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Abstract 
I study a dynamic model of consumer privacy and platform data collection. In each period, 
consumers choose their level of platform activity. Greater activity generates more information 
about the consumer, thereby increasing platform profits. When the platform can commit to the 
future privacy policy, it collects information by committing to gradually decrease the level of 
privacy protection. In the long run, consumers lose privacy and receive low payoffs but choose 
high activity levels. In contrast, the platform with weaker commitment power may attain the 
commitment outcome or fail to collect any data, depending on consumer expectations 
regarding future privacy protection. 

Topic: Economic models 
JEL codes: D, D8, D82, D83 

 



1 Introduction

Online platforms, such as Amazon, Facebook, Google, and Uber, analyze user activities and collect

a large amount of data. The data collection may improve their services and benefit consumers. At

the same time, it raises concerns for consumers and policymakers, highlighted by recent privacy

scandals and data breaches, such as the Cambridge Analytica data scandal.1

As an example, consider a consumer (she) and a social media platform (it). The consumer

writes posts and reads news on the platform. The platform analyzes her activity and collects data

such as her location and political preferences. The platform can then generate revenue—e.g., via

improved targeted advertising. The consumer faces a trade-off: On the one hand, she enjoys the

service provided by the platform. On the other hand, she may value her privacy and be concerned

about the risk of data leakage, identity theft, and price or non-price discrimination. Such risks are

the “privacy costs” of using the platform. If the consumer anticipates a high privacy cost, she may

use the platform less actively or may not join it. The platform can influence her decision through

its privacy policy— e.g., Facebook committed to not use cookies to track users.2

I model such a situation as a dynamic game between a consumer and a platform. In each period,

the consumer chooses her level of platform activity. Based on the level of activity, the platform

observes a signal about the consumer’s time-invariant type. The informativeness of the signal is

increasing in the activity level, but decreasing in the platform’s privacy level, which specifies the

amount of noise added to the signal. The platform’s profit is increasing, but the consumer’s payoff

is decreasing in the amount of information the platform has collected. As a result the consumer

chooses activity levels that balance the benefits of the service and the privacy costs. Anticipating

her behavior, the platform chooses privacy levels. In the baseline model, the platform commits to

future privacy levels at the beginning of the game.

The main idea is that the consumer has a decreasing marginal privacy cost—i.e., when the

consumer has already lost some privacy, she faces even a lower marginal privacy cost of using the

same platform. For example, if Google already knows a lot about a consumer, she might not care

1In a survey conducted by Pew Research Center, “a majority of Americans report being concerned about the way
their data is being used by companies.” See https://www.pewresearch.org/internet/2019/11/15/
americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/.

2In 2004, Facebook’s privacy policy stated that “we do not and will not use cookies to collect private information
from any user.” https://web.archive.org/web/20050107221705/http://www.thefacebook.
com/policy.php (accessed on July 31, 2020)
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about letting Google Maps track her location today. In an extreme case, if the platform knows

everything, the consumer faces a marginal privacy cost of zero, because her activity no longer

affects what the platform knows about her type.

The main finding is that because of the decreasing marginal cost of losing privacy, a farsighted

consumer eventually gives up all of her privacy, even when she anticipates future privacy choices

of the platform. To induce such an outcome, in early periods the platform commits to not collect

too much data. By doing so, it encourages the consumer to use the service and generate infor-

mation when she has not yet lost her privacy. At the same time, the platform always collects full

information in the long run. By committing to do so, the platform not only increases future profits

but encourages the consumer to generate more information in early periods: Indeed, the consumer

who anticipates future privacy loss faces a lower marginal privacy cost today and uses the platform

more actively. As a result, in the long run, the consumer loses privacy and chooses a high activity

level, regardless of discount factors and the consumer’s value of privacy.

I first establish the above result when the platform’s revenue depends only on information.

