πγφ(−1 + λϕπ) + (1 + γφϕπ + φϕy)

2

−β4
π(λ+ γφ+ λφϕy)

2
))
. (A.13)

A.6 E-Stability of BLE for a baseline NK model

This appendix shows the E-stability condition in Corollary 2. Based on Proposition

2, we only need to show that both of the eigenvalues of (III −BBBβββ2)−1(BBB−III) have negative
real parts if γ(ϕπ − 1) + (1− λ)ϕy > 0.

The characteristic polynomial of (III −BBBβββ2)−1(BBB− III) is given by h(ν) = ν2 − c1ν + c2,

where c1 is the trace and c2 is the determinant of matrix (III − BBBβββ2)−1(BBB − III). Direct

calculation shows that

c1 =
−(1− λ)(1− β2

y)− 2φ(γϕπ + ϕy) + φ(γ + λϕy)(1 + β2
π)

△ (1 + γφϕπ + φϕy)
, (A.14)

c2 =
φ[γ(ϕπ − 1) + (1− λ)ϕy]

△ (1 + γφϕπ + φϕy)
, (A.15)

where △=
(1−β2

y)(1−λβ2
π)+γφϕπ+φϕy−(γφ+λφϕy)β2

π

1+γφϕπ+φϕy
.

Both of the eigenvalues of (III −BBBβββ2)−1(BBB − III) have negative real parts if and only if

c1 < 0 and c2 > 0 (these conditions are obtained by applying the Routh-Hurwitz criterion

theorem (see Brock and Malliaris, 1989)). If γ(ϕπ − 1) + (1 − λ)ϕy > 0, from Appendix

A.4, it is easy to see that △> 0. Furthermore,

c1 ≤
−2φ[(γ(ϕπ − 1) + (1− λ)ϕy]

△ (1 + γφϕπ + φϕy)
< 0, c2 > 0.
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B Iterative E-stability Algorithm for BLE

This section discusses the Iterative E-stability algorithm used in the approximation of

BLE. The first-order autocorrelation coefficients βββ∗ in a BLE are functions in terms of the

structural parameters µµµ, which satisfy the nonlinear equilibrium conditions G(βββ∗,µµµ) = βββ∗

in (2.41). In order to find a BLE for a given µµµ, we use a simple fixed-point iteration,

which is formalized below in Algorithm I.

Algorithm I: Approximation of a BLE using Iterative E-stability

Denote the set of structural parameters by µµµ, and the first-order autocorrelation function
for a given µµµ by G(β(k)β(k)β(k),µµµ).

• Step (0): Initialize the vector of learning parameters at β(0)β(0)β(0).

• Step (I): At each iteration k, using the first-order autocorrelation functions, update
the vector of learning parameters as

β(k)β(k)β(k) = G(β(k−1)β(k−1)β(k−1),µµµ), (B.1)

where G(β(k−1)β(k−1)β(k−1),µµµ) is known from iteration k − 1.

• Step (II): Terminate if ||β(k)β(k)β(k)−β(k−1)β(k−1)β(k−1)||p < ϵ, for a small scalar ϵ > 038 and a suitable
norm distance ||.||p, otherwise repeat Step (I).

A BLE (000,β∗β∗β∗) is locally stable under (B.1) if all eigenvalues of DGβββ(β
∗β∗β∗) lie inside the

unit circle. Then the equilibrium is said to be iteratively E-stable. When Algorithm I

terminates for some K at a small pre-specified ϵ, we say that it has converged to β(K)β(K)β(K).

Note that if Algorithm I converges, it converges to an approximate BLE since

||β(K+1)β(K+1)β(K+1) − β(K)β(K)β(K)|| < ϵ⇒ ||G(β(K)G(β(K)G(β(K))− β(K)β(K)β(K)|| < ϵ⇒ G(β(K)G(β(K)G(β(K)) ≈ β(K)β(K)β(K).

Given a vector of initial values for the first-order autocorrelation coefficients of the

forward-looking variables, we use N = 200 iterations under (2.41) for each parameter

draw and use the resulting fixed-point as an approximate BLE. The algorithm typically

takes less than 50 iterations to converge for a given parameter draw, hence N = 200 is a

conservative value.

