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Abstract 
This study proposes a Bayesian semiparametric binary response model using Markov chain 
Monte Carlo algorithms since this Bayesian algorithm works when the maximum likelihood 
estimation fails. Implementing graphic processing unit computing improves the computation 
time because of its efficiency in estimating the optimal bandwidth of the kernel density. The 
study employs simulated data and Monte Carlo experiments to compare the performances of 
the parametric and semiparametric models. We use mean squared errors, receiver operating 
characteristic curves and marginal effects as model assessment criteria. Finally, we present an 
application to evaluate the consumer bankruptcy rates based on Canadian TransUnion data. 

Topics: Econometric and statistical methods; Credit risk management 
JEL codes: C1, C14, C35, C51, C63, D1



1 Introduction

Since Nelder and Wedderburn published their seminal paper in 1972 on the generalized linear

model (GLM), applications of the GLM have increased appreciably, especially in the past few

years. From regime switching to machine learning and from microeconomic survey data to large

panel data analysis, binary response models have been applied broadly as the foundation for pur-

poses such as network mapping analysis, housing and labour market analysis and financial risk

analysis.

Amemiya (1981) and Aldrich and Nelson (1984) present comprehensive discussions of the

GLM binary response models. Since the distributions of binary responses are in fact unknown and

are often not estimable, researchers have applied logit or probit models under specific distribu-

tion assumptions. But a persistent question is whether semiparametric models are better than the

traditional logit or probit parametric models.1

In this paper, we propose a Bayesian semiparametric binary response model using the quasi-

likelihood function as the likelihood part of the posterior distribution. We compare the perfor-

mances of the Bayesian semiparametric model with the sample theory semiparametric model. We

also compare the semiparametric models with probit and logit parametric models. The compar-

isons are based on simulated data and Monte Carlo experiments. As the criteria of comparison,

we use the marginal effect, mean squared error (MSE) and receiver operating characteristic (ROC)

curve. We find: (i) when the data are balanced, the performances of the semiparametric models are

indistinguishable from the performances of the parametric models; (ii) however, when the data are

extremely unbalanced (for example, the “Y = yes” response rate is less than 3%), the maximum

likelihood estimation of the semiparametric and parametric models may not converge, whereas the

Bayesian estimation converges.

We also introduce a computationally optimum bandwidth, then compare the Bayesian estimates

using the regular bandwidth and compare the other estimates using the computationally optimum

bandwidth. To do so, we apply GPU (graphics processing unit) computing with C/C++ as well as

1Few papers provide an answer to this persistent question. A paper published in the Journal of Applied Economet-

rics states “the results of this paper indicate that more more work is necessary.” See Gerfin (1996).
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MATLAB. The computed speed of the GPU computing is significantly (by hundreds or thousands2

of times) faster than the regular computing process. Most importantly, GPU computing is an

efficient tool in the Markov chain process, which is difficult to realize using the regular parallel

computing.

After the simulated data and Monte Carlo experiments, we illustrate an example by estimating

the consumer bankruptcy rates based on the TransUnion3 data, and we test the robustness of the

Bayesian semiparametric and other binary response models.

The organization of the paper is as follows. In Section 2, we present the Bayesian binary

response model and estimation method as well as GPU computing. In Section 3, we compare

different estimators using simulated data. In Section 4, we present Monte Carlo experiments. An

empirical application is presented in Section 5. And Section 6 provides concluding remarks.

2 Bayesian Semiparametric Binary Response Model

2.1 Model and estimation algorithm

We have a sample of binary responses, y1, . . . ,yn, where the binary response model is to use the

following latent variable regression:

yi =


1 if yes with probability pi or if M(yi)> εi

0 otherwise with probability 1− pi or if M(yi)≤ εi

,

and pi is given by pi = F(xi,β), where xi = (xi1, · · · ,xik) and β = (β0,β1, · · · ,βk)
′
.

Then, we will have a general GLM form of the binary response model:

M(yi) = F(xi,β).

2The speed depends on the GPU hardware setup.
3To protect the privacy of Canadians, no personal information was provided by TransUnion. The TransUnion

dataset was “anonymized,” meaning that it does not include information that identifies individual Canadians, such as

names, social insurance numbers or addresses. In addition, the dataset has a panel structure, which uses fictitious

account and consumer numbers assigned by TransUnion.
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If we know the cumulative density F(·) for εi in latent variable regression above, we may

choose a parametric estimation procedure. The most frequently used distributions are

Cumulative Density Probability Density

Logistic F(zi) =
1

1+ e−zi
f (zi) =

e−zi

(1+ e−zi)2

Probit Φ(zi) =
1√
2π

∫ zi

−∞

e−
t
2 dt f (zi) =

1√
2π

e−
zi
2

Linear Probability F(zi) =
∫ zi

0
dt = zi = xiβ U(0, 1)

If F(·) is not known, we can use the quasi-likelihood function:

`(β | yi,xi = 1, . . . ,n) =
n

∏
i=1

p̂yi
i ×

n

∏
i=1

(1− p̂i)
1−yi. (1)

As one of the most efficient semiparametric methods for binary response models, the single index-

parametric model proposed by Klein and Spady (1993) and Klein and Vella (2009), among others,

has been broadly cited.4 Following Klein and Spady (1993), we obtain p̂i by

p̂i = Pr[Yi = 1 |Vi(β)]

