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Abstract 
 

Computational methods both open the frontiers of economic analysis and serve as a bottleneck 
in what can be achieved. Using the quantum Monte Carlo (QMC) algorithm, we are the first to 
study whether quantum computing can improve the run time of economic applications and 
challenges in doing so. We identify a large class of economic problems suitable for 
improvements. Then, we illustrate how to formulate and encode on quantum circuit two 
applications: (a) a bank stress testing model with credit shocks and fire sales and (b) a dynamic 
stochastic general equilibrium (DSGE) model solved with deep learning, and further 
demonstrate potential efficiency gain. We also present a few innovations in the QMC algorithm 
itself and in how to benchmark it to classical MC. 
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1. Introduction

Monte Carlo methods are a group of algorithms that harness random-

ness to perform a number of computational tasks (Kalos and Whitlock

(2009)).1 This approach is common in various sciences that use statistics,

data sampling, and mathematical complexity. When major improvements

in computers began to occur, economics was among the first of the social

sciences to take advantage of Monte Carlo techniques. However, many

numerical economic applications are still not feasible today given classical

computational limitations. The primary purpose of this paper is to explore

whether the Monte Carlo methodology can be improved with the usage of

quantum technology in the context of economic applications, and to deter-

mine when a quantum advantage can be achieved for these problems. Being

pioneers in quantum applications in economics, we also aim to lay down the

basic foundation of quantum programming so that economists can benefit

from future technological innovations.

The intuition and challenges of Monte Carlo simulations can be grasped

by considering a simple problem: calculation of an expectation of a ran-

dom variable. Simulations of this kind are simple to perform—samples are

generated according to the underlying probability distribution, the random

variable is then evaluated, and an average is taken. Clearly, the error of the

approximation depends on the number of samples generated, resulting in a

tradeoff between accuracy and time. The tradeoff persists even when the

sampling is done in parallel on a CPU/GPU cluster due to the computational

cost, costs of purchasing hardware and software, and maintenance costs. In

practical applications, this tradeoff can lead to the Monte Carlo estimation

becoming the main bottleneck in a workflow.

Quantum computations may become a remedy for these problems. Quan-

1The term was first used in Metropolis and Ulam (1949) in the study of differential
equations.
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tum mechanics provides a new class of algorithms that can potentially

outperform their classical (non-quantum) counterparts (Nielsen and Chuang

(2010)). These algorithms must be executed on quantum hardware and

require development of new technologies to control for excessive noise in

computations, referred to as fault-tolerance. One algorithm of interest is the

so-called quantum Monte Carlo (QMC) algorithm (Montanaro (2015), Xu

et al. (2018), Rebentrost et al. (2018)), which has the potential to estimate an

expectation value with a quadratic speedup (in query complexity) compared

to the classical Monte Carlo.2 The QMC algorithm adopts established tech-

niques from quantum computing, including amplitude estimation (Brassard

et al. (2000)), which we use in this paper.3 Implementing QMC requires en-

coding the problem as a combination of unitary operators (complex matrices

that preserve the inner product). These unitaries must be then decomposed

into elementary quantum gates—analogous of non-quantum Boolean logical

functions—for QMC to be compatible with hardware. Importantly, such

decomposition must be efficient for the quadratic speedup to persist. Hence,

a major focus has been on identifying efficient encodings of the Monte Carlo

problem.4

In recent years, the most relevant use-cases developed alongside the QMC

algorithm have involved solving problems in finance, including options pricing

by Rebentrost et al. (2018), Stamatopoulos et al. (2020b) and Chakrabarti

et al. (2021) and risk analysis by Woerner and Egger (2019) and Egger

et al. (2020). However, little work has been carried out in the larger field of

economics. More generally, applications of quantum computing to economics

have been extremely scarce. Among the few examples of quantum-driven

2Note that the algorithm discussed here is conceptually different from the quantum
Monte Carlo techniques used to analyze quantum many-body systems (Pang (2016).)

3Other methods include quantum search, as in Grover (1996), and phase estimation, as
in Kitaev (1995).

4See Grover and Rudolph (2002), Zoufal et al. (2019), Herbert (2021a) for encoding
probability distribution and Rebentrost et al. (2018), Vedral et al. (1996), Herbert (2021b),
Woerner and Egger (2019), Stamatopoulos et al. (2020a) for encoding a random variable.
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economics known to us are Hull et al. (2020) with the general discussion of

quantum algorithms in the context of economics and specifically quantum

money, Orús et al. (2019) on modeling contagion in financial networks, and

Alaminos et al. on deep learning techniques for GDP forecasting. This leaves

many unexplored opportunities for economists to apply quantum computing

in their research and policy.

In this work we focus on two policy-relevant applications in the context

of QMC: stress-testing and general equilibrium macro-modeling. For the

stress testing, we develop a model where banks experience severe credit losses

and engage in fire sales. The credit losses are random and determined by

the stress scenario. This setup resembles a typical exercise performed by

regulators and central banks to assess financial stability. The goal of the

exercise is to evaluate overall capital losses that banks experience following a

multi-year stress scenario. We encode this problem onto the quantum circuit

and compare the quantum solution with the theoretical prediction.

For the macro-modeling problem, we solve the stochastic neoclassical

growth model using machine (deep) learning. The model is intended to

capture relationships between major macroeconomic variables: consumption,

capital, production, and productivity shocks. A central part of the deep

learning approach is the Monte Carlo estimation of stochastic gradients

as in the recent work of Maliar et al. (2021). We substitute the QMC

algorithm for this part and perform a fair comparison between quantum and

classical algorithms by decomposing the problem into elementary gates and

calculating the physical runtime. This is the first paper, as far as we are

aware, comparing physical runtimes between the two algorithms.

We begin in section 2 by giving an overview of Monte Carlo applications

in economics. In section 3, we briefly discuss quantum computation concepts

and notation for economists unfamiliar with the subject. In section 4, we

provide a mathematical formulation of the quantum Monte Carlo algorithm

and describe how it can be performed on a quantum computer. This section
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is more technical and can be skipped by readers less interested in the

details of the algorithm. Section 5 introduces two economics applications of

QMC: (a) stress testing of banks and (b) solving DSGE models with deep

learning. In section 6, we benchmark the QMC solution of the DSGE model

against the classical Monte Carlo solution. We conclude the paper in section

7. Many mathematical details of the QMC algorithm, how QMC can be

decomposed into hardware-compatible gates, and our code implementing the

QMC algorithm are all provided in the Appendices.

2. Monte Carlo Methods in Economics

Monte Carlo (MC) techniques have broad applicability across the field

of economics. We provide a few illustrative examples to define the scope of

how QMC could help.

A common application of MC among economists is to extend the sample

size of small datasets. This can be useful when a researcher relies on using

methods with statistical properties that only hold asymptotically and when

collecting a large sample of the data is expensive or not feasible. A significant

part of these kinds of computations involves random sampling. Bootstrapping

developed by Efron (1979) is a Monte Carlo technique of this sort. A

simple version of this method is essentially random draws with replacement.

Observations are drawn from a collected dataset with the purpose of creating

N alternative data sets. The goal is then to infer the distribution of some

statistic of the population data, such as mean or variance. This simple

technique can be advanced in many ways (refer, for instance, to Rubin

(1981) for the Bayesian analogue). In applied economics, bootstrapping also

accompanies regression analysis. For instance, an economist may specify

the model as a linear regression and use sampling techniques to infer the

properties of the error term and the estimate. The specifics of such procedure

and their impact on inference are studied in detail by econometricians (Hendry

(1984) and Davidson et al. (1993) have relevant reviews).
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Economists also use MC for modeling non-standard distributions and

calculating their probability measures. As doing so often involves integration,

economists are left with numerical methods and simulation techniques as

the only remedy. Such techniques can be very sophisticated and go beyond

the scope of this paper. While here we focus on independent draws, Markov

Chain Monte Carlo methods applied in Bayesian econometrics provide a

perfect illustration of how sampling can be done when Monte Carlo draws

are auto-correlated (see Metropolis and Ulam (1949) and Hastings (1970)

for the commonly used Metropolis-Hastings algorithm).

Overcoming the complexity of economic models is another reason for

utilizing computational simulations. More and more, economists are relying

on realistic modeling assumptions, utilizing big data sets, and including

a large number of agents and interactions between them. To solve such

models, computational techniques such as MC become indispensable. There

are two main sources of complexity in the current models: (i) behavioral or

theoretical and (ii) relationship-based or computational.

The first type of complexity comes from mathematical complexities that

economists face when modeling rational behaviors of agents. For instance,

the most commonly used class of macroeconomic models, called dynamic

stochastic general equilibrium models (DSGE), cannot be solved explicitly

apart from some trivial cases, and require fixed-point convergence algorithms

for equilibrium search. Because the behaviors of agents in such models

are assumed to be interdependent across time and economic sectors, these

models become computationally challenging even with little heterogeneity of

actions and agents. Thus, computational methods, such as MC techniques,

are essential and receive much consideration from macroeconomists (e.g., see

Judd (1998) for the chapters on MC methods). Later in this paper, we show

how machine-learning techniques can be applied to solve a DSGE model and

where QMC could play a pivotal role.