38In the remainder of this paper, we use the common L1-Norm as our norm distance, i.e., ||β(k)β(k)β(k) −
β(k−1)β(k−1)β(k−1)||p =

∑N
j=1 |β

(k)
j − β

(k−1)
j |.
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C Reduced-Form Matrices

Recall that we consider linear DSGE models in the following general form, as described

in Section 2.1:

xxxt = FFF (xxxet+1, uuut, vvvt) = bbb0 + bbb1xxx
e
t+1 + bbb2xxxt−1 + bbb3uuut + bbb4vvvt, (C.1)

uuut = aaa+ ρρρuuut−1 + εεεt. (C.2)

This appendix derives the reduced-form matrices ÂAA, B̂BB and ĈCC for the equilibrium

models, and ÂAAt, B̂BBt and ĈCCt for the learning models. The reduced-form matrices are used

for the Kalman filter discussed in Appendix D.

C.1 Equilibrium Models

REE

Using the MSV solution, expectations under REE are given by

Etxxxt+1 = ccc0 + ccc2aaa+ ccc1xxxt + ccc2ρρρuuut. (C.3)

Plugging back into (C.1) and rewriting yields

XXX t = ÂAA+ B̂BBXXX t−1 + ĈCCηηηt, (C.4)

where ÂAA =

[
I − bbb1ccc1 −(bbb1ccc2ρρρ+ bbb3)

0 I

]−1 [
bbb0 + bbb1ccc0 + bbb1ccc2aaa

aaa

]
, B̂BB =

[
I − bbb1ccc1 −(bbb1ccc2ρρρ+ bbb3)

0 I

]−1 [
bbb2 0

0 ρρρ

]
,

ĈCC =

[
I − bbb1ccc1 −(bbb1ccc2ρρρ+ bbb3)

0 I

]−1 [
bbb4 0

0 I

]
, XXX ′

t = [xxx′t,uuu
′
t], ηηη

′
t = [vvv′t, εεε

′
t].

BLE

Expectations under BLE are given by

ααα∗ + βββ∗2(xxxt−1 −ααα∗). (C.5)

Plugging back into (C.1) and rewriting yields

XXX t = ÂAA+ B̂BBXXX t−1 + ĈCCηηηt, (C.6)

where ÂAA =

[
I −bbb3
0 I

]−1 [
bbb0 + bbb1ααα

∗ − bbb1βββ
∗2ααα∗

aaa

]
,B̂BB =

[
I −bbb3
0 I

]−1 [
bbb1βββ

∗2 + bbb2 0

0 ρρρ

]
,

ĈCC =

[
I −bbb3
0 I

]−1 [
b4b4b4 0

0 I

]
.
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C.2 Learning Models

SAC-learning

Expectations under SAC-learning are given by

Etxxxt+1 = αt−1αt−1αt−1 + βt−1βt−1βt−1
2(xxxt−1 −αt−1αt−1αt−1). (C.7)

Plugging back into (C.1) and rewriting yields

XXX t = ÂAAt−1 + B̂BBt−1XXX t−1 + ĈCCt−1ηηηt, (C.8)

where ÂAAt−1 =

[
I −bbb3
0 I

]−1 [
bbb0 + bbb1αααt−1 − bbb1βββt−1

2αααt−1

aaa

]
, B̂BBt−1 =

[
I −bbb3
0 I

]−1 [
bbb1βββt−1

2 + bbb2 0

0 ρρρ

]
,

ĈCCt−1 =

[
I −bbb3
0 I

]−1 [
b4b4b4 0

0 I

]
.

AR(2)-learning

Expectations under AR(2)-learning are given by

Etxxxt+1 = αt−1 + βββ1,t−1xxxt−1 + βββ2,t−1xxxt−2. (C.9)

Plugging back into (C.1) and rewriting yields

XXX t = ÃAAt−1 + B̃BBt−1XXX t−1 + C̃CCt−1XXX t−2 + D̃DDt−1ηηηt, (C.10)

where ÃAAt−1 =

[
I −bbb3
0 I

]−1 [
bbb0 + bbb1αααt−1

0

]
, B̃BBt−1 =

[
I −bbb3
0 I

]−1 [
b1b1b1βββ1,t−1 + b2b2b2 0

0 ρρρ

]
,

C̃CCt−1 =

[
b1b1b1βββ2,t−1 0

0 0

]
, D̃DDt−1 =

[
b4b4b4 0

0 I

]
.

