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Abstract 
 

We augment a standard New Keynesian model with a financial accelerator mechanism and 
show that financial frictions generate large state-dependent amplification effects. We fit the 
model to US data and show that, when shocks drive the model far away from the steady state, 
the nonlinear model produces much stronger propagation of shocks than the linearized model. 
We document that these amplification effects are due to endogenous variation in financial 
conditions and not due to other nonlinearities in the model. Motivated by these findings, we 
propose a regime-switching dynamic stochastic general equilibrium framework where financial 
frictions endogenously fluctuate between moderate (low risk) and severe (high risk), depending 
on the state of the economy. This framework allows for efficient estimation with many state 
variables and improves fit with respect to the linear model. 
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1 Introduction

Since the Great Recession in 2007–2009, much research has focused on incorporating
financial factors into macro models (Gertler and Gilchrist 2018, Christiano et al. 2018).
In parallel, several empirical studies have shown that changing financial conditions alter
how the financial sector affects the real economy (e.g., Adrian et al. 2019, Brunnermeier
2009, Hubrich and Tetlow 2015, Barnichon et al. 2018, Prieto et al. 2016). In particular,
financial frictions tend to amplify the effects of macroeconomic shocks during periods of
financial distress.

In this paper, we study the role of state-dependent financial frictions in a medium-sized
New Keynesian model of the business cycle. New Keynesian models with financial frictions
(NK-FF) have become a fundamental policy tool for central banks.1 At the same time,
they have been heavily criticized in the years after the Great Recession (Christiano et al.
2018). Two popular critiques are the following: (1) because NK-FF models take an overly
simplified approach to modeling financial intermediaries, they fail to take into account
the crucial role of financial factors for business cycle dynamics; and (2) because they are
often linearized, they are unable to take into account the highly nonlinear dynamics of
the financial sector.

Against this background, we address two questions in this paper. First, we ask whether
financial frictions in a standard nonlinear NK-FF model generate a large amplification of
shocks in macro and financial variables, as found in empirical studies. This relates directly
to assessing the costs of linearizing these models for empirical analysis. And second, we
investigate how to introduce these nonlinear dynamics into a framework that allows for
efficient estimation.

Our contribution is twofold. First, we show that the cost of ignoring state-dependent
effects of financial frictions is substantial. We rely on the NK-FF model by Christiano
et al. (2014) and use a higher-order perturbation solution to investigate the extent to
which nonlinear effects of financial frictions matter empirically. We document that the
model generates large amplification effects in periods of financial distress or high risk and
generates mild amplification effects in periods of financial tranquility or low risk. Second,
we propose a regime-switching dynamic stochastic general equilibrium (DSGE) model in
which the economy fluctuates endogenously between low-risk and high-risk states, allowing
for state-dependent effects of financial frictions and for efficient estimation with many state
variables.

We start by investigating the empirical relevance of the state-dependent financial fric-
tions in the NK-FF model. We fit the model to US data and show that the nonlinear
model produces much stronger propagation of shocks than its linearized version. We find

1See, e.g., Coenen et al. (2012) and Lindé et al. (2016) for a description and comparisons of the
workhorse models used by central banks.
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that output and investment drop by an additional 60% and 65% respectively during the
Great Recession in the nonlinear model, while consumption drops by an additional 10%
and the credit spread of the corporate bond jumps an additional 5.2 (annualized) per-
centage points. Importantly, we document that the bulk of these amplification effects are
driven by variation in financial conditions, and not by other nonlinearities in the model.
By contrast, amplification is almost absent throughout the 1980s and 1990s, which is
consistent with the view that linear models provided a relatively good approximation of
US business cycles during the Great Moderation. These two facts combined highlight the
importance of allowing for state-dependent financial frictions in macroeconomic models.

We then propose a regime-switching DSGE framework where financial frictions fluc-
tuate endogenously between moderate (low risk) and severe (high risk) depending on the
state of the economy. We model the probability of switching from one state to the other
as a function of the credit spread of the corporate bond. This allows us to discipline the
nonlinear effects of financial frictions in the model with a measure of financial conditions
in the data. We solve the regime-switching model using perturbation methods follow-
ing Maih (2015), which gives us a key efficiency advantage with respect to projection
methods. We then illustrate how this framework, combined with the filter proposed by
Chang et al. (2018), can be used to efficiently estimate the New Keynesian model with
state-dependent financial frictions. We demonstrate this using both simulated data and
historical US data.

First, we generate data from the nonlinear NK-FF model and fit three models to
these data: a linearized NK-FF model; a regime-switching NK-FF model with constant
switching probabilities, where the switching follows an exogenous process; and a regime-
switching NK-FF model with time-varying switching probabilities that are endogenous to
financial conditions. Using model fit as a benchmark, we show that both regime-switching
models greatly outperform the linear model and, most importantly, that the endogenous
switching model outperforms the exogenous switching model. This is because, on average,
high-risk states coincide with high spreads. By incorporating this information explicitly,
the endogenous probability model produces better one-step-ahead forecasts when eval-
uating the likelihood function, which results in improved fit. Put differently, model fit
improves as a result of the improved probabilistic assessment about when financial fric-
tions matter most. Ultimately, both model fit and its determinants are of interest for
policymakers.

We then fit the endogenous regime-switching model to US data and show that the
transition to high-risk regimes is crucial to account for periods of financial stress, especially
the Great Recession.

Alternatives to this approach include evaluating the nonlinear model, solved with ei-
ther higher-order perturbation methods or fully nonlinear projection methods, using a
particle filter. However, a particle filter is computationally more costly than our imple-
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mentation of the regime-switching filter. Moreover, while both these solutions take the
nonlinear nature of the financial contract into account, they do not exploit the extra
flexibility implied by the time-varying nature of parameters and equilibria in our regime-
switching framework.

We work with the New Keynesian model proposed by Christiano et al. (2014) (hence-
forth, CMR). The basic structure follows Christiano et al. (2005) and Smets and Wouters
(2007), while financial frictions are introduced as in Bernanke et al. (1999) (henceforth,
BGG). We choose this approach for two main reasons. First, several influential central
banks have built their DSGE models on this structure.2 Second, recent studies have high-
lighted the empirical relevance of this framework, in terms of both explaining the business
cycle (CMR) and forecasting performance (Del Negro et al. 2015, Del Negro et al. 2016,
Del Negro and Schorfheide 2013, Cai et al. 2018).

In the BGG model, an agency problem between financial intermediaries and produc-
tive firms gives rise to a premium for external finance. When firms’ balance sheets weaken,
the premium increases and real activity slows down, which has a further negative effect
on borrowers’ financial health, increasing the premium further, and so on. This is BGG’s
financial accelerator and its size is determined by the sensitivity of the premium to firm
leverage. Crucially, this sensitivity is increasing in entrepreneurs’ risk, defined as the vari-
ance of idiosyncratic productivity shocks faced by entrepreneurs.3 Using this definition
of risk, we exploit this relation to model state-dependent financial frictions.

Contribution to the literature Recent studies have provided empirical evidence of
asymmetric effects of financial shocks and frictions on the real economy. Adrian et al.
(2019) document a nonlinear relationship between financial conditions and the conditional
distribution of GDP growth. They argue that DSGE models with financial frictions should
therefore allow for nonlinear equilibrium relationships. Hubrich and Tetlow (2015) use a
regime-switching vector autoregression model to show that the model that best explains
the Great Recession features both changes in shock variances and in the parameters ruling
the transmission of shocks. In a related study, Alessandri and Mumtaz (2017) indicate
the presence of a regime change during the Great Recession. Barnichon et al. (2018)
empirically document that financial shocks have asymmetric effects on the real economy,
while Prieto et al. (2016) provide evidence of time-varying linkages between the financial
sector and the macroeconomy. We build on this body of empirical evidence to develop a
DSGE model that takes similar state-dependent dynamics into account.

2Policy institutions that use a New Keynesian model with financial frictions as in BGG for policy
analysis include the IMF (GIMF model), the Federal Reserve Board (SIGMA model), the European
Central Bank (New Area Wide Model), the Federal Reserve Bank of New York (FRBNY-DSGE model),
and the Riksbank (Ramses II model), among others.

3The empirical relevance of this concept of risk for the business cycle goes back to Bloom (2009).
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We also contribute to the literature that has analyzed developments in DSGE models
before and after the 2008 financial crisis. Christiano et al. (2018) revise this literature
and conclude that financial frictions in pre-crisis DSGE models seem to have only small
quantitative effects, an observation that goes back to Kocherlakota (2000). Importantly,
most studies discussed there consider linearized versions of NK-FF models, thereby ne-
glecting the potential state-dependent effects of financial frictions over the business cycle.
Other studies (e.g., Brunnermeier and Sannikov 2014, He and Krishnamurthy 2014) have
shown that nonlinear models with financial frictions can generate large amplification ef-
fects. Our results provide additional evidence supporting the view that it is important
to take nonlinear model dynamics into account for business cycle analysis, even in the
pre-crisis generation of models.

Additionally, there is a growing literature studying the nonlinear effects of financial
frictions in DSGE models. On the one hand, several papers have used New Keynesian
models with occasionally binding constraints and regime switching to study the effects of
different types of nonlinear financial constraints (Holden et al. 2018, Pietrunti 2017, Maria
and Júlio 2018, Guerrieri and Iacoviello 2017, Bluwstein 2017, Lindé et al. 2016). Some
of these papers take an empirical approach. For instance, Guerrieri and Iacoviello (2017)
estimate a NK-FF model with an occasionally binding collateral constraint that captures
the boom-bust dynamics observed in the US housing market in 2001–2009. Bluwstein
(2017) documents that financial busts are more procyclical than booms and estimates a
DSGE model with banks that face an occasionally binding borrowing constraint to explain
this finding. More generally, the papers by Lindé et al. (2016), Del Negro et al. (2016),
and Del Negro and Schorfheide (2013) have shown that allowing for time variation in the
effects of financial frictions improves the forecasting performance of DSGE models.

