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Abstract 
Why do BigTech platforms introduce payment services? Digital platforms often run business 
models where activities on the platform generate data that can be monetized off the platform. 
There is a trade-off between the value of such data and the privacy concerns of users, since 
platforms need to compensate users for their privacy loss by subsidizing activities. The nature 
of complementarities between data and payments determines whether and how payment 
services are provided. When data help to provide better payments (data-driven payments), 
platforms have too little incentive to adopt. When payments generate additional data 
(payments-driven data), platforms may adopt payments inefficiently. 

Topics: Digital currencies and fintech; Payment clearing and settlement systems 
JEL codes: D8, E42, L1 

Résumé 
Pourquoi les grandes entreprises technologiques lancent-elles des services de paiement sur 
leurs plateformes? Souvent, elles ont un modèle d’affaires qui leur permet de générer des 
données à partir des activités des utilisateurs sur leurs plateformes numériques. Ces données 
peuvent ensuite être monétisées en dehors de ces plateformes. Les entreprises doivent 
toutefois faire un compromis entre la valeur de ces données et les préoccupations des 
utilisateurs concernant leurs renseignements personnels : en effet, les plateformes doivent 
indemniser leurs utilisateurs pour l’ingérence dans leur vie privée en subventionnant leurs 
activités sur celles-ci. La nature des complémentarités entre les données et les paiements 
détermine si et comment des services de paiement sont offerts. Quand les données contribuent 
à améliorer les services de paiement (où les paiements reposent sur les données), les 
plateformes ont trop peu d’incitatifs à lancer ces services. Par ailleurs, quand les paiements 
génèrent des données additionnelles (où les données reposent sur les paiements), les 
plateformes peuvent lancer des services de paiement inefficaces. 

Sujets : Monnaies numériques et technologies financières; Systèmes de compensation et de 
règlement des paiements 
Codes JEL : D8, E42, L1 



1 Introduction

Digital platforms like Alibaba, Amazon, Facebook and Google have introduced payment

services. These services range from providing credit, to incorporating existing payment

methods within the platform, to potentially issuing standalone virtual currencies. Why do

digital platforms offer payment services? And is the introduction of payment services by

BigTech platforms socially efficient?

BigTech platforms offer core services – for example, a social media network, a marketplace

or a search engine – that generate data from their users’ activities. Since the data provide

information about users, the platform can sell this information for profit to enhance transac-

tions off-platform. Such monetization of data has developed into the leading business model

for BigTech platforms.

Data generation is not free, however, as users have privacy concerns. These concerns arise

from the fact that data monetization by the platform can sometimes make users worse

off, even when data can improve the efficiency of transactions. As a consequence, users

will reduce their activities to the detriment of the platform’s business model. Hence, in

order to generate and monetize its data, the platform needs to optimally subsidize user

activities, often by offering services free of charge such as email, maps, social networking or

web searching.

We capture this insight in a formal model where a monopoly platform faces a trade-off

between the costs associated with privacy concerns and the revenue from data services. The

data are socially valuable as they increase overall surplus when users transact off the platform

with sellers. Privacy concerns arise, however, because users lose their share of surplus in these

transactions whenever information has been sold to sellers.

As privacy concerns are not perfectly observable by the platforms, users can extract an

information rent when being compensated through cheap platform activities. As long as

this rent is not too large, the platform still chooses to monetize its data. We show that the

business model of bundling data monetization with cheap platform activities tends to be

welfare-improving. While the average user gains from data sales, some users can be worse
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off, implying a conflict of interest among users.

We then use the basic model to analyze the platform’s introduction of payment services,

which involves interesting feedback effects between data and payments. Figure (1) illustrates

the business model of a data-driven platform, which generates and monetizes data (D) within

a network (N) from user activities (A). PayTech – the ability to leverage technology for and

from payments – gives rise to two feedback loops. First, data accumulated by the platform’s

core business can be used to alleviate payment frictions and offer better payment services. For

example, a platform can leverage their user data to control credit risk in the payment process.

Better payments facilitate transactions and, hence, leverage the value of the platform’s data.

We call this feedback loop data-driven payments. Second, payment services provide an

additional source of data to enhance the platform’s data services. For example, off-platform

transaction data can be combined with data from a social media network to enrich the

platform’s ad-targeting capability. We call this feedback loop payment-driven data.

𝐴𝐴 𝐷𝐷
Data Generation

etwork
effect

Data Monetization𝑁𝑁 ctivity ata 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝑇

payment-driven data 

data-driven payment

Figure 1: BigTech Business Model and Payment-Data Feedback Loops

To model the first feedback loop, we study the platform’s choice to run a data-driven pay-

ment technology that can potentially dominate the existing payment option available to

users. Interestingly, there is a fundamental complementarity between monetizing data and

using data in payments. Data acquired help improve payment technology, facilitating data

monetization, further increasing the return to acquire more data. If strong enough, this com-

plementarity can even lead to increasing returns to scale in data monetization. In that case,

once payment services are provided, the platform will generate as much data as possible.
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We show that the platform has an incentive to provide payment services based on its data

technology as long as payment frictions are sufficiently large. All users gain from the in-

troduction of a better payment technology. The platform, however, tends to under-adopt

payment services relative to the socially optimal level, due to the fact that the users’ privacy

concerns are not observable.

To capture the second feedback loop, payment-driven data, we allow the platform to “add-on”

a new technology to its payment services that can generate additional data from payments.

While further increasing the platform’s profits from data, this technology creates a negative

data externality as individual users do not take into account how their activities on the

platform improve payment services and, thus, generate additional data that can be used to

extract surplus from all users.

We show that the platform has a larger incentive to use payment-driven data when it can

extract sufficient surplus by selling its data. The reason is that – due to the data externality

– users are not directly compensated for the extra loss of their surplus from transactions.

When payment frictions are sufficiently small, this can lead to socially inefficient adoption

of payments by the platform, since it has an extra benefit from acquiring data through

payments due to the externality.

Our results have stark policy implications that we discuss in more detail at the end of the

paper. First, data monetization is not necessarily inefficient from a social point of view

because data are socially valuable and users are compensated for their privacy concerns

with cheaper platform services. Second, when assessing BigTechs’ introduction of payment

services, one needs to consider the bundling of data and payments and the implied comple-

mentarity. In economies with large payment frictions, data-driven payments tend to increase

social surplus. In advanced economies, however, where payments are already fairly efficient,

payment-driven data can lead to inefficient adoption by platforms that seek to generate data

beyond what is socially efficient.

Evidence There is ample evidence that many Big Tech companies running a data-focused

business model have ventured into payments, both in advanced and emerging markets
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economies. Figure 2 gives an overview of large BigTech platforms and their payment services.

Many of these platforms generate a significant fraction of their revenues from monetizing their

data. Google, for example, accounts for 88.14 percent of the US search engine market in

2020, with 83 percent of the company’s total revenue in 2019 coming from digital advertis-

ing. Another example is Facebook, which accounts for 55.9 percent of all US social media

site visits, with advertising accounting for almost all of its revenues in 2019. Both these

platforms offer their core services for free to their users in order to generate activities – and

thus, data – on their platforms.