=
p(Y = 1)ĝ(V | Y = 1)

ĝ(V )
=

n1
n

n
∑

i=1

1
hn

K( t−vi
hn

)( yi
n1
)

n
∑

i=1

1
hn

K(
t−vi
hn )

n

. (2)

Vi(β) = β0 +β1xi1 +β2xi2 + · · ·+βkxik. (3)

ĝ(t) =
n

∑
i=1

1
hn

K( t−vi
hn

)

n
(4)

is a non-parametric kernel density estimation function, where

K(
t− vi

hn
)

is the kernel function satisfying
∫

K(x)dx = 1, K(x) ≥ 0, n1 is the sum of ′yi = 1′, and hn is the

kernel density window size or bandwidth.
4As of July 2021, the Jstor.org citation record for Klein and Spady (1993) is 991 times.
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In equation (3), Vi(β) is the single index. Given the linearity of Vi in equation (3), we may

write:

Xiβ = β1(Xi1 +θ2Xi2 + · · ·+θkXik)+β0, (5)

where θi = βi/β1, β1 6= 0. From equation (5) we get the new single index as

Vi(θ) = Xi1 +θ2Xi2 + · · ·+θkXik. (6)

Because the probability of the linear transformation of the index is the same as the probability

of the original index, equation (2) will have the following property:

Pr(Y = 1 |V = v(β)) = Pr(Y = 1 |V = v(θ)). (7)

Rather than maximizing the quasi-likelihood function (1), we propose a Bayesian semipara-

metric estimation algorithm by using the quasi-likelihood function (1) as the likelihood to obtain

the posterior distribution of θ = (θ2, . . . ,θk):

p(θ) ∝ π(θ)`(θ | data), (8)

where π(θ) is the prior and `(·) is the quasi-likelihood. We use MCMC algorithms with the

Metropolis-Hastings criterion.

The MCMC algorithms are carried out as follows: let θ(i) be the i-th draw of θ.

Step 1 Choose an initial value θ(0). We use the ordinary least square (OLS) estimates of the

standardized transformed model of equation (6):5

yi = xi1 +θ2xi2 + · · ·+θkxik.

Step 2 We use a random walk draw:

θ
(i) = θ

(i−1)+ εi,

where εi is normal with mean 0 and variance c(X ′X)−1. We set c = 1.
5In the maximum likelihood estimation of the semiparametric model, the covariate xi j is standardized as xi j/s j,

where s j is the standard deviation of xi j’s. This standardization of the covariates is done to make the convergence of

the MLE procedure easier and to get rid of the large variances among different types of variables.
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Step 3 Set θ(i) = θ(i) if u < α. Otherwise set θ(i) = θ(i−1), where u is drawn from Uniform(0, 1)

and α is given by:

α = min

{
1,

p(θ(i) | data)
p(θ(i−1) | data)

}
.

p(· | data) is the posterior pdf of θ.

Step 4 Repeat Step 2 and Step 3 for i = 1,2, . . . ,M.

In estimating the semiparametric model, we use the kernel density of equation (4) for both the

MLE and Bayesian estimation. In the case of the Bayesian Markov chain Monte Carlo (MCMC)

algorithm, the kernel density is estimated for each draw of θ(i). In the case of the MLE, the kernel

density is estimated for each iteration until convergence is attained.

The kernel density depends on the choice of the kernel, K(·) and the bandwidth, h. Li (2001)

shows that the choice of the bandwidth is more important than the choice of the kernel. Keeping

the normal distribution as the kernel, we use two bandwidths to see if the choice of the bandwidth

makes the difference in the MLE as well as in the Bayesian estimation. The first bandwidth we use

is Silverman’s (1986) estimation:

h =

(
4
3n

).2

σ. (9)

We call this bandwidth the regular bandwidth. The second bandwidth we use is the optimal band-

width given by

h∗optimal =

(
R(K)

(
∫

x2K(x)dx)2 R(ĝ′′(x; p(h)))

).2

. (10)

The optimal bandwidth h∗optimal is explained in the appendix. The optimal bandwidth tends to trace

sharp modes of a density better than the regular bandwidth does. This is illustrated in Figures 1

and 2, where 15 Gaussian mixture densities are presented.

Figures 1 and 2 Here.

In Figures 1 and 2, the solid black lines are the true Gaussian mixture densities, whereas the

lines in red are kernel densities. In Figure 1 the kernel densities are obtained using the regular
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bandwidth, while in Figure 2 they are obtained using the optimal bandwidth. We see that the regu-

lar bandwidth in Figure 1 misses the sharp modes of the true densities, but the optimal bandwidth

in Figure 1 traces the sharp modes fairly accurately as illustrated vividly by the multimodal claw

distribution in the center of Figures 1 and 2.

2.2 Benefit of using GPU in MATLAB to improve computing efficiency

The computation of the optimal bandwidth is time-consuming, and thus we use a graphic process-

ing unit (GPU). GPU computation has been used more and more in Bayesian estimation of many

models. Equation (9) is the most popular simple bandwidth and it is only optimal for Gaussian data.