However, the result is relevant even if revenue depends on the consumer’s activity. We might

think that if the platform’s revenue comes mainly from consumer activity, it should refrain from

collecting data to encourage the activity of consumers who have privacy concerns. On the contrary,

the platform can collect data, reduce the consumer’s marginal privacy cost, and increase her future

activity levels. As a result even if the platform’s revenue comes mainly from consumer activity,

the equilibrium may still entail a low level of privacy in the long run.

I then study the role of the platform’s commitment power regarding its future privacy choices.

The baseline model assumes that the platform can commit to future privacy levels, in which case

it collects information by committing to high privacy protection in early periods. Under a certain

condition, the platform can attain the same outcome as long as it has one-period commitment

power. However, weaker commitment power may create multiple equilibria: There can also be

an equilibrium in which the platform offers the highest privacy protection and fails to collect any

information. Such an equilibrium captures the platform’s Coasian commitment problem.

The paper has implications for consumer privacy. First, the consumer’s long-run behavior (in

the equilibrium with data collection) is consistent with the so-called privacy paradox: Consumers

express concern about their privacy, but actively share data with third parties (Acquisti et al., 2016).
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The platform’s equilibrium strategy rationalizes how online platforms, such as Facebook, seem to

have expanded the scope of data collection. Second, my results clarify the role of commitment and

expectation in data collection: Depending on consumers’ expectation about their future privacy,

the platform may collect data when consumers highly value their privacy, or it may fail to collect

data when consumers do not much value their privacy.

The rest of the paper is as follows. Section 2 discusses related literature, and Section 3 presents

the model. Section 4 considers the platform with long-run commitment power, and Section 5 con-

siders the platform with one-period commitment power. Section 6 considers extensions, including

the time-varying type of the consumer. All proofs are in the Appendix.

2 Related Literature

The paper relates to three strands of literature. First, it relates to the growing work on consumer pri-

vacy and data collection. Several papers model a platform that collects data in exchange for money

(Acemoglu et al., 2019; Bergemann et al., 2019; Choi et al., 2019; Easley et al., 2018; Ichihashi,

2020). In these papers the data on some consumers reveal information about others. This “data

externality” could lower consumers’ private costs of providing data, leading to an inefficiently high

level of data sharing at equilibrium.3 In my paper, the consumer’s cost of generating information

is decreasing in the stock of data she provided in the past and the amount of data the platform will

collect in the future. To isolate the main economic force of this paper from data externality, I study

a model with one consumer. Several papers, such as Fainmesser et al. (2019), Jullien et al. (2018),

and Argenziano and Bonatti (2020), study the design of privacy regulation or policy. I add to this

literature by studying the dynamics of data collection and the role of the platform’s commitment

power.

Second, the paper relates to the literature on strategic manipulation of information. In partic-

ular, my model relates to career concern models, which originated with Holmström (1999). In

Holmström’s model, a young worker, whose ability has not yet been revealed, works hard to influ-

ence the market’s belief. In my model, a consumer who has not yet lost privacy uses the platform

3Bergemann et al. (2019) also consider an information structure under which the data externality renders the
private cost greater than the social cost, which may lead to an inefficiently low level of data sharing.
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less actively to generate less information. Over time, the information about the consumer and the

worker are revealed, and they have lower incentives to engage in signal jamming. Despite this con-

nection, the two signal jamming activities are different. In career concern models, a worker cares

about the market’s belief about the expected quality. Also, the market wants the worker to engage

in signal jamming (i.e., higher effort), which creates a trade-off between learning about ability and

motivating high efforts (e.g., Hörner and Lambert 2018). In contrast, I abstract away from belief

manipulation (e.g., strategically browsing websites to convince a platform that a consumer has

certain characteristics) and assume that the consumer cares about the platform’s posterior variance

about their type. Also, the platform wants the consumer to engage less in signal jamming. Thus,

the platform prefers to collect information not only to increase profit today, but also to induce high

activity levels in the future. Many of my results stem from this complementarity between data col-

lection and consumer activity, which is absent in career concern models. Recent papers also study

how the agent’s incentive to manipulate information distorts their behavior (Frankel and Kartik,

2019b,a; Bonatti and Cisternas, 2020; Argenziano and Bonatti, 2020; Ball, 2020b). The common

theme of these papers, which also appears in this paper, is that a certain information policy can

mitigate the sender’s incentive to manipulate information.