The second source of complexity arises in the agent-based models (ABM)
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and other computational economics models (Hommes (2006) provides a

comprehensive review). Unlike in DSGE models, agents now behave myopi-

cally according to simple heuristics. Thus, the researchers are less focused

on finding the equilibrium fixed point. However, the number of agents is

often large, and the computational demands grow rapidly as the network of

interactions between agents grows in size. Models of this kind are helpful

for including bounded-rationality and heterogeneity among agents. Thus,

they are less predictable in terms of computational output and intrinsically

rely on the simulations. This creates even more demands for the hardware

performance, as a researcher may need to run the model many times to test

various calibrations and model treatments. We use an approach similar to

ABM for our second example when discussing stress testing of banks.

Finally, Monte Carlo methods are essential for reducing the mathematical

complexity of many economic models. The instances of this kind are too

many to list. Economists tend to rely on numerical methods for calculating

multidimensional integrals, finding fixed points, solving differential equations,

etc. In finance alone, the applications range from option pricing to optimal

portfolio selection. As such, overcoming the computational costs would

improve the modeling abilities of economists.

3. Quick Introduction to Quantum Computing for Economists

3.1. Quantum advantage

Quantum computing applies the laws of quantum mechanics to per-

form computations. Quantum mechanics is a theory describing microscopic

systems with low gravity and speeds much lower than the speed of light.

Within quantum computation, numerous algorithms have been developed

with proven theoretical speedup over the best available classical algorithms

(Nielsen and Chuang (2010), Jordan (2022)). As quantum hardware im-

proves, this speedup should be realised in practice. This will usher in the

age of “quantum advantage” (or “supremacy”) where even the best classical
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supercomputers cannot compete against quantum computers for certain

problems.

3.2. Qubit, superposition, measurement, and entanglement

The basic unit of quantum computation is a qubit. Qubit is a quantum

counterpart of a bit in classical computation. A classical bit, realized with

the transistor, can have the value of either 0 or 1. By contrast, a quantum

bit, which can be realized with a superconductive loop or a trapped ion, is a

linear combination or superposition of these two states. Mathematically, a

qubit can be described as a |0⟩ + b |1⟩, where a and b are complex constants

and |0⟩ and |1⟩ refer to states with values 0 and 1, respectively.

Superposition can be understood geometrically. A geometrical represen-

tation of a qubit is a radius vector of a sphere with radius one (see Figure 1).

Poles of the sphere correspond to the basis states of the qubit: |0⟩ and |1⟩.
A qubit is in a superposition whenever it is not in the basis states.

Figure 1: Geometric representation of a qubit as a complex vector of length one. Poles of
the sphere correspond to observable states |0⟩ and |1⟩.

Whereas a qubit may initially exist in a superposition of states |0⟩ and

|1⟩, the process of measuring the qubit forces the qubit to assume the value

of either |0⟩ or |1⟩. Qubits tend to be measured at the end of a quantum

algorithm to obtain the answer being sought. To explain the intuition behind

the superposition and measurement, consider the famous thought experiment
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of Erwin Schrödinger: place a cat with a deadly radioactive element in a

sealed box. In the quantum world, the cat is both dead and alive before the

box is opened. It is only when the state of the cat is measured (when the

box is opened) that the cat becomes “dead” or “alive.”

Another important concept of quantum mechanics is entanglement de-

scribed by Albert Einstein as a “spooky action at a distance.” When two

qubits are linked together, or entangled, action applied to one of the qubits

immediately impacts the other qubit. If two qubits are entangled such

that their spins are reversed, measurement of |0⟩ for the first qubit would

correspond to the measurement of |1⟩ for the second one.

Superposition and entanglement makes it possible to manipulate an

exponentially large number of states simultaneously. Whereas a single qubit

is a superposition of 2 = 21 states, using N qubits enables one to manipulate

2N states simultaneously. As a result, with only 300 qubits, it is possible

to operate on more states than there are number of atoms in the universe.

This exponential increase in the computational power with each additional

qubit is what brings computational advantage to quantum computation over

classical machines.

3.3. Bra-ket notation

In quantum physics, quantum states are defined to be complex unit

vectors in a Hilbert space—a vector space with an inner product that defines

the distance between two vectors.

For the convenience of linear algebra notations, physicists use angle

brackets (“bra-ket” notation). In particular, these brackets can be used

to distinguish a vector space from its dual vector space. For instance, an

arbitrary qubit can be presented as a linear combination of the two basis

states

|ψ⟩ = α |0⟩ + β |1⟩ , (1)

where α and β are complex numbers. For vector |ψ⟩, there is a corresponding
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covector in the dual space

⟨ψ| = α∗ ⟨0| + β∗ ⟨1| , (2)

where α∗ and β∗ are conjugate scalars to α and β. To preserve probability,

quantum states are taken to be unit vectors. Therefore, the inner product of

a vector and its covector yields

⟨ψ|ψ⟩ = α∗α+ β∗β = 1. (3)

It might be more familiar to think of the bra ⟨ψ| as a row vector and |ψ⟩
as a column vector. Thus, the product ⟨ψ|ϕ⟩ of any two quantum states |ϕ⟩
and ⟨ψ| returns a scalar while the product |ϕ⟩ ⟨ψ| returns a matrix.

Any state of a qubit can be represented as a linear combination of the

basis states. In the standard basis, the qubit will assume a value of either

|0⟩ or |1⟩ when measured. However, an infinite number of other bases can be

defined and used for measuring qubits. In this paper, we will be also using

the Hadamard or x-basis:

|+⟩ =
|0⟩ + |1⟩√

2

|−⟩ =
|0⟩ − |1⟩√

2
.

We can apply usual linear algebra operations to quantum states. Moreover,

the definitions above can be extended to systems of multiple qubits. We will

be using the outer product ⊗ whenever we speak about the joint state of

multiple qubits. For simplicity, we will write:

|0⟩⊗m = |0⟩ ⊗ ...⊗ |0⟩

for m-dimensional qubit system. Note that an m-dimensional qubit system
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has M = 2m basis vectors, which we will denote as:

|1⟩ , |2⟩ , ..., |M⟩ .

3.4. Quantum gates and unitary operators

Quantum gate is an operation that changes a state of a qubit. It is

analogous to a non-quantum Boolean logical function. Current quantum

computers can implement around a dozen different quantum gates. Whenever

a problem is executed on a quantum computer, it needs to be represented

as a mathematical composition of the quantum gates. We define several

quantum gates that we use to implement the QMC algorithm.

RX, RY, RZ gates—gates that rotate the state of a qubit around axes X,

Y, Z by a given angle (refer to the sphere representation of a qubit).

CNOT (“Controlled NOT”) gate—a two-qubit gate that flips the second

qubit from |1⟩ to |0⟩ or from |0⟩ to |1⟩ if and only if the first qubit is |1⟩. For

instance,

CNOT (|1⟩ ⊗ |1⟩) = |1⟩ ⊗ |0⟩

CNOT (|0⟩ ⊗ |1⟩) = |0⟩ ⊗ |1⟩

Hadamard gate—a gate that creates a superposition if given a basis state:

|0⟩ 7→ |0⟩+|1⟩√
2

|0⟩

|1⟩ 7→ |0⟩−|1⟩√
2

|1⟩

Later in the paper, we will often refer to a quantum circuit—a sequence

of quantum gates, measurements of output qubits, and other actions needed

for a given task to be executed. In translating a theoretical problem onto real

quantum hardware, the challenge is minimizing circuit depth, the number
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of sequential gate executions necessary to run the quantum circuit. Within

the quantum circuit, a collection of qubits assigned to some computational

task are referred to as a register (of qubits). Meanwhile, ancilla qubits serve

more of a supporting role, enabling some specific computational goal within

the circuit, such as storing the expectation value of some random variable.

In quantum computation, mathematical tasks are often performed with

the help of unitary operators, complex matrices that preserve the inner

product. The reason why unitary operators are applied to quantum states is

that after the operator is applied, quantum states (unit vectors) remain unit

vectors, meaning other valid quantum states. In practice, hardware is set up

such that the each qubit is initialized in the zero state, |0⟩. As such, it is

sufficient to only describe how a unitary operates on the |0⟩ state whenever

a new qubit is introduced in the computation.

3.5. Transition between quantum states

Mathematical representation of the quantum world can be linked to

experimental data. For a qubit in arbitrary state ψ = α |0⟩ + β |1⟩, the

probability of measuring the qubit to be in state |0⟩ is | ⟨0|ψ⟩|2 = α2. More

generally, the probability of transitioning from state |ψ⟩ to state |ϕ⟩ is

| ⟨ϕ|ψ⟩|2.
For gaining more intuition about unitaries and probabilities, consider

unitary A defined as the operator that performs transformation of initial

state |0⟩ to state

A |0⟩ =
√
p(0)|0⟩ +

√
p(1)|1⟩. (4)

This unitary encodes the probability distribution p(·) defined on the basis

states. The probability of transitioning from the output state A |0⟩ to the

basis state |0⟩ is exactly p(0), and the probability of arriving from the output

state A |0⟩ to the basis state |1⟩ is exactly p(1).
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3.6. Limitations of current quantum hardware

Although controversy remains (Martin (2021)), claims of quantum advan-

tage have recently been reported (Arute et al. (2019), Zhong et al. (2020),

Madsen et al. (2022)). Despite these claims, current quantum hardware can

only execute shallow circuits before the results are drowned by computational

noise. This makes it impossible to execute algorithms such as quantum Monte

Carlo on full-scale problems. However, low-qubit quantum circuits can be

simulated on a classical computer, as we have done in this paper.