This can be further rewritten as

X̃XX t = ÂAAt−1 + B̂BBt−1X̃XX t−1 + ĈCCt−1ηηηt, (C.11)

where X̃XX t =

[
XXX t

XXX t−1

]
, ÂAAt−1 =

[
ÃAAt−1

0

]
, B̂BBt−1 =

[
I −B̃BBt−1

0 I

]−1 [
0 C̃CCt−1

I 0

]
,

C̃CCt−1 =

[
I −B̃BBt−1

0 I

]−1 [
D̃DDt−1

0

]
.
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Pseudo-MSV and VAR(1)-learning

Expectations under pseudo-MSV and VAR(1)-learning are given by

Etxxxt+1 = γ0,t−1 + γ1,t−1xxxt−1 + γ2,t−1ρρρuuut−1. (C.12)

Plugging back into (C.1) and rewriting yields

XXX t = ÂAAt−1 + B̂BBt−1XXX t−1 + ĈCCt−1ηηηt, (C.13)

where ÂAAt−1 =

[
I −b3b3b3
0 I

]−1 [
b0b0b0 + b1b1b1γ0,t−1

aaa

]
, B̂BBt−1 =

[
I −b3b3b3
0 I

]−1 [
b1b1b1γ1,t−1 + b2b2b2 b1b1b1γ2,t−1ρρρ

0 ρρρ

]
,

ĈCCt−1 =

[
I −b3b3b3
0 I

]−1 [
b4b4b4 0

0 I

]
.

VAR(1)-learning is the special case with γ2,t−1 = 0.

D Kalman Filter and Estimation

This section describes the Kalman filter used in the estimation of equilibrium and

adaptive learning models.

D.1 Kalman Filter for Equilibrium Models

For the REE model, expectations xxxet+1 are pinned down by the equilibrium conditions

(2.15)–(2.18). The fixed point of the system (2.15)–(2.18) is computed using standard

methods, as in Uhlig (1995).

For the BLE model, expectations xxxet+1 are pinned down by the equilibrium conditions

(consistency requirements) in (2.27). The fixed point associated with (2.27) is approxi-

mated by the iterative E-stability algorithm in (2.41), which converges to the correspond-

ing equilibrium persistence values β∗β∗β∗ (see Appendix B).

Both REE and BLE models can be written in the following recursive form:

XXX t = ÂAA+ B̂BBXXX t−1 + ĈCCηηηt, (D.1)

with XXX ′
t = [xxx′t,uuu

′
t], ηηη

′
t = [vvv′t, εεε

′
t] and ÂAA, B̂BB and ĈCC matrices of structural parameters.

REE and BLE models are characterized by different matrices B̂BB and ĈCC, as described in

Appendix C.1. Given the linear structure of both models, the likelihood function can be

evaluated using a standard Kalman filter.

We denote the initial state vector and state covariance matrix byXXX0|0 and PPP 0|0, respec-

tively, while L refers to the number of shocks. The measurement equations are denoted

by YYY t = ϕ̄+ϕ1XXX t, with YYY t denoting the vector of observable variables.39 For every period

39The SW07 model considered in this paper consists of GDP, consumption, wage and investment
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t, the Kalman filter recursions are given as follows:

XXX t|t−1 = ÂAA+ B̂BBXXX t−1|t−1,

PPP t|t−1 = B̂BBPPP t−1|t−1B̂BB
′
+ ĈCCΣΣΣηηηĈCC

′
,

vt = YYY t − ϕ̄− ϕ1XXX t|t−1,

Σt = ϕ1PPP t|t−1ϕ
′
1,

XXX t|t =XXX t|t−1 +PPP t|t−1ϕ
′
1Σ

−1
t vt,

PPP t|t = PPP t|t−1ϕ
′
1Σ

−1
t ϕ1PPP t|t−1,

L(yt) = −L
2
ln(2π)− 1

2
ln|Σt| − 1

2
(v′tΣ

−1
t vt).