Finally, the paper relates to the literature on dynamic information design (e.g., Ely (2017),

Smolin (forthcoming), and Ball (2020a)).4 This literature typically considers a policy that provides

information over time to influence the agent’s behavior. In particular, Ball (2020a) highlights

the importance of making future information provision contingent on past actions. In contrast, I

study the dynamic collection of information when the agent’s action generates a signal about their

type. Decreasing marginal privacy cost, which could lower the value of the designer’s commitment

power, has no counterpart in this literature.5

3 Model

I study a dynamic game between a consumer (she) and a platform (it). The consumer uses the

platform’s service to receive benefits, but the usage generates information about her time-invariant

4See, e.g., Kamenica (2019) for a survey of static and dynamic information design.
5Renault et al. (2017) show that a greedy information disclosure policy can be optimal for the sender when the

receivers of information are short-lived.
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type. The platform chooses the level of privacy protection, which is the amount of noise added to

the information generated. The platform provides the service for free and monetizes information.

I model payoffs in a reduced-form way: In the baseline model, the platform prefers more infor-

mation and the consumer prefers less information to be collected. Appendix A microfounds such

preferences, assuming that the platform sells data to third-party sellers that price discriminate the

consumer in the product market.

The formal description is as follows. Time is discrete and infinite, indexed by t ∈ N. The

consumer’s type X is drawn from a normal distribution N (0, σ2
0). The type is realized before

t = 1 and fixed over time. The consumer does not observe X .6 The platform does not observe X

either but receives signals about it.

In each period t ∈ N, the consumer chooses an activity level at from a finite set A ⊂ R+ such

that minA = 0 and amax := maxA > 0. The platform then observes at and a signal st = X + εt,

where εt ∼ N
(

0, 1
at

+ γt

)
. The consumer does not observe the signal.7 A higher at reduces the

variance of εt and makes st more informative about X . Thus, at captures a consumer’s online

activity that generates data, such as browsing and posting content on social media. For a fixed at,

the informativeness of the signal decreases in γt ∈ R+ := R+ ∪ {∞}, which is the privacy level

of the platform in period t. A higher γt implies the platform offers higher privacy protection. If

at = 0 or γt =∞, signal st is totally uninformative. Random variables X and (εt)t∈N are mutually

independent.

The payoffs are as follows. Suppose that the consumer has chosen activity levelsat = (a1, . . . , at) ∈

At and the platform has chosen privacy levels γt = (γ1, . . . , γt) ∈ Rt

+ up to period t. At the end

of period t, the platform receives a payoff of σ2
0 − σ2

t (at,γt) ≥ 0, where σ2
t (at,γt) is the posterior

variance of X given (at,γt) and Bayes’ rule.8 A small σ2
t (at,γt) means that the platform can ac-

curately estimate the consumer’s type, or equivalently, the consumer has the low stock of privacy.

6Even if the consumer privately observes X , all results hold with respect to a pooling equilibrium in which
consumers of all types choose the same activity level after any history. Such an equilibrium exists because the payoff
of each player does not depend on a realization of X . Unobservable X simplifies exposition without changing the
results.

7All the results continue to hold even if signals are public, because the payoff of each player does not depend on
the realization of a signal.

8The equivalent formulation is that the platform observes (at, st), chooses bt ∈ R, and obtains an ex post payoff
of −(X − bt)2, which the platform does not observe. Writing the payoffs in terms of σ2

t simplifies exposition. See
Acemoglu et al. (2019) for further discussion.
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For any t and τ ≤ t, σ2
t (at,γt) is decreasing in aτ , increasing in γτ , and independent of sτ .9 Where

it does not cause confusion, I write σ2
t (at,γt) as σ2

t . The platform discounts future payoffs with

discount factor δP ∈ (0, 1).