3.7. PennyLane library

Throughout this paper, code blocks are provided to show how relevant

parts of the algorithm can be implemented using the PennyLane software

library (Bergholm et al. (2018)). PennyLane is open-source library with

thousands of contributors from around the world. In fact, the implementation

of the QMC algorithm within PennyLane has been our contribution to the

library. Pennylane’s documentation and installation instructions are available

at pennylane.ai.

4. Quantum Algorithm for Monte Carlo Simulations of Moments

This section provides a review of Monte Carlo (MC) estimation and how

it can be performed on a quantum computer. Starting from the basics of MC

estimation, we show how the problem can be encoded as a quantum algorithm

and then subsequently sped up using amplitude estimation (Brassard et al.

(2000), Montanaro (2015), Xu et al. (2018), Rebentrost et al. (2018)).

4.1. Classical Monte Carlo sampling

In practice, Monte Carlo draws are often used to evaluate moments of a

random variable. We show how this can be done on a quantum computer

using mean function as an example. Consider a random variable f(x), defined
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as a measurable function of x specified on Rd with a probability density

function p(x). The expectation value of f(x) can be written as

µ := E[f(x)] =

∫
Rd

p(x)f(x) dx. (5)

One approach to approximating E[f(x)] is using MC estimation. Here and

later in the paper, we assume that f(x) is well-behaved with finite values

and non-zero variance. To approximate E[f(x)], we randomly sample N

points xi according to density p and calculate the average:

µ̂ =
1

N

N∑
i=1

f(xi). (6)

The estimate has an absolute error |µ − µ̂|. The probability that this

error is larger than a fixed ε > 0 can be upper bounded using Chebyshev’s

inequality as

Pr (|µ− µ̂| ≥ ε) ≤ σ2

Nε2
, (7)

where σ is the standard deviation of f(x) (see Montanaro (2015) for details).

Hence, for a constant probability, we set

N ∝ 1

ε2
. (8)

Therefore, the number of samples we must generate is inversely proportional

to the square of the target error. Next, we will see how the number of

unitaries required in QMC scales as 1/ε, that is, a quadratic speedup relative

to that above.

4.2. Quantum Monte Carlo sampling

We now show how the Monte Carlo estimation algorithm can be carried

out using a qubit-based quantum circuit. Due to the binary nature of a qubit,

we first discretize the problem into a space X consisting of M grid points,

with probability mass function p(i) and random variable f : X → [0, 1], so
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that the objective is to measure the expectation value

µ =
∑
i∈X

p(i)f(i). (9)

As before, Monte Carlo can be used to provide an estimate µ̂. Discretization

of continuous-valued problems is an established area with a variety of ap-

proaches to define p(i) above (Chakraborty (2015), Chakrabarti et al. (2021),

Rebentrost et al. (2018)). Note that discretization may introduce an error

εdisc that should be kept below the Monte Carlo error ε.

We restrict our problem to a random variable that maps to the interval

[0, 1] so that the problem is compatible with encoding into a quantum circuit.

When the maximum fmax and minimum of the function fmin are available

for the discrete space X, this restriction can be achieved by renormalizing

f(x) as

fnorm(x) =
f(x) − fmin

fmax − fmin
. (10)

For building a quantum alternative of the problem, we define two unitary

operators: unitary A for modeling function p(·) and unitary R for modeling

function f(·) in equation (5).

For defining A, consider a register of m qubits, so that the grid size

we selected is M = 2m. We define unitary A as the one that performs

transformation of initial state |0⟩⊗m to state

A |0⟩⊗m =
∑
i∈X

√
p(i)|i⟩. (11)

This unitary encodes the probability distribution p(·) because the probability

of arriving from the output state A |0⟩⊗m to basis state |i⟩ is exactly p(i).

14



A R

Figure 2: The F unitary for performing a Monte Carlo estimation. Here, the A unitary
encodes a 2m-dimensional probability distribution using m = 3 qubits and the R unitary
encodes the expectation value µ onto the ancilla qubit.

The random variable f(·) is encoded by adding an additional ancilla

qubit to output i = A |0⟩⊗m and applying another unitary R that performs

the transformation

R|i⟩|0⟩ = |i⟩
(√

1 − f(i)|0⟩ +
√
f(i)|1⟩

)
. (12)

Similarly, this unitary encodes the probability distribution f(·), because

the probability of measuring the ancilla qubit in the state |1⟩ is equal to f(i).

The expectation value µ can then be encoded onto the ancilla qubit by

combining the A and R unitaries together according to

F := R (A⊗ 12) , (13)

as shown in Figure 2.

Then the output state of the Monte Carlo problem is defined as

|χ⟩ := F |0⟩⊗m+1

=
∑
i∈X

√
p(i) |i⟩ ⊗

(√
1 − f(i)|0⟩ +

√
f(i)|1⟩

)
. (14)

The probability of measuring the ancilla qubit in state |1⟩ is given by

P1 = ⟨χ|
(
1
⊗m ⊗ |1⟩⟨1|

)
|χ⟩ =

∑
i∈X

p(i)f(i) = µ. (15)
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In practice, we cannot obtain the probability P1 exactly and hence the

expectation value µ. Instead, we need to sample from the circuit multiple

times, resulting in a binary string from which the probability of observing |1⟩
can be inferred. Suppose we perform N measurements of the ancilla qubit

and calculate an estimate P̂1 = µ̂ = N1/N , with N1 being defined as the

number of times |1⟩ was measured. Since we are performing Bernoulli trials,

the variance of our estimate will be

Var(P1) =: ε2 =
P1(1 − P1)

N
. (16)

Hence, the number of trials scales with an inverse-squared relationship relative

to the standard deviation ε:

N ∝ 1

ε2
. (17)

This approach has successfully encoded the Monte Carlo estimation problem

into a quantum circuit, but provides no speedup.

4.3. Applying amplitude estimation

In the previous section, we have encoded the Monte Carlo problem onto

a register of qubits. In this section, we show how speedup can be obtained

by applying the algorithm of amplitude estimation (Brassard et al. (2000))

and using an additional register of qubits to store the result.5

Consider the unitary operator V = 1m+1 − 21m ⊗ |1⟩⟨1| applied to the

output of the Monte Carlo circuit we have so far.6 The unitary nature of V
allows us to write

V|χ⟩ = cos (πθ) |χ⟩ + eiϕ sin (πθ) |χ⊥⟩, (18)

5Subsequent works have focused on improving efficiency by searching for methods to
lower the circuit depth or to remove the additional register of qubits, potentially at a cost
of decreasing the speedup (Suzuki et al. (2020), Burchard (2019), Grinko et al. (2021),
Giurgica-Tiron et al. (2020)).

6The important property of this operator is that it is Hermitian, meaning that the
transpose and complex conjugate of the operator will return the operator itself.
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with θ and ϕ being angles and |χ⊥⟩ being a state orthogonal to |χ⟩. Hence,

measuring the expectation value of V for the state |χ⟩ gives

⟨χ|V|χ⟩ = cos (πθ) = 1 − 2µ. (19)

If angle θ, referred as phase, was known to us, we would use the last result to

solve the Monte Carlo problem, meaning we would derive the expected value

µ =
1 − cos(πθ)

2
. (20)

Phase θ can be found through specifying another unitary Q with eigenval-

ues e±2πiθ. This can be achieved with the help of Grover’s diffusion operators

(Grover (1996)) that perform a rotation in the subspace spanned by |χ⟩ and

|χ⊥⟩. Following Brassard et al. (2000) and Rebentrost et al. (2018), it can

be shown that

Q = (FZF†V)2, (21)

where Z = 1m+1 − 2(|0⟩ ⟨0|)⊗m+1.7

With the help of the quantum phase estimation algorithm (Kitaev (1995)),

we can estimate θ as shown in Figure 3. The algorithm introduces an

additional register of n qubits (“phase estimation qubits”). These qubits

control the application of the Q operator, which has been raised to various

powers of 2k (where k = 1 . . . n − 1).8 The estimation qubits are in states

of a Fourier basis. To return to the standard basis composed of |0⟩ and |1⟩,
which can be measured as output, the inverse quantum Fourier transform

is applied. This makes it possible to calculate θ by measuring the phase

estimation qubits.9 The process of measuring the phase estimation qubits

7Moreover, it holds that |χ⟩ = (|χ+⟩+ |χ−⟩)/
√
2, where |χ±⟩ are the eigenstates of Q

with eigenvalues e±2πiθ, respectively (Xu et al. (2018)).
8This process is known as “phase kickback” (Cleve et al. (1998)).
9QFT is not the only choice to recover the phase. Alternatives are listed, for example,

in Gómez et al. (2022).
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Figure 3: The QMC algorithm applies phase estimation for the unitary Q onto an input
state prepared by F using n phase estimation qubits (bottom half of circuit). By sampling
the phase estimation qubits in the standard basis, the eigenvalues of e±2πiθ of Q can be
estimated.

forces each of these qubits to be either |0⟩ or |1⟩. This results in a binary

string {b1, b2, . . . , bn}, where bk is the measured state of the k-th estimation

qubit. Analogously with the Taylor approximation, the phase θ can then be

computed from this binary string using the formula

θ =
n∑

i=1

bi
2i
. (22)

Knowing θ, the expected value µ can be calculated as specified in equation

(20).