(D.2)

D.2 Kalman Filter for Learning Models

Learning models can be represented as a recursive linear system after plugging in the

expectations

XXX t = ÂAAt−1 + B̂BBt−1XXX t−1 + ĈCCt−1ηηηt, (D.3)

with time-varying matrices B̂BBt−1, ĈCCt−1 and perceived mean vector ÂAAt−1, where the time-

variation comes from agents’ PLM coefficients. The coefficients are updated every period

using the SAC-learning or constant gain recursive least squares algorithms in (3.2)–(3.6).

Given the t − 1 timing structure discussed in Section 3.1, the learning models admit

a conditionally linear structure given the belief coefficients. Accordingly, the likelihood

function can be evaluated using the standard Kalman filter recursions conditional on the

belief coefficients.

We denote the initial perceived covariance matrix and initial belief coefficients that

appear in the learning algorithms (3.2)–(3.6) by R0 and θ0. For every period t, the

conditionally linear Kalman filter recursions are given as follows:

Kalman filter step:

XXX t|t−1 = ÂAAt−1 + B̂BBt−1XXX t−1|t−1,

PPP t|t−1 = B̂BBt−1PPP t−1|t−1B̂BB
′
t−1 + ĈCCt−1ΣΣΣηηηĈCC

′
t−1,

vt = YYY t − ϕ̄− ϕ1XXX t|t−1,

Σt = ϕ1PPP t|t−1ϕ
′
1,

XXX t|t =XXX t|t−1 +PPP t|t−1ϕ
′
1Σ

−1
t vt,

PPP t|t = PPP t|t−1ϕ
′
1Σ

−1
t ϕ1PPP t|t−1,

L(yt|Rt−1, θt−1) = −L
2
ln(2π)− 1

2
ln|Σt| − 1

2
(v′tΣ

−1
t vt),

growth, CPI inflation, hours worked and interest rates.
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Learning step:

Rt = T1(Rt−1,XXX t|t),

θt = T2(θt−1,XXX t|t, Rt),

(D.4)

where T1 and T2 correspond to the updating equations for belief coefficients, as outlined

in (3.2)–(3.6). In this context, we treat the learning models as a temporary equilibrium

system, where the matrices B̂BBt−1 and ĈCCt−1 and vector ÂAAt−1 are updated every period.

The Kalman filter step treats the model as a linear system for a given θt and returns the

likelihood function and state variables XXX t|t. The state variables are used as an input to

update the belief coefficients in the learning step.

D.3 Estimation

The model parameters are estimated using standard Bayesian likelihood methods.

This consists of a posterior mode search step and a Monte Carlo Markov Chain (MCMC)

step, which are summarized below.

1. Prior distributions of the estimated parameters are specified. For the SW07 model

used in this paper, the prior distributions are summarized in Table 6. We denote

the prior distribution function by p(µµµ).

2. The likelihood function p(µµµ) ∗ L(yt|µµµ) is maximized using standard iterative gradi-

ent descent algorithms. We use the csminwel algorithm (Sims, 1999) available in

MATLAB software.

• The algorithm iteratively updates the parameters µµµ until convergence. We

denote each iteration of parameter draws by µµµn.

• Equilibrium models: For every parameter draw µµµn, the equilibrium is calcu-

lated by finding the fixed point of (2.15)–(2.18) and (2.27) for REE and BLE

models, respectively. For the REE model the fixed point is found by using

Uhlig’s method (1995). For the BLE model, the iterative E-stability algorithm

in (B.1) with 200 iterations is used. Given the reduced-form matrices ÂAA(µµµn),

B̂BB(µµµn) and ĈCC(µµµn), the likelihood function p(µµµn) ∗ L(yt|µµµn) is computed using

the Kalman filter recursions in (D.2).

• Learning models: For every parameter draw µµµn, the reduced-form matrices

ÂAAt−1(µµµ
n), B̂BBt−1(µµµ

n) and ĈCCt−1(µµµ
n) are re-calculated at every period t of the

Kalman filter in (D.4). Given the reduced-form matrices, the likelihood func-

tion p(µµµn) ∗ L(yt|µµµn) is computed.