If data are not Gaussian, we could use equation (10), which must need multiple complex compu-

tations.6 This is one of the reasons that researchers, such as Klein and Shen (2010), use different

estimation methods to estimate bandwidth within the single index model to build different smooth

factors with specific bounds to minimize the bias in estimating bandwidth. The computation of

equation (10) can be implemented efficiently by using GPU computing with C/C++ in MATLAB

(Li (2011)), and its speed is at least 600 times faster7 than the regular computing method, such

as in Gauss or MATLAB itself. Since Bayesian computing needs the conditional Markov chain

process with complicated matrix order setup, it is impossible to apply the parallel computing si-

multaneously. Therefore, when we try to estimate much more accurate optimal bandwidth, GPU

computing is more efficient and applicable because we will consider all real numbers without any

arbitrary lower or upper bound. Most importantly, we can realize Monte Carlo simulations effec-

tively.

A GPU is a specialized processor dedicated to optimizing graphical computations, i.e., render-

ing 2D/3D scenes. Nvidia8 introduced the term GPU in 1999 with their GeForce line of products.

CUDA, short for “Compute Unified Device Architecture,” is a proprietary platform that Nvidia

6To compute equation (10), studies such as Chen (2015) and Guidoum (2015) have tried to resolve the integration

we propose by using multiple computing options, and the computing is time consuming if the data are large.
7This is based on a USD 200 GPU installed on a regular desktop. A high efficiency GPU will generate results

thousands of times faster than the regular computing.
8Nvidia Corporation is an American multinational technology company that designs GPUs to accelerate computing

and solve important challenges beyond the reach of normal computers.
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has implemented on their GPUs. The original version was introduced in 2007. CUDA has now

matured considerably and is supported on every major Nvidia GPU, including high-end products

like the Tesla cards on which we run our codes.

GPU support in MATLAB is available inside the Parallel Computing Toolbox and is built on

top of the CUDA driver. On the GPU, a primitive operation, called a “kernel,” is executed in

parallel by (possibly thousands) of CUDA threads. Kernels can be launched as 1D, 2D or 3D

blocks, which can themselves be organized into 1D or 2D grids. Kernels are defined as special

C/C++ functions.

After profiling our MATLAB code, we found that most of its runtime is spent calculating the

optimal bandwidth in equation (10) and the probability estimates in equations (2) and (4). The

algorithm for solving the fixed point in equation (10) is explained in section of 4.1 of Li (2011)

and described in the appendix. Its most computationally intensive steps involve estimating higher

order Gaussian density derivatives for the optimized pilot bandwidths, which we implement using

4th- and 6th-degree Hermite polynomials.

Fortunately, computing higher order Gaussian density derivatives is an “embarrassingly par-

allel” problem in the sense of Moler (2013). This means that the problem can be separated into

a number of parallel tasks involving basic math operations, with no need for communication be-

tween these tasks. We have therefore efficiently hand-written three CUDA/C++ kernel functions

that carry out the computations alluded to above, DensityDerivative4.cu and DensityDerivative6.cu

for equation (10) and ProbabilityEstimates.cu for equation (2). These can be compiled using the

Nvidia NVCC compiler. The resulting assembly-level PTX files can then be loaded into MATLAB

as GPU kernel objects using parallel.gpu.CUDAKernel as an interface. At this point, the kernels

can easily be run via MATLAB’s feval function. The process of transferring the input data from

host memory to GPU memory is done automatically by MATLAB via feval, but the results need to

be loaded back into the main workspace using the gather function.

The three CUDA kernel functions mentioned above use a one-dimensional grid of one-dimensional

blocks. In our case, one GPU thread is required for each of the N=218,213 data points in our

TransUnion sample within section 5. Since the maximum number of threads possible to run simul-

taneously in one block is 1,024, we divide the grid into N/1,024=213 blocks. Using this approach,

we were able to speed up the computation of density derivatives described above by a factor of
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about 160 on a Tesla K80 card and a factor of about 600 on a Tesla P100 card.

3 Comparing the Performances of Parametric and Semipara-

metric Binary Response Models

Let us compare the performances of the parametric and semiparametric binary response models

using the Bayesian and maximum likelihood estimators (MLE). We choose the probit and logit

models as the parametric models. For the semiparametric model, we use two bandwidths: the

regular bandwidth of equation (9) and the optimal bandwith of equation (10). In summary, the

estimators and models we compare are:

Bayesian


Probit
Logit
Semiparametric with the regular bandwidth
Semiparametric with the optimal bandwidth

MLE


Probit
Logit
Semiparametric with the regular bandwidth
Semiparametric with the optimal bandwidth

As given in equation (5), in the semiparametric model the regression coefficients, βi’s, are

transformed into θi’s. This makes it difficult to compare the regression coefficient estimates from

a parametric model with those from the semiparametric model. Therefore, let us use three model

selection criteria: the marginal effects, MSEs and the ROC curve.

The marginal effect is a popular statistic for the binary response model. When the distribution

is known or the model is parametric, the generalized form of the true marginal effect of Xk for

models with known density distribution is:

∂F(xiβ)
∂xk

= ∂F(xiβ)
∂xiβ

∂xiβ
∂xk

= F ′(xiβ)βk = f (xiβ)βk.

Within the semiparametric model, the marginal effect needs to be defined differently: we use

the predicted probability, p̂, and define the estimated marginal effect as p̂(x+∆x)− p̂(x), in which
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p̂(.) is given in equation (2) and ∆x is an increment of the x. In order to capture the entire distribu-

tion of the X , we will consider ∆x = {std(x),2× std(x),3× std(x)}.9

In regressions, one way to select a model is to choose the model with the smallest unweighted

MSE or the normal MSE, 10 which is calculated by

n

∑
i=1

(yi− P̂i)
2

n− k
,

where yi = 1 or 0. P̂i is the computed probability F(xiβ̂) for the case of a parametric model or

equation (2) for the case of the semiparametric model.