However, it should be remembered that the quantum processes are

inherently probabilistic. As a result, it is necessary to sample the quantum

circuit numerous times. This results in a distribution of binary strings

(see Figure 4). The most likely of these can then be used to calculate the

estimate of the phase. This concludes the summary of the quantum amplitude

estimation algorithm.

From equation (22), it follows that that the error εθ = |θ−θ̂| in estimating

θ scales with the number of estimation qubits n as εθ ∝ 1
2n . Additionally,

the number of applications N of the unitary Q is approximately 2n. This
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comes from the fact that applying Qk requires k sequential applications of

Q and that the sum of all applications of Q for all estimation qubits is

n−1∑
i=0

2i = 2n − 1. (23)

Thus, N ∝ 1
εθ

. It can also be shown that the error ε = |µ− µ̂| in estimating

the expectation value µ scales as ε = O(εθ), and therefore

N = O
(

1

ε

)
. (24)

Hence, the QMC algorithm provides a quadratic speedup in the number, N ,

of applications of Q (a.k.a. “oracle calls”).

The implementation of the algorithm into elementary gates is given in

Appendix C. For readers interested in the computational details of the QMC

algorithm, the appendix shows how a quantum variational circuit can be

trained to approximate the unitary A. We also show how the controlled Q
gate can be achieved without the controlled F .

4.4. Simple numerical example

We now describe a simple Monte Carlo estimation problem and show how

it can be solved using the QMC algorithm with a simulator in PennyLane.

Suppose we have a Gaussian probability distribution with zero mean and

unit variance:

p(x) =
1√
2π
e−

x2

2 , (25)

as well as a trigonometric random variable:

f(x) = sin2(x). (26)
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The expectation value µ and variance σ2 of f(x) can be evaluated analytically

as

µ =
sinh(1)

e
≈ 0.432 σ2 =

sinh2(2)

2e4
≈ 0.120. (27)

The first step is to discretize the problem. We set the grid variable to

xi = −xmax + i× 2xmax

2M − 1
,

for p and f and (at the expense of abusing notation) define their values on

the grid as

p(i) =
p(xi)∑
i∈X p(xi)

,

f(i) = sin2(xi).

Appendix A shows how the problem can be discretized for xmax = π using

m = 5 qubits (M = 32) and n = 6 phase estimation qubits. The QMC

algorithm can be simulated in PennyLane using the QuantumMonteCarlo

template, as shown the appendix.

In Appendix A, we present the code that outputs the probability distribu-

tion of sampling the register of phase estimation qubits in the standard basis.

This distribution is plotted in Figure 4. Different from classical estimations,

the distribution of θ is not unimodal but bimodal and symmetric around 0.5.

These two possibilities result because we perform phase estimation with an

input state |χ⟩ that is in an equal superposition of the eigenstates |χ⟩± with

eigenvalues e±2πiθ. If we expect θ > 0.5, we focus on the right-hand side of

the distribution; otherwise, if θ ≤ 0.5, we focus on the left-hand side. If this

bimodal property creates many difficulties, the problem can be re-specified

such that θ is always larger than 0.5 by suitably renormalizing f(i). This

results in a loss of accuracy, but this can be compensated for by adding

another qubit to the phase estimation register.
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Figure 4: Estimating θ using the QMC algorithm in PennyLane. The blue line indicates the
probability of estimating a given value of θ, which is derived from the bitstring probabilities
according to equation (22). The dashed vertical line shows the theoretical value of θ = 0.457.
The second peak can be removed by renormalizing f(i), as described in section 4.3.

5. Two QMC Applications in Economics

In this section, we elaborate on two problems: stress testing of banks

and deep learning applied to dynamic stochastic general equilibrium (DSGE)

macroeconomic models. We first give a brief introduction to each problem

and then show how the QMC algorithm can be applied, presenting outcomes

from small-scale instances of the problems.

5.1. Stress testing of banks

We begin by performing a stylized macro-prudential stress test of banks

given a dynamic stochastic stress scenario. Such stress tests are usually

performed by a macroprudential regulator or a central bank to determine

whether the financial industry can withstand large economic shocks and

propagate the systemic risk to the real economy. The exercise typically

begins with a specific narrative. It is then quantified with the time series

projections of key macroeconomic and financial variables, such as inflation,

GDP, interest rates, unemployment rate, etc. For simplicity, we will call

such projections the macro scenario. The scenario is then used to quantify
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realized losses and expectations shocks that banks face on loans, securities,

and funding exposures. We will refer to these inputs as the balance sheet

shocks.

Monte Carlo simulations can be suitable for a stress test exercise for

two main reasons. First, for a given time point and loss type, a stress

designer may prefer to use a distribution of inputs rather than a single-value

projection when creating the balance sheet shocks. In this paper, we focus on

simulating probabilities of defaults of loans—a critical input to any stress test

of banks. This means the macro scenario would be used for the projection

of the distribution of defaults of loans rather than just their realized values.

Multiplicity in the inputs allows for multiplicity of stress-test outputs, which

enriches the interpretations of how economic and financial vulnerabilities

may respond to the stress. In countries with only a few stress episodes in

the past, such as Canada, simulations in the form of bootstrapping can be a

natural way of accounting for the under-representation of high probabilities

of default in the historical sample. Similarly, distribution can be introduced

around the income projections of banks. For the results of a real stress-test

application with bootstrapping of this kind, see Duprey et al. (2018).

The second reason why Monte Carlo simulations are suitable for stress

tests is that they allow for the modeling of complex behaviors of banks

observed in real financial markets. This is specifically important for the

macro- rather than micro-prudential stress tests, with former ones focusing

on the externalities that financial institutions create when responding to

stress. Different central banks tend to include different behavioral responses

of banks and other financial institutions in their stress tests (see Farmer et al.

(2022)). The behavioral adjustments utilized the most are sales of securities

for the purpose of maintaining capital or liquidity positions of banks. When

additional financial mechanisms are added to the model, such as funding

cost tightening and contagion of defaults, it often becomes difficult to find

an explicit solution for the model. This happens because of the complex
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Figure 5: Stylized evolution of the balance sheet of a bank following a financial shock. A
sudden drop in the price of the assets reduces the bank’s leverage ratio below the regulatory
requirement. The bank sells assets to restore its leverage ratio. However, the rapid selling
has an effect on prices of the assets, again reducing the leverage ratio and creating capital
losses.

side-effects that the behaviors of financial institutions have on each other.

While some behavioral stress-testing models provide explicit equilibrium

solutions without the need to utilize Monte Carlo techniques, such as Ha laj

and Priazhkina (2021), the majority of models continue to rely on Monte

Carlo methods for two reasons. First, development of stress-testing models

with theory-powered predictions is time-consuming and requires precise

calibration of parameters. Second, Monte Carlo techniques may still be

beneficial to parallel the scenario inputs and perform sensitivity analysis.

This highlights the relevance of our application for many central bank models.

To illustrate how QMC might be applied to stress testing, we calculate

the expected capital losses of two banks over the span of two time periods

of a stress scenario.10 Without loss of generality, assume that before stress

is applied, bank i holds assets aalli , out of which mortgages constitute ami ,

business loans abi , and securities asi . The bank partially funds itself with

equity ei; the rest is funded with long-term debt.

The exercise is performed period-by-period with the following sequence

10The current quantum current algorithm can easily manage more banks and more
periods, albeit at the cost of additional qubits.
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of events within each period t. At the beginning, bank i faces credit losses

losscri,t = abid
b
t + ami d

m
t (28)

with default rates for mortgages and business loans

dmt = dmt−1(1 + dt)

dbt = dbt−1(1 + dt).

Each period, more loans default at random, depending on the realization of

the random variable dt.
11

We assume that pre-stress, banks satisfy the regulatory leverage require-

ment to hold share β of capital relative to total assets. After credit losses

are applied, banks fall below their leverage requirement and are forced to

adjust their balance sheets to come back to the required ratios. They do so

differently in the short-term and in the long-term.12

In the short-term, each bank i sells securities in the amount ∆asi,t, suffi-

cient to restore the leverage ratio to threshold β. Because securities need to

be sold quickly, this impacts the securities’ market price and produces fire

sales losses for the bank. For simplicity, we assume a linear price-response

function:

∆pt = −α
2∑

i=1

∆asi,t. (29)

Remaining securities on the balance sheets of all banks are also subject

to re-evaluation due to mark-to-market accounting (see Figure 5 for the

balance sheet changes). As such, banks impose externalities on each other

by selling securities simultaneously, and their capital ratios may fall below

11The difference between generating stochastic probabilities of default and credit losses
is subtle. With the assumption that loss-given-default and utilization rate are both equal
to one, the credit loss rate can be assumed to be equal to the probability of default.