Main area Main Business 
Market Cap             
(Jun 2020) 

Profits                  
(2019)

Est. domestic          
market Share (%)

Payment products 
(introduction year)

Advanced Economies

Amazon Worldwide E‐commerce  1,366 B $11.6 B 38% Amazon Pay (2007) 

Apple Worldwide Electronic Hardware  1,580 B $55.2 B 49% Apple Pay (2014)

Facebook  Worldwide
Social Media & 
Advertising

640 B $18.5 B 51%
Facebook Pay (2019) 
Libra (announced)

Google  Worldwide Search & Advertising 956 B $34.3 B 89%
Google Wallet (2011)/ 
Google Pay (2018)  

Uber  Worldwide  Rideshare 54 B ($8.5 B) 70% Uber Cash (2018)

Emerging market economies

Alibaba/Ant Financial China  E‐commerce 582 B $13.1 B 56% Alipay (2004)

Baidu China Search & Advertising 42 B $296 M 67% Baidu Wallet (2014)

Tencent China  Gaming  613 B $13.5 B 52%
Tenpay (2005)/     

WeChat Pay (2013)

Grab Southeast Asia  Rideshare Private  ‐ Est. 14 B not profitable  65% GrabPay (2016)

Mercado Libre
Argentina, Brazil,    

Mexico 
E‐commerce 49 B (172 M) 33% Mercado Pago (2003)

Figure 2: Digital Platforms & Payments

For data-driven payments, the introduction of Alipay by Alibaba in China provides a vivid

example of how payment frictions imply a complementarity between data and payment

services. Alibaba Group’s first e-commerce platform, Alibaba.com, was launched in 1998. In

its early days, most transactions on the platform were “cash on delivery.” As the inefficiency

– and the impossibility for cross-border transactions – of this payment method became

apparent, Alibaba decided to create its own payment product, Alipay, in 2004. Initially,

Alipay was based on the idea of escrow accounts that withheld payment until delivery. In

2015, Alibaba Group’s affiliate, Ant Financial Services, launched Sesame credit, which uses

its user data base to assess the creditworthiness – or, equivalently, the ability to pay – to

facilitate transactions.
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Another example is Lenddo, a Singapore-based company, which assigns credit scores based

on information of its users’ social networking profiles that contain data on education, em-

ployment, followers and friends (Rusli 2013). Frost et al. (2019) study a similar credit

scoring algorithm used by Mercado Libre, an e-commerce firm that operates in Latin Amer-

ica. Using data from Mercado Credito, which provides credit lines to small businesses in

Argentina on Mercado Libre, they find that credit scoring techniques based on big data and

machine learning can outperform credit bureau ratings in terms of loan loss prediction. Berg

et al. (2020) show that soft information such as digital footprints can be a good predictor of

default rates, suggesting that the analysis of simple, easily accessible variables from digital

footprints is equal to or better than the information from credit bureau scores.

For payment-driven data, a recent FSB report documents BigTechs’ entry into financial

services. According to the report,

“Provision of financial services allows BigTech firms to collect additional data on

the spending habits and financial positions of their clients. Such information –

which has traditionally been the preserve of banks – could now be combined with

that gathered from customers’ other activities, for example from users’ online

searches, social media accounts, or e-commerce activity ... These data can then

be used to improve BigTech firms’ core business lines – for example by allowing

them to better target advertising on their social media platforms.” (Financial

Stability Board, 2019)

For example, Facebook and Google recommend products to customers through ad targeting

and ad experimentation. These platforms, however, cannot see the outcomes whenever the

purchases are made outside their platforms. The provision of payment services, however,

enables the platforms to “close the loop” and learn whether transactions took place or not

and, consequently, whether the ad targeting/experiment was successful. The usefulness of

payment data is also supported by some empirical studies. For example, Martens et al.

(2016) examine the use of massive, fine-grained data on consumer payments for targeted

marketing and find that it can substantially improve predictive performance. In addition,
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past payment data also provide useful information for credit services (see, for example,

Tobback and Martens (2019)).

Review of the Literature Our work is at the intersection of the economics of payments,

the economics of data and privacy, and the economics of platforms. The literature on the

economics of data and privacy is relatively new, but has recently attracted a lot of attention.

Our work emphasizes that privacy concerns give rise to informational externalities, as in the

contributions of Acemoglu et al. (2019), Choi et al. (2019), Bergemann et al. (2020) and

Ichihashi (2020). We differ from this literature in that we endogenously connect the social

value of information and privacy concerns to study the incentives for platforms to provide

payments.

Such privacy concerns in the provision of payments have also been studied by Garratt and

Lee (2020) and Garratt and Van Oordt (2019), who look at publicly provided payments

instruments as a way to protect privacy. Parlour et al. (2020) and He et al. (2020) are

interested in competition among private payment providers and study the effects of entry

by FinTech companies on banks that traditionally provide payment services. Relative to

these papers, we study a different aspect of payment provision where BigTech platforms

offer payments as a component of their data-driven business model.

The traditional payments literature has also explored the effects on information frictions on

payment arrangements (see, for example, the seminal work by Kocherlakota (1998), Kocher-

lakota and Wallace (1998) and Nosal and Rocheteau (2017) for an overview of this literature).

In an important contribution to this literature, Kahn et al. (2005) look into the connection

between payment services and privacy, studying the role of money relative to other payment

services for protecting privacy. However, this literature does not look into data generation,

its monetization and how it is related to the provision of payments.

Finally, the literature on the economics of platforms focuses on two-sided markets and high-

lights the role of network externalities. A main lesson is that platforms maximize profits by

getting both sides of the market on board – a feature that also drives some important results

in our paper. These models have been successully applied to the study of traditional pay-
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ment platforms such as the card payment industry. Early examples are Rochet and Tirole

(2002) and Schmalensee (2002). More recently, a new line of research involves studying the

provision of digital tokens by non-payment platforms. Gans and Halaburda (2015) study

the design of private digital currencies from a platform management perspective and show

that a profit-maximizing platform may choose to limit the functionality of digital currencies.

Other papers focus on how initial coin offerings help finance the development and operation

of a platform (see, for example, Catalini and Gans (2018), Cong et al. (2018) or Garratt and

van Oordt (2021)). These contributions do not, however, look at the importance of privacy

concerns when a platform considers the introduction of payments from a data perspective.

2 Data-driven Platforms

We first develop a model that formalizes the key trade-off between the value of data generated

by a platform and the privacy concerns that arise from the use of this data. There are two

stages. In the first one – the platform stage – a digital platform generates data from activities

that take place on the platform. The data generated on that platform can then be used in

the second stage – the trading stage – to increase surplus in transactions between buyers

and sellers. Buyers, however, cannot profit directly from this data and, indeed, will lose

some surplus if the data are being used by the seller. This gives rise to fundamental privacy

concerns.

2.1 Set-up

A platform allows a measure 1 of users to engage in activities ai in exchange for a price p

per unit of activity. Users derive marginal utility v from the activity, but incur a disutility

or time cost which – for simplicity – is given by a2i /2.

The platform also has a form of technology – think of data analytics – that generates data.

There is no direct cost of running this technology, which is described by the probability of
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determining a user’s preference for a good as a function of their activities on the platform

D(ai) = min{δai, 1}. (1)

The parameter δ captures the efficiency of the technology and that the probability of learning

a user’s preferences increases with the amount of activity ai.

After their activities on the platform, the users are randomly matched with a measure 1 of

sellers. We assume a payment friction so that only a fraction η ∈ (0, 1] of buyers can pay

the seller.1 The size of a buyer’s demand ε is drawn from a distribution G(ε) with support

[ε, ε̄] and is known to the buyer upfront, but cannot be observed by the platform.2 If there

is trade, buyers obtain a surplus of Sb per unit demanded from trading, while the seller’s

surplus is normalized to 0.

Sellers can also purchase the data about a buyer’s preferences from the platform before

matching takes place. Since the data are useful in a transaction, the total surplus from

trading increases by S > 0 per unit of demand. Sellers have an incentive to acquire data

since they can make an offer that extracts this surplus and the initial surplus Sb from buyers.