The consumer’s flow payoff in period t is U(at,γt) := u(at)− v · [σ2
0 − σ2

t (at,γt)]. The first

term u(at) is her gross benefit of using the platform. We only assume u(a) is strictly increasing in

a ∈ A and u(0) = 0.10 The second term v · [σ2
0 − σ2

t (at,γt)] is a privacy cost, which captures the

negative impact of data collection on the consumer. The parameter v ∈ R++ captures her value of

privacy; it is exogenous and commonly known to the consumer and the platform. The consumer

discounts future payoffs with discount factor δC ∈ [0, 1). I normalize the payoffs so that if at = 0

for all t, the platform and the consumer obtain zero payoffs in all periods.11

The informational assumptions are summarized as follows. The primitives, σ2
0 , A, u(·), and

v, are commonly known. The past activity levels and privacy levels are publicly observable. The

consumer’s type is unobservable, and the signals are observable only to the platform.

I study two games that differ in the timing of moves. One is the game of long-run commitment.

In this game, before t = 1, the platform commits to a privacy policy γ = (γ1, γ2, . . . ) ∈ R∞+ ,

which is publicly observable. Then, in each period t ∈ N the consumer chooses at, and the

platform learns about her type based on the realized signal. In this game, the platform moves

only before t = 1. The other is the game of one-period (or short-run) commitment, in which the

platform and the consumer move sequentially in every period: At the beginning of each period t,

the platform sets γt. After observing γt, the consumer chooses at. Then, the platform observes the

signal, and the game proceeds to period t + 1. In this case, the platform can commit to a privacy

level only for one period.

The solution concept is perfect Bayesian equilibrium in which the platform’s posterior variance

is given by σ2
t (at,γt) after any history (at,γt).12 Additionally, under long-run commitment I focus

9Throughout the paper, “increasing” means “non-decreasing.” Similar conventions apply to “decreasing,”
“higher,” “lower,” and so on.

10As a result, we can more generally assume that the variance of noise εt is 1
g(at)

+ γt for any strictly increasing
g(·) such that g(0) = 0; we can redefine g(a) as an activity level.

11While I do not explicitly model the consumer’s participation decision, we may interpret at = 0 for all t as
non-participation.

12This caveat pins down the payoff-relevant component of the platform’s belief (i.e., σ2
t ) even off the equilib-

rium path. Because σ2
t is determined by the past observable outcome (at,γt), I omit the platform’s belief from the

description of equilibrium.
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on equilibrium in which the consumer chooses the largest activity levels.13 For clarity, under long-

run commitment, I use “optimal policy” for the platform’s equilibrium strategy.

3.1 Discussion of Assumptions

Modeling privacy. The model adopts the Gaussian signal structure and assumes that each player’s

payoff depends on the platform’s belief only through residual variance σ2
t . This assumption ex-

cludes a consumer who cares about the first-order moment of the platform’s belief, e.g., consumers

who want a lending platform to believe that their expected quality as a borrower is high.14 However,

the assumption renders the model tractable: We can treat the game as that of perfect information,

because σ2
t deterministically evolves as a function of past (at, γt). The assumption also enables us

to model the decreasing marginal privacy cost cleanly, because we can capture the stock of privacy

or the amount of data as a scalar. Section 6.3 maintains the Gaussian assumption and shows that all

the results continue to hold if the variance of a noise εt is σ2
ε(at, γt) that satisfies certain conditions

including ∂2σ2
ε

∂a∂γ
≥ 0, i.e., a higher privacy protection makes the variance of the noise less responsive

to activity.

Consumer’s privacy preference. The privacy cost v(σ2
0 − σ2

t ) captures monetary or nonmonetary

reasons why a consumer wants a platform to have less information—e.g., consumers may intrin-

sically value their privacy, or consider the risk of data breach and discrimination by third parties

(Kummer and Schulte, 2019; Lin, 2019; Tang, 2019). The formulation would be relevant, for ex-

ample, when consumers intrinsically want the platform to know less about their characteristics.

