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Abstract 
Assessing the state of the economy in real time is critical for policy-making, and 
understanding the risks to those assessments is equally important. Policy-makers are typically 
provided with point forecasts that contain insufficient information about risks. In contrast, 
predictive densities estimate the entire range of possible outcomes. This provides a method 
for quantifying not only the current state of the economy but also the degree of uncertainty, 
the tail risks and the overall balance of risks around that state. Accordingly, this paper extends 
the framework of Chernis and Sekkel (2018) to produce density nowcasts for Canadian real 
GDP growth. We compare several methods of combining predictive densities from 98 models 
representing four popular classes of nowcasting models. The performance of these 
combinations is then assessed in both real-time and pseudo-real-time out-of-sample 
exercises, with the limited sample real-time simulations reinforcing the importance of data 
revisions for nowcasting. We demonstrate that the combined densities are reliable and 
accurate tools for assessing the state of the economy and risks to the outlook. We highlight 
in particular risks at the start of the COVID-19 pandemic. 

Topic: Econometric and statistical methods 
JEL codes: C, C5, C52, C53, E, E3, E7 

Résumé 
L’élaboration de politiques exige de pouvoir évaluer la situation économique en temps réel, 
et il est tout aussi important de comprendre les risques entourant ces évaluations. En général, 
les décideurs reçoivent des prévisions ponctuelles qui ne contiennent pas assez d’information 
sur les risques. Or, les densités prédictives estiment, pour leur part, toute l’étendue des 
possibilités. Elles permettent ainsi de quantifier non seulement la situation actuelle de 
l’économie, mais aussi le degré d’incertitude, les risques extrêmes et la résultante de 
l’ensemble des risques concernant cette situation. Cette étude s’attache donc à développer le 
cadre conçu par Chernis et Sekkel (2018), qui visait à produire des prévisions par densité de la 
croissance du PIB réel canadien pour la période en cours. Nous comparons plusieurs 
méthodes consistant à combiner les densités prédictives de 98 modèles représentant quatre 
catégories courantes de modèles de prévision pour la période en cours. Les résultats de ces 
combinaisons sont ensuite évalués à l’aide d’exercices hors échantillon en temps réel et en 
temps quasi réel, les simulations en temps réel fondées sur un échantillon restreint faisant 
ressortir l’importance des révisions de données au regard des prévisions pour la période en 
cours. Nous démontrons que les densités combinées sont des outils fiables permettant 
d’évaluer avec justesse la situation économique et les risques pesant sur les perspectives. 
Nous abordons en particulier les risques présents au début de la pandémie de COVID-19. 

Sujet : Méthodes économétriques et statistiques 
Codes JEL : C, C5, C52, C53, E, E3, E7 
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1 Introduction 
Assessing the state of the economy in real time is critical for policy-making. Significant effort 
and progress have been made toward finding the best models, though there is always 
uncertainty around the choice of model since no model for the growth of gross domestic 
product (GDP) is truly correctly specified. As a result, the relative performance of models 
often varies across time. In response, policy-makers often rely on the outputs of a variety of 
models, a strategy that the literature supports as a hedge against uncertainty (Coletti and 
Murchison 2002). 

Hedging against uncertainty, however, is not always sufficient. From the perspective of a 
policy-maker, it is also desirable—and one could argue necessary—to characterize forecast 
uncertainty. This is because without a representation of uncertainty, the policy-maker is 
missing many important pieces of information, such as the quantification of tail risks, the 
degree of uncertainty or the balance of risks. 

Standard approaches cannot provide much of this crucial information. A point prediction, by 
definition, contains no depiction of uncertainty unless paired with other information. And 
even though a predictive density provides a full accounting of the uncertainty, common 
approaches are seldom informative about these issues. We propose a density combination 
approach that could address the shortfalls of these standard approaches by creating densities 
that can be non-normal and vary depending on the underlying data. In addition, our goal is 
to find a density combination scheme that properly characterizes the probability of the events 
that it is predicting (i.e., its predictions are calibrated) and tightly targets Canadian real GDP 
growth (i.e., its predictions are sharp). 

The case for combining point forecasts goes back to at least Bates and Granger (1969) and is 
lucidly explained in Timmermann (2006). A large body of theoretical and empirical literature 
(Clemen 1989; Granger and Ramanathan 1984; Timmermann 2006; Clark and McCracken 
2010; Granziera, Luu and St-Amant 2013; and many others) supports the finding that 
combining forecasts generally improves accuracy (i.e., lower root mean forecast error). In 
practical terms, the success of forecast combinations is evidenced by their adoption by policy 
institutions, such as the Bank of England (Kapetanios, Labhard and Price 2007), the Norges 
Bank (Bjørnland et al. 2012; Aastveit, Gerdrup and Jore 2011) and the Bank of Canada (Chernis 
and Sekkel 2018), among others.  

However, when density forecasts are combined, it is not always clear that the combination 
results in superior statistical properties (Ranjan and Gneiting 2010). Despite this, many studies 
have found benefits to combining density forecasts, and a substantial literature has recently 
developed. Over the past 20 years, researchers have laid the foundation for density 
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combinations in economics.1 Several authors have shown that combining densities can make 
predictions more robust and improve them (Jore, Mitchell and Vahey 2010; Del Negro, 
Hasegawa and Schorfheide 2016), while others have worked on specifying optimal 
combination strategies from both frequentist (Conflitti, De Mol and Giannone 2015) and 
Bayesian perspectives (Geweke and Amisano 2011). More recent academic work focuses on 
modelling the dependence and correlation across forecasts and time variation in weights.2 
Similar to point forecast combinations, density combinations have also proven useful in 
central banks, but they have been less widely adopted.3 Overall, the literature suggests that 
combined density forecasting provides both a rich characterization of forecast uncertainty 
and a robustness to the “uncertain instabilities” inherent in macroeconomic forecasting (for a 
thorough review of the evolution of density predictions in economics and its advantages, see 
Aastveit et al. 2018). 

We add to this literature by studying the performance of many model-based density 
nowcasts and density combination methods for Canadian real GDP growth. To our 
knowledge, this is the first comprehensive study of density nowcasting in Canada. Moreover, 
we believe this is the first study to use real-time data in a Canadian nowcasting study (albeit 
on a shorter sample than the main analysis). In this paper we combine density nowcasts of 
Canadian real GDP growth from 98 models across four different classes: leading indicator 
models (ARX), dynamic factor models (DFM), mixed data sampling models (MIDAS) and 
Bayesian vector autoregressions (BVARs). Using a medium-sized dataset that encompasses 
the most commonly used variables for nowcasting Canadian GDP (Chernis and Sekkel 2018 
and Binette and Chang 2013), we construct predictive densities from each of the 98 models. 
These predictions are then combined using both one- and two-step procedures (as in 
Aastveit, Gerdrup and Jore 2011 and Aastveit et al. 2014) using a variety of weighting 
schemes. 

We evaluate the combined density nowcasts with two metrics: calibration and sharpness. We 
follow Gneiting and Raftery (2007, 359), who state that the best predictive densities will 
“maximize sharpness of the predictive distributions subject to calibration.” A predictive 
density is calibrated when it properly characterizes the probability of the events that it is 
predicting. For example, events predicted to occur with a 20% probability should be observed 
in the data roughly 20% of the time. Sharpness refers to the concentration of the predictive 
density around the eventual outturn (i.e., how “accurate” it is) and can be thought of as the 
density forecasting analog of the root mean squared forecast error. We find that, overall, the 
combined density predictions produce consistently sharp (or accurate) forecasts when 

 
1 For example, see Wallis (2005); Hall and Mitchell (2007); Mitchell and Hall (2005); Bache et al. (2009). 
2 See Del Negro, Hasegawa and Schorfheide (2016), Billio et al. (2013), Aastveit, Ravazzolo and Van Dijk (2018) and 

McAlinn and West (2019). 
3 See Bjørnland et al. (2012) and Aastveit, Gerdrup and Jore (2011).  
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compared with individual models and classes. However, only the minorization-maximization 
(MM) algorithm produces consistently calibrated forecasts, which is a critical property of 
predictive densities in a policy-making environment. 