Finally, we assume that the platform sells the information to sellers at a price that extracts

the entire payoff from trading with information, Ss = S + Sb.

This captures that the platform has market power when selling its information. This in-

formation is valuable as it increases surplus in the economy. But it also raises a privacy

concern for the platform’s users as they are worse off when information is sold to sellers by

the platform. Before analyzing the platform’s problem of selling data, we provide a concise

microfoundation for this set-up where privacy concerns arise endogenously when data are

sold that generate additional surplus.

1There are different possible interpretations of η < 1. One is due to frictions in the payment system

that make it hard to pay for certain transactions (e.g., cross-border transactions). Another interpretation is

credit frictions where a buyer cannot commit to paying the seller.
2An alternative setup that delivers the same results is one where the buyer purchases one unit from ε

different sellers.
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2.2 Privacy Concerns – A Microfoundation

Buyers There are two types of goods: customized goods, q(i), and a generic good, q̄. A

buyer j consumes only a specific type j customized good so that the marginal utility derived

from q(i) is ū for i = j, and is zero for i ̸= j. For a generic good, the marginal utility

ũ ∈ [0, ū] is randomly drawn from a distribution H(u).

The buyer’s utility is thus given by

Uj(q(i), q̄) = ū · q(i)1i=j + ũ · q̄, (2)

where 1i=j is an indicator function capturing whether the customized good matches the

buyer’s type. Finally, we assume that the preference for a particular customized good is

private information for the buyer.

Sellers A seller can produce either a customized good or a generic good, but not both.

The marginal cost of producing a customized good is 1, while for a generic good it is 1 + c̄.

Hence, the customization of a product not only increases the utility from consuming it, but

also reduces the cost of producing it.

Trading In the trading stage, the seller makes a take-it-or-leave-it offer to the buyer for

either producing the customized good or the generic good. The seller, however, cannot offer

a customized good as the buyer’s type is not known. Hence, the seller will offer a generic

good at a price P that solves

max
P

P [1−H(P )]− 1− c̄, (3)

where 1 − H(P ) is the probability of the buyer accepting the offer. The optimal price is

given by the reciprocal of the hazard rate

P ∗ =
1−H(P ∗)

H ′(P ∗)
. (4)

We can normalize the sellers’ profits to zero at the optimal price P ∗ so that the expected

surplus of the buyer from purchasing a generic good is given by

Sb =
(
1−H(P ∗)

)(
E[u|u ≥ P ∗]− P ∗). (5)
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Information about Buyer’s Preferences The seller can buy information from the plat-

form to learn the preference of the buyer for the customized good. With this information,

the seller can offer a customized good and charge the price P = ū. The payoffs from trading

are summarized in the following table.

Unknown (trade generic) Known (trade special)

Buyer’s surplus Sb 0

Seller’s surplus 0 Ss = ū− 1

Total surplus Sb Ss = ū− 1

When the preference of the buyer is known, selling a customized good increases the total

surplus by

S = Ss − Sb, (6)

which is the social value of the information provided by the platform. Sellers are willing to

purchase the information from the platform and offer a customized good up to a price that

is equal to the additional surplus Ss. This surplus is not only the additional social value

S generated from the information, but also the buyer’s informational rent Sb good. It is

this utility loss of the buyer that gives rise to endogenous privacy concerns from engaging

in activities on the platform.

2.3 Platform Pricing and Data Sales

We first determine the demand for activities when the platform sells its data. The platform’s

users take into account that they will lose surplus in the trading stage when the platform

sells its data. Hence, a user with realization ε for their demand in the trading stage solves

the following problem

V (ε) = max
a(ε)

va(ε)− pa(ε) + η(1−D(a(ε)))Sbε−
a(ε)2

2
. (7)
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A user faces three costs. First, they have to pay the price p per unit of activities on the

platform. Second, they face the private cost a(ε)2/2 from engaging in the activities. And,

finally, they take into account that – with probability D(a(ε)) – they will lose their surplus

from trading Sbε whenever they can trade, which occurs with probability η.

Assuming D(a(ε)) < 1,3 the optimal choice for activities is given by

a(ε) = v − p− δηSbε, (8)

so that the total activity on the platform is

ā = v − p− δηSbE(ε). (9)

The platform faces two markets, one for its activities and another for the information it

generates. It sets a price p per unit of platform activities4 and sells the data obtained from

users’ activities to sellers at a price that is equal to the expected value of such information,

η

∫
δa(ε)SsεdG(ε). (10)

With probability η, a seller can trade with a user of the platform. In such a trade, the seller

expects to be able to use the data with probability δa(ε) where they obtain a surplus of Ssε.

Using the demand functions, the platform’s profits are then given by

Π = max
p

∫
pa(ε) + δηa(ε)SsεdG(ε) = max

ā
ā (v − ā+ δηSE(ε))− δ2η2SsSbV(ε). (11)

The solution to this problem is given by

ā =
v + δηSE(ε)

2
, (12)

with individual users choosing their activity on the platform according to

a(ε) = ā+ δηSb (E(ε)− ε) . (13)

3This is the case if and only if Sbε ≥ v
2δ + 1

2E(ε)(Sb + Ss)− 1
δ2 .

4An alternative interpretation of p is that the platform sets the quality, instead of the price, of platform

activities. That is, it chooses to enhance the (marginal) value of activity by −p subject to a linear cost. A

negative price is then interpreted as a positive enhancement of the platform’s quality.
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The optimal price the platform sets is thus given by

p =
v − δη(Sb + Ss)E(ε)

2
. (14)

The pricing formula for activities is interesting to interpret, especially when viewing the

platform as a producer of data as an intermediate good. The marginal costs of producing

data arise from the privacy concerns SbE(ε) that are offset by the marginal value of activities

v for the platform’s users. Since the platform also sells the data, it acts as a monopolist

for supplying the data to sellers, which is reflected by the last term, SsE(ε). Note that this

implies that the price p can be negative when the platform subsidizes activities. The pricing

structure is akin to a two-sided platform where the prices are targeted to each side of the

platform. Sellers are captive, but the demand for activities is elastic and, hence, the platform

has an incentive to subsidize activities.

The profit from the platform’s operation is then given by

Π =

(
v + δηSE(ε)

2

)2

− δ2η2SsSbV(ε). (15)

As a result, when deciding to sell data (δ > 0) or not (δ = 0), the platform faces a trade-

off. Data sales lead to additional revenue, which is equal to the expected additional social

trading surplus S from the data since users get compensated on average for the privacy loss

Sb. But there is a cost of generating them, since users demand an informational rent as their

individual privacy concerns cannot be observed by the platform.5 We have the following

result.

Proposition 1. The platform offers data sales whenever

2v

δη
≥ Λ, (16)

where

Λ = 4
SsSb

S
V(ε)
E(ε)

− SE(ε). (17)

5If users’ types were observable, the platform would offer a lower price to a user with a higher ε. When

the types are not observable, the price is too high (low) for high (low) ε users who incur a high (low) privacy

loss and yield a high (low) data sales revenue.
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Payments and data sales are substitutes; that is, as payment frictions decrease, the platform

has a smaller incentive to sell its data.

The (net) costs of privacy concerns are summarized by Λ and increase in the heterogeneity of

the users as expressed by the variance-to-mean ratio V(ε)/E(ε) and the cost Sb from losing

privacy. Note that Λ can be negative whenever the heterogeneity of privacy concerns are

small relative to the average surplus SE(ε) generated from data sales. The cost vanishes

when there is no heterogeneity (V(ε) → 0). If heterogeneity is large, the costs are large

enough so that the platform will not sell data.