On the other hand, various papers have used smaller nonlinear models that include
important features of the financial sector, such as the endogenous buildup of financial
risk and the asymmetric effects of financial constraints in normal times and in periods of
financial distress (Adrian and Boyarchenko 2012, He and Krishnamurthy 2014, Brunner-
meier and Sannikov 2014, Mendoza 2010) to show that financial frictions generate large
amplification effects on macroeconomic variables. Many of these features are yet to be
introduced to the models used by central banks. Importantly, due to the high compu-
tational burden involved in solving these models, they are typically much smaller than
the standard NK-FF model. For the same reason, estimation of nonlinear DSGE models
becomes computationally challenging (see, e.g., Gust et al. 2017). We contribute to this
literature by combining elements of these two strands to develop a framework that fea-
tures state-dependent financial frictions with time-varying risk in an otherwise standard
NK-FF model and that allows for efficient estimation with many state variables.
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Outline The paper is organized as follows. Section 2 describes the NK-FF model and
discusses the nonlinear dynamics in the financial sector. Section 3 provides the details
about the estimation and documents the quantitative effects of state-dependent finan-
cial frictions. Section 4 introduces the regime-switching DSGE model and discusses the
estimation results. The last section concludes.

2 Model

We augment a standard New Keynesian model with the BGG financial accelerator fol-
lowing CMR. Absent financial frictions, the building blocks are similar to the well known
models by Christiano et al. (2005) and Smets and Wouters (2007). In the following we
present the main features of the model.

2.1 Goods Production

Final goods producers take intermediate goods, Yjt, j ∈ [0, 1], to produce a homogeneous
good, Yt, using the Dixit-Stiglitz technology:

Yt =
[∫ 1

0
Y

1
λf,t

jt dj

]λf,t

, 1 ≤ λf,t < ∞, (1)

where λf,t is a price-markup shock. The intermediate goods producer is a monopolist
with technology

Yjt =
{
εtK

α
jt(ztljt)1−α − Φz∗

t if Kα
jt(ztljt)1−α > Φz∗

t

0 otherwise
, (2)

where 0 < α < 1 and εt is a transitory technology shock. z∗
t is a shock with a stationary

growth rate with the property that Yt/z
∗
t converges to a constant in the non-stochastic

steady state. Each firm supplies Yjt at price Pjt and is subject to Calvo-style price
rigidities, so that in each period only a random fraction (1 − ξp) can re-optimize their
price. The remaining fraction sets a price Pjt = π̃tPj,t−1, where

π̃t = (πtarget
t )ι(πt−1)1−ι. (3)

Here, πt−1 ≡ Pt−1/Pt−2 and πtarget
t is the target inflation rate. Homogeneous goods

can be converted to consumption goods, Ct, at a one-to-one rate. Alternatively, one
homogeneous good can be converted to ΥtµΥ,t investment goods, where Υ > 1 and µΥ,t

is a shock. Perfect competition in these markets implies that the prices of consumption
and investment goods are Pt and Pt/(ΥtµΥ,t), respectively. The trend rise in technology
for producing investment goods is the second source of growth in the model, and z∗

t =
ztΥ( α

1−α)t.

5



2.2 Labor Market

As in the goods market, the labor market features a representative, competitive labor
contractor that aggregates differentiated labor services, hi,t, i ∈ [0, 1], into homogeneous
labor, lt, using the Dixit-Stiglitz technology with production function

lt =
[∫ 1

0
(ht,i)

1
λw di

]λw

, 1 ≤ λw. (4)

It then sells labor lt to intermediate good producers at the nominal wage Wt. For each
labor type, a monopoly union sets the wage rate Wi,t, subject to Calvo-style frictions.
Hence, only a fraction (1 − ξw) set their wage optimally while the remaining firms set
their wage according to Wi,t = (µz∗,t)ιµ(µz∗)1−ιµ π̃w,tWi,t−1, where µz∗ is the steady-state
growth rate of z∗

t and

π̃w,t ≡ (πtarget
t )ιw(πt−1)1−ιw , 0 < ιw < 1. (5)

2.3 Households

Each household contains every type of differentiated labor and a large number of en-
trepreneurs. Households also act as capital producers in the economy. Capital is produced
according to the technology

K̄t+1 = (1 − δ)K̄t + (1 − S(ζI,tIt/It−1))It. (6)

Households buy investment It to produce new capital subject to investment adjustment
costs embodied in S, which is an increasing and concave function that we characterize
below. ζI,t is a shock to the marginal efficiency of investment. In addition, households
buy the existing stock of capital at price QK̄,t and sell new capital at the same price.

Households’ preferences are given by

E0

∞∑
t=0

βtζC,t

{
log(Ct − bCt−1) − ψL

∫ 1

0

h1+σL
i,t

1 + σL

di

}
b, σL > 0, (7)

where ζC,t is a preference shock and Ct represents per capita consumption of the household.
The associated budget constraint reads

(1 + τ c)PtCt +Bt+1 + Pt

ΥµΥ,t

It +QK̄,t(1 − δ)K̄t ≤

(1 − τ l)
∫ 1

0
W i

thi,tdi+RtBt +QK̄,tK̄t+1 + Πt.

(8)

Here Πt stands for lump-sum payments including firm profits, transfers from entrepre-
neurs, and lump-sum transfers from the government. Bt+1 is a one period bond that pays
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returns Rt, while τ c and τ l are exogenous tax rates. This budget constraint ensures that
the sum of expenditures in consumption goods, new deposits, and purchases of investment
goods and capital (left-hand side) does not exceed the household’s income from labor,
returns on deposits, revenues from selling capital, and lump-sump payments (right-hand
side). In equilibrium, it holds with equality.

2.4 Financial Frictions

Financial frictions are added in the form of the standard BGG contract. As emphasized by
Christiano et al. (2018), financial frictions can be broadly categorized in two groups: those
arising inside financial institutions (theories of bank runs and rollover crises) and those
arising between financial institutions and the people that borrow from them (theories of
collateral-constrained borrowers). This model is of the latter type.

Following CMR, we index entrepreneurs by their level of net worth N ≥ 0 and call
each of them an N -type entrepreneur. If we denote the density of entrepreneurs with net
worth N as ft(N), then the aggregate net worth in the economy is given by

Nt+1 =
∫ ∞

0
Nft(N) dN. (9)

Each period, an N -type entrepreneur obtains a loan BN
t+1 at rate RL

t and combines it with
its own net worth N to buy raw capital K̄N

t+1 at the competitive price QK̄,t. Thus, her
balance sheet is BN

t+1 + N = QK̄,tK̄
N
t+1. After buying capital, she faces an idiosyncratic

shock ω that converts K̄N
t+1 into ωK̄N

t+1 units of effective capital. ω follows a log-normal
distribution with a mean of one and a standard deviation given by σt, such that σt

characterizes the cross-sectional dispersion in ω and, as in CMR, we interpret as a risk
shock. After observing rates of return and prices, entrepreneurs decide what utilization
rate uN

t+1 of effective capital units they supply to a competitive market at rate rk
t+1. At

the end of period (t+ 1) each entrepreneur obtains a stochastic return ωRk
t+1, regardless

of her net worth, where

Rk
t+1 =

(1 − τ k)[ut+1r
k
t+1 − a(ut+1)]Υ−(t+1)Pt+1 + (1 − δ)QK̄,t+1 + τ kδQK̄,t

QK̄,t

. (10)

Here, τ k is an exogenous tax rate on capital income and a is an increasing and concave
function that captures the costs of capital utilization.

The loan that each entrepreneur obtains in period t takes the form of a standard debt
contract (RL

t , Lt), where Lt ≡ (N +BN
t+1)/N stands for leverage. Let ω̄t be the threshold

value under which an entrepreneur cannot repay her loan, such that
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ω̄t+1 = RL
t+1B

N
t+1

Rk
t+1QK̄,tK̄

N
t+1

. (11)

Entrepreneurs with ω < ω̄t+1 default on their loan, in which case financial intermediaries
pay a monitoring cost equal to a fraction µ of the entrepreneur’s assets and keep all that
is left. Hence, the expected value of a loan for an entrepreneur can be written as

Et

∫ ∞

ϖt+1

[
Rk

t+1ωQK̄,tK̄
N
t+1 −RL

t+1Bt+1
]
dF (ω, σ) = Et[1 − Γt(ω̄t+1)]Rk

t+1LtN, (12)

with Γt(ω̄t+1) ≡ [1 − F (ω̄t+1)]ω̄t+1 +Gt(ω̄t+1) and Gt ≡
∫ ω̄t+1

0 ωdFt(ω).
In order to extend loans to entrepreneurs, financial intermediaries issue deposits to

households at the competitive rate Rt. The fact that the relevant rate on these deposits
is the risk-free rate reflects that the market for funds between households and financial
intermediaries is frictionless. This rate is not contingent in t+ 1 uncertainty, so in order
for financial intermediaries to participate in the market, their expected return must be at
least Rt:

[1 − F (ϖt+1)]RL
t+1B

N
t+1 + (1 − µ)

∫ ϖt+1

0
ωdFt(ω)Rk

t+1QK̄,tK̄
N
t+1 ≥ RtB

N
t+1. (13)