12This split is an artificial modeling tool rather than a natural sequential order of actions.
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the regulatory requirement. This concludes the short-term response. In the

long-term stage of each period, bank i receives income and recapitalizes the

equity to the initial level. The bank also restores the original portfolio of

assets and liabilities. Capital injection may come from private sources or

government support. Long-term adjustments of this kind are less typical for

macro-prudential stress testing. Here, we introduce them for computational

simplicity. Without going into the specifics of such costs, we assume that

the regulator still cares about the capital losses of the first period.

The changes between the initial and re-optimizing balance sheet can be

found explicitly by doing some basic algebra. First, the amount of securities

liquidated by each bank can be calculated as

∆asi,t =
ci,t − gicj,t

1 − gigj

with coefficients c1,t and c2,t being defined as linear function of initial credit

losses:

ci,t =
ei − (1 − β)losscri,t − βaalli

(1 − β)αasi − β
, (30)

and coefficients g1 and g2 being independent of the scenario:

gi =
α(1 − β)asi

(1 − β)αasi − β
. (31)

The function of interest, total one-period loss as a fraction of industry

assets, is thus linear in the default rates dmt and dbt :

losscr1,t + lossfs2,t + losscr1,t + lossfs2,t

aall1 + aall2

. (32)

Therefore, computing the total expected system-wide loss over T periods

is equivalent to calculating the polinomial operator of random draws dt:

E0[loss
%
T ] = E0[γ1

(
1 + γ0

1 − β

β

) T∑
t=1

t∏
τ=1

(1 + dτ )], (33)
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where γ0 captures fire sales impact

γ0 = α
(1 − g1)(1 − g2)

1 − g1g2
(as1 + as2)

and γ1 captures credit risk impact

γ1 =
(ab1 + ab2)d

b
0 + (am1 + am2 )dm0
aall1 + aall2

.

Table 1: Stress test model calibration parameters.

Bank 1 Bank 2

Mortgages am 50 30
Business Loans ab 50 70
Securities as 50 50
Total assets aall 150 150
Equity e 4.5 4.5

System-wide

Price sensitivity α 0.0005
Leverage ratio β 0.03
Benchmark mortgage loan loss dm0 0.5%
Benchmark business loan loss db0 1.5%
Monte Carlo credit loss rate d Beta(2,10)

Fire sales term γ0 0.0060
Credit risk term γ1 0.0053

We now discuss how this problem can be tackled with the QMC algorithm

for two periods of stress with parameters as in Table 1. We specifically choose

non-symmetric distribution of loss rates (Beta(2,10)) to account for fat tails

typical for systemic risk events and to illustrate how the quantum methods

can be applied to non-Gaussian distributions.

After substituting the parameters, equation (33) reduces to finding the

expectation of

0.0064 × (2 + d2) × (1 + d1). (34)
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For this we need to find F unitary that encodes the probability distribution—

in our case Beta(2, 10)—and the random variable—equation (34). As a first

step, we see that the problem can be written as a T -dimensional expectation

value as in equation (5), with a product distribution over the independent

dt. We can hence discretize the input dt values each into M = 2m points so

that there will be T registers of m qubits, and apply the A unitary to each

register to prepare the appropriate distribution (see Appendix C for more

details). A schematic for the procedure is provided in Figure 6 for T = 2

periods.

Our next step is to provide access to the random variable given in

equation (33) from which the statistics are calculated. This can be achieved

using the quantum arithmetic approach discussed in Appendix C, that is,

so that each register represents a fixed-point number and registers can be

operated upon and combined to find the random variable. We first adjust the

A unitaries to shift the mean by 1 or 2. We can then apply a multiplication

operation that multiplies the two registers, as shown in Figure 6. Note that

quantum arithmetic operations may require additional registers of calculation

qubits due to the reversible nature of quantum computing. These registers

are omitted here, and we assume that the output register of the calculation

is situated on the bottom wire in the diagram.

To finish calculating the random variable, we apply operations that

multiply by constant. Finally, the square root and arcsine operations are

applied and the result is imprinted onto the ancilla qubit using a controlled-Y

cascade. The controlled-Y cascade places the ancilla into the state cos (i) |0⟩+

sin (i) |1⟩, whereas the goal is to place the ancilla into the state
√

1 − i |0⟩ +
√
i |1⟩. This is why the cascade is preceded by the square-root and the arcsine

operations. The work of Chakrabarti et al. (2021) provides a summary of

decompositions for typical operations, including multiply, square root, and

arcsine.

With F defined, the QMC algorithm can then be carried out by con-
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Figure 6: A schematic circuit for the F unitary of the stress testing problem when
estimating the total system-wide loss after T = 2 periods. Note that the dt lines represent

registers of qubits and that γ = γ1
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Figure 7: The error of estimating the total loss of the banking industry as a fraction of
the actual (theoretical) value versus the number of oracle applications within the QMC
algorithm.

structing Q according to the decomposition in Appendix C. The results of

this are shown in Figure 7.

With 10 estimation qubits, QMC finds the total banking industry loss

over two periods as a fraction of total assets to be 1.622%, as compared to

the theoretical value of 1.618%. This corresponds to the error of 0.0027 as a

fraction of the theoretical value. However, even just 2 estimation qubits give

a good approximation, resulting in the fractional error of 0.023.

We have hence built up the protocol for an example instance of stress

testing using quantum computation. Notably, we find that the total num-

ber of (logical) qubits required for this problem is manageable in theory.

However, in practice, the current quantum hardware is noisy. The noise
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begins to dominate the results after around 100 gates (Lubinski et al. (2021)).

Meanwhile, our problem requires at least 104 − 105 gates, as we will show in

the next section.

5.2. Deep learning solutions of DSGE models

Another promising application of the QMC algorithm within economics is

solving DSGE models with deep learning as in Maliar et al. (2021), Fernández-

Villaverde et al. (2019), and Azinovic et al. (2022).13 DSGE models are

used in macroeconomics to study relationships between aggregated economic

variables such as inflation, gross domestic product, consumption, and capital

goods, often in the context of government policies. Standard methods of

solving such models suffer from the curse of dimensionality: computational

time grows exponentially with the number of state variables and can become

unmanageable beyond a small number of variables. By contrast, methods

based on deep neural networks can break this curse (Bach (2017)) and are

now being applied to solve large economic models (see, for instance, Lepetyuk

et al. (2020)).

Monte Carlo simulations play an essential role within these deep learn-

ing approaches. Monte Carlo draws provide an unbiased estimator of the

stochastic gradient with respect to all variables, making it possible to simul-

taneously approximate the decision function and to integrate with respect to

future shocks. The shortcoming of the Monte Carlo simulations is the low

square-root convergence of the solution (Maliar et al. (2021)). The quadratic

speedup offered by quantum Monte Carlo could overcome this shortcoming.

To get an understanding of when quantum Monte Carlo might offer

an advantage over the standard approach for this application, we consider

a simple neoclassical stochastic growth model (Maliar and Maliar (2015),

Stokey et al. (1989)). In this model, the representative agent starts each

period with capital, k, and current level of productivity, z. The agent’s

13For an introduction into deep learning, see Goodfellow et al. (2016).
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task is to decide how much to consume right away, c, and how much capital

to leave for next period, k′. The capital will be invested into production,

which will deliver future payoff according to the production function f(k).

Part of the capital δ will depreciate, while the rest can be re-used. Output

of production will also vary due to the randomness in the productivity of

the agent. The future level of productivity, z′, depends on the current level

of productivity, z. For simplicity, assume that agents value their current

consumption according to the utility function u(c) and the flow of their

future consumption according to the discounting factor β. This means that

the agent computes the value function from the following Bellman equation:

V (k, z) = max
c,k′

u(c) + βE[V (k′, z′)] (35)

subject to:

c+ k′ = zf(k) + (1 − δ)k (36)

ln z′ = ρ ln z + σϵ, ϵ ∼ N (0, 1) (37)

where u and f are strictly increasing, continuously differentiable, and concave;

β ∈ (0, 1); δ ∈ (0, 1]; ρ ∈ (−1, 1); and σ ≥ 0. Under these assumptions, the

problem has a unique solution (Stokey et al. (1989)).

The general algorithm for solving this problem with deep learning proceeds

as follows:

1. Interpolate V (k, z) by a neural network with learnable parameters

{si}. In the current work, the interpolation part is treated completely

classically. However, in the future, a quantum variational algorithm

(Cerezo et al. (2021)) could be a viable alternative to the classical

neural network.

2. Draw Ns random samples of (k, z, z′1, z
′
2), where k ∼ U[kmin,kmax], z ∼

N (1, σ2), and z′1 and z′2 are two possible realizations of the random

process (37).
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3. For each sample, use the first-order conditions and the envelope condi-

tion to compute consumption c:

uc(c) =
Vk(k, z)

zfk(k) + 1 − δ
(38)

⇒ c = u−1
c

(
Vk(k, z)

zfk(k) + 1 − δ

)
(39)

where uc(c) = ∂u(c)
∂c , Vk(k, z) = ∂V (k,z)

∂k , fk(k) = ∂f(k)
∂k .