The role of payment frictions is interesting. Conditional on selling data, profits are increasing

in η whenever v
δη

≥ Λ; that is, when privacy concerns are not too large. The reason is that

the platform can sell its data at a higher price to merchants. Surprisingly, however, smaller

payment frictions decrease the incentives to monetize the data in the first place. The reason

is that it is costly for the platform to compensate users for their expected loss of privacy. This

cost increases as there are more transactions (less payment frictions). Hence, the platform

has a lower incentive to generate and sell its data in the first place. For the remainder of the

paper, we assume that 2v
δ
≥ Λ, so that data sales are optimal for the platform independent

of the payment friction.

2.4 Efficiency and Heterogeneity

We now take the pricing choice of the platform as given and evaluate whether data sales are

optimal from a social perspective. The utility for the average user is given by

V =

∫
(v − p)a(ε)− a(ε)2

2
+ η0(1− δa(ε))SbE(ε)dG(ε)

=
1

2
ā2 + ηSbE(ε) +

1

2
δ2η2S2

bV(ε). (18)

The last term implies that the average user always benefits from data sales, since the users

are compensated for the loss of privacy and earn an information rent, which is given by the

third term in the expression above.
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We define welfare as the sum of the platform’s profit and the utility of the average user

W =

∫
va(ε)−

(
a(ε)

2

)2

+ ηδa(ε)SεdG(ε)

= ā
(
v − ā

2
+ δηSE(ε)

)
− 1

2
δ2η2Sb(Ss + S)V(ε) + ηSbE(ε), (19)

where ā is the average choice of activities induced by the platform’s pricing policy (see

equations (12) and (14)). The welfare funtion considers the entire surplus from their activities

and the social surplus from data sales given by S. Hence, from a social perspective there is

a larger incentive to sell data.

Proposition 2. Data sales are optimal if and only if

2v

δη
≥ Λ− 2Sb

V(ε)
E(ε)

. (20)

While data sales can increase average welfare, individual users will be affected differently by

data and payment services. For δa(ε) < 1, the value of the platform for an individual user,

V (ε), is strictly convex and increasing in ε. The effect of data sales on individual users,

however, is ambiguous. The marginal value of an increase in data sales for a user with ε is

given by

∂V (ε)

∂δ
= (v − p− a(ε))

∂a(ε)

∂δ
− ∂p

∂δ
a(ε)− η̃Sbε

(
δ
∂a(ε)

∂δ
+ a(ε)

)
= −∂p

∂δ
a(ε)− η̃Sbεa(ε), (21)

where we use the envelope theorem in the second step.

Even though data services make all users suffer a higher privacy loss, users are compensated

by cheaper platform activities. The first term represents this price effect (∂p/∂δ < 0),

which is positive and decreases in ε. Hence, users with low privacy concerns gain the most

from the drop in the platform price because they are the most active. The second effect

expresses the change in privacy costs for the user, which is negative and convex in ε. Hence,

intermediate users suffer the greatest privacy loss as users with large privacy concerns adjust

their activities more aggressively.
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Proposition 3. The average user prefers data sales, but some users may suffer a welfare

loss from data sales.

Before introducing payment services, we briefly discuss the effects of privacy concerns on

these results. Consider an increase in privacy concerns where the surplus of buyers increases

to Sb + ∆, but the total surplus that can be generated by better data, S, stays constant.

From equations (12) and (13), it follows directly that there is a mean preserving spread in

the distribution of activities across the platform. Individual users who are concerned about

their loss of privacy change their behavior, while the aggregate amount of activity remains

the same.

The reason is simple. As privacy concerns increase, the platform needs to be more aggressive

to generate the same amount of data, dropping the price on the platform (see equation (14)).

It has an incentive to do so as it can sell data at a higher price to sellers since Ss has also

increased by ∆. Hence, users with low (high) concerns increase (decrease) their activities. As

a result, the platform’s profits drop because it becomes harder for the platform to compensate

users for their privacy loss when there is imperfect information.

3 PayTech: Data-driven Payments

3.1 Technology

So far, the platform takes the existing payment technology as given. We now allow the

platform to use its data to provide enhanced payment technology. We refer to this technology

as data-driven payments since the use of data from activities can alleviate payment frictions

like in the case of Alibaba. Specifically, we assume that the aggregate data ā generated by

the platform mitigates the payment friction according to the linear6 technology

η(ā) = min{ρā, 1}. (22)

6To capture network effects from generating data, one could assume that η(0) = 0, η′ > 0 and η′′ ≥ 0.

This feature would – by assumption – generate increasing returns-to-scale in data.
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We denote the original payment technology by η0. We assume that all transactions are

conducted using the best available technology max{η(ā), η0}. We make the following as-

sumption, which ensures that the productivity of data-driven payments is not so large that

the platform can set η(ā) = 1 with its choice of activities when the technology is absent.

Assumption 4. 1
ρ
≥ v+δSE(ε)

2

Finally, we assume that the platform cannot extract any surplus generated from the payment

technology directly.7 However, the platform can still profit from the technology indirectly

since it enhances its data sales, which is the channel we investigate in this paper.

3.2 Complementarity between Data and Payments

For expositional purposes, we first assume that η(ā) ≥ η0 so that using data allows the

platform to reduce payment frictions. Consumers take both p and ā as given when making

their choices about activities. They therefore forecast the payment friction η(ā) – and hence,

their cost of losing privacy – when choosing their individual a(ε). Individual and aggregate

demand are then again given by

a(ε) = v − p− δη(ā)Sbε (23)

ā = v − p− δη(ā)SbE(ε). (24)

The platform maximizes its profits by choosing the aggregate level of data according to

Π(ā) = max
ā

ā (v − ā+ δη(ā)SE(ε))− δ2η(ā)2SsSbV(ε), (25)

where the ability to make transactions is now also a function of aggregate activities ā.

Adopting data-driven payments introduces a new trade-off for the platform. On the one

hand, more data reduce the payment friction and thus increase the sale price of the data.

7This is motivated by the fact that many data-driven platforms provide their payment services for free.

Also, regulation could tax any direct returns associated with the provision of the better payment technology.
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On the other hand, data are costly because of the information rent linked to the unobservable

privacy costs of its users.

With the linear payment technology, the objective function is quadratic in ā and strictly

increasing at ā = 0. As a result, the solution will depend on the curvature of the profit

function, which is related to

Φ = −
(
1− ρδSE(ε) + ρ2δ2SsSbV(ε)

)
=

1

2

∂2Π

∂ā2
. (26)

The expression Φ captures the returns of scale of the data technology for the platform. The

input in the technology are the activities a on the platform. The output is given by data

sales δa(ε) and improvements in payment technology ρā.

In the absence of PayTech, we have Φ = −1 and the profit function is strictly concave. When

data can also be used for PayTech, there are two extra terms,

δρSE(ε)− δ2ρ2SsSbV(ε) ≥ 0.

The first term captures that more activities generate data, which is useful in reducing pay-

ment frictions and making data sales more valuable. The second term, however, captures

that the platform has to pay more to compensate users for their privacy loss as payment

frictions decrease.

By Assumption 4 and the assumption that 2v
δ
≥ Λ, the sum of these two terms is positive.

Hence, these terms express a complementarity between data sales and using data for pay-

ments so that Φ ≥ −1. If the sum of these terms is larger than 1, the complementarity is

strong enough to generate increasing returns to scale for the data-driven platform. In this

case, the complementarity “overwhelms” the cost of generating data.

Lemma 5. Suppose the platform uses data-driven payments.

If vρ
2
≥ −Φ, the platform chooses ā = 1

ρ
with profits given by

Π =
v

ρ
+

Φ

ρ2
.