The remainder of the paper proceeds as follows: Section 2 describes the dataset along with 
some unique characteristics of Canadian data. Section 3 describes the econometric 
framework of our paper and discusses the models and combination techniques. We then 
analyze the results of the nowcasting exercise in section 4. In section 5 we conduct our full 
exercise again using a shorter real-time dataset compiled internally at the Bank of Canada 
and compare the results with their pseudo-real-time counterparts. We then examine the real-
time forecasting performance of our proposed platform through the second-quarter 2020 
forecast cycle as an illustrative example of the predictive densities in practice. Section 6 
concludes. 

2 Data 
The ideal time series for a nowcasting model meets three criteria. It is (i) relevant to the 
Canadian economy, (ii) released before GDP with little publication delay and (iii) updated 
frequently. We start with the dataset in Chernis and Sekkel 2018 that was constructed to meet 
these criteria by choosing variables that are followed by the market and, in many cases, 
reported on Statistics Canada’s official release bulletin “The Daily.” This results in a set of 35 
variables, including 24 domestic indicators (quarterly GDP by expenditure, monthly GDP by 
industry and 22 other indicators), 7 US or international indicators and 4 financial variables. 

The dataset includes a mix of hard and soft indicators as well as a high proportion of foreign 
variables. The hard indicators include commonly used macroeconomic time series such as 
retail trade, manufacturing sales and housing starts. Soft indicators include consumer 
confidence, the US purchasing managers’ index (PMI), US consumer sentiment and Global 
PMI. Foreign data are included for several countries, with a focus on the United States 
because of its close trading relationship with Canada. A list of all data used can be found in 
Appendix A.1. 

There are two notable features in the Canadian macroeconomic data worth highlighting 
before describing our exercise: first, Canadian GDP data are released with a larger delay 
relative to most other developed economies; second, Canada has a monthly GDP indicator. 

The quarterly Canadian System of National Accounts data are released two months after the 
end of the reference quarter. This means that GDP data for the first quarter of a year are 
released at the end of May. This is quite different from other developed countries, such as the 
United States and the United Kingdom, for example, who release their first estimates of GDP 
four weeks after the reference period. Other European countries and Japan release their real 
GDP figures with a delay of only six weeks. Furthermore, many of the most commonly used 
and timely leading indicators, such as Industrial Production, are not available for Canada in a 
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timely manner. In the United States, Industrial Production is available within two weeks of the 
reference period, while in Canada it is reported as a special aggregation of monthly real GDP 
data roughly two months after the reference period.4  

The monthly GDP data, while conceptually similar, are methodologically different from the 
quarterly GDP data.5 The quarterly GDP data, or GDP at market prices, reflect GDP as 
measured by both expenditure and income, while monthly GDP is an estimate of the value-
added production by industry. Consequently, both the level of and growth in monthly GDP 
expressed at quarterly rates differ from the quarterly growth rates observed in the quarterly 
GDP series. This makes monthly GDP growth a very strong, but imperfect, signal of quarterly 
real GDP growth. For a more in-depth discussion of these indicators and how they compare 
with similar data in other countries, see Chernis and Sekkel 2018. 

All data are transformed to be stationary. Appendix A.1 lists the transformations by variable. 
In certain instances, the publishing agencies have rebased or made minor definitional 
changes to series. Where appropriate, we have spliced the most recent series with the 
corresponding older vintages and rebased them to a common year to extend the amount of 
historical data available for this study. 

Our training sample runs from the first quarter of 1981 to the second quarter of 2000, after 
which we begin our out-of-sample forecasting exercise. This yields a total of 74 quarterly 
predictions running until the fourth quarter of 2019. In section 5, we examine the real-time 
forecasting performance of the platform proposed in this paper for the second-quarter 2020 
observation of real GDP growth but leave an analysis of the impact of the pandemic on 
model coefficients and combination weights to future work. 

3 Econometric framework 

3.1 Models 
The forecasts we produce are combinations of predictive densities from a set of commonly 
used nowcasting tools. The following section briefly describes the model classes and some of 
the specifics of our implementation. For a more detailed exposition of the models, see 
Chernis and Sekkel 2017 or Appendix A.3. 

Leading indicator (LI) models: This simple model class is specified as an auto-regressive 
process for monthly GDP plus one additional independent indicator. The ragged edges for 

 
4 Canadian monthly real GDP is compiled on a by-industry basis, and industrial production is an aggregation of 

mining, quarrying and oil and gas extraction, utilities, manufacturing, and waste management services. In May 
2020, Statistics Canada began publishing a monthly flash estimate of GDP by industry in each monthly release, 
reducing the publication delay by one month. 

5 Technically they are referred to as GDP at basic prices, by industry; but for simplicity they will be referred to as 
monthly GDP. 
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the leading indicator are filled in by an auxiliary AR(2) model. Since our dependent variable 
for this class is monthly GDP, we generate iterated monthly predictions until the end of the 
second quarter being forecast, aggregate those predictions to a quarterly frequency, and 
then map them into quarterly GDP growth using a simple ordinary least squares bridging 
model. These types of models have been used extensively at central banks (Angelini et al. 
2011; Bundesbank 2013; and Bell et al. 2014), and although they are relatively simple, they 
have demonstrated good forecasting performance. There is one model for each selected 
monthly predictor, yielding a total of 24 LI models. The predictive densities are estimated via 
block wild bootstrap (Aastveit, Foroni and Ravazzolo 2017), first in the generation of the 
predictions for monthly GDP, and then again over the bridge equation mapping monthly GDP 
growth expressed at a quarterly rate into quarterly GDP growth. 

Mixed data sampling models: MIDAS models are a popular class of models whose main 
feature is the ability to estimate using mixed frequency data (see Ghysels, Santa-Clara and 
Valkanov 2004). The MIDAS regression reduces the number of parameters to be estimated by 
assuming that the lag coefficients on the high-frequency variables can be approximated by a 
distribution. The distributional assumption reduces the number of parameters to be 
estimated to only those characterizing the weighting function of the distribution. In our 
application we use a beta distribution. We also include a lagged low-frequency quarterly 
autoregressive term. We use a bivariate MIDAS that includes monthly GDP as an additional 
high-frequency regressor. The same variables are used in the MIDAS class as in the leading-
indicators model class, resulting in 24 unique MIDAS models. Predictive densities are 
estimated via the block wild bootstrap of Aastveit, Foroni and Ravazzolo (2017). 

Dynamic factor models: Factor models have become popular among central banks because 
they have useful properties for nowcasting (Giannone, Reichlin and Small 2008). They utilize 
the co-movement of a large set of indicators to estimate common factors, which in turn 
represent the underlying dynamic of that set of variables. We use the factor model developed 
in Chernis and Sekkel 2017; however, we use Bayesian estimation techniques to facilitate 
quick and simple estimation for predictive densities. The model parameters are estimated 
using a Gibbs sampler, and the states are estimated using precision sampling (Chan and 
Jeliazkov 2009). We estimate two DFMs, using one and two factors extracted from the data. 
Mixed frequencies are modelled using the technique from Mariano and Murasawa 2003. 

Bayesian vector autoregressions: Vector autoregressions and BVARs are among the most 
common models used by policy-makers for forecasting and economic analysis because of 
their simplicity and good forecasting performance. The BVAR differs from a VAR in that it 
uses prior assumptions on the parameters to reduce the problem of parameter proliferation. 
We use the standard Minnesota prior (see Koop and Korobilis 2010). This class includes 11 
models with the set of variables always following this convention: monthly GDP (GDPBP), 
financial variable, another domestic real activity measure and a foreign activity variable. Since 
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the models are estimated using Bayesian methods, the predictive density is readily available 
(see Karlsson 2013). 

As mentioned above, each model has a large set of possible specifications. We address the 
consequent “specification uncertainty” by systematically varying the models along a given 
dimension (lag length, data sample, variables to include, etc.). In addition, the time series may 
have structural changes, so for all model classes, except MIDAS, we use both rolling and 
recursive estimation schemes.6 This results in a total of 98 different models for predicting 
Canadian GDP growth. Details on the methods used to derive our predictive densities can be 
found in Appendix A.3. 