The ROC curve is one of the best choices (McNeil and Hanley (1982, 1984), Swets et al.

(2000), Fawcett (2006), etc.) to select the binary response model. We compare the area under the

ROC curve (Alonzo (2002), Agresti (2007)). The bigger the area, the better the predictive power

of the binary response model. We will use the algorithm from Fawcett (2006) to plot the ROC

curve and calculate the area under the ROC curve.

Let us compare the performances of the different estimation methods and models using simu-

lated data. We specify the binary choice model to be

Y ∗i = β0 +β1Xi2 +β3Xi3 + εi, (11)

where Xi3 is a zero-one dummy variable to represent a discrete covariate and Xi2, is drawn from

a uniform distribution, U(0,a). The continuous regressor, Xi2, is included since the large sample

properties of the semiparametric estimator require that at least one regressor is a continuous vari-

able. The values of the parameters (β0,β1,β2,a) are chosen to control the percentage of Yi = 1 to

represent balanced or unbalanced data. The observed binary values, Yi, are set as

Yi =

{
1 if Y ∗i > 0

0 otherwise
.

The sample size n is set at 2,048 (n = 2,048).

9We may also use the quantile of X as ∆x.
10Using the weighted mean squared errors is also an option. Amemiya (1981) argues for the use of the weighted

MSE, but as shown in Chen and Tsurumi (2010), the unweighted MSE is a better model selection criterion than the

weighted MSE.
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Before we compare the performances of the sample theory and Bayesian estimates of the binary

response models, let us see how well the discretized marginal effect

p(x+∆x)− p(x)

is estimated by the sample theory and Bayesian semiparametric models. We generated a sample of

size 1,000 (n = 1,000) from the logistic distribution setting β = {β0, β1, β2}. The percentage of

Y = 1 is 9.25%. ∆x is set at one, two, and three standard deviations.

∆X true marginal effect
semiparametric model

MLE Bayesian
one std(x2) .0109 .0159 .0149
two std(x2) .0233 .0273 .0266

three std(x2) .0370 .0302 .0307
Notes: std=standard deviation; Bayesian=posterior mean. The regular bandwidth is used.

From the table above we see that the discretized marginal effects are reasonably well estimated

by the sample theory and Bayesian models.

The error term in equation (11), εi , can also be drawn from 16 distributions that are given in

Table 1. Distributions #1–15 are Gaussian mixture densities from Marron and Wand (1992) and

distribution #16 is a skew logistic distribution with the distribution function given by:

Pr(yi = 1) =
1

(1+ e−xiβ)θ
.

The first 15 distributions are presented in Figures 1 and 2. Some of these distributions, espe-

cially trimodal, claw, and comb distributions, may seldom occur in real data, but these distributions

are different from the probit or logit distributions, and thus the semiparametric models may per-

form better than the parametric models.

Table 2 and Table 3 present the ROC areas and MSEs of different estimators based on simulated

data. Although we have obtained results for all of the 16 distributions, the results are quite similar

to those given in Tables 2 and 3. Table 2 shows the balanced cases in which the percentage of

Y = 1 ranges from 28.8% to 36.5%, while Table 3 shows extremely unbalanced cases in which the

percentage of Y = 1 ranges from 0.9% to 3.47%.
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Table 1: Distributions of the error terms of the binary response models

Distribution Distribution

1 Gaussian 9 Trimodal

2 Skewed unimodal 10 Claw

3 Strongly skewed 11 Double claw

4 Kurtotic unimodal 12 Aymmetric claw

5 Outlier 13 Asymmetric double claw

6 Bimodal 14 Smooth comb

7 Separated bimodal 15 Discrete comb

8 Skewed bimodal 16 Skew logistic

Tables 2 and 3 Here.

From Tables 2 and 3 we conclude that judged by the ROC area and MSE, we cannot dis-

criminate among the different models and estimation procedures except in the cases of extremely

unbalanced data as given in Table 3: all the MLE estimation procedures failed to converge, whereas

all the Bayesian MCMC algorithms attain convergence. Hence we conclude that when the data are

extremely unbalanced, the Bayesian MCMC algorithms may be preferred to the MLE algorithms.

Comparing the bandwidths, we see that the use of the optimal bandwidth does not have a visible

advantage over the standard bandwidth.

4 Monte Carlo Experiments

In the previous section based on one sample draw, we compared the performances of the different

models and estimation procedures. In this section, we conduct Monte Carlo (MC) experiments to

compare the performances of the different models and estimation procedures.

In the literature, MC results using the optimal bandwidth are few because of the heavy compu-

tational burden in searching for the optimal bandwidth. The most difficult part of MC simulation

is to estimate the optimal bandwidth efficiently without smoothing techniques and specific bounds,
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and to run Bayesian MCMC simulations quickly. By using GPU computing with C/C++ in MAT-

LAB (Li(2011)), which is more than 600 times faster than the regular computing method, we are

able to effectively run the MC simulations.

The number of Monte Carlo replications is 500. The Monte Carlo simulation results are con-

sistent with results obtained in the previous section for the simulated data. Therefore, we only

present two examples for balanced cases and unbalanced cases.