If Φ ∈ [−1,−vρ
2
), the platform chooses ā = − 1

2Φ
v < 1

ρ
with profits given by

Π = − 1

4Φ
v2 > 0.
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The lemma characterizes the optimal choice by the platform when data are monetized in two

ways. First, data are sold to sellers. Second, data are used to improve payment frictions,

which increases the number of transactions and thus the value of the data for sellers. If

the complementarity is strong enough, the platform exploits as much data as possible to

completely resolve payment frictions.

3.3 Payment Services Introduction

We will now look at the incentives to introduce payment services by the platform. The com-

plementarity between payments and data generates an incentive for introducing payments

whenever the payment frictions are large enough (η0 sufficiently low). Despite this comple-

mentarity, however, if the existing payment technology is sufficiently good (η0 close to 1),

the platform has no incentive to introduce payments. In that case, the platform only sells

its data, and transactions take place using the existing payment technology η0.

Proposition 6. The platform introduces payments if and only if payment frictions are large

enough (i.e., η0 ≤ η̂(Φ)).

The platform is more likely to introduce payments as the complementarity becomes stronger

(i.e., ∂η̂/∂Φ > 0).

For given η0, the platform will introduce payments as soon as the data use for selling infor-

mation and payments becomes complementary enough. The complementarity depends again

on the privacy concerns of the platform’s users. For Sb + ∆, holding S constant, we have

that the complementarity decreases, making it again less likely for the platform to introduce

payments. The reason is that the platform has to compensate users more for their privacy

loss, making the introduction of payments less likely.
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3.4 Efficiency and Payments

We again take the pricing decision of the platform as given when evaluating whether the

introduction of payments is efficient or not. With data-driven payments, welfare now also

takes into account that there is a direct benefit from better payments. As a result, we have

W (ā) = ā
(
v − ā

2
+ δη(ā)SE(ε)

)
− 1

2
δ2η(ā)2Sb(Ss + S)V(ε) + η(ā)SbE(ε), (27)

where the extra term reflects that there are more transactions that generate a basic surplus

of Sb.

There are now two changes from the platform’s problem. The curvature of the welfare

function is given by

Ψ = −
(
1

2
− δρSE(ε) + 1

2
δ2ρ2Sb(Ss + S)V(ε)

)
=

1

2

∂2W

∂ā2
. (28)

Note that the complementarity of payments and data is stronger from a social point of view

(Ψ > Φ) or, equivalently, there is also an extra social return from introducing payments. It is

therefore optimal to generate more data than the platform when using the data-driven pay-

ment technology and there are stronger social incentives to introduce data-driven payments.

We then have the following result.

Corollary 7. Data-driven payments always increase overall welfare whenever the platform

introduces them.

Consider next an individual user after the platform introduces payment services (η(ā) > η0).

Their payoff is given by

V (ε) =
1

2
(a(ε))2 + η(ā)Sbε

=
1

2
(v − p− δη(ā)Sbε) + η(ā)Sbε. (29)

Hence, there are two effects associated with the introduction of payments. First, there is

a direct effect expressed by the second term. Better payments benefits all users since they

can conduct more transactions. Second, there is an indirect effect as the introduction of
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payments changes the pricing on the platform as well as the likelihood of a user to lose

privacy, which is expressed in the first term. Differentiating, we have

∂V (ε)

∂η
= −a(ε)

(
∂p

∂η
+ δSbε

)
+ Sbε = −a(ε)

∂p

∂η
+ (1− δa(ε))Sbε. (30)

Since the price for platform activities falls after the introduction of payments, we have the

following result.

Corollary 8. All users benefit from the introduction of payment services.

This result is surprising. All users benefit directly from the introduction of payment services,

but the platform also compensates users for their loss of privacy to entice them to engage

in activities on the platform. This is necessary to generate data. The direct benefit and the

lower price are sufficient to compensate all users for the loss of their privacy.

Furthermore, the gains from the introduction of payment services are increasing in ε. Users

with larger trade sizes benefit more from the introduction of payments. Since users with

intermediate transaction sizes are most negatively affected by data sales in the first place,

introducing better payments by the platform may, therefore, make all users prefer data sales.

4 PayTech: Payment-driven Data

4.1 Technology

We consider now a second technology that allows the platform to extract extra information

from payments. This technology is an “add-on” to the platform’s data-driven payment

technology. We assume that this new technology generates additional data with probability

γ from each completed transaction, where the platform had no information yet. To run this

technology, the platform needs to incur a cost F ≥ 0 per transaction.8 We call this payment-

8Alternatively, we could assume that the platform needs to make an investment at a fixed cost F . Our

results would not change for Φ ≥ −vρ
2 .
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driven data technology since it captures the data feedback from payments that enriches a

platform’s data from activities like in the case of Facebook or Google.9

The extra data can again be sold to sellers at a price equal to SsE(ε).10 Since the technology

only depends on aggregate data through the introduction of payments, users will not be

taking into account how their individual activities a(ε) and the introduction of payments

will impact their loss of privacy. In other words, the payment-driven data technology causes

a negative externality on users as they are not compensated directly for their loss of privacy,

and only compensated indirectly when the platform lowers its price to generate more data.

4.2 Feedback from Payment Data

The availability of the new technology changes the incentives to introduce data-driven pay-

ments. When γSsE(ε) ≥ F , the platform can generate additional profit from redistributing

surplus through this new technology. There is now an additional complementarity between

data and payments.

Consider the platform’s profit function with data-driven payments and payment-driven data,

which is given by

Π(a) = max
ā

ā (v − ā+ δη(ā)SE(ε))− δ2η(ā)2SsSbV(ε) + η(ā) (γSsE(ε)− F ) . (31)

The last term expresses the additional complementarity between payments and data. As

payment-driven data are profitable, the platform can increase this profit by relying on data-

driven payments η(ā) ≥ η0. Note that this feedback effect shifts profits upwards for all levels

of data ā without changing the overall returns-to-scale Φ of the data technology.11 This

yields the following result.

9We provide a microfoundation for this set-up in the appendix.
10We assume that this information is available simultaneously with the transaction itself. It is straightfor-

ward to consider a dynamic model where data from payments in one period are available only in the next.

The steady state outcome is similar to one of the static models we consider.
11The reason is that the aggregate activities enter only indirectly through the payment technology into

the return for data generation.
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Lemma 9. When the platform uses payment-driven data, the profit-maximizing amount of

data ā increases and the platform is more likely to introduce data-driven payments; that is,

the cut-off point η̂(Φ) increases.

This shows that there is a feedback effect where payments generate new data that lead to

more data generation in the core business of the platform to support even better payments.

From a social perspective, however, this feedback from payment-driven data may lead to

suboptimal outcomes. The reason is that the social return on such data is given by SE(ε) <

SsE(ε). The platform has a return not only from generating more surplus, but also from

redistributing surplus from transactions. Therefore, the platform can now have an incentive

to inefficiently introduce its own payment technology to acquire payment-driven data.

4.3 Inefficient Introduction of Payments

We first consider the introduction of payment-driven data. We have that the return from the

technology differs for the platform and the planner since Ss > S. Whereas the platform looks

at the total surplus it can redistribute when generating such data, the planner only takes

into account the social surplus. As a result, conditional on introducing the new payment

technology, payment-driven data are inefficient whenever

γSsE(ε) > F > γSE(ε).