3.2 Combination methods 
There are several approaches to combining density forecasts. We use the linear opinion pool 
since it is commonly used in the literature and previous papers find it performs well (Aastveit, 
Gerdrup and Jore 2011 and Aastveit et al. 2014, among others).7 The linear opinion pool has 
the following functional form: 

 

where N denotes the number of models, and Ii,τ denotes the information set used by model i 
at time τ to produce the density forecast f (yτ,h) for variable y at forecasting horizon h, using 
non-negative combination weights wi,τ,h that sum to 1.8  

The remaining question is how to specify the weights. There are many different ways to 
construct valid weights, and to simplify this process we choose weights that fit into three 
broad categories of increasing complexity. First, we use equal weights that do not leverage 
any information about relative forecast performance. Second, we weight the densities using 
scoring rules such that better-performing models get more weight, but we do not take into 
account correlation across forecasts. We use two scoring methods: log scores and the 
continuous rank probability score (CRPS). Third, we calculate optimal weights that maximize 
the log score of the combined forecasts. This is done using the MM method used in Conflitti, 
De Mol and Giannone (2015). Table 1 shows the expressions for the weights, and in the case 
of MM weights the objective function. 

 
6 We do not use rolling estimation with the MIDAS models because the computational intensity of maximum 

likelihood estimation significantly increases the time for backtesting. 
7 Another option would be the logistic pool. However, it imposes unimodality on the combined density, and we 

would prefer to be as agnostic as possible about the form of the final combined density. 
8 If the weights do not have these properties, the combined density will not be valid—that is, it will not integrate 

to 1. 
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Table 1: Combination methods  

 
Note: wi,τ,h are weights for model i, at time τ and horizon h. N is the number of models, p̂ refers to the density forecast 
evaluated at the outturn, and λ is the Lagrange multiplier for the constraint that the vector of weights, w, sums to 1. 
CRPS stands for continuous rank probability score. 

Using the above weights, densities are combined in both one- and two-step procedures. The 
one-step procedure combines densities across all model-level forecasts to create a final 
overall density. The two-step procedure first combines model-level forecasts within the same 
class and then joins these four combined forecasts across classes. The motivation behind the 
two-stage procedure is that the number of models in each class can differ greatly, and a one-
stage combination method could overweight classes with many models. Figures 1a and 1b 
visualize the combination methods. 

Figure 1: Illustration of combination methods 
a. One-stage combination method 
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b. Two-stage combination method 

 

3.3 Out-of-sample design 
To evaluate a forecasting model, we need forecasts to evaluate. Given the limited availability 
of real-time macroeconomic data in Canada, we simulate the history of forecasts in pseudo 
real time over the past 20 years. This exercise aims to recreate the historical flow of data so 
that we can simulate what the forecasts would have been. We do this by recreating history in 
two-week blocks such that we simulate data availability over history. We create a forecast for 
the next two values of real GDP growth after each two-week block of new data. With each 
successive forecast, the models and combination weights are re-estimated. The exercise 
remains a pseudo out-of-sample exercise because we use final revised data and therefore do 
not consider data revisions. While this is less than ideal (see Croushore and Stark 2003; Stark 
and Croushore 2002; and Orphanides 2001), real-time data for Canada are severely limited. 
Internally at the Bank of Canada, real-time data have been collected for several years, and we 
leverage that data in section 5 to conduct our nowcasting exercise in true real time and 
compare the results with their pseudo-real-time counterparts.9  

Figure 2 illustrates the timing of releases throughout the six-month forecast cycle. The 
model’s performance is assessed 12 times over the six months, representing a prediction 
roughly every two weeks. This example shows a forecast cycle starting in December after the 
release of the third-quarter national accounts data targeting the first-quarter figures for the 
upcoming year. This exercise is designed to replicate the forecast cycle faced by a 
practitioner. The cycle starts in December, when the analyst is forecasting the first-quarter 
figures. Throughout the first quarter, the analyst is in the nowcast phase, and from April 

 
9 In 2018, Champagne, Poulin-Bellisle and Sekkel 2018 introduced a novel real-time dataset using Bank of Canada 

staff economic projection databases. This real-time dataset, however, contains only quarterly economic variables 
leveraged by the Bank’s projection model infrastructure. It does not contain the key monthly indicators required 
for our analysis in this paper. We discuss the alternative real-time dataset used later in this paper in section 5. 
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through to the May national accounts data release, the analyst is backcasting the first-quarter 
figures while awaiting publication of the official figures. 

Figure 2: Overview of the forecast cycle 

 

Our training sample—the data used to estimate the models—begins in the second quarter of 
1980 and ends in the first quarter of 2000. We do not include a training period for the 
weights. This is because we are combining forecasts in two stages, and having a training 
period for each stage would drastically reduce the sample size. However, we find that the 
weights stabilize very quickly for both the performance weighting methods and the optimal 
weights.10 Section 4 shows the evolution of the model weights over time. As a result, our out-
of-sample forecast exercise begins in the second quarter of 2000 and runs until the fourth 
quarter of 2019. 

4 Results 
This section examines the results of our out-of-sample forecasting exercise. In section 4.1, we 
first examine the calibration and sharpness results of our candidate densities. Section 4.2 then 
looks at the best candidate specification in detail. Section 5 showcases the results of our 
exercise when repeated on a limited subsample of real-time data. 

4.1 Assessing nowcast accuracy: Pseudo real time 

4.1.1 Calibration 
Calibration (also referred to as absolute accuracy) is achieved when a predictive density 
properly characterizes the probability of the events that it is predicting. For example, events 
predicted to occur with a 20% probability should be observed in the data roughly 20% of the 
time. More formally, calibration refers to the statistical consistency between the predictive 
distributions and the observations of the data they are predicting (Gneiting and Raftery 2007). 
Calibration is a critical property in the context of using density predictions in a policy-making 
environment because it is necessary to make accurate probabilistic statements. In a practical 

 
10 The MM algorithm is designed to work with N > T, so the small sample size is not a computational issue. 
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sense, a prediction that real GDP has a 25% chance of contracting is useful only if over history 
that prediction comes true roughly 25% of the time (i.e., is calibrated). We assess calibration 
using probability integral transforms (PITs) (Diebold, Gunther and Tay 1998), using the tests 
proposed in Knüppel (2015) and in Rossi and Sekhposyan (2019). 

In the end, we find that only predictive densities created using one-stage MM weights are 
calibrated. Table 2 shows the p-values from the PITs-based test proposed by Knüppel 2015, 
which is robust to serial dependence between the one- and multi-step-ahead density 
forecasts. We find solid evidence that the one-stage MM combination densities are well 
calibrated by not rejecting the null hypothesis of calibration at most forecast horizons. All 
other combination methods are found to be poorly calibrated, strongly rejecting the null 
hypothesis at the 5% of confidence level for most, if not all, forecast horizons. While evidence 
of calibration is not broad-based, the fact that the MM weighting method is found to be the 
superior method is unsurprising, given that they are algorithmically derived to optimize the 
log score of combined density, providing greater scope for the weights to reflect the best 
possible combination of the underlying densities. We also discuss in section 5 that we find 
broader evidence of calibration using a restricted sample from 2013 onward. Indeed, we find 
that the 2008–09 global financial crisis plays an important role in how calibrated the non-MM 
weighting methods are found to be. We view the robustness of the one-step MM weights’ 
calibration to the global financial crisis as strong evidence of its usefulness as a tool in a 
policy-making environment. 

Visual inspection of the PITs illustrates the statistical results. Chart 1 shows the PITs at each 
out-of-sample forecast horizon for the densities produced using one-stage MM weights. 
Note that that when the PITs are uniformly distributed, the predictions are said to be 
calibrated. The dotted lines around the uniform benchmark are the 90%, 95% and 99% 
confidence intervals constructed using the test statistics proposed by Rossi and Sekhposyan 
(2019). The PITs for the remaining combination methods can be found in Appendix A.2. As 
suggested by the results of the Knüppel test, the PITs for the one-stage MM combination 
density are insignificantly different from the uniform benchmark. This is generally not true for 
the other combination methods. Overall, our finding that at least one combined predictive 
density is consistently calibrated is an important result in the context of our framework being 
suitable for forecasting in a policy-making environment. 
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Table 2: Calibration by combination methods: Knüppel (2015) p-values 

 
Note: The abbreviations in the column headers are SA, simple average; CRPS, continuous rank probability score; MM, minorization-
maximization.    
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Chart 1: Probability integral transforms for one-stage minorization-maximization 
combination density 

 
Note: These charts compare probability integral transforms (PITs, plotted in blue as “mm alg”) at all forecast horizons as described in 
section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the cumulative distribution function (CDF), while 
the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the uniform benchmark are the 90% (long-
dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using the test statistics proposed by 
Rossi and Sekhposyan (2019). 