As an example, Appendix A derives the privacy cost function in the context of third-degree price

discrimination with linear demand.

Persistence of information. The baseline model assumes that the consumer’s type is persistent.

This assumption enables the platform to learn about the consumer’s type over time. As a result, the

consumer’s incentive depends on the stock of information collected in the past, which shapes the

13Appendix C shows that under any privacy policy, the consumer has an optimal sequence of activity levels that
has greater at for all t than any other optimal sequence.

14To see how relaxing this assumption could complicate the analysis, suppose that the consumer has a type-
dependent utility u(a,X) and privately observes X . The model could then divert from the Gaussian setting because
at could signal X . The model also requires us to keep track of the beliefs of the platform and the consumer separately
after the consumer deviates, which further complicates the analysis of the consumer’s incentive to manipulate the
platform’s belief.
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equilibrium dynamics. From the consumer’s perspective, the assumption implies that the consumer

cannot “delete” data collected in the past: Even if the consumer stops using the platform from pe-

riod T on (i.e., at = 0 for all t ≥ T ), the consumer still incurs a privacy cost of −v(σ2
0 − σ2

T ) in

any period t ≥ T . The assumption reflects the difficulty of deleting data, which is referred to as

“data persistence” (Tucker, 2018). For instance, suppose a platform collects personal information

and shares it with third parties. The consumer may then face a risk of discrimination or malicious

targeting even outside of the platform. In another example, if a consumer inadvertently discloses

information to other users, she may incur a psychological cost because other users know the infor-

mation. Such a cost would persist even when the consumer is not active on the platform. Section

6.2 studies an extension in which the consumer’s type varies over time.

4 Optimal Policy Under Long-Run Commitment

I begin by studying the game of long-run commitment. I first present a result under a stationary

privacy policy, then study the outcome of the entire game. Given the platform’s information in the

previous period and (at, γt), the posterior variance evolves as follows.15

σ2
t (at,γt) =

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

. (1)

Thus the consumer’s privacy cost in period t is

v
[
σ2

0 − σ2
t (at,γt)

]
= v

σ2
0 −

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

 .
Define the privacy cost function as

C(a, γ, σ2) := v

(
σ2

0 −
1

1
σ2 + 1

1
a

+γ

)
.

The following lemma shows properties of privacy cost C and marginal privacy cost ∂C
∂a

.

15If x|µ ∼ N (µ, σ2) and µ ∼ N (µ0, σ
2
0), then µ|x ∼ N

(
σ2
0

σ2+σ2
0
x+ σ2

σ2+σ2
0
µ0,
(

1
σ2
0
+ 1

σ2

)−1
)

.
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Lemma 1 (Privacy Cost and Marginal Privacy Cost).

1. C(a, γ, σ2) is decreasing in γ and σ2, and increasing in a.

2.
∂C

∂a
(a, γ, σ2) is decreasing in γ and increasing in σ2.

Lemma 1 implies that if the consumer has the lower stock of privacy (i.e., σ2
t−1 is small), she

faces a high privacy cost C but a low marginal privacy cost ∂C
∂a

. Intuitively, once the platform

has collected a lot of information, the marginal privacy cost is low, because the consumer’s activity

today does not much affect the platform’s learning. As a result, data collection harms the consumer,

but incentivizes her to increase an activity level in the future. Also, even though the marginal effect

of activity a on the signal variance 1
a

+ γ is independent of the level of privacy protection γ, the

marginal privacy cost is decreasing in γ. Thus, the platform can encourage the consumer’s activity

by committing to add a noise to the signal.