Suppose for the remainder of this section that Φ ≥ −vρ
2
, so that when using the data-driven

payment technology the platform chooses to induce ā = 1/ρ so that η̄ = 1. For γSsE(ε) ≥ F ,

the platform will introduce the payment technology if

∆Π =
1

ρ

(
v − 1

ρ
+ δSE(ε)

)
− ā20 − (1− η20)δ

2SsSbV(ε) + γSsE(ε)− F ≥ 0, (32)

where ā0 is activity level induced by the platform, the optimal choice when using the existing

payment technology η0. Here, we have taken into account that the platform will always use

data-driven payments and payment-driven data simultaneously.
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The planner will prefer data-driven payments whenever

∆W =
1

ρ

(
v − 1

2ρ
+ δSE(ε)

)
− 3

2
ā20 − (1− η20)δ

2Sb(Ss + S)V(ε) + (1− η0)SbE(ε)+

+max{γSE(ε)− F, 0} ≥ 0. (33)

For intuition, it is instructive to look at the case where γSE(ε) ≥ F . The platform’s

incentives to introduce payments are thus larger whenever

γSbE(ε) ≥
1

2

(
1

ρ2
− ā2

)
+

1

2
(1− η20)δ

2S2
bV(ε) + (1− η0)SbE(ε). (34)

The left-hand side of this expression gives the extra return for the platform from payment-

driven data since it cares about redistributing total surplus rather than the increase in social

surplus. The right-hand side recalls the three reasons why data-driven payments have a

higher social return than the platform’s private return. Hence, the incentives are larger

when η0 → 1, provided the new technology is good enough or, equivalently, ρ is sufficiently

large.

Proposition 10. Suppose γSE(ε)− F < 0 < γSsE(ε)− F . As η0 → 1, there is inefficient

introduction of data-driven payments by the platform if ρ is large enough.

Suppose γSE(ε)− F > 0, but sufficiently small. As η0 → 1, there is an intermediate region

for ρ such that the introduction of data-driven payments by the platform is inefficient.

This result is intuitive. Assumption 4 ensures that the platform has no incentives to introduce

data-driven payments when η0 is sufficiently close enough. With the add-on technology,

however, the platform has an extra return that – if large enough – can compensate for the

loss that is incurred by the platform when introducing payments. The loss is not too large if

the new technology can easily overcome payment frictions; that is, if ρ is sufficiently large.

The choice by the platform becomes inefficient if welfare does not increase with the intro-

duction of data-driven payments. If the additional social gain from the add-on technology

is small enough, the planner will not introduce the technology. For this, however, the tech-

nology to decrease payment frictions must be not too powerful; that is, ρ is sufficiently

small.
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Figure 3 provides a numerical example demonstrating four possible outcomes of payment

introduction over the space (ρ, η0) for the case where γSE(ε) < F < γSsE(ε).12 In the

figure, condition (33) defines a downward sloping curve below which the planner prefers

payment adoption. Condition (32) defines an upward sloping curve below which the platform

introduces payment services. There are therefore four regions. When η0 is low, introducing

payment services is socially efficient, but the platform chooses not to do so when ρ is small

as it cannot fully internalize the benefits, leading to under-adoption. When η0 is high,

introducing payment services is socially inefficient, but the platform chooses to do so when

ρ is large because payments produce data for extracting surplus from buyers, leading to

over-adoption of payments.

Figure 3: Example – Payments Adoption

Finally, we turn to how the users of the platform are affected by the introduction of payment-

driven data. The average user will benefit from the add-on technology as long as

∆V =
1

2

(
1

ρ2
− ā20

)
+ (1− η0)SbE(ε) +

1

2
(1− η20)δ

2S2
bV(ε)− γSbE(ε) ≥ 0. (35)

The first term is positive and expresses the indirect compensation for users due to lower

prices and, hence, more activities on the platform. The two middle terms give the direct net

12The parameter values for this example are δ = 0.9, Sb = 0.57, Sb = 0.6, v = 0.1, γ = 0.01, F = 0.06 and

the distribution for ε is given by Prob(ε = 10) = Prob(ε = 10.1) = 0.5.
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benefit from the introduction of data-driven payments. Users can carry out more transactions

and obtain a larger information rent. The last term is the additional loss of privacy from

payment-driven data for which the consumer is not being directly compensated. Comparing

this expression with equation (34) gives the following result.

Corollary 11. Whenever the platform has larger incentives to introduce payment-driven

data, the average user will lose from the introduction of the payment technology.

This is an interesting result. Even if it is efficient to introduce payment-driven data – and,

therefore, the payment technology – it can lead to suboptimal outcomes for the users of

the platform. The planner takes into account both platform profits and user surplus, but

does not value the redistribution of surplus given by γSbE(ε), which does not affect overall

welfare. As a result, from the perspective of an average user, payment-driven data – even

though it is efficient to introduce them – can lead to worse outcomes.

For the individual users, consider the case where η0 → 1. We have that a user with transac-

tion size ε benefits from payment-driven data as long as

∆V (ε) =
1

2

(
1

ρ2
−
(
v + δSE(ε)

2

)2
)

− δSb(E(ε)− ε)

(
1

ρ
− v + δSE(ε)

2

)
− γSbε. (36)

The first two terms express the net benefits from a change in activities on the platform.

The last term is the loss in surplus from payment-driven data. By Assumption 4, users with

higher privacy concerns as expressed by ε gain more from the introduction of data-driven

payments, but they also lose more when payments are used to generate additional data. The

net effect is negative whenever

γ

δ
≥ 1

ρ
− v + δSE(ε)

2
. (37)

If the new payment technology is relatively efficient and the externality is large, the net

benefits tend to decline with users’ privacy concerns. This yields the following result.

Corollary 12. As η0 → 1, users with sufficiently large privacy concerns lose from the

introduction of payment-driven data if ρ is sufficiently large.
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5 Policy Implications for Payments

Many digital platforms and BigTech companies have introduced payments into their business

model. To evaluate the impact on platform users and overall efficiency, policy makers need

to understand the data-driven business model that many digital platforms have adopted.

Activities on the platform or core services provided by the platform generate data that can

be monetized, as the information contained in this data has social value.

When these activities or services are bundled together with payments, there are two key

policy considerations. First, to what degree does the platform compensate users for their

data and privacy concerns? And second, how do data and payments interact on the platform?

Data generated from activities and payment services cause a privacy loss for platform mem-

bers. However, the business model of BigTech relies on indirectly compensating users for

this loss. BigTech platforms subsidize their core platform activities – even offering them for

free to their users. As a result, losing privacy or giving up data when using the platform’s

payment solutions does not necessarily imply that users suffer an overall loss.

As we have pointed out, PayTech can increase surplus in two ways. Platform data can be used

to overcome fundamental payment frictions, and payments generate additional data that the

platform can use to generate additional surplus. At the same time, however, the platform can

also use data and payments to redistribute existing surplus. How to view the introduction

of payments by BigTech companies therefore depends on the relative importance of these

two channels, implying once again that a platform’s payment solutions are not necessarily

inefficient.

Based on these insights, we have derived several important considerations for payment policy.

First, in less financially developed markets there tend to be large payment frictions. Data-

driven payments can have important benefits to achieve better payment solutions. Examples

are mobile payments that increase financial inclusion, and the introduction of P2P real-time

payments. But as platform users can extract rents from their privacy concerns, to achieve full

efficiency, subsidies may still be required for the platform to optimally implement data-driven

payments.
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Second, in advanced economies, payment systems are already quite efficient. As a result,

data-driven payments offer few benefits and may be outweighed by costs when the platform

uses payment data to redistribute surplus from users to itself. Examples are data mining

and A/B testing that require native payment solutions on the platform. Preventing BigTech

from introducing payments or regulating the use of payment data can therefore be welfare-

improving.