4. Solve for k′ using the budget constraint. (36)

5. Compute the Bellman error for each next-period productivity z′i:

BE(k, z, z′i) = u(c) + βV (k′, z′i) − V (k, z). (40)

6. Calculate the mean squared error (MSE) over the entire Monte Carlo

sample, defined as

1

Ns

∣∣∣∣∣∣
Ns∑
j

BE(kj , zj , z
′
j1)BE(kj , zj , z

′
j2)

∣∣∣∣∣∣ . (41)

7. If the MSE is less than the pre-defined threshold, stop the computation.

Otherwise, update (via backpropagation or parameter-shift rule (Crooks

(2019)) parameters {si} to minimize the MSE.

Solving this problem on the quantum computer is currently beyond the

capabilities of the quantum hardware. However, by simplifying the problem

and expanding it in terms of quantum gates, it is possible to find where (for

various quantum gate times) QMC gains an advantage over classical MC.

Toward this end, we make the standard choice of the utility and production

functions:

u(c) =


c1−θ−1
1−θ θ ̸= 1

ln c θ = 1
(42)

f(k) = kα. (43)
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Furthermore, we make a simplifying choice of θ = 1, and δ = 1. With this

simplification, the problem has an analytical solution:

V (k, z) = R ln k + S ln z +Q (44)

where R = α
1−αβ , S = 1+βR

1−βρ , and Q = ln(1−αβ)
1−β + βR ln(αβ)

1−β . This analytical

solution can be obtained by a neural network composed of a single linear

layer (with weights s1, s2, and bias s0), as long as the input variables k and

z are first transformed by the logarithm function. This makes it possible

to easily express the Bellman error in terms of the input random variables

k, z, z′1, z
′
2. Leaving the solution of the full problem for later work when

quantum computation technology is more advanced, we take k and z to be

constant within each random Monte Carlo sample. Moreover, we replace

equation (41) with the following loss function:

1

Ns

∣∣∣∣∣∣
Ns∑
j

BE(kj , zj , z
′
j)

∣∣∣∣∣∣ . (45)

This loss function has a minimum at the same place as the original MSE

loss for this particular problem, allowing us to only keep a single z′ random

variable. As a final simplification, since z′ ≈ 1, we assume ln z′ ≈ z′ − 1.

Interpolating the value function in terms of the chosen neural network

architecture,

V (k, z) = s1 ln k + s2 ln z + s0 (46)

and with the simplifications above, the chosen loss function (45) reduces to∣∣∣∣∣∣ 1

Ns

Ns∑
j=1

(C1 + C2z
′
j)

∣∣∣∣∣∣ (47)
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where

C1 = (s1 − α(1 + βs1)) ln(k) + (s2 − (1 + βs1)) ln(z) (48)

+(1 − β)s0 − ln

(
α

s1

)
− βs1 ln

(
1 − α

s1

)
+ βs2

C2 = −βs2 (49)

The simplified neoclassical model is therefore expressed as the expectation

value of a linear random variable with respect to the normal distribution.

This provides us with a simple, application-relevant use-case to investigate

and benchmark the QMC approach. Our first step is to set the values C1 = 30

and C2 = −29. The exact choice of these constants is not important, but

we pick these values since they are close to the optimal values (as given in

equation (47)) and could realistically occur during the training of the neural

network. The distribution of the random variable z′ is normal with mean

µ = 1, and we choose σ = 0.02. We then implement the QMC algorithm as

outlined in Appendix C. The details of our QMC implementation for this

problem can be found in Appendix D.

The QMC algorithm provides an estimate of θ̂ that can be converted into

an estimate of µ̂ using equation (19) and accounting for the normalization of

f(x). Figure 8 illustrates how the error ε = |µ− µ̂| scales with the number

N of applications of Q.

We plot the error in two cases: (orange line) when using the linear

approximation detailed in Appendix D, and (blue line) when using an exact

simulation of F . The linear approximation has a worse theoretical speedup,

but does not require as many quantum resources and so can be realized

sooner in practice. The plot shows different scaling in each case, as expected.

The linear fit in log-log scale gives a slope of α = −0.642 in the approximate

case (theoretical value: −2
3) and a slope of α = −0.996 in the exact case
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Figure 8: Finding the estimation error ε when using the QMC algorithm with a time
complexity of N . The blue line shows the ideal case when the unitary F can be realized
exactly, while the orange line illustrates the use of the linear approximation outlined in
these two papers: Egger et al. (2020), Stamatopoulos et al. (2020b). The dotted lines
show a linear fit in log-log scale

(theoretical value: −1), both of which are better than the scaling of classical

Monte Carlo estimation, α = −1
2 .

6. Benchmarking of Quantum and Classical Methods

We have established that the QMC algorithm has a speedup in terms

of oracle calls N when compared to its classical counterpart. However, in

the QMC algorithm, N is the number of applications of Q, while in classical

Monte Carlo N is simply the number of samples drawn. To provide a fair

comparison between the two approaches requires working out the real time

requirements for both implementing Q and for drawing a sample from a

classical random number generator. In this section we provide a time-based

benchmark of QMC using the setting of the macroeconomic deep learning

problem from the previous section.

Our first step is to understand the resource requirements of the QMC

algorithm for varying numbers n of phase estimation qubits. Using the

decompositions discussed in Appendix C, it is possible to break down the

QMC algorithm into elementary gates that are compatible with hardware
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Figure 9: Counting the number of elementary gates required to implement the QMC
algorithm (approximate F) for varying numbers of phase estimation qubits n. The circuit
depth is also drawn as a dashed line.
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Figure 10: Providing a time-based comparison between the QMC algorithm for a variety
of gate times t (colored lines) and classical Monte Carlo estimation (black line) for the
macroeconomic model discussed in section 5.2. The estimation error ε is plotted against
the algorithm time Ttot. These quantities are extrapolated for the QMC algorithm using
the linear approximation of F for a range of phase estimation qubits n. The black line
shows a classical extrapolation using one CPU core. Dashed vertical lines illustrate where
the quantum and classical algorithms coincide for each gate time t.

implementation. The code for doing so can be found in Appendix D. We

choose a gate set composed of the single qubit rotations RX , RY , and RZ ,

as well as the two-qubit CNOT gate. Figure 9 provides a gate count for
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implementing the QMC algorithm for the macroeconomic problem using the

linear approximation with m = 5 discretization qubits and a range of phase

estimation qubits n. We focus on the approximate case because it requires

significantly fewer quantum resources than the exact case and so is likely to

be realized in practice first. As expected, the gate counts scale exponentially

since the number of applications of Q is 2n.

As well as counting individual gates, we can also calculate the depth of

the QMC algorithm, that is, the longest sequential path of gates through

the circuit. The depth is also shown in Figure 9 as the dashed line and can

be extrapolated using a log-linear fit to arbitrary n.

From the depth d, we can calculate the algorithm time Ttot by assuming

each gate can be run in time at most t and finding Ttot = td. We consider

gate times ranging from 10 ns to 100 µs, but it is not unreasonable to expect

gate times on the order of 100 ns or lower based on the latest experimental

research (Satoh et al. (2022)).

To obtain the plot of the error ε vs total time Ttot, recall that the fit in

Figure 8 can be used to find the error scaling of the approximate approach

for a given number of estimation qubits n. The number of estimation qubits

is related to the circuit depth (Figure 9), which is related to the total time.

This leads to Figure 10, where we plot ε against Ttot for a variety of gate

times. This figure provides the basis for a time-based comparison of the

QMC algorithm to standard Monte Carlo estimation.

To generate classical Monte Carlo results in Figure 10, we find the mean

average error of estimating the same expectation value as the one obtained

using a range of shot numbers N . We also record the time taken for each N

and extrapolate using a linear fit in log-log scale. The result is shown as the

black line the figure. In terms of computational resources, we use one CPU

core. More CPUs or GPUs would be beneficial to the classical solution.14

14For completeness, Appendix E shows how this problem can be implemented in PyTorch,
which can be used to run this problem on multiple CPUs or GPUs, for example, within

36



t (s) Ttot (s) ε n Nq Nc

10−8 9.40 × 10−2 6.86 × 10−3 15 3.28 × 104 3.03 × 107

10−7 1.22 × 103 7.27 × 10−5 25 3.36 × 107 1.85 × 1013

10−6 1.58 × 107 7.69 × 10−7 36 6.87 × 1010 1.13 × 1019

10−5 2.04 × 1011 8.15 × 10−9 47 1.41 × 1014 6.88 × 1024

10−4 2.65 × 1015 8.62 × 10−11 58 2.88 × 1017 4.20 × 1030

Table 2: The QMC algorithm outperforms classical Monte Carlo sampling when Ttot

exceeds a minimum amount. This table details the minimum Ttot and the corresponding
estimation error ε for a range of gate times t in the QMC algorithm. The number of phase
estimation qubits n is also provided, as well as the number Nq of applications of Q in the
QMC algorithm and the number Nc of samples N in the classical algorithm.

However, the underlying scaling law of the classical MC algorithm would

remain unchanged. This means that quantum advantage for this problem

could eventually be achieved, albeit at a higher number of estimation qubits.