We now derive the consumer’s problem. We can rewrite the evolution of posterior variances

(1) as that of posterior precisions:

1

σ2
t (at,γt)

=
1

σ2
t−1(at−1,γt−1)

+
1

1
at

+ γt
= · · · = 1

σ2
0

+
t∑

s=1

1
1
as

+ γs
. (2)

Once the platform commits to privacy policy (γt)t∈N, the consumer chooses activity levels over

time, which gives the following problem:

max
(at)t∈N∈A∞

∞∑
t=1

δt−1
C

u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+γs

 . (3)

The next result presents the consumer’s response to a stationary privacy policy. Although the

platform’s optimal policy may not be stationary, this non-equilibrium analysis clarifies the intuition

behind the consumer’s dynamic incentive.16

16We may also view the consumer’s behavior under a stationary policy as the long-run outcome of the model in
which the platform sets a single privacy level to consumers who join the platform in different periods. To see this,
suppose that a unit mass of consumers join the platform in each period, and each consumer stops using the platform in
any period with probability 1− δ. As t→∞ the mass of consumers who joined the platform k periods ago converges
to δk, and every consumer solves (3) with δC = δ and γt = γ for all t.
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Proposition 1. Let (a∗t )t∈N denote the optimal choice of the consumer under a stationary privacy

policy, i.e., γt = γ for all t ∈ N. There is a cutoff value v∗(γ) ∈ R+ with the following properties.

1. If v < v∗(γ), then a∗t increases in t, lim
t→∞

a∗t = amax, and lim
t→∞

σ2
t = 0. The consumer’s

continuation value decreases over time.

2. If v > v∗(γ), then a∗t = 0 and σ2
t = σ2

0 for all t ∈ N.

3. The cutoff v∗(γ) is increasing in γ, and limγ→∞ v
∗(γ) =∞.

The intuition is as follows. If the value of privacy is low, the consumer prefers a positive activity

level a∗1 > 0 in t = 1. The consumer activity generates information, which reduces her payoff and

marginal cost of using the platform. As a result, she chooses a∗2 ≥ a∗1 in t = 2. Repeating this

argument, we can conclude that a∗t increases over time. The platform can then observe the signals

to perfectly learn the consumer’s type as t → ∞. Perfect learning in t → ∞ implies that the

marginal privacy cost goes to zero, and thus a∗t → amax (Point 1). In contrast, the consumer with

a high v does not use the platform (Point 2). Finally, v∗(γ) is increasing in γ because a higher

privacy level reduces the cost of using the platform (Point 3).

Under a stationary policy, the consumer’s continuation value decreases over time. In contrast,

the flow payoffs may be non-monotone: Evaluated at the same activity level (i.e., at−1 = at), the

consumer incurs a higher privacy cost and earns a lower flow payoff in period t than t− 1, because

σ2
t ≤ σ2

t−1. However, the optimal at is (weakly) higher than at−1, and the consumer may increase

at so much that she enjoys a higher flow payoff than in the previous period at the expense of a low

continuation value. Online Appendix J provides a numerical example.

If we interpret γ as a privacy regulation, Proposition 1 implies that a stricter regulation (i.e.,

a higher γ) increases cutoff v∗(γ) and expands the range of v’s under which the consumer loses

privacy. Thus a stricter regulation can increase the platform’s information by making consumers

comfortable to use the platform. Because a higher γ decreases privacy costs for any given sequence

of activity levels, it also increases the consumer’s ex ante payoffs.

We now turn to the optimal policy of the platform that can commit to any (potentially nonsta-

tionary) privacy policy. The platform anticipates that the consumer solves (3) given any privacy

policy. The following lemma presents a property of the consumer’s optimal behavior that shapes

the platform’s choice.
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Lemma 2. Let (āt(γ))t∈N and (āt(γ
′))t∈N denote the optimal activity levels (i.e., solutions of (3))

under privacy policies γ = (γt)t∈N and γ ′ = (γ′t)t∈N, respectively. Let T = {t ∈ N : γt 6= γ′t}

denote the set of all periods in which the two policies differ. Suppose 1
āt(γ)

+ γt ≤ 1
āt(γ′)

+ γ′t for

all t ∈ T . Then, āt(γ) ≥ āt(γ
′) for all t ∈ N \ T .