Free entry of financial intermediaries guarantees that they make zero profits in equilibrium,
which implies that equation (13) effectively holds with equality in equilibrium. Combining
equations equations (11) and (13) we can write

Rk
t+1
Rt

= 1
Γt(ω̄t+1) − µGt(ω̄t+1)

(
1 − 1

Lt

)
. (14)

The (ω̄t+1, Lt) combinations that satisfy equation (14) determine a set of state (t + 1)-
contingent standard debt contracts that are available for entrepreneurs. Entrepreneurs
maximize their objective function (equation (12)) subject to this menu of contracts. Note
that the (ω̄t+1, Lt) decision is independent of N . In fact, capital purchases of each en-
trepreneur are proportional to the entrepreneur’s net worth, with a proportionality factor
that is increasing in the expected discounted return to capital. We define the expected
discounted return to capital st ≡ Et(Rk

t+1/Rt). Then, we can write

QK̄,tK̄
N
t+1 = ψ(st)N, with ψ(1) = 1, ψ′(·) > 0. (15)

Since QK̄,tK̄
N
t+1 are the entrepreneur’s assets, it follows that Lt = (QK̄,tK̄

N
t+1)/N or Lt =

ψ(st). This expression summarizes two important characteristics of the model. First,
entrepreneurs will demand a positive amount of loans only when the expected return on
capital is greater than the risk-free rate. And second, they will choose a higher leverage
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when the expected discounted return on capital st is higher. In equilibrium, st must
be equal to the marginal cost of external finance or external finance premium. Hence,
equation (15) can be reformulated as

st ≡ Et
Rk

t+1
Rt

= s(Lt) with s(1) = 1, s(·)′ > 0. (16)

This expression is useful because it shows that the external finance premium is an in-
creasing function of leverage.4 We will come back to this relation when we discuss the
equilibrium dynamics in the loan market. Finally, at the end of each period, a random
fraction (1 − γt+1) of the entrepreneur’s assets is transferred to the households, while the
household makes a lump-sum transfer W e

t to each entrepreneur.5

2.5 Aggregation

Aggregate raw capital is given by

K̄t+1 =
∫ ∞

0
K̄N

t+1ft(N)dN, (17)

while aggregate capital rented to productive firms is Kt = utK̄t. Aggregate entrepreneurs’
profits are given by [1−Γt(ω̄t+1)]Rk

tQK̄,t−1K̄t, so that aggregate net worth evolves accord-
ing to

Nt+1 = γt[1 − Γt−1(ω̄t)]Rk
tQK̄,t−1K̄t +W e

t . (18)

Aggregate debt is obtained as

Bt+1 =
∫ ∞

0
BN

t+1ft(N)dN = QK̄,tK̄t+1 −Nt+1, (19)

and the loan rate is given by RL
t+1 = Rk

t+1ω̄t+1Lt.
The aggregate resource constraint then reads as

Yt = Dt + Ct +Gt + It

ΥµΥ,t

+ a(ut)ΥtK̄t, (20)

where the last term stands for the capital utilization costs of entrepreneurs, Dt represents
the total monitoring costs incurred by financial intermediaries

Dt = µG(ω̄t)(1 +Rk
t )
QK̄,t−1K̄t

Pt

,

and Gt is government spending, which follows an exogenous process.
4A detailed derivation of the function s(·) can be found in appendix A2.
5This is to ensure that entrepreneurs do not accumulate a level of net worth sufficient to operate with

zero debt. These concepts are exogenous.
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2.6 Monetary Policy, Adjustment Costs and Shocks

The central bank follows the Taylor rule

Rt −R = ρp(Rt−1 −R) + (1 − ρp) [απ(πt+1 − π∗) + α∆y(gy,t − µ∗
z)] + εR

t , (21)

where R is the steady-state nominal risk-free rate, π∗ is the central bank’s inflation target,
gy,t is the growth rate of GDP, and εR

t is a monetary policy shock.
Investment adjustment costs take the form

S(xt) = 1
2{exp[

√
S ′′(xt − x)] + exp[−

√
S ′′(xt − x)] − 2}, (22)

where xt = ζI,tIt/It−1, x is the steady state value of xt, S(x) = S ′(x) = 0, and S ′′(x) = S ′′

is a model parameter.
Utilization adjustment costs follow

a(u) = rk[exp(σa(u− 1)) − 1] 1
σa

, (23)

where σa > 0. Note that utilization is one in the steady state, regardless of the value of
σa.

The model dynamics are driven by 10 structural shocks: a transitory technology shock,
a permanent technology shock, a price-markup shock, a consumption preference shock, a
marginal efficiency of investment shock, a shock to the relative price of investment goods,
a monetary policy shock, a fiscal shock, a shock to entrepreneurs’ net worth, and the risk
shock. In the model these are εt, µz∗,t, λf,t, ζC,t, ζI,t, µΥ,t, εR

t , εG
t , γt, and σt, respectively.

We impose an AR(1) structure for all shocks except the monetary policy shock, which is
assumed to be i.i.d., and allow for an anticipated or news component for risk shocks.6 We
follow CMR and allow agents to anticipate information for up to eight quarters. Hence,
the risk shock process reads as

σt = ρσσt−1 + ξ0,t + ξ1,t−1 + . . .+ ξ8,t−8. (24)

In this specification, the innovation to the σt process is the sum of i.i.d., mean zero random
variables, consisting of an unanticipated component ξ0,t and the anticipated component
summarized in ξ1,t−1 to ξ8,t−8. We impose CMR’s correlation structure for the ξj,ts:

ρ|i−j|
σ,n = Eξi,tξj,t√

Eξ2
i,tEξ

2
j,t

, i, j = 0, . . . p, (25)

6CMR show that this anticipated component plays an important role in terms of model fit. They
consider several alternative specifications and conclude that the news component matters most for the
risk shock. We implement their preferred specification here.
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where Eξ2
0,t = σ2

σ and Eξ2
1,t = Eξ2

2,t = . . . = Eξ2
8,t = σ2

σ,n. This means that the σ process
is characterized by four free parameters: ρσ, ρσ,n, σ2

σ, and σ2
σ,n.

2.7 Equilibrium Dynamics in the Loan Market

In order to illustrate why financial frictions have state-dependent effects in the model, we
start by characterizing equilibrium dynamics in the loan market. We calibrate the model
as described in Table 1 and solve for the combinations of (ω̄t+1, Lt) that satisfy equation
(14) for increasing values of the return on capital Rk

t conditional on different levels of risk
σ.7

Table 1: Calibrated parameters

Parameter Value Description Source/target
σL 1 Labor disutility Christiano et al. (2014)
λf 1.2 Steady-state gross price markup Christiano et al. (2014)
λw 1.05 Steady-state gross wage markup Christiano et al. (2014)
α 0.4 Share of capital in production Christiano et al. (2014)
δ 0.025 Depreciation rate of capital Christiano et al. (2014)
τ c 0.047 Tax rate consumption Christiano et al. (2014)
τ k 0.320 Tax rate capital Christiano et al. (2014)
τ l 0.241 Tax rate labor Christiano et al. (2014)
µ 0.275 Monitoring cost St.st. spread-leverage
γ 0.979 Survival rate of entrepreneurs St.st. spread-leverage
W e 0.134 Household-entrepreneur transfer St.st. spread-leverage
σ 0.26 Steady-state risk shock Christiano et al. (2014)
β 0.9985 Discount factor Data
π 1.006 Steady-state inflation Data
πtarget 1.006 Central bank’s inflation target Data
µz∗ 0.004 Steady-state economy growth rate Data
Υ 0.004 Steady-state invest. specific growth rate Data

Panel A in Figure 1 illustrates the equilibrium dynamics for our baseline calibration.
The curvature of this schedule determines the responsiveness of the spread to fluctuations
in the leverage position of entrepreneurs in equilibrium. For low returns on capital,
entrepreneurs choose low leverage, which implies a low spread and a low sensitivity spread-
leverage. As the return on capital increases, entrepreneurs take on more leverage and the
spread increases.

Crucially, the spread increases more than proportionally as leverage goes up, reflecting
the higher sensitivity spread-leverage for equilibria where firms are highly leveraged. This
sensitivity determines the extent to which the financial health of entrepreneurs amplifies

7For this exercise we need to assign values to the following parameters of the financial contract: µ, γ,
W e, σ; and to β, π and µz∗ in order to fix the nominal rate Rt = (πµz∗)/β = 0.0115. Note that these
values are the same that we later fix when we estimate the model.
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Figure 1: Equilibrium values for the spread, leverage, and risk
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Notes: Panel A shows the equilibrium schedule for Rk
t ∈ [0.0115, 0.0326]. Panel B shows the equilibrium

schedule fixing σt at 0.22, 0.24, 0.26 (baseline calibration, solid line), 0.28, and 0.30 (dashed lines) for
Rk

t ∈ [0.0115, 0.0489].

the propagation of shocks to the real economy. In the limit case where financial frictions
are turned off, the spread and its sensitivity remain fixed at zero.

Linearizing the model requires selecting one point on this schedule and approximating
the model dynamics around that steady state (the red dot in Figure 1, Panel A). The
curvature of the schedule illustrates that this approximation can be quite poor when the
model drifts away from the steady state. These nonlinear effects translate to the default
probability of entrepreneurs, which is also more responsive for higher combinations spread-
leverage.

Panel B of Figure 1 shows how the level of risk affects the spread-leverage dynamics.
The solid line repeats the schedule from Panel A and the dashed lines depict the the
leverage-spread schedule for increasing values of σ, from 0.22 to 0.3. An increase in σ

shifts the entire schedule upward, implying a higher equilibrium for the spread, leverage,
and the sensitivity spread-leverage. This panel provides a graphical illustration of the
low-risk/high-risk setup that we present later in section 4, where the high-risk state is
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approximated around a higher value of σ, implying a larger propagation mechanism of
the financial frictions to the real economy.