In Table 4, the mean and standard deviation of the 500 iterations are displayed. The first part is

for the balanced case with claw distribution and the second part is for the unbalanced case of the

model with skewed log distribution; only Bayesian MC results can be presented for the unbalanced

case because not all 500 replications yield convergence when the MLE is used. Clearly, the results

from ROC and MSE are very close among different models: either parametric or semiparametric

models by either MLE or Bayesian methods. However, the marginal effects from both MLE or

Bayesian semiparametric methods are smaller than those from parametric methods. In addition,

the optimal bandwidth estimates from both Bayesian and MLE semiparametric methods are very

close, although the standard deviation of bandwidth derived from the MLE method is larger.

5 Analysis of Consumer Bankruptcy Rates using TransUnion

Data

Bankruptcy rate has become one of the most important risk assessment factors in predicting finan-

cial stress. Many popular studies using binary models to predict various types of bankruptcy rates

have circulated since Ohlson (1980) proposed a logistic model for predicting bankruptcy. Among

these studies, Gross (2002) initiated an empirical analysis of personal bankruptcy by using probit

and logistic models, and Alaminos et al. (2016) chose a logistic type model to predict bankruptcy

of business globally after a thorough literature review of model options for bankruptcy. All of

these indicate that a binary response model is one of the best options for predicting bankruptcy

rates. In this section, we present an application to evaluate consumer bankruptcy rates using Cana-

dian TransUnion (TU) data based on a binary response model.
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5.1 TransUnion consumer data

TransUnion consumer data provide loan information about Canadian consumers, and they provide

first-hand bankruptcy information for individual consumers. Each consumer may have different

loan accounts, such as mortgages, credit cards, lines of credit. Our analysis will be based on

consumer instead of independent loan accounts.

Several interesting topics could be answered through a binary response model using TU data. Is

the older or younger generation more prone to bankruptcy? Does credit risk score really matter for

credit quality? Are people with higher current credit balances more likely to have a loan problem?

Which province in Canada has consumers who are relatively more vulnerable?

We focus on the major adult consumers between 18 and 82 years of age.11 After data clean-

ing, we randomly choose 218,112 observations (around 1% of the total data12) from the February

202013 data. We set:

Y =

{
1 if the consumer went bankrupt once in history
0 otherwise.

We refer to the proportion of (Y=1) as the rate, which represents the total bankruptcy rate in TU

data history. This bankruptcy rate (P(Y=1)) is 3.09%,14 and we may say the data are unbalanced.

Five covariates or regressors are continuous variables: they are age in months, TU risk scores,

total balance of mortgages, total balance of bankcards, and total balance for lines of credit. Three

covariates characterizing the location of consumers are categorical variables: Ontario (yes or no, 1

or 0), British Columbia (yes or no, 1 or 0), and Quebec (yes or no, 1 or 0).

Summary statistics of all variables are presented in Table 5. The mean and median age of

consumers are around 48 years, with a standard deviation of 16 years. The average and median
11According to the census, the average lifespan of Canadians is around 82 years old, so we choose this as the upper

bound of age.
12Our data are selected based on a cleaned TU sample after generic data validation from the Bank of Canada Data

Statistics Office. We also filtered out data with missing values and made sure the total loan balances >= sum of

balances from all loan accounts.
13TU data are reported by month; our sample represents the February 2020 data report.
14The aggregate bankruptcy rate is 3.09%. The bankruptcy rates are different across geographies: 2.08% in British

Columbia, 2.58% in Ontario, and 4.44% in Quebec.

13



consumer mortgage credit balances are 81,000 versus zero with a standard deviation of 188,000.

Judged by the quantiles, most variables were distributed quite asymmetrically, except for age and

TU risk score. Since not all consumers carry all types of loan accounts or declare bankruptcy,

these summary statistics represent the characteristics of our variables: for example, only around

25% of consumers have mortgage accounts with a mortgage balance value; and bankcard accounts

have the lowest mean balance (4,340) compared with other loan account balances. The consumer

proportions of three provinces (ON: 39%, BC: 14%, QC: 22%) are consistent with their population

size ratio in Canada.

Table 5 Here.

A deeper dive into consumer age is presented in Figure 3 and Figure 4. The distribution mode

of the age at which consumers declare bankruptcy is generally around 42 years of age, and the

bankruptcy age distributions are a little skewed to the right, indicating that more people declare

bankruptcy during their younger age than during their old age. The overall age distribution of con-

sumers is fairly close to a uniform distribution but with fewer people in each age group above the

65–70 group. In addition, the age distributions across geographies show no significant differences.

5.2 Analysis results

The parameter estimates and standard deviations are given in Table 6. The MLE probit model

does not converge, so we gray out its output column. The majority of estimated parameters of the

models yield the same signs except for the parameters of Ontario in the Bayes probit model. The

MLE and Bayes estimates of the logistic model are similar. The signs of the estimated parameters

of the semiparametric models are generally consistent with the signs of the estimated parameters

of the logit and probit models. This is because the parameters of the semiparametric model are

normalized by the parameter of age with positive estimates, β1: θi =
βi−1

β1
.

Table 6 here.