13  

 

4.1.2 Sharpness 
Sharpness (also known as relative accuracy) refers to the concentration of the predictive 
density around the eventual outturn. It can be thought of as the density forecasting analog of 
the root mean squared forecast error. Sharpness measures allow us to compare the relative 
accuracy of the predictive densities. We evaluate sharpness using two scoring rules: log 
scores and the CRPS. The log score is equal to the logarithm of a probability density function 
evaluated at the outturn of the forecast, while the CRPS is a measure of the integrated 
squared difference between the cumulative distribution function of the forecasts and the 
corresponding cumulative distribution function of the observations. Higher log scores and 
lower CRPS imply more accurate predictions. For a detailed discussion of scoring rules, see 
Gneiting and Raftery (2007) or Corradi and Swanson (2006). 

Charts 2 and 3 plot the average log scores and CRPS for all eight combination methods over 
the 12 out-of-sample forecasting periods in our exercise. Similar to the wider nowcasting 
literature, we find that forecast accuracy improves for all combination methods as the 
prediction is updated with new data releases, especially those for the reference quarter. 
Furthermore, we find that the largest gains in accuracy come from the release of GDP-by-
industry data for the first and second months of the target quarter (eight and four weeks 
ahead of the release of the quarterly GDP figure, respectively), consistent with the findings of 
Chernis and Sekkel 2018 in the point-forecast setting. 

Chart 2: Average log scores of the combined predictive densities 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 
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Chart 3: Continuous rank probability scores of the combined predictive densities 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 

 

The sharpest predictions are generally made by the two-stage log score combination 
densities, with the two-stage MM combination sometimes outperforming them at shorter 
forecast horizons. However, as illustrated by charts 2 and 3, the sharpness of the different 
combination methods varies mostly in the first 8 weeks of the forecasting cycle, especially as 
measured by the CRPS. By about 12 weeks ahead of the release of GDP for the quarter being 
predicted, the accuracy of the eight combination forecasts is fairly similar. 

Overall, our results ultimately point to a favourable trade-off between calibration and 
sharpness. The one-stage MM combination density, the only candidate specification with 
robust evidence of calibration, is never the most accurate density forecast. However, it is 
encouraging that over time its log score and CRPS converge toward the most accurate 
combination density, and by approximately halfway through the forecasting horizon its 
difference becomes negligible. 

4.2 Examining the one-stage minorization-maximization 
combination weights 
In this section, we examine the weights produced by the one-stage MM algorithm. We focus 
the discussion on the one-stage MM weights since, as the only combination method with 
robust evidence of calibration, the one-stage MM weights provide the only candidate 
specification that meets all the criteria for being useful in a policy-making environment. 

Chart 4 shows the weights computed from the one-stage MM algorithm at the end of the 
backtest sample at all 12 horizons. Chart A-10, A-11 and A-12 in Appendix A.4 show the 
evolution of these weights at the first (i.e., forecast), seventh (i.e., nowcast), and twelfth (i.e., 
backcast) prediction horizons, respectively. Overall, we find that the one-stage MM algorithm 
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places roughly equal weights across the ARX, MIDAS and BVAR blocks for the initial forecast. 
Perhaps the most notable observation drawn from Chart 4 is the progressive dominance of 
the BVAR models, which see their class weight increase from 27% at the first horizon to 76% 
at the last. That said, 22 models receive above-average weights at the final horizon compared. 
However, the largest weight given to any one model at the last horizon is 18%, whereas the 
highest at the first horizon is 31%. Generally speaking, we find that the estimated weights can 
be divided into three distinct groups: before the global financial crisis, during the crisis and 
after the crisis. The weights in the first two periods (before and during the crisis) are fairly 
concentrated, with relatively fewer models receiving most of the weight. After the global 
financial crisis, however, weights become increasingly spread over many different models at 
most prediction horizons. 

The increasing weight placed on various models in the BVAR block appears to be due to the 
performance of these models benefitting the most from the receipt of monthly GDP data, 
especially for the reference quarter during the backcast period of our prediction cycle. 
Indeed, inspection of the weights shows that the MM algorithm places much larger weights 
on the best performing models (i.e., those with better sharpness metrics) and also reacts 
quickly to changes in model performance. These are desirable characteristics for a nowcasting 
model, since we want to use a wide set of information but also emphasize the most useful 
information at any given time. 

Chart 4: One-stage minorization-maximization combination weights, end-of-
sample, all horizons 
 

 
Note: The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. NAC on the vertical axis refers to “national accounts” (i.e., weeks until 
the release of GDP data). 
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4.2.1 An indicator of risk 
Another aspect of a density nowcast that is useful to policy-makers is the ability to signal risks 
to the economy. As we argue throughout this paper, a prediction using only a measure of 
central tendency is insufficient for a policy-maker since it does not fully consider the 
uncertainty around possible outcomes. One of the most important pieces of information 
missing from this type of prediction is the quantification of tail risks. Standard approaches to 
creating predictive densities would not be informative about tail risks, which typically 
resemble a normal distribution. However, a density combination approach could address the 
shortfalls of these standard approaches by creating densities that can be non-normal and can 
vary depending on the underlying data. In this section we will study how well the 
combinations signal risk by creating measures of downside risk and studying them 
throughout the out-of-sample exercise. 

We focus on downside risk following the results from Adrian, Boyarchenko and Giannone 
(2019), who show that downside risks tend to be more important over history compared with 
upside risks. Downside entropy quantifies downside uncertainty as the additional probability 
mass on the left of the predictive distribution relative to the unconditional density of GDP. 

More formally, we denote ĝyt+h   as the unconditional distribution of GDP growth and f̂yt+h 

(y|xt) as the predictive density at time t for predictive horizon h. 𝐹𝐹�𝑦𝑦𝑡𝑡+ℎ(𝑦𝑦|𝑥𝑥𝑡𝑡) is the cumulative 

distribution associated with   f̂yt+h (y|xt), and  𝐹𝐹�𝑦𝑦𝑡𝑡+ℎ(0.5|𝑥𝑥𝑡𝑡) is the conditional median.  

 

 

is the measure of downside entropy that intuitively measures the divergence between 
the unconditional distribution and the conditional (predictive) distribution. When downside 
entropy is high, the conditional density assigns positive probability to more extreme left tail 
growth than the unconditional density does. Similarly, one could construct a measure for 
upside entropy. However, as noted, Adrian, Boyarchenko and Giannone (2019) find that 
upside risk to the conditional distribution of GDP tends to be less empirically important. 

Chart 5 shows the downside entropy measure for the nowcast horizon (fifth forecast) from 
the one-stage MM algorithm combination.11 The chart shows that the measure spikes before 
and during significant economic events. For example, the measure increases before the global 
financial crisis and the 2015 oil price shock and then peaks in the midst of these events. It is 

 
11 Other horizons show similar results. 
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important to note that this reflects both downside risk in the forecast from non-normality 
(skew) and a shift to the left in the location of the prediction conditional on the available data. 
Regardless, this suggests that predictions have valuable information about emerging risks to 
the economy. 

Chart 5: Downside entropy rises during periods of economic stress  

 

5 Real-time results 
Until recently, real-time macroeconomic data have not been available at a monthly frequency 
in Canada. At the Bank of Canada, staff have been collecting real-time vintages for most 
major macroeconomic time series for several years. This allowed us to run a limited real-time 
experiment for this paper starting in the second quarter of 2013. This is the first such real-
time evaluation done for nowcasting in Canada.12  We then compare these results to a similar 
pseudo-real-time exercise. This exercise runs from the second quarter of 2013 to the fourth 
quarter of 2019 and includes all real-time data available for the series presented in Appendix 
A.1. For clarity, the calibration and sharpness metrics reported in this section are computed by 
evaluating the real-time density predictions against the first vintage of real GDP growth (i.e., 
the vintage consistent with the real-time data being used to generate the predictions). 

We find similar results compared with the full-sample exercise in the sense that the MM 
algorithm is calibrated and there are no large differences in the scores across combinations. 