• The parameter values µµµn are iteratively updated until the likelihood function

p(µµµn) ∗ L(yt|µµµn) converges. The optimized parameter values µµµ∗ are referred to

as the posterior mode.
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3. For each model, the MCMC algorithm is initialized at (µµµ∗, cΣΣΣ∗
µµµ), where ΣΣΣ

∗
µµµ denotes

the covariance matrix of µµµ∗. c is a scaling coefficient tuned to obtain an average

acceptance ratio between 30 and 45%. For each model, we use two parallel chains

with 500000 draws and discard the first half as a burn-in sample. The second half

of the chains is used to compute the posterior moments reported in Tables 1 and 3.

For the BLE model, the initial values of the first-order autocorrelation coefficients

of the AR(1) beliefs β(0)β(0)β(0), i.e., Step (0) of Algorithm I in Appendix B, are fixed

prior to the estimation. For forward-looking variables that are observable, i.e.,

inflation πt and hours worked lt, the initial values are set to the corresponding first-

order sample-autocorrelation over the estimation period. For the remaining latent

forward-looking variables, we take the unconditional first-order autocorrelations im-

plied by the estimated REE. We keep the initial values β(0)β(0)β(0) fixed at these values

for all parameter draws µµµn. Parameter draws where the fixed-point iteration fails

to converge to a stationary equilibrium are discarded.

E The Smets-Wouters 2007 Model

E.1 Model Descriptions

The model consists of 13 equations linearized around the steady-state growth path,

supplemented with seven exogenous structural shocks. We deviate from the benchmark

model by slightly restricting the parameter space of the model, where we assume all shocks

follow an AR(1) process.40 In this section we briefly outline the resulting linearized model

economy that is used in our estimation. To start with the demand side of the economy,

the aggregate resource constraint is given byỹt = cyct + iyit + zyzt + ϵgt ,

ϵgt = ρgϵ
g
t−1 + ηgt ,

(E.1)

where ỹt, ct, it and zt are the output, consumption, investment and capital utilization rate,

respectively, while cy, iy and zy are the steady-state shares in output of the respective

variables. The second equation in (E.1) defines the exogenous spending shock ϵgt , where

ηgt is an i.i.d-normal disturbance for spending. The consumption Euler equation is given

by ct = c1ct−1 + (1− c1)Etct+1 + c2(lt − Etlt+1)− c3(rt − Etπt+1) + ϵbt ,

ϵbt = ρbϵ
b
t−1 + ηbt ,

(E.2)

40In particular, the benchmark model has more structure on the exogenous shocks, where the mark-up
shocks each follow an ARMA(1,1) process and the technology and government spending shocks follow a
VAR(1) process. We refer the reader to SW for more details about the microfoundations of the benchmark
model.
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with c1 = λ
γ
/(1 + λ

γ
),c2 = (σc − 1)(wsslss/css)/(σc(1 + λ

γ
)),c3 = (1 − λ

γ
)/((1 + λ

γ
)σc),

where λ, γ and σc denote the habit formation in consumption, steady state-growth rate

and the elasticity of intertemporal substitution, respectively, while xss corresponds to the

steady-state level of a given variable x. The equation implies that current consumption

is a weighted average of the past and expected future consumption, expected growth

in hours worked and the ex-ante real interest rate. ϵbt corresponds to the risk premium

shock modeled as an AR(1) process, where ηbt is an i.i.d-normal disturbance. Next, the

investment Euler equation is defined asit = i1it−1 + (1− i1)Etit+1 + i2qt + ϵit,

ϵit = ρiϵ
i
t−1 + ηit,

(E.3)

with i1 =
1

1+β̄γ
, i2 =

1
(1+β̄γ)(γ2ϕ)

, where β̄ = βγ−σc , ϕ is the steady-state elasticity of capital

adjustment cost and β is the HH discount factor. qt denotes the real value of existing

capital stock. Similar to the consumption Euler, the equation implies that investment is

a weighted average of past and expected future consumption, as well as the real value

of existing capital stock. ϵit represents the AR(1) investment shock, where ηit is an i.i.d-

normal disturbance. The value of the capital-arbitrage equation is given by

qt = q1Etqt+1 + (1− q1)Etrkt+1 − (rt − Etπt+1) +
1
c3
ϵbt , (E.4)

with q1 = β̄(1 − δ), implying the real value of capital stock is a weighted average of its

expected future value and expected real rental rate on capital, net of ex-ante real interest

rate and the risk premium shock. The production function is characterized asỹt = ϕp(αk
s
t + (1− α)lt + ϵat ),