Third, while privacy concerns matter, regulation of payments cannot treat such concerns in

isolation. Users are not necessarily worse off if they lose their privacy, as better information

leads to better payment technology. Some users may be worse off as they are not being

fully compensated for their privacy loss, but the social gains from data and better payments

can outweigh these concerns. Hence, regulators need to look at the effects of data-driven

payments and payment-driven data in a nuanced way that recognizes other aspects than just

privacy concerns.

Fourth, public provision of payment services may not necessarily lead to efficiency. The

reason is that one cannot replicate the data-driven business model of digital platforms. The

feedback effects between data and payments generate additional surplus that a stand-alone

payment technology cannot provide. This points to a second best solution where softer

privacy regulation, combined with restrictions on the usage of payment data, leads to better

outcomes.

Fifth, regulating or prohibiting the monetization of data can have negative consequence

for improvement in payment solutions. Digital platforms may lose the incentives to offer

payment solutions that can improve welfare. Such restrictions would negate the complemen-

tarity between data and payments that gives platforms a special technological advantage for

payment solutions. From a social perspective, it may be necessary to accept that BigTech

companies obtain some rents from the introduction of payments as this guarantees higher

surplus, even though some users of the platform may be worse off after the introduction of

payments.
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6 Extensions

6.1 Regular Network Effects

Bigtech platforms often exhibit network externality through their activities. This feature

can readily be introduced into our model. Suppose users derive utility from the activity

according to

(v + nā)ai, (38)

where ā is the total activity on the platform. The parameter n ∈ [0, 1
2
) captures the network

effect on the platform as the activity of a buyer is increasing in the average activity on the

platform. The aggregate activity on the platform is now given by

ā =
v + η0δSE(ε)

2(1− n)
, (39)

with the platform’s profit given by

Π(η̃) =

(
1

1− n

)(
v + η0δSE(ε)

2

)2

− η20δ
2SsSbV(ε). (40)

6.2 Privacy Option on the Platform

Some platforms offer a pricing structure that lets users protect their privacy against an

increased price for activities on the platform. Assume that a user can pay a fee ϕo to “opt

out.” Paying the fee ensures that the platform will not monetize the personal data.

The platform thus sets different prices depending on the user’s opt-out choice. The user’s

problem is now given by

V (ε,1o) = max
a

va− p(1o)a+ η0 (1− (1− 1o)δai)Sbε−
a(ε)2

2
− 1oϕo, (41)

where 1o is an indicator variable for opting out and p(1o) is the price for platform activities

depending on the choice by the user.

For users that opt out, it is straightforward to show that p(1) = v/2 and a = v− p(1) = v/2

for all ε. Hence,

V (ε, 1) =
v2

8
+ η0Sbε− ϕo. (42)
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Denote by E0(ε) and V0(ε) the mean and the variance of the remaining users for which the

platform can monetize the data. The optimal price is then given by

p(0) =
v − δη0E0(ε)(Sb + Ss)

2
. (43)

Since a(ε) = ā+ δη0Sb (E0(ε)− ε), the payoff for a user with ε is thus

V (ε, 0) =
1

2
(ā+ δη0Sb (E0(ε)− ε))2 + η0Sbε, (44)

which is convex in ε. Given p(0) and ϕo, the incentive to opt out

V (ε, 1)− V (ε, 0) (45)

is concave in ε so that users with intermediate ε have higher incentives to opt out.

To solve the initial stage of the model, let g1(ϕo) be the fraction of users opting out. The

platform then sets ϕo to maximize g1(ϕo)Π1(ϕo) + (1− g1(ϕo))Π0(ϕo) where

Π1(ϕo) =
v2

4
+ ϕo (46)

Π0(ϕo) =

(
v + δη0SE0(ε)

2

)2

− δ2η20SsSbV0(ε). (47)

6.3 Ex-ante Fees for Payments

In the basic model, we assume that the platform cannot charge lump-sum fees when users

are ex-ante identical. We believe this is a reasonable assumption for settings where users are

intrinsically different. For completeness, we briefly discuss the case where it is feasible for

the platform to also charge a lump-sum entry fee ϕ before ε is realized. Suppose the fees are

determined such that the platform can extract a fraction θ of the user’s expected surplus

ϕ0 = θE[V0(ε)− η0Sbε] (48)

ϕ1 = θE[V1(ε)− η0Sbε], (49)

where we denote the ex-ante value of the platform for the user with and without payments

as V1 and V0 respectively. Note that we allow the fees ϕ1 and ϕ0 to differ depending on
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whether the platforms introduces a data-driven payment technology or not. The term η0Sbε

captures the payoff for the user for not participating on the platform.

Denote Πi as the platform profit after initial fees ϕi which corresponds to the platform’s

profits in the benchmark model. Recall that social welfare is simply the sum of profits for

the platform after initial fees and the expected value of the platform for the user. Hence,

W1 −W0 = Π1 − Π0 + EV1(ε)− EV0(ε)

= (Π1 + ϕ1/θ)− (Π0 + ϕ0/θ)

≥ (Π1 + ϕ1)− (Π0 + ϕ0). (50)

The last line expresses the platform’s incentives to adopt data-driven payments. As a result,

the platform’s incentive coincides with welfare if and only if the platform can perfectly

extract all surplus from its users by charging ex-ante fees – or, equivalently, if and only if

θ = 1. Otherwise, the platform still tends to under-adopt data-driven payment services.

With payment-driven data, however, the platform still tends to over-adopt payment services

because users do not internalize the informational externality from their payments.
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Appendix: Derivation of Objective Functions

Average User Payoff

V =

∫
(v − p)a(ε)− a(ε)2

2
+ η(1− δa(ε))SbE(ε)dG(ε)

=

∫
(a(ε) + δηSbε) a(ε)−

a(ε)2

2
+ η(1− δa(ε))SbE(ε)dG(ε)

=

∫
1

2
a(ε)2 + ηSbεdG(ε)

=
1

2

∫
(ā+ δηSb(E(ε)− ε))2 dG(ε) + ηSbE(ε)

=
1

2
ā2 +

1

2
δ2η2S2

bV(ε) + ηSbE(ε)

Individual User Payoff

V (ε) =
1

2
a(ε)2 + ηSbε
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Profit Function

Π =

∫
pa(ε) + δηa(ε)SsεdG(ε)

=

∫
(v − ā− δηSbE(ε) + δηSs)a(ε)dG(ε)

=

∫ (
v − ā+ δηSE(ε)− δηSs(E(ε)− ε)

)
(ā+ δηSb(E(ε)− ε)dG(ε)

= (v − ā+ δηSE(ε))ā−
∫

δ2η2SsSb(E(ε)− ε)2dG(ε)

= ā(v − ā+ δηSE(ε))− δ2η2SsSbV(ε)

Welfare Function

W = Π+ V

= ā
(
v − ā

2
+ δηSE(ε)

)
+

1

2
δ2η2S2

bV(ε)− δ2η2SsSbV(ε) + ηSbE(ε)

= ā
(
v − ā

2
+ δηSE(ε)

)
− 1

2
δ2η2SbV(ε) (2Ss − Sb) + ηSbE(ε)

= ā
(
v − ā

2
+ δηSE(ε)

)
− 1

2
δ2η2Sb(Ss + S)V(ε) + ηSbE(ε)

Appendix: Proofs

Proof of Lemma 5

Proof. The slope of the firm’s profit function is given by v+2āϕ. Hence, profits are increasing

over the interval [0, 1/ρ] as long as vρ/2 ≥ −Φ. By Assumption 4, the profit function is

decreasing for ā > 1/ρ when there are no payments frcitions (η(ā) = 1). Since the profit

function is strictly concave for Φ < 0, this completes the proof.