 
12 While other real-time data sources exist—for example, see Champagne, Poulin-Bellisle and Sekkel (2018)—this is 

the only one with monthly data that are critical for nowcasting. 
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However, we find that both the real-time and the pseudo-real-time results show more 
evidence of calibration, likely due to the subsample used. In both cases almost all 
combination methods show evidence of calibration. The results are not unambiguously 
better: the sharpness metrics deteriorate in real time, and the gains that coincide with the 
receipt of monthly GDP data for the reference quarter are meaningfully reduced. This is 
because revisions to the monthly GDP in real time can distort the indicator’s signal for 
quarterly real GDP growth. We find some differences in the combination weights when 
estimated in real time. The weights are more evenly spread across models and increase the 
most in models that contain series that are either seldom or not revised, such as Labour Force 
Survey data and rig counts. Our real-time results highlight the importance of real-time data in 
model evaluation and reinforce the need to continue growing the availability of real-time 
data in Canada. We examine these findings in more depth below, and we conclude this 
section with a case study of the real-time performance of our proposed platform through the 
second-quarter 2020 forecast cycle. 

5.1 Calibration 
As mentioned above, we find that the MM algorithm and the other combinations show 
robust evidence of calibration in both real time and pseudo real time (see tables 3 and 4). 
Furthermore, the MM combination methods continue to show the strongest evidence of 
calibration (i.e., the highest p-values), though interestingly the two-stage MM combination 
method’s calibration metrics in real time become very comparable to those of the one-stage 
MM combination. Comparing the pseudo and real-time results, we find relatively small 
differences in the p-values of the Knüppel test. this suggests that the use of pseudo real time 
in our main analysis is unlikely to be qualitatively affecting our finding that the MM algorithm 
provides the best and most calibrated predictive densities. Finally, we find more evidence of 
calibration in the post-2013 sample, which is notably different from the full-sample results, 
where we find calibration only for the MM algorithm. This is likely due to the combination’s 
performance through the global financial crisis and the earlier periods. 
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Table 3: Knüppel (2015) p-values, real time, 2013Q2 to 2019Q4 

 
Note: The abbreviations in the column headers are SA, simple average; CRPS, continuous rank probability score; MM, minorization-
maximization.    

 

Table 4: Knüppel (2015) p-values, pseudo real time, 2013Q2 to 2019Q4 

 
Note: The abbreviations in the column headers are SA, simple average; CRPS, continuous rank probability score; MM, minorization-
maximization.    

 

5.2 Sharpness 
Chart 6 and Chart 8 show the CRPS and log scores from the real-time exercise. We find 
qualitatively similar results in the real-time exercise compared with the pseudo-real-time 
exercise. However, the sharpness metrics unambiguously deteriorate when we use real-time 
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data. Examining the ratio of real-time to pseudo-real-time scores for the CRPS (Chart 7) and 
log scores (Chart 9) shows that sharpness is worse at every forecast horizon for every 
combination method.13 While the reduction in sharpness is small in the first eight horizons 
(generally between 1% and 10% worse), the deterioration becomes much more pronounced 
at the shortest prediction horizons when monthly GDP for the reference quarter is released 
(roughly 35% to 60% worse). While dramatic, these numbers are unsurprising given the 
importance of monthly GDP and the fact that monthly revisions to macroeconomic time 
series in real time can be significant between the initial release of the data and the 
publication of the national accounts (Rizzetto 2018). Consequently, our results highlight that 
the accuracy of real-time predictions suffers particularly when revisions are very large or when 
several series are revised at once, especially for highly informative series such as monthly 
GDP. Fortunately, revisions are generally unbiased; so, apart from reducing sharpness, the use 
of real-time data does not appear to present any additional obstacles to our framework. 

  

 
13 A ratio greater than 1 signals that accuracy is worse in real time. 
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Chart 6: Real-time continuous rank probability score, 2013Q2 to 2019Q4 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 

 

Chart 7: Ratio of real-time to pseudo-real-time continuous rank probability score, 
2013Q2 to 2019Q4 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 
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Chart 8: Real-time log score, 2013Q2 to 2019Q4 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 

 

Chart 9: Ratio of real-time to pseudo-real-time log scores, 2013Q2 to 2019Q4 

 
Note: The abbreviations in the legend are SA, simple average; CRPS, continuous rank probability score; LS, log score; MM, 
minorization-maximization. When paired, they refer to the two-stage combinations of each metric. 
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5.3 Weights 
In this section we examine the weights calculated in real time. Overall, we find that the real-
time estimation of our platform generates a wider distribution of weights, and models with 
unrevised data are given more weight. Charts 10 and 11 show the real-time and pseudo-real-
time weights for all forecast horizons in the fourth quarter of 2019 (i.e., at the end of the out-
of-sample exercise period). Appendix A.4.1 shows the evolution of the weights over the real-
time subsample at two horizons, namely, 24 weeks and 2 weeks ahead of the release of GDP. 

First, Chart 10 shows a fairly large pool of models receiving non-negligible weights in our 
shortened sample relative to those in pseudo real time (Chart 11). For example, in the first 
forecast horizon in the real-time estimation, 15 models are given an above-average weight in 
the predictive density (i.e., greater than 1 ). Contrast this with the pseudo-real-time weights, 
which show fewer models getting substantial weight, and almost all of those are BVARs. Only 
7 models in the pseudo-real-time estimation get more than 1/98 weight. This difference 
increases as the prediction horizons progress: by the final forecast horizon, 23 models receive 
above-average weights in the real-time estimation, compared with only 8 models in pseudo 
real time. 

Moreover, these figures reinforce our earlier finding that the BVAR block is favoured by the 
MM algorithm in pseudo real time, though this result is true across all 12 forecast horizons 
rather than 4 to 6 horizons in the full-sample estimation. This appears to be driven by the fact 
that the BVAR’s sharpness tends to benefit more from the use of revised data than the other 
classes and, in turn, is likely due to a larger reliance on the monthly GDP data, whose signal 
deteriorates in real time because of revisions. The more even distribution of weights across all 
model classes in our full-sample pseudo-real-time results suggests to us that the complete 
dominance of the BVAR block shown in Chart 11 is largely a function of our subsample. That 
said, as noted in Section 4.2, in the final four forecasting periods, the BVAR block receives 
approximately 75% of the weight in the predictive densities by the end of the forecasting 
exercise in the fourth quarter of 2019. Our real-time results suggest that these weights could 
be somewhat biased upward due to the use of pseudo-real-time data. 

Interestingly, several of the models that see their weights increase significantly in the real-
time estimation are those that leverage indicators that are seldom revised or not revised at 
all, for example Labour Force Survey data (which are revised following the release of final 
population estimates after each census) or unrevised data such as Baker Hughes’ drilling rig 
counts, the US PMI, and stock market data. A possible explanation is that the pseudo-real-
time estimation is boosting weights on models that rely on data that provide a good signal 
after revisions but not in real time. However, we also find that the weight increases on several 
leading-indicator and MIDAS models that use data subject to revisions, namely, data on 
manufacturing sales, retail sales (both Canadian and US), terms of trade and US industrial 
production. 
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Chart 10: Real-time one-stage minorization-maximization combination weights, 
end-of-sample, all horizons 

 
Note: The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. 

Chart 11: Pseudo-real-time one-stage minorization-maximization combination 
weights, end-of-sample, all horizons 

 
Note: The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. 
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5.4 Case study: Real-time predictions for the second 
quarter of 2020 
This section studies predictions during the COVID-19 pandemic.14 The pandemic presents an 
excellent opportunity to study the predictions from the model in a time of extreme 
uncertainty and economic importance. Chart 12 shows that despite the historic nature of the 
38.7% (quarterly, annualized rate) contraction in real GDP observed in the second quarter of 
2020, the density combination platform presented in this paper did a remarkably good job of 
reacting to the data and generating predictions equally as historic as the eventual outturn of 
GDP growth.15  

The first panel of Chart 12 illustrates the predictive densities generated at the end of February 
and March 2020. At that time, few hard data were available for the first quarter of 2020, let 
alone the second quarter; as a result, the density predictions remained centred just above 
zero despite the imposition of containment measures in many major jurisdictions across 
Canada. Of course, the deterioration in the densities resulting from the weakness observed in 
the more timely data received in March and April was not sufficient for the models to predict 
the full magnitude of the contraction in GDP that was to come . That said, by April 29, 2020—
a day before the release of February’s monthly GDP data—the growing left tail of the 
predictive density suggested an 80% probability of real GDP contracting. Moreover, it had 
already pulled down its mean prediction to -9.7%, which at that time already marked the 
sharpest quarterly decline in real GDP ever recorded. Over the course of May 2020, the 
ongoing deterioration across virtually all indicators moved the densities into unprecedented 
negative territory. First was the Labour Force Survey data released on May 8, 2020, which 
pulled the mean of the densities down to -18.5%. This was followed by the Monthly Survey of 
Manufacturing data released on May 14, which resulted in a mean of -28%, a median of -37% 
and a probability of contraction of 80%—and all of this even before the release of March’s 
initial contraction in real GDP. The nowcast for the second quarter of 2020 as of May 29, 2020 
(as shown in the centre panel of Chart 12) shows the density prediction after incorporating 
March’s observation for monthly GDP, which recorded an historic decline of 7.3% (monthly, 
unannualized rate). This observation edged the mean of the predictive density down further 
to -32%. More importantly, however, it shifted the entire mass of the predictive distribution 
into negative territory, predicting that a contraction in real GDP was essentially certain, all 
without having any GDP data for the actual reference quarter, the second quarter of 2020. 