The economic intuition behind these two results is that financial frictions are amplified
when financial intermediaries face higher expected losses from loan contracts. When
leverage is high, entrepreneurs have relatively little skin in the game and the agency
problem implies a higher scope for divergence of interests between borrowers and lenders.
This is the traditional “financial accelerator” intuition, where endogenous dynamics in the
credit market amplify macroeconomic shocks. In contrast, σ is a measure of the riskiness
of entrepreneurs’ returns, since a larger cross-sectional dispersion of idiosyncratic shocks
yields a higher default probability in equilibrium. Hence, higher values of σ imply that
financial intermediaries will charge a higher premium for each level of firm leverage.

We next document that these nonlinear dynamics result in quantitatively large asym-
metries in key macroeconomic variables in the estimated New Keynesian model.

3 Estimation and State-Dependent Financial Frictions

We start by estimating the linearized model with full information Bayesian methods, the
standard practice in most central banks. This provides us with a relevant benchmark for
the values of deep parameters and variances of shocks that we can use to assess the role
of state-dependent financial frictions.

3.1 Data

We use quarterly US data on 11 macro and financial time series covering the period
1985Q1–2010Q4 to estimate the model.8 The first eight are macro variables in business
cycle analysis: GDP, consumption, investment, and hours worked, all measured in real,
per capita terms, plus the real wage, the relative price of investment goods, inflation and
the federal funds rate. Note that in order to include the Great Recession in our analysis,
our sample includes a number of quarters where the policy rate was at the effective lower
bound. We deal with this by replacing the federal funds rate with the shadow rate by Wu
and Xia (2016) for those quarters.

Additionally, we include three financial time series in the estimation: we measure the
external finance premium with a BAA-rated corporate bond/10-year US treasury spread,9

8These are the same variables used by CMR, with the exception of the slope of the term structure.
CMR include this concept, measured as the difference between the return on a 10-year Treasury yield
and the federal funds rate, and add a long-term bond with measurement error to the model. Their goal
is to diagnose whether the model dynamics are consistent with the observed slope of the term structure,
and they show that the estimated model does well in this respect. The 10-year bond does not play a role
for resource allocation in the model, but it involves the computation of expectations 40 quarters ahead,
which slows down the solution and estimation. For this reason, we leave it out in our estimation.

9We obtain similar results when using the spread proposed by Gilchrist and Zakrajšek (2012).
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entrepreneurs’ net worth with the Dow Jones Wilshire 5000 index, converted into real,
per capita terms, and firm credit as debt securities and loans of nonfinancial firms from
the Flow of Funds tables, converted into real, per capita units. We assume that net
worth is measured with error, so that our estimation of the model includes 11 shocks and
11 observables. Further details about data sources and transformations can be found in
appendix A1.

3.2 Priors and Posteriors

A subset of parameters calibrated to match sample averages of the data is summarized in
Table 1. We set π and πtarget to the sample’s average annual inflation rate of 2.3%. The
households’ discount factor β is fixed at 0.9985 to match the sample’s average nominal
interest rate of 4.6% and the average growth rate of the economy of 1.66%.

For the most part we stick to the parameterization of CMR, which is considered
standard in the literature. We normalize ψL so that hours worked equals one in the
steady state. The price and wage markups λf and λw are set to 1.2 and 1.05, respectively.
The capital share in production α is set to 0.4 and the depreciation rate of capital δ to
0.025. Turning to the financial contract, we set the steady state productivity dispersion σ
to 0.26 as in CMR. We fix the steady-state survival rate of entrepreneurs γ at 0.988, the
transfer from households to entrepreneurs W e at 0.13, and monitoring costs µ at 0.275,
such that the steady state external finance premium matches the spread’s sample average
of 2.25%. This parameterization implies the following steady-state ratios: equity-to-debt
ratio (firm leverage) of 1.91, consumption-to-output ratio of 0.54, investment-to-output
ratio of 0.28, fiscal spending-to-output ratio of 0.18, and capital-to-output ratio of 8.4.

The priors and posterior estimates are presented in Table 2. The model does a good
job in fitting not only the standard macro aggregates but also the spread and firm credit.
This is despite the fact that the model does not include labor supply or wage markup
shocks. Instead, as previously shown by CMR, the risk shock plays a key role for model
fit, since it jointly explains a large share of both financial and non-financial variables.10

With the estimated parameters and shocks at hand, in the following section we use a
nonlinear solution of the model to document that financial frictions produce important
state-dependent effects.

3.3 State-Dependent Financial Frictions

In this section we show that the NK-FF model with state-dependent financial frictions
generates quantitatively large amplification of shocks in the real economy during periods
of financial stress. We start by showing that the nonlinear spread-leverage equilibrium

10Figure A1 in appendix A3 shows the one-step-ahead forecasts of the model for all observables, while
Figure A3 shows the data and the model dynamics when only feeding the risk shock for selected variables.
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dynamics illustrated in Figure 1 imply large state-dependent effects in the estimated
dynamic New Keynesian model. With the estimated parameters and shocks at hand, we
use higher-order perturbation methods as in Dewachter and Wouters (2014) and Aruoba
et al. (2017) to perform model simulations. Specifically, we fix the estimated parameters
to their posterior mode and solve the model with a third-order Taylor approximation.11

We simulate the model for 20,000 periods and do not allow for risk shocks in order to
keep the level of risk fixed at its steady-state value.

11The ideal setting would be to have the fully nonlinear solution to estimate the model and run
simulation experiments. However, because of the large number of state variables, the global solution of
the New Keynesian model at hand involves a high computational burden, even for model simulations.
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Table 2: Estimated parameters

Prior distribution Posterior

Description Dist. mean[std.] Mode 5% Median 95%

ξw Calvo wages B 0.75 [0.1] 0.7555 0.6783 0.7422 0.8102
b Habit in consumption B 0.5 [0.1] 0.7406 0.6752 0.7463 0.8145

σa Curvature capital util. cost IG 1 [1] 2.6537 1.1619 2.8584 4.9703
S Curvature invest. adj. cost N 5 [3] 9.3535 4.5250 7.1253 9.9432
ξp Calvo prices B 0.5 [0.1] 0.8067 0.7649 0.8004 0.8352
απ Taylor rule: inflation N 1.5 [0.25] 1.8732 1.6917 1.9070 2.1397
ρp Taylor rule: smoothing B 0.75 [0.1] 0.8458 0.8085 0.8389 0.8672
ι Indexing: price inflation B 0.5 [0.15] 0.8932 0.7968 0.8827 0.9566

ιw Indexing: wage inflation B 0.5 [0.15] 0.4576 0.2173 0.4377 0.6703
ιµ Indexing: productivity B 0.5 [0.15] 0.9444 0.8928 0.9371 0.9769

α∆y Taylor rule: GDP N 0.25 [0.1] 0.3415 0.2037 0.3643 0.5185
ρλf

AR price markup B 0.5 [0.2] 0.9857 0.9522 0.9779 0.9966
ρε AR transitory technology B 0.5 [0.2] 0.9725 0.9253 0.9655 0.9936
ρζI

AR investment efficiency B 0.5 [0.2] 0.4359 0.2843 0.4833 0.6639
ρζC

AR intertemporal preference B 0.5 [0.2] 0.9395 0.8767 0.9291 0.9748
ρµ AR technology growth rate B 0.5 [0.2] 0.0648 0.0164 0.0811 0.1548
ρσ AR risk B 0.5 [0.2] 0.9733 0.9511 0.9710 0.9899
ρµΥ AR price of investment B 0.5 [0.2] 0.9812 0.9627 0.9790 0.9943
ρg AR fiscal B 0.5 [0.2] 0.9417 0.8999 0.9383 0.9730
ργ AR equity B 0.5 [0.2] 0.4323 0.2858 0.4036 0.5212
σε Std transitory technology IG2 0.002 [0.0033] 0.0050 0.0045 0.0051 0.0058
σλf

Std price markup IG2 0.002 [0.0033] 0.0093 0.0077 0.0097 0.0117
σζI

Std investment efficiency IG2 0.002 [0.0033] 0.0173 0.0153 0.0186 0.0221
σζC

Std intertemporal preference IG2 0.002 [0.0033] 0.0319 0.0224 0.0326 0.0457
σR Std monetary policy IG2 0.002 [0.0033] 0.0013 0.0012 0.0013 0.0015
σµ Std technology growth rate IG2 0.002 [0.0033] 0.0090 0.0081 0.0092 0.0104
σσ0 Std unanticipated risk IG2 0.002 [0.0033] 0.0016 0.0009 0.0073 0.0113
σµΥ Std price of investment IG2 0.002 [0.0033] 0.0028 0.0025 0.0028 0.0031
σN Std net worth ME W 0.01 [5] 0.0705 0.0628 0.0709 0.0796
σγ Std equity IG2 0.002 [0.0033] 0.0062 0.0057 0.0064 0.0072
σg Std fiscal IG2 0.002 [0.0033] 0.0218 0.0195 0.0221 0.0247
σσn Std anticipated risk IG2 0.0008 [0.0012] 0.0097 0.0050 0.0076 0.0106
ρσ,n Corr. among signals N 0 [0.5] 0.9468 0.8856 0.9570 0.9999

Notes: Table 2 shows estimation results for the linear NK-FF model. Prior distributions B, G, N , IG2,
and W denote beta, gamma, normal, inverse gamma type 2, and weibull distributions, respectively.
Posterior statistics are based on four chains of 250,000 MCMC replications, where the first 50.000 are
discarded as burnin.