The model parameter estimates show that consumers of the older generation are more prone

to declare bankruptcy in their lifetime. This might be a result of the limited financial instruments
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available in the previous century: the peak bankruptcy age is around 48, the age that consumers

who were 80 years old in 2020 reached in the 1990s. The older generation might have had fewer

debt channels or may have had to claim bankruptcy during several past periods of financial stress

(for example, the 1990 or 2007 crisis). A deeper analysis will provide more evidence, but this is

outside the topic of this paper.

Table 6 also illustrates that consumers with high mortgage balances might be less likely to claim

bankruptcy, indicating that mortgage balance is a safer collateralized (through housing property)

debt than high credit card balances, which normally lead to a higher likelihood of bankruptcy.

Since a line of credit is generally linked with mortgage credit in Canada, its parameter is positive,

showing a higher line of credit balance potentially linked to a relatively lower bankruptcy rate.

An interesting finding is the geographic heterogeneities across different provinces. Since On-

tario, Quebec and British Columbia are the three major provinces, with 75% of the Canadian

population, we create three dummy variables to try to find the geographic differences. The re-

sults indicate that consumers in Quebec have slightly higher bankruptcy rates than those in British

Columbia and Ontario.

The MSE and ROC of the parametric and semiparametric models are fairly close, but a careful

examination shows that the ROC curves of the semiparametric models are higher than those of

the parametric models, as shown in Figure 5. Although the differences among models are small,

generally, the semiparametric model estimated by either the MLE or Bayes MCMC yields a better

ROC. Based on ROC, we may say that the semiparametric model is a better model for our TU data

sample.

Figure 5 Here.

The marginal effects among different models are displayed in Table 7. The marginal effects are

more informative measures than the parameters in a binary response model in assessing variable

impact. For continuous variables, the marginal effects are computed by adding ∆(x) or the standard

deviation to the variable, and the marginal effect of the dummy variables is computed by the model

output difference between the aggregate mean projection and when the corresponding dummy

equals zero. When consumer age increases by 16 years, the bankruptcy rate will increase by 133
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to 206 basis points. Since we are not looking at time series data, this just reflects that the older

generation in the data sample has a higher bankruptcy rate. On the other hand, the bankruptcy

rate will be lowered by more than 200 basis points if the TU risk score increases by 124, which

is consistent with the credit rating design that the more risk-resilient consumer should have a

higher credit score. After increasing the bankcard balance by one standard deviation ($8,800), the

bankruptcy rate will be increased by up to 62 basis points, showing potentially high risk in credit

card utilization. Although the geographic marginal impacts are not that strong, overall consumers

in Quebec seem to contribute more than 25 basis points above the national mean bankruptcy rate.

Table 7 Here.

Since TU consumer data do not include many important demographic factors, such as income,

renter’s information, education, and ethnic groups, more granular analysis of structural modelling

is necessary to draw conclusions about the characteristics of bankruptcy rates for Canadian con-

sumers. This is out of the scope of this research, given the purpose of this session is to demonstrate

that the semiparametric model framework has the advantage of using a semiparametric scheme in-

stead of prescribed distributions and provides better model fitting. Meanwhile, we also show how

to use the marginal effect to make an assessment.

6 Concluding Remarks

We first presented a Bayesian semiparametric binary response model based on the quasi-likelihood

function that is based on the kernel density estimate. The major difference between our Bayesian

semiparametric binary response model and the sample theoretic semiparametric binary response

model of Klein and Spady (1993) is that we use the MCMC algorithm with Metropolis-Hastings

criterion rather than the traditional maximum likelihood estimator. We used the normal kernel and

employed two bandwidths: the regular bandwidth and the optimal bandwidth.

Using simulated data, we compared the performances of the semiparametric models with those

of the logit and probit models. We used the MLE and MCMC algorithms. The error term of the

regression model is generated from 16 different distributions. The comparison of performances is
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based on the MSEs, the ROC curve and the marginal effect. We find that the performances of the

parametric and semiparametric models are virtually indistinguishable if they are estimated using

the MLE or MCMC procedures except when the data are extremely unbalanced ( for example,

when % of ′Y = 1′ < 3%). In the extremely unbalanced cases, the MCMC procedure works but

the MLE sometimes does not converge.

Although the optimal bandwidth traces sharp modes better than the regular bandwidth, as

shown in Figures 1 and 2, the quasi-likelihood function produced by the kernel density with the

optimal bandwidth is not very different than the one produced by the regular bandwidth. Conse-

quently, the semiparametric models based on the optimal bandwidth yield virtually the same results

as the semiparametric models based on the regular bandwidth.

As an application, we estimated the binary response model using the TU consumer data. We

set the consumer with a history of bankruptcy as 1 and the consumer without a bankruptcy history

as 0. Judged by the ROC curves, the semiparametric models are better than the parametric models.

There are other types of Bayesian semiparametric qualitative choice models. One model is

based on B-splines to approximate the link function using the Laplace transform of the normal

distribution (Fahrmeir and Lang (2001), Antoniadis et al. (2004), Fahrmeir and Raach (2007)).

The second type of model uses the binary response version of the median regression model (New-

ton and Chappell (1996), Kottas and Gelfand (2001)). Both of these methods need link functions

subject to identifiability. The other type uses a complex Dirichlet process mixture for priors with

multiple stages (Kleinman and Ibrahim (1998)). Lu et al. (2019) also propose a two-stage semi-

nonparametric estimation of logit models. None of these models applied the single index tech-

nique. It will be interesting to compare our Bayesian semiparametric model with the models by

these authors.