  

 
14 So far, we have omitted analysis of the pandemic since it features large outliers that, beyond worsening the 

sharpness results, do not substantively change the results. 
15 For the remainder of this section, all growth rates are expressed at quarterly annualized rates unless otherwise 

noted. 
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Chart 12: Predictive densities for 2020Q2 
Forecast in March Nowcast in May Backcast in July 

 

 

Note: Q/Q refers to quarter-over-quarter percent change. SAAR refers to seasonally adjusted at annual rates. 

 

Of course, judgement would allow practitioners to anticipate the weakness in these variables 
in an even more timely fashion than the models through the use of news-based information 
(e.g., announcements of containment measures) and high-frequency data (such as the daily 
or weekly transaction-level spending data being leveraged by several commercial banks). 
Nonetheless, the real-time performance of the judgement-free density combinations in the 
second quarter of 2020, even without these sources of news, speaks to the potential for this 
as a nowcasting tool. However, this episode does highlight the importance of off-model 
information and unconventional data, which could be an avenue to improve the combined 
predictive densities. 

6 Conclusion 
In this paper, we propose a new platform for generating and combining predictive densities 
for Canadian real GDP growth. In addition to the combined predictive densities being 
accurate (sharp), we also find a combination method that produces robustly calibrated 
densities—the one-stage MM weighting. This is an important result because it confirms that 
density nowcasting provides a viable and, we argue, far superior alternative to point forecasts 
in a policy-making setting. The robustness of our findings is reinforced by evaluating the 
framework on a novel real-time dataset (a first for Canada), which also reinforces the 
importance of data revisions to nowcasting accuracy. Calibrated predictive densities mean 
that policy-makers can confidently leverage the information from the predictive density to 
evaluate uncertainty, which, in turn, can help identify and quantify tail risks. None of this is 
possible with traditional point forecasting tools. Overall, we view our findings as an important 
step forward in the nowcasting of Canadian real GDP growth. We believe that monitoring the 
evolution of these predictive densities will prove a useful tool for policy-makers in Canada.
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A Appendix 

A.1 Data appendix

Table A-1: Data table 

Series Release Start date Transformation* 
GDP at market prices (quarterly) End Q2-61 4 
Monthly GDP End Jan-81 3 
Canadian motor vehicle production Middle Jan-93 5 
Finished goods price index Beginning Jan-72 3 
Canadian terms of trade Beginning Jan-81 3 
Manufacturing new orders Middle Jan-81 5 
Railway carloadings End Jan-70 5 
US industrial production Middle Jan-21 3 
US retail sales Middle Jan-67 3 
Wholesale trade Middle Jan-81 3 
Total actual hours worked Beginning Jan-76 3 
Retail trade End Jan-81 3 
Canadian car sales Beginning Jan-46 3 
Housing starts Middle Jan-56 3 
US housing starts Middle Jan-59 3 
Building permits Beginning Jan-48 5 
Merchandise exports Beginning Jan-68 3 
Merchandise imports Beginning Jan-68 3 
Toronto Stock Exchange Beginning Jan-56 3 
Consumer confidence index End Mar-61 3 
Global purchasing managers’ index Beginning Jan-98 3 
US car sales Beginning Jan-76 5 
Food services and drinking places prices End Jan-81 5 
Employment rate—Labour Force Survey Beginning Jan-76 2 
Chicago Fed National Activity Index Beginning Mar-67 0 
West Texas Intermediate crude oil prices End Jan-72 3 
Baker Hughes rig count Middle Jan-68 5 
Baltic Dry Index Beginning Jan-85 3 
Manufacturing Sales Indicator Middle Jan-97 5 
US Purchasing Managers’ Index Beginning Jan-48 3 
Monthly residential unit sales—MLS Middle Jan-80 3 

* The transformation applied to each of the series: 0 = no change, 1 = log level, 2 = M/M difference, 3 = M/M log difference, 4 = Q/Q log difference, 5 = seasonally
adjusted (x12) M/M log difference, 6 = term spread, 7 = two-month moving average 



A.2 Results appendix

A.2.1 Probability integral transforms for the cumulative distribution functions of
the combined densities with Rossi and Sekhposyan (2019) confidence intervals

Chart A-1: Probability integral transforms—simple average combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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Chart A-2: Probability integral transforms—one-stage log score combinations 
 

 
  

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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Chart A-3: Probability integral transforms—one-stage continuous rank probability score 
combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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Chart A-4: Probability integral transforms—two-stage simple average combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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Chart A-5: Probability integral transforms—two-stage log score combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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Chart A-6: Probability integral transforms—two-stage continuous rank probably score combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 



 

Chart A-7: Probability integral transforms—two-stage minorization-maximization combinations 

Note: These charts compare probability integral transforms (PITs) for the stated combination method (plotted in blue) against the uniform 
benchmark at all forecast horizons as described in section 3.3. MM refers to minorization-maximization. The x-axis reflects values of the 
cumulative distribution function (CDF), while the y-axis shows the value of the PITs at each value of the CDF. The dotted lines around the 
uniform benchmark are the 90% (long-dashed line), 95% (short-dashed line) and 99% (dotted line) confidence intervals constructed using 
the test statistics proposed by Rossi and Sekhposyan (2019). 
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A.2.2 Comparing combination methods and individual models

As discussed in section 1, both theoretical motivations and empirical evidence support combining density forecasts. 

This section examines the benefits of combining predictions in the Canadian context by comparing the performance 

of the combined density predictions with those from the individual models. 

Chart A-9 plots the continuous rank probability score (CRPS) of the one-stage minorization-maximization (MM) 

combination (solid line) against the range of CRPS from the individual models (shaded area). The MM algorithm 

predictions, across all forecast horizons, are in the bottom 20% of CRPS scores, and for 60% of the time they are in 

the bottom 10%. This indicates that the MM combination methods create relatively accurate predictions. 

While some individual models are relatively more accurate than the one-stage MM combination density, generally 

speaking the most accurate models are not calibrated. To illustrate the point, Table A-2 displays the best-performing 

model at a given prediction horizon and the associated Knüppel test results. The far-right column shows the CRPS  

ratio relative to the one-stage MM algorithm. These results suggest that the best performing models could outperform 

the MM by at most 12%, but the null hypothesis of calibrated densities is rejected in most cases at the 5% level. 

A complication with this analysis is that at any forecast horizon there are a handful of models that may outperform  

the one-stage MM algorithm, and we are only comparing against the best. Closer inspection reveals that there are  

135 occurrences of a model outperforming the combination over all the forecast horizons, but many of these models 

only outperform the MM slightly and for a single horizon. A different way to make this comparison would be to sum 

the CRPS across all forecast horizons and compare models against combination methods. Doing this, we find only 

three of the four dynamic factor models (DFMs) outperform the one-stage MM algorithm—and by a maximum of 

6%—and that the models do not show evidence of calibration over most forecast horizons.1 

These results suggest that the strategy of combining density forecasts is a reliable method of producing sharp and 

calibrated predictions. The one-stage MM algorithm does not always produce the sharpest predictions, but they are 

among the sharpest while maintaining calibration. In short, the one-stage MM algorithm is the method that maximizes 

sharpness subject to calibration. Moreover, the trade-off for achieving calibration is extremely small (amounting to 

between one-tenth and one-hundredth of a percentage point in annualized real GDP growth). 

1 Over the 36 forecast horizons, there are only 8 cases where the Knüppel test is passed at 5% and only 4 cases where it is passed at 10%. 
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Chart A-9: Continuous rank probability score—one-stage minorization-maximization combination 
compared with range of model 
 

 
 
Note: CRPS refers to continuous rank probability score and MM refers to minorization-maximization. The shaded area shows the range of CRPS computed from each of 
the 98 models underpinning the one-stage MM combination, shown in black. 
 