Figure 2 shows the leverage-spread schedule implied by the model. When the model
moves away from the steady state (red dot), the third-order approximation (red crosses)
captures a substantial degree of the curvature depicted in Figure 1 that the linear model
(black circles) misses. In order to assess the accuracy of the third-order approximation,
we also compute the nonlinear solution of the model using the extended path method
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by Fair and Taylor (1983) (blue squares). This method preserves the fully nonlinear
first-order conditions of the model but imposes certainty equivalence, just as linearizing
does by definition. The fact that the stochastic third-order solution comes close to the
fully nonlinear deterministic solution suggests that it is an accurate approximation to the
nonlinear dynamics of the model.12

Figure 2: Leverage-spread schedule
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As discussed above, for low (high) levels of leverage, the nonlinear solution implies
a low (high) sensitivity spread-leverage. This state-dependent sensitivity, absent in the
linear model, implies that the amplification effects of the financial accelerator fluctuate
endogenously with the state of the economy. The reason is that when the sensitivity is
low, shocks that reduce economic activity and entrepreneurs’ net worth trigger only a
small increase in spreads, which translates into a moderate increase in the financing costs

12We conduct the simulations by drawing 20,000 random shocks given the shocks’ estimated standard
deviation and then feeding them to each solution of the model. For the deterministic nonlinear solution,
shocks hit the economy each period conditional on the state of the economy in that period and agents
expect no further shocks thereafter. For the third-order solution we use pruning as implemented in Dynare
4.5.4. We also consider a second-order approximation for this exercise and get similar results (see Figure
A4 in appendix A3). The third-order comes slightly closer to the nonlinear solution and computing time
is only marginally higher than the second-order, so that we use third-order as our baseline solution.
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for firms. By contrast, when the sensitivity is high, a contractionary shock triggers a large
increase in firms’ financing costs, with large effects on the real economy, as we document
next.

How large are these amplification effects, as captured by the third-order approxima-
tion? To answer this question, we use the smoothed shocks obtained from the estimated
linear model, feed them to the nonlinear model, and compare the dynamics with the linear
solution.13 These shocks generate the observed data in the linear model—in other words,
they are the most likely shocks given the data and the model. If the simulated paths
for the endogenous variables with the nonlinear solution are only marginally different, we
would conclude that the cost of ignoring the state-dependent nature of financial frictions
is negligible.

However, Figure 3 shows that amplification effects are quantitatively large. Panel A
shows this exercise for the baseline estimated model, and it highlights the state-dependent
nature of financial frictions. Amplification effects are large only in some states of the econ-
omy, when spreads are relatively high. Not surprisingly, the largest amplification occurs
during the Great Recession, when financial conditions are worst. The nonlinear solution
predicts that in 2008Q4 output and investment would have dropped by an additional 60%
and 65% respectively, while consumption would have dropped by an additional 10%. The
spike in the spread is 5.2 (annualized) percentage points higher. Altogether, the sample
standard deviation is about 1.2 times larger for GDP and investment and 1.5 times larger
for the spread in the nonlinear model.

It is noteworthy that amplification is small except during the Great Recession. This is
consistent with the view that throughout the Great Moderation, linear models provided
a good approximation to characterize business cycle dynamics. However, our results
highlight that even if a linear model is a good approximation for most periods in our
sample, it can be highly inaccurate in times of financial distress.

An alternative interpretation of these results is that a linear model estimates the wrong
shocks, particularly in periods of high risk. Given that the propagation mechanisms are
constant, the model needs much larger shocks than a model with time-varying propagation
in those periods. Either way, the inference and predictions of the model will be misleading
if these nonlinear dynamics are ignored.

13The shocks, including the news component of the risk shock, are shown in Figure A2 in appendix
A3.
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Figure 3: Amplification effects of financial frictions
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Notes: NK-FF in Panel A stands for the New Keynesian model with financial frictions. Panel B shows
the results for a model version without financial frictions.

To verify that the amplification effects described above are mainly due to financial
frictions, Panel B of Figure 3 repeats the previous exercise in a model version where
financial frictions are shut down. This exercise uncovers two interesting facts. First, the
amplification in GDP, consumption, investment, and inflation is minimal, even during
recessions, which confirms that the amplification effects of Panel A are due to state-
dependent financial frictions and not other nonlinearities in the model. And second,
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financial shocks and frictions explain a large share of real variables, especially during
recessions. The drop in GDP, investment, and inflation is much smaller in Panel B than
in Panel A for the linear model as well, which reflects the important role played by the
risk shock in explaining these variables.14

To have a closer look at the propagation mechanism behind the amplification effects
shown in Figure 3, we compute state-dependent impulse responses conditional on financial
conditions. Figure 4 shows the responses to risk shocks conditional on states of the
business cycle when the spread is high (95th percentile) and low (5th percentile) before
the shock hits.15

The average on-impact spread and net worth responses are more than twice as large
in the high spread states as compared to the mean response, which explains the ampli-
fied response of investment and output in these states. Because firms’ net worth falls
sharply when financial conditions are worse, firms have to cut their investment more ag-
gressively, which ultimately results in a larger drop in output. On the other hand, net
worth and spreads barely respond to the shock in low spread states, which explains the
muted responses of investment and GDP.

The thin grey lines show all the impulse response functions (IRFs) used to compute
the average responses. They illustrate the asymmetric cyclical behavior of the model:
there are a few (infrequent) cases where a single shock can trigger a big spike in the
spread and a collapse of investment and output (on impact and at the response’s trough)
of more than twice the size of the average response over all the simulations, which is
consistent with the amplification that the model generates during the Great Recession
documented in Figure 3. These results are in line with the findings of Adrian et al. (2019),
who document that the skewness of the distribution of GDP growth depends on financial
conditions. In particular, the lower quantiles of the distribution vary as a function of
current financial conditions, while the upper quantiles are relatively stable over time.

All in all, our results suggest an alternative interpretation for the conclusion of Chris-
tiano et al. (2018) that financial frictions in a pre-crisis NK model have small quantitative
effects. Namely, that the effects of financial frictions are state-dependent. For example,
the paper by Brzoza-Brzezina and Kolasa (2013) discussed there only allows for constant
propagation mechanisms of financial frictions and argues that financial shocks explain
only a small share of the real variables’ volatility. We document not only that finan-
cial shocks play an important role for real variables (as already shown by CMR), but

14The relative standard deviations (third-order/linear simulations) in Panel A for GDP, consumption,
investment, inflation, the FFR, and the spread are 1.1837, 1.0538, 1.1704, 0.9823, 1.0056, and 1.5206,
respectively. Because the model features no financial frictions in Panel B, only the non-financial shocks
are fed to the model. The relative standard deviations in this case are 0.9972, 0.9793, 0.9747, 1.0294,
and 1.0079.

15Impulse response functions (IRFs) are computed by comparing two simulated paths for the endoge-
nous variables which only differ in that one of them has an additional one-standard-deviation risk shock
in period t.
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Figure 4: State-dependent IRFs to a 1 σσ risk shock in the third-order model

Notes: Percentage deviations are computed with respect to the average counterfactual path without the
1 σσ risk shock. σσ is normalized to the value implied by assuming all variation in risk is unanticipated.
The mean response is computed over 500 simulations. The impulse response functions (IRFs) for low
and high spread states report the average response when the spread is below the 5th and above the 95th

percentile before the shock hits, respectively.

that time-varying effects of financial frictions significantly increases the volatility in both
financial and real variables. Against this background, in the next section we propose a
regime-switching model that incorporates these time-varying effects and allows for efficient
estimation.

4 A Regime-Switching DSGE Model

In the previous section we have shown that financial frictions in the NK-FF model generate
large state-dependent propagation effects on macro variables. However, estimating such
a nonlinear DSGE model typically requires the use of computationally costly nonlinear
filters, such as the particle filter. A good example is the work by Gust et al. (2017),
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who estimate a Smets-Wouters-type model that is subject to the effective lower bound
on interest rates using projection methods to solve the model and a particle filter to
evaluate the likelihood. Despite their impressive parallel implementation of the particle
filter, each evaluation of the likelihood takes about eight seconds in a supercomputer with
300 cores, and 4.2 minutes in a standard two-core computer. This can be problematic
when using Markov Chain Monte Carlo methods to estimate the model, as is standard in
the literature, since the likelihood has to be computed many times. The model that we
consider here is significantly larger (it has more state variables) and the models used by
many central banks are larger still. Therefore, we pursue an alternative approach that
allows for efficient estimation with many state variables.

We build on the work by Lindé et al. (2016), who augment the Smets-Wouters model
with the BGG financial friction and a regime-switching (RS) framework with two states:
one where financial frictions are mild (low spread-leverage sensitivity) and one where
they are severe (high spread-leverage sensitivity). They show that the RS model im-
proves model fit, especially during the Great Recession. In that framework, however, the
switching probabilities are constant and the transition between states is exogenous: there
is no mechanism in the structural model that translates information from the state of the
economy to the switching probabilities.

By contrast, we consider time-varying switching probabilities and rely on the large
explanatory power of the risk shock for the business cycle to model state-dependent fi-
nancial frictions as a function of risk. Coming back to Figure 1, we model periods of
low spread-leverage sensitivity as periods of low risk and high sensitivity as high risk.
Crucially, we model the probability of switching from one state to the other as a function
of the spread, which allows us to link the nonlinear effects of financial frictions in the
model to a measure of financial conditions in the data.