ϵat = ρaϵ
a
t−1 + ηat ,

(E.5)

where kst denotes the capital services used in production, α is the share of capital in

production and ϕp is (one plus) the share of fixed costs in production. ϵat denotes the

AR(1) total factor productivity shock. Capital is assumed to be the sum of the previous

amount of capital services used and the degree of capital utilization. Hence,

kst = kt−1 + zt. (E.6)

Moreover, the degree of capital utilization is a positive function of the degree of rental

rate, zt = z1r
k
t , with z1 =

1−ψ
ψ

, ψ being the elasticity of the capital utilization adjustment

cost. Next, the equation for installed capital is given by

kt = k1kt−1 + (1− k1)it + k2ϵ
i
t, (E.7)
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with k1 =
1−δ
γ
, k2 = (1− 1−δ

γ
)(1 + β̄γ)γ2ϕ. The price mark-up equation is given by

µpt = α(kst − lt) + ϵat − wt, (E.8)

which means the price mark-up µpt is the marginal product of the labor net of the current

wage. The NKPC is characterized asπt = π1Etπt+1 − π2µ
p
t + ϵpt ,

ϵpt = ρpϵ
p
t−1 + ηpt ,

(E.9)

with π1 = β̄γ ,π2 = (1 − βγξp)(1 − ξp)/[ξp((ϕp − 1)ϵp + 1)], where ξp corresponds to the

degree of price stickiness, while ϵp denotes the Kimball goods market aggregator. The

equation implies that current inflation is determined by the expected future inflation,

the price mark-up and the AR(1) price mark-up shock ϵpt , where η
p
t is an i.i.d-normal

disturbance. The rental rate of capital is given by

rkt = −(kt − lt) + wt, (E.10)

which implies the rental rate of capital is decreasing in the capital-labor ratio and increas-

ing in the real wage. The wage mark-up is given as the real wages net of the marginal

rate of substitution between working and consuming. Hence,

µwt = wt − (σllt +
1

1− λ/γ
(ct −

λ

γ
ct−1), (E.11)

where σl denotes the elasticity of labor supply. The real wage equation is given bywt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w2µ
w
t + ϵwt ,

ϵwt = ρwϵ
w
t−1 + ηwt ,

(E.12)

with w1 = 1/(1 + β̄γ) and w2 = ((1 − β̄γξw)(1 − ξw)/(ξw(ϕw − 1)ϵw + 1)). Hence, the

real wage is a weighted average of the past and expected wage, expected inflation, the

wage mark-up and the wage mark-up shock ϵwt , where ηwt is an i.i.d-normal disturbance.

Finally, monetary policy is assumed to follow a standard generalized Taylor rule:rt = ρrt−1 + (1− ρ)(ϕππt + ϕyyt) + ϕ∆y(∆yt) + ϵrt ,

ϵrt = ρrϵ
r
t−1 + ηrt ,

(E.13)

where yt denotes the output gap and ϵrt is the AR(1) monetary policy shock, with ηrt the

i.i.d-normal disturbance. Hence, the monetary policy responds with output gap growth on

top of inflation and the output gap. In this paper, following the approach in Slobodyan

and Wouters (2012a), the output gap is defined as the deviation of output from the

underlying productivity process, i.e., yt = ỹt − Φpϵ
a
t . The prior distributions used for all
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estimated parameters are provided in Table 6.

Fixed Parameters

δ 0.025
ϕw 1.5
g 0.18
ϵp 10
ϵw 10

Prior Distribution Mean Var.