Proof of Proposition 6

Proof. Consider first the case where vρ/2 ≥ −Φ. The platform introduces payments with

η(ā) = 1 whenever

vρ+ Φ ≥ ρ2
(
v + δη0SE(ε)

2

)2

− δ2ρ2η20SsSbV(ε).
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The right-hand side is a quadratic function in η0 that is concave (convex) for Λ > 0 (Λ < 0).

Set η0 = 0. Then, the platform prefers to introduce payments whenever

vρ+ Φ ≥ 1

4
v2ρ2.

Since Φ ≥ −vρ/2, this inequality holds whenever

1 ≥ vρ

2
,

which holds by Assumption 4.

Next, set η0 = 1. Then, the platform prefers to introduce payments whenever

1

ρ

(
v − 1

ρ
+ δSE(ε)

)
≥
(
v + δSE(ε)

2

)2

.

Note that the left-hand side reaches a maximum at 1
ρ
= 1

2
(v + δSE(ε)) where the inequality

holds with equality and the platform is indifferent. Hence, for all values of 1/ρ that are

larger, the platform is worse off. There exists, therefore, a cut-off point η̂ such that the

platform introduces payments if and only if η0 ≤ η̂.

Consider now the case where vρ/2 ≤ −Φ. The platform will introduce payments if and only

if

− 1

4Φ
v2 ≥

(
v + δη0SE(ε)

2

)2

− δ2η20SsSbV(ε)

or

Λη20 −
2v

δ
η0 −

(
1

Φ
+ 1

)
v2

δ2SE(ε)
≥ 0,

which again is a quadratic function in η0. Note that the first two terms are always negative

since 2v/δ > Λ.

This implies that the function has a maximum at η0 = 0 and, since Φ ≥ −1, is positive at

η0 = 0. Since profits for introducing payments increase in Φ for any given η0, we have that

for η0 = 1, the platform will not introduce payments as Φ → −vρ
2
.

Since the function is quadratic, there is a value η1(Φ) such that for all η0 ≤ η1(Φ), the

platform has larger profits if payments are carried out at η(ā).
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Finally, consider η(ā) = − 1
Φ

vρ
2
as a function of Φ on the interval [−1,−vρ/2]. It is strictly

increasing and strictly convex, with ρā = 1 and a slope greater than 1 at −vρ/2. There

exists η2 ∈ [0, 1) such that for all η0 ≤ η2(Φ), we have η0 ≤ η(ā). Define now the cut-off

point η̂(Φ) = min{η1(Φ), η2(Φ)}, which completes the first part of the proof.

For the second part, observe that the profit function for introducing payments is increasing

in Φ since Φ ≥ −1.

Proof of Lemma 9

Proof. The slope of the profit function is now given by v+2āΦ+ γρSsE(ε). Assumption (4)

ensures again that we have ā = 1/ρ if and only if

1

2

(
vρ+ ρ2γSsE(ε)

)
≥ −Φ,

as the profit function is strictly increasing on the interval [0, 1
ρ
].

If this condition does not hold, there is an interior optimum given by

ā = − 1

2Φ
(v + ργSsE(ε)) > − 1

2Φ
v.

Proof of Proposition 10

Proof. Let η0 → 1. The platform introduces data-driven payments if and only if

γSsE(ε)− F ≥
(
v + δSE(ε)

2

)2

− 1

ρ

(
v − 1

ρ
+ δSE(ε)

)
≡ A,

while it is not efficient to introduce payments if and only if

γSE(ε)− F ≤ A+
1

2

((
v + δSE(ε)

2

)2

− 1

ρ2

)
≡ B.

The function

1

ρ

(
v − 1

ρ
+ δSE(ε)

)
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is decreasing in 1/ρ for all

1

ρ
≥ v + δSE(ε)

2

and A → 0 for 1/ρ → (v + δSE(ε)/2. Hence, for ρ sufficiently large, the first inequality

holds.

For the second inequality, B → 0 for 1/ρ → (v + δSE(ε)/2. Also, B has a maximum at

1

ρ
= v + δSE(ε)

with

B =

(
v + δSE(ε)

2

)2

.

As a result, when γSE(ε)− F < 0, there is inefficient introduction of data-driven payments

if ρ is sufficiently large.

Finally, note that

∂B

∂ 1
ρ

=
∂A

∂ 1
ρ

− 1

ρ
.

Therefore, the first inequality tightens faster than the second inequality is being relaxed as

1/ρ increases. Furthermore, for 1/ρ ≥ 3/2(v + δSE(ε), B ≤ 0.

Hence, when γSE(ε)− F > 0 sufficiently small, there is an intermediate region for 1/ρ such

that both inequalities are fulfilled, which completes the proof.

Appendix: Microfoundation for Payment-driven Data

The model assumes that the platform can acquire additional data from its payment technol-

ogy that are complementary to the data it generates on the platform. There is also a cost F

for generating the data and how much data can be generated is captured by the parameter γ.

We briefly develop a microfoundation for how payments can be used to generate additional

data that is based on experiments to learn the preferences of the platform’s users.
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In the basic model, when the platform cannot identify a buyer’s type, it chooses to recom-

mend sellers to offer a generic good. With the payment service, the platform could still make

a recommendation to sellers to sell customized goods even though it has no information on

a buyer’s preference for a customized good. Upon observing the outcome of the trade, the

platform generates additional information that could be helpful for its data services. Think

of Facebook and Google that run A/B tests to learn about their users and need feedback

from payments for these tests.

The trade-off is that the platform will make some mistakes in predicting preferences. How-

ever, the platform can also get additional information when a trade for a customized good

has been completed successfully. The provision of payment services is crucial for testing as

it allows the platform to monitor whether or not a trade happens after a recommendation

is made.

Suppose that the platform can perform τ tests. Recall that buyers belong to different types

j = 1, 2, ..., J with equal probability, and that a type j buyer only likes type j customized

goods. For buyers that have been identified from the data on the platform, the platform

will recommend the correct customized goods. For buyers that have not been identified, the

platform can run a test by recommending a random type to the seller.

With probability 1/J , the recommendation is correct so that the information about buyers

improves by an amount τ/J , which defines the parameter γ in the formal model. The cost

of performing a test is that a seller that follows the platform’s recommendation incurs an

expected loss of τ(1− 1
J
SsE(ε)) due to the recommendation error. The platform will have to

compensate sellers for these errors, and therefore has to charge a lower price that corresponds

to the parameter F in the formal model.

Interestingly, there is a second, social cost of such testing. Buyers also suffer an expected loss

of τSbE(ε) whenever a recommendation error occurs. This cost is not taken into account by

the platform, so that testing gives rise to a negative externality on buyers. Hence, the costs

for running tests are different from a private and a social point of view, which strengthens

our result about inefficient adoption of payments in the presence of payment-driven data.
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This microfoundation captures what practitioners in the payment industry have called a

“closed loop” as reflected in the two quotes below.

“ ‘There’s a lot of excitement around buying Facebook ads, but the critical

missing link is, if I put down $5, how do I know if it worked?’ said Saumil

Mehta, Square’s customer engagement lead. ‘The ability to track and close the

loop from advertisement to sale — that’s the holy grail.’ ” (New York Times,

March 23, 2016).

“Jeremy Epstein, who has worked with marketing technology for decades, likewise

mentions Amazon upon hearing a description of Facebook’s project [Libra]. ‘It

makes sense in terms of a closed loop. It will bring payments back in house and

show Facebook who’s buying what,’ Epstein says. ‘Right now, Facebook doesn’t

know the last mile like Amazon does.’ ” (Fortune, June 18, 2019)
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