We start with a simulation exercise to show that our Regime-Switching framework
provides an accurate approximation to the state-dependent effects documented in section
3. We use the third-order solution of the model discussed there as the data-generating
process (DGP) and then estimate three types of models using these data: an RS model
where the switching process is a function of financial conditions, an RS model where the
switching follows an exogenous process, and a linearized model. Not surprisingly, both RS
models greatly outperform the linear model in terms of fit. But importantly, we show that
the endogenous RS model outperforms the exogenous RS model. This is because model
fit improves as a result of the improved probabilistic assessment of when financial frictions
matter most in the endogenous model. We then move on to show that our endogenous
RS model explains US business cycle data much better than a linearized benchmark does.

22



4.1 The Regime-Switching Framework

The model structure is as described in section 2. However, instead of solving the model
by linearizing around the non-stochastic steady state, now we consider two steady states
and assume that the agents know that with a certain probability the economy finds itself
in one state or the other. Specifically, the problem can be formulated as solving for
optimality conditions of the form

Et

h∑
rt+1=1

prt,rt+1f(xt+1(rt+1), xt(rt), xt−1, θrt , θrt+1 , εt) = 0, (26)

where rt stands for the regime in place in period t, prt,rt+1 is the probability of switching
regimes from t to t + 1, xt(rt) is a vector of endogenous variables, θrt is a vector of
parameters, and εt is a vector of exogenous variables. In our application, the number of
regimes h is equal to two. We solve the model using perturbation methods as described
in Maih (2015) and take a linear approximation around the non-stochastic steady state
in each regime, x̄ = {x̄σl

, x̄σh
}, where σl and σh stand for the level of risk in the low-risk

and high-risk states, respectively. This gives us two distinct policy functions that map
the exogenous to the endogenous variables of the form xt(rt) = Γrt(εt, θrt).

4.1.1 Transition Probabilities

The exogenous switching model follows the tradition of Markov switching models, where
the switching is governed by a Markov chain that is independent of the model dynamics.
Yet in many applications there are good reasons to think that the model dynamics or the
state of the economy play an important role for the switching process: for instance, interest
rate dynamics in a model where the states are in “constrained” or “unconstrained” by the
effective lower bound, or financial conditions when the states are financial tranquility or
distress. The endogenous switching model follows the formulation of Chang et al. (2018),
where a threshold-type switching process uses information from the state of the economy
to determine the switching probabilities.

The transition probabilities in the exogenous case are constant and can be written
as16

P l,h = 1
1 + exp(αx,1)

; P h,l = 1
1 + exp(αx,2)

, (27)

where P l,h is the probability of switching from the low-risk state to the high-risk state,
P h,l is the probability of switching from the high-risk state to the low-risk state, and αx,1

and αx,2 are parameters.
16They could also just be written as P l,h = αx,1 and P h,l = αx,2, but the formulation above simplifies

the comparison between the exogenous and endogenous frameworks.
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By contrast, we postulate the following time-varying endogenous switching probabili-
ties

P l,h
t = 1

exp(αn,1) + exp
(
−γ̄1

st−s̄1
ssd

) ; P h,l
t = 1

exp(αn,2) + exp
(
γ̄2

st−s̄2
ssd

) . (28)

Note that this formulation allows for an exogenous component, captured by the parame-
ters αn,1 and αn,2,17 and an endogenous component where st is the spread at time t, ssd is
its standard deviation, s̄1 and s̄2 are threshold values, and γ̄1 and γ̄2 are parameters. This
formulation implies that when the spread is relatively high, P l,h

t is relatively high and P h,l
t

is relatively low, and vice versa when the spread is low. Note that when γ̄1 = γ̄2 = 0,
αn,1 = αx,1, and αn,2 = αx,2, the endogenous switching model collapses into the exogenous
switching model. In other words, we allow for but do not restrict the switching process
to be driven by financial conditions.

4.2 Model Estimation and Fit with Simulated Data

Our goal is to compare the RS models in terms of their ability to account for the nonlin-
earities described in section 3. We use the nonlinear NK-FF from section 3 to generate
artificial time series and focus on model fit as the relevant benchmark. Specifically, we
generate a sample of 5,000 observations from the third-order NK-FF model and fit the
RS models and a linear model to these data.18

Since our interest is in modeling state-dependent financial frictions, we keep most of
the deep parameters fixed at the DGP values and estimate a small subset of parameters.
For the RS models we estimate the level of risk in each regime, the standard deviations
and correlation between the anticipated and unanticipated components of the risk shock,
the parameters in the probability functions, and the discount factor in the low-risk regime.
We allow for up to one year of anticipated effects (news) of the risk shock in this exercise,
as the likelihood evaluation times for the RS models become exponentially large for two or
more years. We estimate the discount factor in the low-risk regime to allow for a regime-
specific risk-free interest rate. For the linearized model we estimate the level of risk
and the standard deviations and correlation between the anticipated and unanticipated
components of the risk shock. We estimate the RS models using the adaptation of the
Kalman filter developed by Chang et al. (2018) (endogenous-switching Kalman filter)
and the linearized model with the standard Kalman filter, both using the RISE toolbox

17We restrict these parameters to be non-negative to ensure that the probabilities are between zero and
one. The endogenous component (the expression inside the second exp(·)) in each probability function is
unrestricted.

18Adding more observations leaves the correlation structure of the variables and other moments essen-
tially unchanged, so that 5,000 observations provide a good approximation to the DGP. Figure A5 in
appendix A3 shows the simulated data used for this estimation exercise.
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for Matlab (see https://github.com/jmaih/RISE_toolbox). We use full information
Bayesian methods for both types of models.

Table 3: Likelihood evaluation time

Linear Regime-switching Gust et al. (2017)
US data ≃ 0.1 seconds ≃ 0.5 seconds 8 seconds to 4 minutes
5,000 obs. ≃ 1 seconds ≃ 4 seconds —
Filter Kalman Endogenous-switching Kalman Particle

Notes: The computing times for the linear and regime-switching models correspond to a desktop computer
with a processor Intel Core i7-6700 with 3.40 GHz and 16GB RAM. The variation in the times reported
by Gust et al. (2017) corresponds to the difference between their parallel implementation of the filter in a
300-core supercomputer (8 seconds) and the implementation in a standard dual-core desktop (4 minutes).

Table 3 shows a comparison of the time required to evaluate the likelihood of the
different model solutions that we consider, and we include the times reported by Gust
et al. (2017) as a reference for the particle filter. Each evaluation of the likelihood with
5,000 observations takes 3.8 seconds for the RS models and about 1.1 second for the
linearized model using a standard desktop computer. When we consider a sample of 104
observations (the sample size used in section 3), each evaluation takes about 0.5 seconds
for the RS models and about 0.1 seconds for the linearized model. While the RS models
are significantly slower to evaluate than the linearized model, they are orders of magnitude
faster than the particle filter. At these speeds it is still feasible to estimate the RS models
using a standard desktop computer.

Table 4 shows the priors and the estimation results. For the level of risk, we choose
values that are reasonably close to the DGP of 0.26. The priors for αx,1 and αx,2 are
chosen such that the steady-state probabilities P l,h and P h,l of the exogenous model are
between 0.01–0.25 and 0.1–0.5, respectively, with a 95% probability. We use the same
priors for αn,1 and αn,2 in order to facilitate the comparison between the two models, but,
as we mentioned before, we restrict these parameters to be nonnegative. For γ̄1 and γ̄2 we
choose a loose prior centered around one. Finally, we calibrate s̄1 and s̄2 to the median
of the simulated spread used as observable.

Regarding the estimation results, the RS models identify a low-risk regime with σl

around 0.24 and σh around 0.265, while the linearized model yields a value of σ = 0.2637,
slightly higher than the DGP. These values imply different steady-state spread-leverage
sensitivities, computed as d log s

d log L
and summarized in the lower part of the table.19 The

sensitivity for the RS models is close to 0.03 in the low-risk regime and 0.064 in the
high-risk regime. A sensitivity of 0.03, for instance, means that if equilibrium leverage
increases by 1%, then the equilibrium spread will increase by 3%. These elasticities imply

19The derivation for this expression in the steady state can be found in appendix A2.
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Table 4: Estimated parameters: Regime-switching (RS) and linear models

Prior distribution Posterior modes

Description Dist. mean[std.] Linearized Exogenous Endogenous
model RS model RS model

σσ0 Std. unanticipated risk IG 0.0100 [1] 0.0251 0.0369 0.0329
σσn

Std. anticipated risk IG 0.0100 [1] 0.0191 0.0250 0.0232
ρσ,n Corr. between signals N 0 [0.5000] 0.5642 0.5328 0.5469
βl Discount factor (l) B 0.9940 [0.0010] — 0.9938 0.9940
σl Risk level (l) B 0.2450 [0.0050] — 0.2388 0.2406
σh Risk level (h) B 0.2850 [0.0050] 0.2637 0.2653 0.2652
αx,1 Probability functions N 2.8469 [0.8920] — 3.8935 —
αx,2 Probability functions N 1.0986 [0.5605] — 3.6535 —
αn,1 Probability functions N 2.8469 [0.8920] — — 3.5798
αn,2 Probability functions N 1.0986 [0.5605] — — 1.7924
γ̄1 Probability functions G 1 [0.5000] — — 1.0403
γ̄2 Probability functions G 1 [0.5000] — — 1.6445

Implied steady states and model fit Linearized Exogenous Endogenous
model RS model RS model

St. st. probabilities [P l,h; P h,l] — [0.02; 0.025] [0.027; 0.147]
St. st. leverage [l; h] 1.91 [1.86; 1.91] [1.86; 1.91]
St. st. sensitivity spread-lev. [l; h] 0.0625 [0.0285; 0.0642] [0.0301; 0.0641]
∆Log-marginal data density — Exo-linear: 1,708 Endo-exo: 130

Notes: Prior distributions B, N G, and and IG denote beta, normal, gamma, and inverse gamma distri-
butions, respectively. The priors of the parameters αn,1 and αn,1 are truncated at zero. The subscripts
{l, h} stand for “low risk” and “high risk.” respectively. For the linear model, the values refer to the
unique regime we allow for. The lower block of the table shows the implied steady-state values for the
probabilities, leverage, and the sensitivity spread-leverage, and model fit. For the RS models, the squared
brackets indicate the steady-state values in each regime. In the last row, Exo-linear and Endo-exo stand
for the difference between the MDD of the exogenous model with the linear model, and the endogenous
model with the exogenous model, respectively.

that a risk shock will propagate about twice as strongly in the high-risk regime compared
with the low-risk regime in the RS models. The elasticity in the linearized model is close
to the RS models’ high-risk regime, at 0.062. This means that the linearized model needs
a relatively high sensitivity to account for periods of high financial turbulence in the
simulated data, which will result in a poor fit during tranquil periods with low spreads.