Figure 10 illustrates the expected speedup provided by the QMC algo-

rithm due to the steeper slope of the extrapolated line.15 The choice of

individual gate time t sets the offset height of each line for QMC, which has

the practical implication of determining when the QMC algorithm becomes

preferential to its classical counterpart. A smaller t results in the QMC line

crossing the classical line at a lower value of total algorithm runtime Ttot.

The crossover points are shown as dashed vertical lines in the figure and are

summarized in Table 2.

We therefore see that the gate time t is an important indicator for when

the QMC algorithm will become performant. By pushing down the gate

the settings of federated learning (Konečnỳ et al. (2015)).
15The QMC algorithm performance could also be improved on the algorithmic level. For

example, using the linear approximation of Egger et al. (2020) and Stamatopoulos et al.
(2020b) results in a negative effect on scaling, shifting from an ideal α = −1 to α = −2/3,
when ε = Nα. This may be remedied by considering quantum arithmetic or alternative
methods (Herbert (2021b)). Finally, the QMC algorithm could also be adapted to replace
the standard amplitude estimation part, requiring a register of phase-estimation qubits
and an inverse quantum Fourier transform. This has been suggested in Suzuki et al. (2020),
Burchard (2019), Grinko et al. (2021), Giurgica-Tiron et al. (2020).
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time, we are able to outperform classical Monte Carlo sampling at lower

algorithm runtimes Ttot and also require fewer phase estimation qubits and

a lower depth Nq.

It is also fruitful to compare the two algorithms for a fixed value of

runtime Ttot or a fixed target error ε. For example, it is common to run a

complex Monte Carlo estimation overnight to achieve the greatest accuracy.

Consider a runtime of 10 hours (Ttot = 3.6 × 104 s). Using Figure 10, it

can be seen that the classical algorithm has an error of 1.43 × 10−5. This is

outperformed by the QMC algorithm only for gate times 10−7 s and 10−8

s, with corresponding errors of 8.47 × 10−6 and 1.97 × 10−6, respectively.

Conversely, consider a target accuracy of ε = 10−6. The classical algorithm

requires a runtime of roughly 21 hours, while the QMC algorithm requires a

runtime of around 1 hour when t = 10−8 s and around 8 hours when t = 10−7

s.

7. Conclusion

This paper is the first to apply the quantum Monte Carlo algorithm to

problems in economics and among the first to apply quantum computation

more generally to this field. We build our paper in such a way that an

economist without any knowledge of quantum computation can gradually

progress to fully implementing the QMC algorithm. We begin with a simple

Gaussian sampling needed to estimate the mean of a random variable to

illustrate quantum decomposition. Next, we focus on more sophisticated

applications: (a) stress testing of banks and (b) solving DSGE models with

deep learning. We derive in detail how these problems can be converted into

quantum circuits—both theoretically and in terms of code. The quantum

simulations that we perform for these problems verify that quantum solutions

converge to the theoretical predictions. In the absence of hardware noise,

high accuracy is achieved even for a small number of qubits.

The other important contribution of this paper is a fair comparison be-
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tween QMC and classical MC. Whereas QMC speedup is usually represented

in terms of the number of oracle calls (number of times the unitary Q is

applied), this paper shows how to obtain a direct time-vs-time comparison.

For the DSGE deep learning problem, we decompose the quantum circuit

into a set of standard elementary gates. This allows us to compute the

depth of the circuit, which we convert into computational time of the QMC

algorithm for various quantum gate times. The resulting graph informs when

quantum advantage might be expected for this economics problem.

With regard to the QMC algorithm itself, this paper makes two minor

contributions. We show how the unitary A can be approximated with a

quantum variational circuit. Also, we show how the controlled Q unitary

can be achieved without the controlled F unitary.

Although further improvements in quantum hardware are necessary before

QMC can achieve an advantage in practice over classical MC, this paper

shows that the QMC scales better for problems in economics. Therefore,

eventually quantum Monte Carlo stands to deliver quantum advantage to

economics, where Monte Carlo problems abound.
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Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M., 2004. Quan-

tum circuits for general multiqubit gates. Physical Review Letters 93.

Nielsen, M., Chuang, I., 2010. Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press.
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Appendix A. Discretizing the simple example

The following code shows how the simple example in Appendix A can

be discretized using Python code.

from pennylane import numpy as np

from scipy.stats import norm

m = 5

M = 2 ** m

x_max = np.pi

x = np.linspace(-x_max, x_max, M)

p = np.array([norm().pdf(x_i) for x_i in x])

p /= np.sum(p)

f = lambda i: np.sin(x[i]) ** 2

import pennylane as qml

import numpy as np

from scipy.stats import norm

m = 5

n = 6

M = 2 ** m

x_max = np.pi

x = np.linspace(-x_max, x_max, M)

p = np.array([norm().pdf(x_i) for x_i in x])

p /= np.sum(p)

f = lambda i: np.sin(x[i]) ** 2
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qubits = range(m + 1)

est_qubits = range(m + 1, n + m + 1)

n_qubits = n + m + 1

dev = qml.device("default.qubit", wires=n_qubits)

@qml.qnode(dev)

def qmc():

qml.templates.QuantumMonteCarlo(

p,

f,

qubits,

est_qubits,

)

return qml.probs(est_qubits)

p_est = qmc()

Appendix B. Optimizing a variational circuit to prepare the prob-

ability distribution

Appendix C discusses how a variational quantum circuit can be optimized

to output a target probability distribution when sampled in the computational

basis. The code below shows how this can be achieved using the probability

distribution and m = 5-qubit setting detailed in Appendix A.

reps = 1000

layers = 5

a_qubits = range(m)

dv = qml.device("default.qubit", wires=a_qubits)

theta = qml.init.strong_ent_layers_uniform(

n_layers=layers, n_wires=m

48



)

def U(theta):

qml.templates.StronglyEntanglingLayers(

theta, wires=a_qubits

)

@qml.qnode(dv)

def p_circ(theta):

U(theta)

return qml.probs(wires=a_qubits)

def C(theta):

return np.sum(np.abs(p_circ(theta) - p))

opt = qml.GradientDescentOptimizer()

for i in range(reps):

theta, c = opt.step_and_cost(C, theta)

if i % 50 == 0:

print(f"Cost at step {i}:", c)

print("Final cost:", C(theta))

The variational circuit is composed of 5 layers. Each layer applies a

single-qubit rotation gate to each qubit, with each gate having 3 parameters

allowing for a general rotation in the Bloch sphere. The rotation gates are

followed by an entangling block of CNOT gates.
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Appendix C. Implementation of quantum Monte Carlo algorithm

for Gaussian example

With the QMC algorithm defined, it is natural to ask how the algo-

rithm may be practically implemented. To do so, we must decompose the

probability-encoding unitary A, the random-variable encoding unitary R,

and the phase-encoding unitary Q into elementary gates that are compatible

with quantum hardware.

Practical applications of Monte Carlo estimation typically require evalu-

ating expectation values in a multidimensional space, that is, as shown in

equation (5) with d > 1. Here, it is often useful to split up the register of

discretization qubits into d subregisters of m qubits so that each dimension

in x is discretized into 2m points. This approach is particularly fruitful when

the joint probability distribution p(x) is a product distribution so that each

dimension of x is independent. A product distribution allows A to be written

as

A =

d⊗
j=1

Aj , (C.1)

with each Aj applied independently to subregister j and preparing the corre-

sponding marginal distribution. We focus on this use-case in the following.

Decomposing A
Encoding a probability distribution as a quantum state is in general non-

trivial and is a special case of state preparation. This can be performed using

exponentially-scaling circuits (Möttönen et al. (2005), Plesch and Brukner

(2011)), but such approaches are insufficient for the QMC algorithm because

the quadratic speedup will be lost. We hence aim to identify efficient circuits

that scale polynomially with the number of qubits in the discretization

register.

An efficient decomposition for A, known as the Grover-Rudolph method

(Grover and Rudolph (2002)), exists for probability distributions that are
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efficiently integrable on a classical computer, such as log-concave distributions.

However, there can be a significant overhead associated with calculating

integrals in a pre-processing step. This is especially so when the integrals

themselves need to be approximated with Monte Carlo estimation. As a

result, it has been argued that the Grover-Rudolph method is insufficient for

the QMC algorithm (Chakrabarti et al. (2021), Herbert (2021a)).

Although alternative algorithms have been proposed by such authors

as Kaye and Mosca (2001), Kitaev and Webb (2008), Kaneko et al. (2020),

a major focus has been on optimizing variational quantum circuits to ap-

proximate a target distribution. The variational approach provides the

flexibility to construct low-depth circuits or increase the depth depending on

the required accuracy. The work of Zoufal et al. (2019) proposes a hybrid

quantum-classical generative adversarial network and demonstrates its ability

to prepare canonical distributions, such as the log normal distribution. Here,

we show how the probability distribution of a variational circuit can be

optimized directly using gradient-based optimization.