Parameters related to nominal and real frictions

ϕ Normal 4 1.5
σc Normal 1.5 0.375
λ Beta 0.7 0.1
ξw Beta 0.5 0.1
σl Normal 2 0.75
ξp Beta 0.5 (0.75) 0.1 (0.05)
ψ Beta 0.5 0.15
ϕp Normal 1.25 0.125
ιp Normal 0.5 0.15
ιw Normal 0.5 0.15

Policy related parameters

ϕπ Normal 1.5 0.25
ρ Beta 0.75 0.1
ϕy Normal 0.125 0.05
ϕ∆y Normal 0.125 0.05

Steady-state related parameters

π̄ Gamma 0.625 0.1
β̄ Gamma 0.25 0.1
l̄ Normal 0 2
γ̄ Normal 0.4 0.1
α Normal 0.3 0.05

Parameters related to shock persistence

ρa Beta 0.5 0.2
ρb Beta 0.5 0.2
ρg Beta 0.5 0.2
ρi Beta 0.5 0.2
ρr Beta 0.5 0.2
ρp Beta 0.5 0.2
ρw Beta 0.5 0.2
ρga Beta 0.5 0.2

Shock variance parameters

ηa Inv. Gamma 0.1 2
ηb Inv. Gamma 0.1 2
ηg Inv. Gamma 0.1 2
ηi Inv. Gamma 0.1 2
ηr Inv. Gamma 0.1 2
ηp Inv. Gamma 0.1 2
ηw Inv. Gamma 0.1 2

γ Gamma 0.035 0.015

Table 6: Fixed parameters and the prior distributions of the estimated parameters for the
Smets-Wouters (2007) model.

We use U.S. historical quarterly macroeconomic data for the period 1966:I–2007:IV.

The observable variables used in the estimation are the (log-) difference of real GDP

(ydatat ), real consumption (cdatat ), real investment (invdatat ), real wage (wdatat ), log hours

worked (ldatat ), inflation (πdatat ) and the federal funds rate (rdatat ) for the U.S economy.

The measurement equations are given as

d(log(ydatat )) = γ̄ + (yt − yt−1),

d(log(cdatat )) = γ̄ + (ct − ct−1),

d(log(invdatat )) = γ̄ + (invt − invt−1),

d(log(wdatat )) = γ̄ + (wt − wt−1),

log(ldatat ) = l̄ + lt,

(log(πdatat )) = π̄ + πt,

(log(rdatat )) = r̄ + rt.

(E.14)

64



The construction of the time series follow the same steps as in Smets and Wouters (2007).

E.2 Deviations from the Original Model

Our model follows the original Smets and Wouters (2007) structure with minor devi-

ations. First, we use CPI inflation as our inflation measure instead of the GDP deflator

used in the original model. Second, we define the output gap in the model as the de-

viation of output from its natural level based on the productivity process.41 Third, the

observable variables used in the estimation are the (log-) difference of real GDP, real

consumption, real investment, real wages, (log-) hours worked, inflation and the federal

funds rate for the U.S. economy. The model structure is the same as the original SW

except for three minor deviations. The first is the definition of the output gap: in the

original model, this is the deviation of output from its potential level, defined as output

in the presence of flexible prices and wages. Instead, we follow Slobodyan and Wouters

(2012b) and define output gap as the deviation of output from its natural level based on

the productivity process.42 The second deviation involves the exogenous price and wage

mark-up shocks, which follow ARMA(1,1) processes in the original model. However, as

shown in Slobodyan and Wouters (2012a), mark-up shocks are typically reduced to near

white noise processes once learning dynamics are introduced. In these cases, the AR(1)

and MA(1) parameters are typically locally unidentified. Therefore we shut off the MA

component of these shocks. The third difference pertains to the prior distribution of price

stickiness ξp, which we tighten from ξp ∼ Beta(0.5, 0.2) to ξp ∼ Beta(0.75, 0.05). This

follows from our observations that the approximation algorithm may fail to find an equi-

librium and thus break down for small values of ξp. Further, for the learning models, we

have an additional estimated parameter γ, i.e., the constant gain value. This is assigned

a prior of γ ∼ Gamma(0.035, 0.015), which closely follows the assumption in Slobodyan

and Wouters (2012b). The remainder of the model remains unchanged and consists of 13

equations with 7 forward-looking variables, 7 exogenous shocks, and 7 state variables that

enter into the model equations with a lag. There are 35 estimated parameters including

the constant gain for the adaptive learning models. We leave further details of the model,

measurement equations and the prior distributions to Appendix E.

41This is the approach used in Slobodyan and Wouters (2012b). See Appendix E for further details.
42See Appendix E for further details.
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