17



Appendix: Optimal Bandwidth

Wand and Jones (1995) and Silverman (1986) show that we can obtain the optimal bandwidth h by

minimizing the Mean Integrated Squared Error (MISE):

MISE {ĝ(xlh),g(x)}= E
[∫

(ĝ(x;h)−g(x))2dx
]
,

where g(·) is the non-parametric kernel density estimation function. It is clear that integration

needs to be made on the whole real line, x ∈ (−∞,∞), instead of a finite discrete set. Li (2011)

shows that the choice of the kernel function K(x) is not as important as the choice of the bandwidth.

Hence, we will use the standard normal distribution for K(·) = Φ(·) and will find the optimal

bandwidth.

By applying the Central Limit Theorem (CLT), we get an approximation of MISE called the

Asymptotic Mean Integrated Squared Error (AMISE):

AMISE {ĝ(x;h),g(x)}= (Nh)−1R(K)+
1
4

h4µ2(K)2R(g),

where R(K) =
∫

K(x)2dx and µ2(K) =
∫

x2K(x)dx. The AMISE is a monotonic function of the

optimal bandwidth h, and the optimal h is generally defined as:

hoptimal =

[
R(K)

(
∫

x2K)
2 R(g′′)N

] 1
5

.

This optimal bandwidth cannot be calculated directly because R(g′′) is a function of the second

order derivative of the true density function g, which is unknown.

When the data set is Gaussian or asymptotically Gaussian with standard deviation, we will get

the regular optimal bandwidth in the literature:

hoptimal =

[
4

3N

] 1
5

σ. (12)

When data are not normal, this optimal bandwidth may not fit into the real data, and we may

use the most popular solve-the-equation plug-in approach and get the optimal bandwidth as

h∗optimal =

[
R(K)

(
∫

x2K(x)dx)2 R(ĝ′′(x; p(h)))

] 1
5

. (13)
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Here, p(h) =
[
−2K(4)(0)µ2(K)ψ̂4

R(K)ψ̂6

] 1
7

h
5
7 is the optimal pilot bandwidth and ψ̂r =

1
N

N
∑

i=1
ĝ(r)(xi; p(r)),

where p(r) is the pilot bandwidth to estimate the rth derivative of the density g(r).

Equation (12) is the most popular simple optimal bandwidth, and it is only optimal for Gaussian

data. If data are not Gaussian, we should use equation (13), which requires multiple complex

computations and is extremely time consuming. This is one of the reasons that many people use

different estimation methods to estimate bandwidth, such as Shen and Klein (2010) with specific

bounds to minimize the bias in estimating bandwidth. The computation in equation (13) can be

realized efficiently by using graphic processing unit (GPU) computing with C/C++ in MATLAB

(Li (2011)), and its speed is about 600 time faster than the regular computing methods such as

in Gauss or MATLAB itself. Therefore, we can estimate much more accurate optimal bandwidth

because we consider all real numbers without any arbitrary lower or upper bound.
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Table 2: ROC areas and MSE: Balanced cases

Strongly skewed Sparated bimodal Claw

Y=1 is 36.5% Y=1 is 29.1% Y=1 is 28.8%

ROC area MSE ROC area MSE ROC area MSE

Bayes Bayes Bayes

Probit 0.696 0.202 0.974 0.060 0.993 0.029

Logit 0.696 0.201 0.974 0.061 0.993 0.029

Semi 0.697 0.196 0.974 0.061 0.992 0.035

Semi-opt 0.697 0.195 0.974 0.060 0.992 0.034

MLE MLE MLE

Probit 0.696 0.202 0.974 0.060 0.993 0.029

Logit 0.696 0.201 0.974 0.061 0.993 0.029

Semi 0.698 0.195 0.974 0.060 0.993 0.032

Semi-opt 0.699 0.196 0.974 0.061 0.993 0.033

Notes: semi = semi parametric with the bandwidth h in equation (9)

semi-opt = semi prametric with the optimal h∗optimal in equation (10)
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Table 3: ROC areas and MSE: Extremely unbalanced cases

Skewed logitic (θ = .1) Outlier Kurtotic unimodal

Y=1 is 0.9% Y=1 is 3.47% Y=1 is 1.5%

ROC area MSE ROC area MSE ROC area MSE

Bayes Bayes Bayes

Probit .968 .007 .991 .007 .893 .311

Logit .967 .007 .991 .007 .878 .108

Semi .967 .006 .991 .007 .999 .006

Semi-opt .967 .006 .991 .007 .999 .006

MLE MLE MLE

Probit NC NC NC

Logit NC NC NC

Semi NC NC NC

Semi-opt NC NC NC

Notes: semi = semi parametric with the bandwidth h in equation (9)

semi-opt = semi prametric with the optimal h∗optimal in equation (10)

NC = not converged
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Table 4: Monte Carlo experiment result

Claw distribution, around 20% of ’Y=1’ Replications = 500

Binary model evaluation criteria Marginal effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.8357 0.0283 Bayes Probit 0.0370 0.0042 0.0702 0.0121