Consider an m-qubit variational quantum circuit U(θ) composed of gates

with trainable parameters θ and applied to an input state |0⟩⊗m. When

sampling in the computational basis, the circuit has a probability distribution

p(i,θ) = |⟨i|U(θ)|0⟩|2 . (C.2)

The objective is to minimize the distance between this distribution and a

target distribution ptarg(i). This can be achieved using the cost function

C(θ) =
∑
i

|p(i,θ) − ptarg(i)| (C.3)

and finding

θopt = argminθ C(θ). (C.4)

Minimization of the cost function can be achieved using gradient-based
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Figure C.11: Optimizing a variational quantum circuit so that its output probability
distribution in the computational basis is the discretized normal distribution. The solid
blue line shows the output distribution from the optimized circuit, while the dashed grey
line shows the target distribution.

optimizers by calculating the gradient ∇θC(θ), which is accessible on quan-

tum hardware using the finite-difference approximation or the parameter-shift

rule for certain types of circuit (Mitarai et al. (2018), Schuld et al. (2019)).

The resulting circuit U(θopt) can then be used as an approximation to A (or

Aj). Appendix B shows how this method can be used to train a variational

circuit to reproduce the discretized normal distribution discussed in section

4.4. The resulting probability distribution p(i,θopt) is shown in Figure C.11.

Decomposing R
Similarly to the decomposition for A, although approaches that scale

exponentially with the number of qubits in the discretization register exist for

applying R (Möttönen et al. (2004)), doing so is insufficient to preserve the

quadratic speedup of the QMC algorithm. One commonly-used approach is

to discretize so that each dimension of x is represented as an m-bit fixed-point

number (Rebentrost et al. (2018), Chakrabarti et al. (2021)), for example,

so that a positive x can be written as

x =

m∑
i=1

2m−i+kbi, (C.5)
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RY (π/4) RY (b) RY (a) RY (2a) · · · RY (2m−1a)

Figure C.12: Encoding a linear function f(x) onto an ancilla qubit from an m-qubit register
can be achieved by discretizing and rescaling to f(i) = ai + b and applying the above
circuit Egger et al. (2020). Here, RY (ϕ) = e−iϕσY with σY the Pauli-Y operator.

with a corresponding bitstring {b1, b2, . . . , bm} and a fixed point k ∈ Z. An

additional bit may be used to encode the sign of x. We can then associate

the m-qubit basis state |b1b2 . . . bm⟩ with x. With the random variable f(x)

written as a composition of such operations on x, R can then be performed

by applying those operations onto the corresponding registers.

Elementary arithmetic on a quantum circuit is a well-established topic,

and efficient decompositions are available for common operations like addition

and multiplication.16 Additional registers of calculation qubits may be

required to compute f(x). The result must then be imprinted from a result

register onto the ancilla qubit. This can be achieved by first applying square-

root and arcsine operations and then performing a cascade of controlled-Y

rotations.

Despite the existence of efficient decompositions, the elementary arith-

metic approach to performing R is challenging. Each operation can require

a non-negligible number of gates to enact as well as an additional register of

qubits to store the output, making the approach costly for implementation

on hardware and simulators. For example, adding two registers of m = 5

qubits using the approach of Vedral et al. (1996) requires 18 Toffoli gates,

20 CNOT gates, and an additional register of qubits. This is an overhead

that quickly adds up with multiple operations. There are also often multi-

ple decompositions provided in the literature with differing advantages and

disadvantages, and choosing which to adopt can be difficult.

16See Häner et al. (2018), Chakrabarti et al. (2021) for details.
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Subsequent works have proposed alternative implementations of R with

the objective of avoiding quantum arithmetic as in Stamatopoulos et al.

(2020a), Herbert (2021b). In this paper, we consider a simple approach

outlined in Egger et al. (2020), Stamatopoulos et al. (2020b) for a one-

dimensional linear function f(x). Although this setting is trivial to solve on a

classical computer, it provides an entry point into exploring the application of

QMC to a relevant problem in economics and for benchmarking the resource

requirements, as we see in the following sections.

In this approach, the function is first discretized and rescaled to the range

[−cs, cs] for some small constant cs > 0. The result can be written as

f(i) = ai+ b, (C.6)

with two constants a and b that depend on cs. The cascade of controlled-Y

rotations shown in Figure C.12 can then be shown to approximate R, that

is, so that the probability of measuring the ancilla qubit in the |1⟩ state can

be rescaled according to cs to provide an estimate of E(f(x)). This holds

provided that cs is sufficiently small, such that sin2(f(i) + π/4) ≈ f(i) + 1/2.

Indeed, cs must be set so that the dominant error is from the Monte Carlo

estimation, and it can be shown that the optimal cs scales with the number

N of applications of Q as N−1/3 (Woerner and Egger (2019)). However, this

approximation results in a less preferential scaling with N = O(ε−3/2).

Decomposing Q
Recall that Q = (FZF†V)2 as given in equation (21). However, the

QMC algorithm requires the ability to apply Q with control from one of

the phase estimation qubits. Due to the nature of Q, this can be achieved

without the need for a controlled version of F , as shown in Figure C.13.
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V F† Z F V F† Z F

• • • •
Figure C.13: A controlled version of Q can be achieved without using a controlled-F .

Let us now consider the unitary V. It can be seen that

V = 1m+1 − 21m ⊗ |1⟩⟨1|
= 1m ⊗ σz, (C.7)

with σz the Pauli-Z matrix. Hence, controlled-V can be implemented simply

as a CZ gate. Furthermore, the controlled-Z gate can be implemented as

shown in Figure C.14. This requires the ability to apply a multi-controlled-X

gate, for which an efficient decomposition exists that scales linearly with m

(Barenco et al. (1995)).

X H H X

X • X

X • X
•

Figure C.14: Applying a controlled version of V can be achieved using Pauli-X rotations,
Hadamard gates, and a multi-controlled-X gate. Note that the target for the multi-
controlled-X gate can be any of the wires in the m-qubit register, provided the Hadamard
gates are also applied to that wire.

Appendix D. Details of the QMC implementation for the neoclas-

sical model

We discretize our target function (47) into M = 32 points using m = 5

qubits and rescale the function to f(i) = ai + b ∈ [−cs, cs] according to a

constant cs > 0, such that a = 2cs/31 and b = −cs. When using n qubits

and N = 2n applications of Q in the QMC algorithm, we set cs = 3
√

3π/N

as suggested in Woerner and Egger (2019).
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Using this, R can be applied according to the cascade of controlled-Y

rotations in Figure C.12. For the probability-encoding unitary A, we set

xi and p(i) using equation ((28)) with xmax = 1.06 and xmin = 0.94 (which

corresponds to three standard deviations away from the mean), and carry out

the optimization procedure in Appendix C. With 10 trainable layers, 150

parameters are varied to minimize the cost function C(θ) in equation ((C.3)).

The training was carried out with the learning rate equal to 0.01 for the

first 1000 epochs, 0.001 for the next 1000 epochs, and 0.0001 for the final

1000 epochs (see Appendix B for details). The final cost reached this way

is 1.54 × 10−4. The code block below shows how the resulting F can be

constructed in PennyLane.

m = 5

c_s = np.power(3*np.pi/N, 1 / 3)

a = 2 * c_s / 31

b = -c_s

ancilla_qubit = m

a_qubits = range(m)

def F():

A(theta) # Apply A trained previously

# Apply R

qml.RY(np.pi / 2, wires=ancilla_qubit)

qml.RY(2 * b, wires=ancilla_qubit)

for qubit in a_qubits:

phi = 2 ** (m - qubit) * a

qml.CRY(phi,wires=[qubit,ancilla_qubit])

With the components of F fixed, we can then proceed to apply the QMC

algorithm. This can be achieved as follows (where “dev” can refer to a

quantum device or a classical simulator):
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#n is number of estimation qubits chosen

est_qubits = range(m + 1, n + m + 1)

@qml.qnode(dev)

def qmc():

qml.quantum_monte_carlo(

F, qubits, ancilla_qubit, est_qubits)

return qml.probs(est_qubits)

The quantum resource requirements of this circuit can be obtained as a

Python dictionary using the following code:

expanded_tape = qmc.qtape.expand(depth=10)

specs = expanded_tape.specs

Appendix E. Classical MC solution using PyTorch for benchmark-

ing in section 6

import torch

from torch.utils.data import WeightedRandomSampler

from torch.utils.data import DataLoader

import numpy as np

from scipy.stats import norm

from time import time

device=torch.device('cuda' if torch.cuda.is_available()\

else 'cpu')

nepochs=10

nsample=100000

N=nepochs*nsamples #total samples drawn
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mu=1.0

sigma=0.02

xmax=1.06

xmin=0.94

m=5

M=2**m

xs=np.linspace(xmin,xmax,M)

probs=np.array([norm(loc=mu,scale=sigma).pdf(x) for x in xs])

probs/=np.sum(probs)

tprobs=torch.tensor(probs).to(device)

txs=torch.tensor(xs).to(device)

batch_size=1000

sampler=WeightedRandomSampler(probs,nsample,replacement=True)

data=DataLoader(txs,batch_size=batch_size,sampler=sampler)

totsum=torch.tensor(0.0,device=device).to(torch.float64)

t0=time()

for epoch in range(nepochs):

epochsum=torch.tensor(0.0,device=device).to(torch.float64)

for x in data:

epochsum+=x.sum()

totsum+=epochsum/nsample

t1=time()

print('Samples drawn:',N)

print('Time to draw samples:',t1-t0)

print('Computed MC estimate (true value = 1.0):',\
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totsum.item()/nepochs)
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