 

Table A-2: Relative performance of minorization-maximization algorithm 
 

 
Note: Red cells highlight p-values that reject the null hypothesis of calibration at the 5% confidence level. Yellow cells highlight p-values between 5% and 10%, and green 
cells highlight p-values that do not reject calibration at the 10% significance level. 
 

  

Predictive accuracy (CRPS) 
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A.3 Model appendix 
 
A.3.1 Leading indicators 
 
A commonly used nowcasting model is the leading indicator or bridge model. These simple models are an 

autoregression plus an additional indicator. More formally, 

 
where xi,t+h are the remaining monthly indicators. 

Density forecasts are produced with a block wild bootstrap procedure. For each bootstrap iteration,  

the following procedure is followed. 

First, the explanatory variables are forecast out to the required horizon. This process starts by estimating  

the following equation: 

 
Using the model parameters, generate the bootstrap data 𝑥𝑥�𝑡𝑡 with the following equation: 
 

 
 

where 𝜖𝜖̂t is drawn from the vector of residuals (𝜖𝜖) in blocks of size h, and each element is multiplied  

 by a variable drawn from the Rademacher distribution f (k). 

 
Using the bootstrapped data x̂t, re-estimate the auxiliary equation (2) α̈, ρ̈, �̈�𝜎𝜖𝜖 . 
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Retrieve the fitted values �̈�𝑥𝑡𝑡 for t = 1...T...T + h from an equation using the bootstrapped     parameters, 

where 𝜖𝜖�̈�𝑡 is drawn from the vector of residuals (𝜖𝜖) in blocks of size h, and each element is multiplied by a 

variable drawn from the Rademacher distribution f (k). 

Equation 1 is estimated, and parameters α̂, ρ̂, β̂ and residuals 𝜀𝜀�̂�𝑡𝑚𝑚   are retrieved.

Using these data, the bootstrap dataset 𝑦𝑦�𝑡𝑡 is constructed from the formula 

where 𝜀𝜀�̂�𝑡𝑚𝑚 is drawn f rom the vector of residuals (ε) in blocks of size h, and each element is multiplied   

by a variable drawn from the Rademacher distribution f (k). 

Using the bootstrapped data ŷt and �̈�𝑥𝑡𝑡+ℎ𝑚𝑚,  the bootstrapped model parameters  α̈,  ρ̈,  β̈ and residuals 𝜀𝜀�̈�𝑡𝑚𝑚

are retrieved. 

The forecast is then 

We then convert the iterated monthly forecasts for 𝑦𝑦𝑡𝑡𝑚𝑚 into quarterly predictions for real GDP growth. 

Using equation 8 below, we follow the same block wild bootstrap procedure discussed above. This is necessary 

since monthly GDP growth expressed at quarterly rates is not identical          to quarterly real GDP growth as 

published in the national accounts (see section 2 for additional details). 

GDPquarterly,t = αGDPquarterly + βGDPmonthly GDPmonthly,t + εGDPquarterly,t     (8) 

A.3.2 Mixed data sampling (MIDAS) models

A more modern benchmark model is the MIDAS regression (Ghysels, Santa-Clara and Valkanov 2004). The 

defining feature of MIDAS models is the way they deal with mixed frequencies. These models use a  

polynomial weighting function to link high-frequency regressors onto a low-frequency regressand. This  

makes the MIDAS regression a direct forecasting tool, which does not explicitly model the dynamics  

(7)
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of the indicator. Instead, the MIDAS directly relates future quarterly GDP to present and lagged high-

frequency indicators. This necessitates a model for each forecast horizon. 

The basic model for forecasting hq quarters ahead with hq = hm/3 is: 

 

 
where ytm is GDP growth and 𝑥𝑥𝑡𝑡𝑚𝑚

(3)   is the corresponding skip-sampled monthly indicator, Lm is the  

monthly lag operator, and w = Tx − Ty. The lag polynomial b(Lm, θ) is defined as: 

 

 
The parsimonious parametrization of the lagged coefficients c(k; θ) is one of the key features of MIDAS  

models. While there are several common ways to parameterize the lagged coefficients, we choose the  

so-called “Beta Lag”: 

 
and parameters 𝜃𝜃1 and 𝜃𝜃2 govern the shape where  

of the distribution. This parametrization is quite general and can take various shapes with only a few 

parameters. These include increasing, decreasing or hump-shaped patterns. Furthermore, we restrict the last 

lag to be equal to zero. 

The MIDAS model is estimated using nonlinear least squares (NLS) in a regression of yt onto 

x(3) 
t−h 

for each forecast horizon h = 1, . . . , H.  
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The direct forecast is given by the conditional expectation: 

 
where Tx = Ty + w is such that the most recent observations of the indicator are included in the conditioning  

set of the projection. For example, if we were trying to forecast GDP for the second quarter and the July 

Purchasing Managers Index was available, the regression would include a lead of our indicator. 

Since Canada has a monthly GDP measure, it is necessary to extend the basic MIDAS model  to have  

multiple explanatory variables. Furthermore, we include a low-frequency AR term. The forecasting model  

then becomes 

 
 
 

with 𝑥𝑥1
(3) being monthly GDP, and  𝑥𝑥2

(3) an additional leading indicator. As in the bridge models, we  

take the same set of leading indicators, create a model with each and average the individual  forecasts with 

equal weights to create the MIDAS class forecast. 

To generate predictive densities for the MIDAS models, we employ the same block wild bootstrapping algorithm 

discussed in subsection A.3.1 above. The one exception is that, since the MIDAS model forecasts quarterly GDP 

growth directly, the final step of bootstrapping over the monthly-to-quarterly bridge equation is not necessary:  

the imperfect mapping between them is covered in the use of monthly GDP as an indicator variable in the 

MIDAS regression. 

 
A.3.3.   Bayesian vector autoregressions 
 
Bayesian vector autoregressions (BVARs) are a staple workhorse model used in economics for both structural  

analysis and, more importantly for this paper’s purposes, forecasting. In a macroeconometric setting, practitioners 

are generally faced with a trade-off between comprehensiveness and parsimony: while one wants  

to include enough data to properly capture the economic mechanisms being modelled, one also wants to avoid  

over-parameterization. A key advantage of Bayesian estima tion of VARs is that it allows the user to work with  

a larger set of explanatory variables by limiting  the number of parameters to be estimated and helping avoid 

over-parameterization. 

In this paper, we estimate VAR(4) models. Each of the VARs is estimated twice, once using the full sample  

of data available at any given point in the out-of-sample evaluations, and another using a rolling window. We 
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present an overview of the model structure below and refer the reader to Koop and Korobilis (2010) and  

Karlsson (2013) for more detailed expositions of BVARs, the Minnesota prior and the sampling algorithms. 

Our VARs follow the traditional form: 

 
Yt = XtA + E. (14) 

 
Let Â be the OLS estimates of A and S = (Y − XÂ)I(Y − XÂ) then Σ̂  = S/(T − K). 

Or, stacking the variables in vector notation, 

 
yt = (IM ⊗ Xt)α +  ϵ , ϵ  ∼ N (0, Σ ⊗ It), (15) 
 

where t = 1 to T, M = 6 and ρ = 4, and K = 1 + Mρ is the number of coefficients in each equation of  

the VAR. 

We also use the Minnesota prior, which results in a posterior of the following form: 

 
α | y ∼ N (ᾱMn, V̄M n), (16) 
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Mn 

Mn 

where 

V̄M n  = [V −1 

 
+ (Σ̂−1  ⊗ (X IX))]−1 (17) 

 

and 

ᾱMn = V̄M n[V −1 αMn + (Σ̂−1  ⊗ X)Iy], (18) 
 

with the prior mean αMn (set equal to 0) and the Minnesota prior covariance matrix V Mn. 

Following Karlsson (2013), we employ algorithm 1 to sample from predictive distribution (treating  

Σ as known) and algorithm 22 to sample α. We generate iterated monthly predictions for the 

variables contained in each BVAR until the end of the second reference quarter being forecast.  

Finally, we convert these monthly GDP forecast profiles into quarterly predictive distributions for 

annualized real GDP growth. 