Bayes Logit 0.8356 0.0284 Bayes Logit 0.0370 0.0042 0.0739 0.0122

Bayes Semi 0.8387 0.0270 Bayes Semi 0.0365 0.0042 0.0519 0.0084

Bayes Semiopt 0.8384 0.0273 Bayes Semiopt 0.0365 0.0042 0.0516 0.0086

MLE Probit 0.8357 0.0283 MLE Probit 0.0370 0.0042 0.0704 0.0121

MLE Logit 0.8355 0.0283 MLE Logit 0.0370 0.0042 0.0739 0.0122

MLE Semi 0.8428 0.0261 MLE Semi 0.0363 0.0042 0.0576 0.0103

MLE Semiopt 0.8427 0.0258 MLE Semiopt 0.0364 0.0042 0.0552 0.0113

Bayes Semi opti-

mal bandwidth
0.3579 0.0198

MLE Semi opti-

mal bandwidth
0.3323 0.0480

Skewed log alpha=0.1, around 0.9% of ’Y=1’ Replications = 500

Binary model evaluation criteria Marginal effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.9750 0.0098 Bayes Probit 0.0066 0.0015 0.0481 0.0112

Bayes Logit 0.9746 0.0099 Bayes Logit 0.0067 0.0015 0.0482 0.0120

Bayes Semi 0.9760 0.0088 Bayes Semi 0.0063 0.0014 0.0395 0.0098

Bayes Semiopt 0.9763 0.0087 Bayes Semiopt 0.0062 0.0014 0.0411 0.0102

Bayes Semi opti-

mal bandwidth
0.2578 0.0076

Notes: For the skewed log data sample, not all 500 MC iterations are converged for the MLE method;

only Bayes results are presented for skewed log case.
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Table 5: Summary statistics of TransUnion consumer data

Variable Mean StDev Min Q1 Median Q3 Max

Age in months of consumer 580 194 217 417 579 734 983

TU RISK 2009 Score 747 124 302 676 794 846 884

Total balance for mortgage trades 81 188 0 0 0 84 6,603

Total balance for bankcard trades 4.34 8.81 0 0.05 1.1 4.50 333

Total balance for line of credit trades 15 71 0 0 0 3.50 6,158

Ontario 0.39 0 0 0 1 1

British Columbia 0.14 0 0 0 0 1

Quebec 0.22 0 0 0 0 1

Notes: Q1 and Q3 are 25 and 75 percentiles, respectively.
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Table 6: Estimations for the TransUnion consumer data sample (Y=1 is 3.12%)

variable Bayes1 MLE2 Semi (θ)

Probit Logistic Probit Logistic Bayes MLE

c Constant
0.5493 1.9331* 1.9323*

/ /
0.4668 0.0638 0.0502

β1 Age
0.0012* 0.0031* 0.0031*

/ /
0.0006 0.0001 0.0001

β3 TU risk score
-0.0044* -0.0114* -0.0114* -4.8769* -29.0191*

0.0020 0.0001 0.0001 0.7436 0.1256

β3 Mortgage balance
-0.0007 -0.0023* -0.0022* -0.2916* -0.2368*

0.0005 0.0002 0.0002 0.0492 0.0244

β4 Bankcard balance
0.0089* 0.0242* 0.0240* 10.0038* -6.0898*

0.0034 0.0011 0.0016 1.0479 0.0165

β5 Line of credit
-0.0019* -0.0055* -0.0053* -0.7731* -2.0174*

0.0010 0.0007 0.0006 0.1309 0.0633

β7 Ontario
0.0278* 0.0586* 0.0611* -5.2680* 10.6488*

0.0250 0.0351 0.0324 0.9754 0.0237

β7 British Columbia
-0.1211* -0.3121* -0.3100* -97.9473* -13.2886*

0.0609 0.0577 0.0356 1.3101 0.0366

β7 Quebec
0.3182* 0.8179* 0.8198* 209.2817* 119.2758*

0.1149 0.0394 0.0344 1.6437 0.0476

MSE 0.0257 0.0255 0.0255 0.0235 0.0241

ROC area 0.9175 0.9175 0.9175 0.9470 0.9402

Notes: 1. For MLE: first row is the coefficient estimates, second row is standard error. Probit MLE does not converge.

2. For Bayes: first row is posterior mean and second row is posterior standard error, respectively.

3. * means statistically significant.
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Table 7: Marginal effects of the TransUnion consumer data sample

Explanatory Marginal Bayes MLE
Bayes-Semi MLE-Semi

variables effects Probit Logistic Probit Logistic

Age ∆x = 1std 0.0206 0.0183 0.0182 0.0133 0.0205

TU risk score ∆x = 1std -0.0282 -0.0216 -0.0216 -0.0209 -0.0207

Mortgage balance ∆x = 1std -0.0086 -0.0090 -0.0089 -0.0030 -0.0046

Bankcard balance ∆x = 1std 0.0062 0.0056 0.0056 0.0055 0.0056

Line of credit dummy -0.0090 -0.0081 -0.0081 -0.0030 -0.0015

Ontario dummy 0.0007 0.0005 0.0005 0.0001 -0.0001

British Columbia dummy -0.0010 -0.0008 -0.0008 -0.0007 -0.0002

Quebec dummy 0.0055 0.0046 0.0046 0.0028 0.0025

Notes: std = standard deviation.
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Figure 1: Various distributions and kernel densities using the regular bandwidth
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Figure 2: Various distributions and kernel densities using the optimal bandwidth
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Figure 3: Age density distributions of all consumers

Figure 4: Bankrupt age density distributions
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Figure 5: ROC curve analysis for the TransUnion consumer data: Semiparametric models generate

larger ROC areas
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