How does this flexibility of the RS models translate into improved forecasting per-
formance with respect to the linear model? In order to quantify these gains, the last
row of Table 4 compares the marginal data densities (MDDs) of the three models. The
exogenous RS model has an MDD that is 1,708 log points higher than the linear model,
while the endogenous RS model outperforms the exogenous model by 130 log points.20

These gains in MDD result from improved one-step-ahead forecasts of the RS models
when evaluating the likelihood. Given that the effects of financial frictions get ampli-

20These differences are larger than typically found in empirical studies (as, for instance, in Lindé et al.
2016, Hubrich and Tetlow 2015) because our estimations are carried out in samples that are much larger
than the typical macroeconomic time series.
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fied when financial conditions deteriorate, the RS models—particularly the endogenous
RS model—produce better forecasts in those periods by assigning a high probability to
the high-risk regime, which features a stronger financial accelerator effect. This is also
reflected in the smoothed regime probabilities and shocks. Figure A6 in the appendix
shows that the smoothed regime probabilities are slightly more responsive to changes in
the spread in the endogenous RS model. The linear model, in contrast, systematically
filters larger positive (negative) risk shocks in periods of high (low) spreads, which trans-
lates into worse forecasts and fit. All told, the endogenous RS model provides an efficient
alternative to model state-dependent financial frictions that endogenously evolve with the
state of the economy.

4.3 Application to the Great Recession

In this section we fit the endogenous RS model to US data and show that the transition
from a low-risk regime to a high-risk regime is key to account for the Great Recession.
We use the same data set described in section 3 and estimate the same set of parameters
as for the linearized model in that exercise, but we allow for some parameters to be
regime-specific.

As in the estimation exercise from the previous section, we allow for regime-specific
levels of risk, leverage, and discount factors. We extend our two-regime framework from
the previous section and allow for three different regimes, which results in a better fit than
a simpler two-regime (high-risk / low-risk) setting.21 The full list of estimated parameters
is reported in Table A1. Regime 1 is a low-risk regime with low spreads and a low spread-
leverage sensitivity of 0.025. Regime 2 is an intermediate-risk regime associated with
higher spreads and a slightly higher spread-leverage sensitivity of 0.028, while regime 3 is
a financial crisis regime with high spread-leverage sensitivity of 0.08.

Figure 5 shows the model-implied filtered regime probabilities for US data. The model
assigns a high probability to the low-risk regime from the late 1980s until 1998, when
spreads were relatively low. The intermediate-risk regime gets a high probability in the
early 1980s and from the late 1990s until the early stages of the Great Recession. To a large
extent, this regime coincides with a period in which spreads are at an intermediate level
and financial vulnerabilities are building up during the housing and financial boom that
preceded the Great Recession. Finally, the high-risk regime starts showing meaningful
positive probabilities only during the Great Recession, and it peaks at the height of that
episode in 2008Q4.

The flexibility of the RS model to interpret changes in financial conditions as regimes
with time-varying propagation effects of financial frictions, and the Great Recession as a

21We experimented with a two-regime setting and the result is that the entire pre-Great Recession
period is interepreted as a low-risk regime.
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Figure 5: Filtered regime-switching model probabilities
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high-risk regime in particular, results in a material improvement in model fit with respect
to the linear model: a 250 log-points improvement in the marginal data density.

What explains these large gains in model fit? As mentioned above, the spread-leverage
sensitivity in the high-risk regime is more than twice as large as that in the low-risk regime,
which results in a large amplification of shocks in the high-risk regime, especially the risk
shock. Figure 6 documents these state-dependent effects with generalized IRFs. These
IRFs are computed with 20,000 simulations of the RS model based on the estimated
standard deviations of the shocks, conditioning on whether the model is predicted to be
in the low-, intermediate-, or high-risk regime before the shock hits. As expected, the
propagation of risk shocks is much stronger in the high-risk regime. This gives the RS
model a key advantage, as it does not rely as much on exogenous innovations as the
linearized model does to account for periods of financial turmoil. Instead, the transition
to regimes featuring a more prominent role of financial frictions results in better forecasts
for the endogenous variables during those periods when evaluating the model.
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Figure 6: State-dependent impulse response functions to a risk shock
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5 Conclusion

The Great Recession exposed several open challenges for macro models used by central
banks (Lindé et al. 2016). Christiano et al. (2018) discuss several paths forward to fine-
tune pre-crisis New Keynesian models and improve their accuracy. They highlight that
taking the nonlinear dynamics of these models into account is important to characterize
business cycle dynamics.

In this paper, we contribute to this literature in two ways. First, we show that a
pre-crisis New Keynesian model like the one used by many central banks generates large
amplification of shocks in macro and financial variables during episodes of financial distress
once state-dependent financial frictions are taken into account. These amplification effects
are almost absent during the Great Moderation and become quantitatively large during
the Great Recession. And second, we propose an endogenous regime-switching framework
that incorporates these state-dependent effects, allowing for efficient estimation with many
state variables and improving model fit. Allowing for these state-dependent effects is key
to account for large shocks, such as the Great Recession.
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A1 Data Appendix

The following list describes the data and data transformations used to estimate the DSGE
models in sections 3 and 4.

• Consumption: Personal consumption expenditures of services (FRED code: PCESV)
and nondurable goods (FRED code: PCND), divided by the GDP deflator and by
the total population, transformed into log-first differences minus the sample mean.
Source: BEA.

• Firm credit: Nonfinancial business, debt securities and loans, liability, divided by the
GDP deflator, divided by the total population, transformed into log-first differences
minus the sample mean. Source: Financial Accounts of the United States - Z1/FA14

• GDP: Gross domestic product (FRED code: GDP), divided by the GDP defla-
tor (FRED code: GDPDEF) and by the total population (FRED code: POPTO-
TUSA647NWDB), transformed into log-first differences minus the sample mean.
Source: BEA.

• Hours worked: Nonfarm business sector hours of all persons (FRED code: HOANBS),
divided by the total population, transformed to log-levels minus the sample mean.
Source: US Bureau of Labor Statistics.

• Inflation: Implicit price deflator for GDP, percent change from preceding period,
annualized percent divided by 400. (FRED code: A712RI1Q225SBEA). Source:
BEA.

• Investment: Gross private domestic investment (FRED code: GPDI) and consump-
tion expenditures of durable goods (FRED code: PCDG) divided by the GDP
deflator and by the total population, transformed into log-first differences minus
the sample mean. Source: BEA.

• Net worth: Wilshire 5000 Total Market Full Cap Index (FRED code: WILL5000INDFC),
divided by the total population, transformed into log-first differences minus the sam-
ple mean. Source: Wilshire Associates.

• Nominal interest rate: Effective Federal Funds Rate (FRED code: FEDFUNDS),
converted to quarterly by taking monthly averages, annualized percent divided by
400. Source: Board of Governors of the Federal Reserve System.

• Real wage: Nonfarm business sector compensation per hour (FRED code: COMP-
NFB), divided by the GDP deflator, transformed into log-first differences minus the
sample mean. Source: US Bureau of Labor Statistics.
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• Relative price of investment goods: Relative price of investment goods (FRED code:
PIRIC), transformed into log-first differences minus the sample mean. Source: DiCe-
cio (2009).