 
A.3.4 Dynamic factor models  
 
Model set-up 

The model we are estimating is, in general terms, of this form: 

 
y0t =λ0ft + ε0t (19) 

y1t =λ1ft + υt + ε1t (20) 

y2t =1/3λ1ft + 2/3λ1ft−1 + λ1ft−2 + 2/3λ1ft−3 + 1/3λ1ft−4 (21) 

+ 1/3υt + 2/3υt−1 + υt−2 + 2/3υt−3 + 1/3υt−4 + ε2t, (22) 

 
where y0t is a vector of n observables; y1t and y2t are closely related variables (different measures of GDP),  

one quarterly and one monthly; λ0 is a vector of q factor loadings and ft is a vector of q factors, while  

εt ∼ N (0, σε) and υt is a common factor. 

The factor process is: 

 
ft = Aft−1 + ... + Aft−p + ηt (23) 

υ ∼ N (0, συ). (24) 
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ft is a vector of q factors, which follows a VAR process of order p, with ηt ∼ N (0, Ωη). 

Mixed frequencies 

Since this model is used for nowcasting GDP, which is a quarterly frequency, and most of  the predictors we use 

are monthly, we need to modify the model. The technique we use is from Mariano and Murasawa (2003). 

Quarterly series are incorporated into the model by expressing them in terms of their partially observed monthly 

counterparts. Quarterly variable, like GDP (𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡
𝑄𝑄), are expressed as the sum of their unobserved monthly

contributions (𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑀𝑀   ): 

𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡
𝑄𝑄  =  𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑀𝑀 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−1𝑀𝑀  + 𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡−2𝑀𝑀  (25) 

for t = 3, 6, 9, .... define 𝑌𝑌𝑡𝑡
𝑄𝑄  =  100 ×  log(𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡

𝑄𝑄) and 𝑌𝑌𝑡𝑡𝑀𝑀  =  100 ×  log(𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝑀𝑀)

To link yt with the observed quarterly GDP series, we construct a partially observed monthly series: 

yQ = Y Q − Y Q ≈ (Y + Y + Y M ) − (Y M + Y M + Y M )

= yt + 2yt−1 + 3yt−2 + 2yt−3 + yt−4. (26) 

Estimation 

The model is estimated using a Markov chain Monte Carlo scheme iterated 15,000 times, discarding the first 

5,000  draws as burn-in. 

1. Sample (f |y, υ, θ) using a  precision sampler.

2. Sample (υ|y, f, θ) using a  precision sampler.

and use the approximation of Mariano and Murasawa (2003) to obtain:

t−
1
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3. Sample (θ|y, f, υ). 
 

Matrix notation 

Before we explain the precision sampler, we set up the model in matrix form. We begin by writing the joint 

sampling density of f(y|θ, f, υ) by stacking equation 22 over the T time periods: 

Y = ΛF + Hυυ + ε, (27) 
 

where 

 
with Σε ∼ N (0, IT ⊗ ε). Y is a TN × 1 matrix; Λ is a TN × TQ matrix; F is a TQ × 1 matrix;  Hυ is  

a TN × T banded matrix, which includes the mixed frequency approximation of Mariano and Murasawa;  

υ is a T × 1 matrix, and ε is a TN × 1 matrix. The coefficient matrix Λ is a banded matrix stacking the coefficients 

and the lagged coefficients, taking into account the Mariano and Murasawa mixed-frequency approximation. 

Onto the state equation (equation 23), 

 
ft = aft−1 + ... + aft−p + ηt. (28) 

 
We rewrite this using banded matrices. For simplicity, we assume p = 1. 

 

Hf F = ηt, (29) 
 
where 
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f 

 
 

and F ∼ N (0, K−1) where K = Hf
I ΣηHf. 

 
Sampling the states 

We use a precision sampler to sample the latent state variables (Chan and Jeliazkov 2009). 

First, the vector of factors, (f |y, υ, θ), is sampled from a normal distribution with mean Df  and variance Pf : 

 
Pf = K + ΛIΣ−ε 

1Λ Df = P −1[ΛIΣ−ε 
1(Y − Hυυ)]. (30) 

 

Similarly, we sample the common error υ: 

 
Pυ = Συ + Hυ

I Σ−ε 
1Hυ Dυ = Pυ

−1[Hυ
I Σ−ε 

1(Y − ΛF )]. (31) 

 
 
Sampling state parameters 

The state equation is a BVAR with an independent, normal-Wishart prior, and the parameters are estimated  

via Gibbs sampling. The coefficients (α) are estimated with the standard linear regression results. Ft is a vector  

of ft stacked over T (subscripts are included to signify lags). 

(α | Ft, Ωη) ∼ N (α̂, Kα
−1), (32) 

 
where 

 
Kα = Vα

−1 + Ft
I 

 
1(IT  ⊗ Ω−η 

1)Ft−1, 

 
 

α̂ = Kα
−1(Vα

−1α0  + Ft
I 

 
1(IT ⊗ Ω−η 

1)Ft. (33) 
− − 
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Vα is the prior on the covariance of α, and α0 is the prior mean. The covariance matrix is sampled from: 

 

 
 

with v0 as the prior degrees of freedom and S0 as the prior scale matrix. 

 

Sampling observation equation parameters 

In this section, we discuss the estimation of the observation equation parameters. Since the equations  

for y0 are independent, λ0 and σε0 can be sampled with Bayesian linear regression. 

However, some adjustments have to be made for λ1 and σε1,2. Firstly, we estimate 

λ1|y, f, {θ|λ1 ∈/ θ}. 

In matrix form, we can write the equations as Ỹ  = Frλ + υ̃r + ε̃, where 

 

 
where Y1t and Y2t are vectors of y1t and y2t (the two measures of GDP) stacked over T, and Ft is a vector  
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of ft stacked over T (subscripts are included to signify lags). The same is true for υ and ε. 

The mixed- frequency restrictions from Mariano and Murasawa (2003) in the case where q=1 are reflected   

in the following matrix: 

 
 

Since  cov(ft, υt)  =  0  and  we define 𝐹𝐹𝐹𝐹 =  𝐹𝐹�       then  we  can  write  (y | θ, f )  ∼  𝑁𝑁�𝐹𝐹�𝜆𝜆,𝑆𝑆�,  where  

S = Σε+HυΣυHυI .  This means we now have an equation that can be estimated with Bayesian linear regression 

techniques. The variances σ1 and σ2 are sampled from an inverse Wishart restricted to be diagonal. 



48  

A.4 Weights appendix 

To aid the visualization of 98 weights in the following figures, models within each class are shaded using  

a gradient of the same colour. (That is, there are 22 BVAR models represented by 22 shades of blue, 4 DFMs 

represented by 4 shades of red, and so forth.) 

 

Chart A-10: One-stage minorization-maximization combination weights, 24 weeks from release of GDP 
 

 
 
 
Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. 
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Chart A-11: One-stage minorization-maximization combination weights, 12 weeks from release of GDP 

 
Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. 
 
 

Chart A-12: One-stage minorization-maximization combination weights, 2 weeks from release of GDP 
 

 
Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator models; MIDAS, 
mixed-data sampling; BVAR, Bayesian vector autoregression. 
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A.4.1 Real-time weights appendix 
Charts A-13 and A-14 show the evolution of the one-stage MM weights over the course of the limited sample  

at the first forecast horizon (i.e., 24 weeks ahead of the release of GDP data). Charts A-15 and A-16 show the 

same weights at the final forecast horizon (i.e., 2 weeks ahead of the GDP data). 

 

Chart A-13: Real-time one-stage minorization-maximization combination weights, 24 weeks from  
release of GDP 
 

 
Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator 
models; MIDAS, mixed-data sampling; BVAR, Bayesian vector autoregression.  
 

Chart A-14: Pseudo-real-time one-stage minorization-maximization combination weights, 24 weeks  
from release of GDP 

 
Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator 
models; MIDAS, mixed-data sampling; BVAR, Bayesian vector autoregression. 
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Chart A-15: Real-time one-stage minorization-maximization combination weights, 2 weeks from  
release of GDP 
 

 
 

Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator 
models; MIDAS, mixed-data sampling; BVAR, Bayesian vector autoregression. 

 
 
Chart A-16: Pseudo-real-time one-stage minorization-maximization combination weights, 2 weeks  
from release of GDP 

 
 

Note: Weights, shown on the y-axis, sum to 1. The abbreviations in the legend are DFM, dynamic factor models; ARX, autoregressive leading indicator 
models; MIDAS, mixed-data sampling; BVAR, Bayesian vector autoregression.
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