• Spread: Moody’s seasoned Baa corporate bond yield relative to yield on 10-Year
Treasury at constant maturity (FRED code: BAA10YM), converted to quarterly
by taking monthly averages, annualized percent divided by 400 minus the sample
mean. Source: Federal Reserve Bank of St. Louis.
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A2 The Financial Contract and the Sensitivity Spread-
Leverage

The derivations and properties of the functional forms under the log-normal distribution
are discussed in detail in BGG and can be found in many other sources; here we focus
on the derivation of the spread-leverage sensitivity, which plays an important role for
our analysis. As stated in equation (12), the expected returns for entrepreneurs can be
written as

Et

∫ ∞

ϖt+1

[
Rk

t+1ωQK̄,tK̄t+1 −RL
t+1Bt+1

]
dF (ω, σ) = Et[1 − Γt(ω̄t+1)]Rk

t+1LtN, (A.1)

with Γt(ω̄t+1) ≡ [1 −F (ω̄t+1)]ω̄t+1 +Gt(ω̄t+1), Gt ≡
∫ ω̄t+1

0 ωdFt(ω). We can combine equa-
tions (11) and (13) to derive the participation constraint of banks and formulate the op-
timization problem of entrepreneurs. From equation (11), RL

t+1B
N
t+1 = Rk

t+1QK̄,tK̄t+1ω̄t+1.
Plugging this into equation (13) we obtain

[1 − F (ϖt+1)]Rk
t+1QK̄,tK̄t+1ω̄t+1 + (1 −µ)

∫ ϖt+1

0
ωdFt(ω)Rk

t+1QK̄,tK̄t+1 = RtB
N
t+1, (A.2)

where we have used the fact that this equation holds with equality in equilibrium. We
can use the definitions of Γt(ω̄t+1) and Gt(ω̄t+1) to simplify this expression as follows:

([1 − F (ϖt+1)] ω̄t+1 + (1 − µ)Gt(ω̄t+1))Rk
t+1QK̄,tK̄t+1 = RtB

N
t+1 (A.3)

[Γt(ω̄t+1) − µGt(ω̄t+1)]Rk
t+1QK̄,tK̄t+1 = RtB

N
t+1 (A.4)

and divide by N

[Γt(ω̄t+1) − µGt(ω̄t+1)]Rk
t+1Lt = Rt

BN
t+1
N

. (A.5)

We rearrange and note that BN
t+1
N

= Lt − 1

Rk
t+1
Rt

= 1
[Γt(ω̄t+1) − µGt(ω̄t+1)]

(
1 − 1

Lt

)
, (A.6)

which is equation (14). Then, the problem of the entrepreneur is

max
Lt,ω̄t+1

Et[1 − Γt(ω̄t+1)]Rk
t+1LtN (A.7)

s.t. [Γt(ω̄t+1) − µGt(ω̄t+1)]Rk
t+1LtN = Rt(Lt − 1)N, (A.8)
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where we have replaced Lt = (QK̄,tK̄t+1)/N and BN
t+1 = (Lt − 1)N in equation (A.4).

The first-order conditions associated to the problem are

Lt : (1 − Γt(ω̄t+1))st + λt [Γt(ω̄t+1) − µGt(ω̄t+1)] st − λt = 0 (A.9)

ω̄t+1 : −Γ′
t(ω̄t+1) + λt [Γ′

t(ω̄t+1) − µG′
t(ω̄t+1)] = 0 (A.10)

λt : [Γt(ω̄t+1) − µGt(ω̄t+1)] stLt − (Lt − 1) = 0, (A.11)

where we have replaced st = Rk
t+1/Rt. Now we can express λt, st and Lt as a function of

ω̄t+1. Specifically, from equations (A.10), (A.9), and (A.11) we get, respectively,

λt = Γ′
t(ω̄t+1)

Γ′
t(ω̄t+1) − µG′

t(ω̄t+1)
(A.12)

st = λt

1 − Γt(ω̄t+1) + λt [Γt(ω̄t+1) − µGt(ω̄t+1)]
(A.13)

Lt = 1
1 − [Γt(ω̄t+1) − µGt(ω̄t+1)] st

. (A.14)

Equation (A.14) establishes the equilibrium relation between the leverage ratio and the
spread that we have defined as s(·) in section 2. With these expressions at hand, we can
now compute the steady-state sensitivity spread-leverage as a function of ω̄. We simply
drop all the time indices, so that the value will be pinned down by the steady-state value
of ω̄ along with the parameter values of the financial contract. We define this sensitivity
as

ηs,L = d log s(ω̄)
d logL(ω̄) . (A.15)

Define Ψ(ω̄) ≡ 1 − Γt(ω̄t+1) + λt [Γt(ω̄t+1) − µGt(ω̄t+1)], so that equation (A.13) can be
rewritten as st = λ(ω̄)/Ψ(ω̄). Plugging this into equation (A.14) we obtain L(ω̄) =
Ψ(ω̄)/(1 − Γ(ω̄)). And now we can compute the following derivatives:

d log s(ω̄)
dω̄

= λ′(ω̄)
λ(ω̄) − Ψ′(ω̄)

Ψ(ω̄) (A.16)

d logL(ω̄)
dω̄

= Ψ′(ω̄)
Ψ(ω̄) + Γ′(ω̄)

1 − Γ(ω̄) , (A.17)

where

λ′(ω̄) = µ [Γ′(ω̄)G′′(ω̄) − Γ′′(ω̄)G′(ω̄)]
[Γ′(ω̄) − µG′(ω̄)]2

(A.18)
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Ψ′(ω̄) = λ′(ω̄) [Γ(ω̄) − µG(ω̄)] + λ(ω̄) [Γ′(ω̄) − µG′(ω̄)] − Γ′(ω̄). (A.19)

So that the expression for the steady-state spread-leverage sensitivity becomes

ηs,L =
λ′(ω̄)
λ(ω̄) − Ψ′(ω̄)

Ψ(ω̄)
Ψ′(ω̄)
Ψ(ω̄) + Γ′(ω̄)

1−Γ(ω̄)

. (A.20)
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A3 Linearized and Third-Order Model Additional Re-
sults

Figure A1: One-step-ahead model forecasts and data
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Figure A2: Smoothed shocks
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Notes: Figure A2 shows the smoothed shocks of the estimated DSGE model, normalized such that the
units of the y-axis is standard deviations of each shock. The panels of anticipated risk 1–8 show the
anticipated component of the risk shock from 1 to 8 quarters ahead.
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Figure A3: Data and the risk shock

1985 1990 1995 2000 2005 2010

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

G
ro

w
th

 r
a

te
 (

%
)

GDP

Data

Risk shock only

1985 1990 1995 2000 2005 2010

-8

-6

-4

-2

0

2

Investment

1985 1990 1995 2000 2005 2010

0

1

2

3

4

A
n

n
u

a
liz

e
d

 p
e

rc
e

n
t

Inflation

1985 1990 1995 2000 2005 2010

-1

0

1

2

3

4

5

Spread

Notes: The black (solid) line shows the data and the red (starred) line shows the smoothed series for
each variable when only feeding the anticipated and unanticipated components of the risk shock to the
model.
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Figure A4: Leverage-spread schedule
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Notes: Figure A4 shows the simulated leverage-spread in the nonlinear model: second- and third-order
approximations.
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Figure A5: Simulated data from the third-order model
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A4 Regime-Switching Model Additional Results

Figure A6: Smoothed probabilities and shocks: Regime-switching (RS) and
linear models
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Notes: The charts show the first 500 observations from the total of 5,000 used to estimate the models.
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Table A1: Estimated parameters for regime-switching model

Description Dist. mean[std.] mode

ξw Calvo wages B 0.7500 [0.1000] 0.6764
b Habit in consumption B 0.5000 [0.1000] 0.7240

σa Curvature capital util. cost G 1.0000 [1.0000] 1.2581
S Curvature invest. adj. cost N 5.0000 [3.0000] 5.7084
ξp Calvo prices B 0.5000 [0.1000] 0.8195
απ Taylor rule: inflation N 1.5000 [0.2500] 1.7839
ρp Taylor rule: smoothing B 0.7500 [0.1000] 0.8306
ι Indexing price inflation B 0.5000 [0.1500] 0.9026

ιw Indexing wage inflation B 0.5000 [0.1500] 0.4435
ιµ Indexing productivity B 0.5000 [0.1500] 0.9432

α∆y Taylor rule: GDP N 0.2500 [0.1000] 0.4050
ρλf

AR technology growth B 0.5000 [0.2000] 0.0772
ρε AR price markup B 0.5000 [0.2000] 0.9336
ρζI

AR transitory technology B 0.5000 [0.2000] 0.9842
ρζC

AR investment efficiency B 0.5000 [0.2000] 0.5572
ρµ AR intertemporal pref. B 0.5000 [0.2000] 0.9482
ρσ AR equity B 0.5000 [0.2000] 0.4271
ρµΥ AR risk B 0.5000 [0.2000] 0.9827
ρg AR fiscal B 0.5000 [0.2000] 0.8576
ργ AR price of investment B 0.5000 [0.2000] 0.9848
σε Std. technology growth IG 0.0100 [1.0000] 0.0093
σλf

Std. price markup IG 0.0100 [1.0000] 0.0096
σζI

Std. transitory technology IG 0.0100 [1.0000] 0.0053
σζC

Std. investment efficiency IG 0.0100 [1.0000] 0.0202
σR Std. intertemporal pref. IG 0.0100 [1.0000] 0.0327
σµ Std. monetary IG 0.0100 [1.0000] 0.0013
σσ0 Std. risk IG 0.0100 [1.0000] 0.0090
σµΥ Std. price of investment IG 0.0100 [1.0000] 0.0028
σN Std. equity IG 0.0100 [1.0000] 0.0064
σγ Std. fiscal IG 0.0100 [1.0000] 0.0187
σg Std. net worth ME W 0.0100 [5.0000] 0.0729
σσn Std. anticipated risk IG 0.0100 [1.0000] 0.0126
ρσ,n Corr. between signals N 0.0000 [0.5000] 0.7269
α1,2 Probability functions G 1.2877 [0.4061] 1.6991
α2,1 Probability functions G 1.6509 [1.1660] 2.3478
α1,3 Probability functions G 1.9109 [0.4734] 3.4908
α3,1 Probability functions G 1.6509 [1.1660] 0.8969
γ̄1 Probability functions G 2.0000 [0.5000] 2.2431
γ̄2 Probability functions G 2.0000 [0.5000] 1.8940
β1 Discount factor regime 1 B 0.9960 [0.0010] 0.9941
β2 Discount factor regime 2 B 0.9960 [0.0010] 0.9971
σl Risk level regime 1 B 0.2500 [0.0050] 0.2460
σ2 Risk level regime 2 B 0.2600 [0.0050] 0.2492
σ3 Risk level regime 3 B 0.2750 [0.0050] 0.2789
cr Interest rate constant N 0.0150 [0.0050] 0.0151
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