The lemma means that data collection in different periods are complements. For example,

suppose that the platform changes a privacy level for period t from γ′ to γ. The platform makes

such a change at the ex ante stage, so the consumer will also adjust her activity levels over time. In

particular, suppose her activity level in period t changes from a′ to a. The lemma implies that if the

new policy leads to better information in period t, i.e., 1
a

+γ ≤ 1
a′

+γ′, then the consumer must also

be choosing higher activity levels and the platform collects more information in any other period

s 6= t, in which the privacy levels remain the same. The intuition comes from the decreasing

marginal privacy cost: If the consumer anticipates more data collection in some periods, it reduces

the cost of giving up her privacy in other periods.

Proposition 1 and Lemma 2 do not characterize how the consumer reacts to the general change

of a privacy policy. However, we can use them to characterize the unique long-run outcome (see

Appendix E for the proof; Appendix C proves the existence of an optimal policy).

Theorem 1. Any optimal policy of the platform induces the following outcome:

1. The consumer loses her privacy and chooses the highest activity level in the long run:

lim
t→∞

σ2
t = 0 and lim

t→∞
a∗t = amax.

2. For any T ∈ N, there is a v ∈ R such that for any v ≥ v, we have γ∗t > 0 for all t ≤ T .

Point 1 says that a farsighted consumer eventually gives up all of her privacy, even when she

anticipates future choices made by the platform. The privacy loss occurs for any discount factors,

so a myopic platform that faces a patient consumer induces the long-run privacy loss. Similarly,

the long-run outcome is independent of the value v of privacy, the shape of u(·), or which optimal

policy we consider, in case the optimal policy is not unique.17 Point 2 implies that if the consumer

highly values her privacy, the platform commits to garble signals to maximize information.

17The platform’s ex ante payoff is uniquely determined, because we pin down the consumer’s optimal choice by
assuming the tie-breaking in favor of greater at’s, and the platform commits to a privacy policy ex ante.
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We may think that the long-run privacy loss follows from the statistical argument—that the

platform observes a signal in each period, so it will learn the true type as t → ∞. The intuition is

misleading for two reasons. First, the consumer can choose at = 0 to generate no information, and

we do not impose any Inada-type condition on u(·) under which the consumer always prefers a

positive at. Second, the platform’s objective is not the long-run payoff but the discounted payoffs.

Depending on how data collection in one period affects the outcomes in other periods, the platform

might strategically commit to not collect full information.18 The result stems from a combination

of the decreasing marginal privacy cost and the platform’s ability to offer privacy protection.

The intuition for Point 1 is as follows. Suppose that the platform commits to collect no infor-

mation after period τ ≥ 2, that is, it adopts (γt)t∈N such that γt = ∞ for any t ≥ τ . We show

that the platform can modify the policy to increase the precision of signals in all periods. First,

Proposition 1 says that there is a stationary policy γt = γ∗ <∞ under which the consumer chooses

increasing activity levels. Given such a γ∗, suppose the platform replaces γt =∞ with γt = γ∗ for

all t ≥ τ . After the change, the consumer’s problem from period τ is as if she faces a lower initial

variance (i.e., σ2
t instead of σ2

0) and faces a stationary policy of γ∗. Because γ∗ induces the con-

sumer to choose positive activity levels when she starts with the initial variance σ2
0 , the consumer

chooses even higher activity levels when she faces γ∗ from period τ onward. As a result the change

of the policy increases the precision of signals after period τ . Second, the consumer also adjusts

activity levels before period τ , but Lemma 2 implies that the consumer will increase activity levels

in any period s < τ . Thus, from the platform’s perspective, any policy that stops data collection

is dominated by another policy that induces privacy loss. The proof applies a similar argument to

any policy such that σ2
t does not converge to 0.

The intuition for Point 2 is that in early periods, the platform knows little about the consumer,

so the consumer’s activity has a large impact on what the platform can learn about her type. Thus

the consumer faces a high marginal privacy cost, which discourages her from raising the activity

level. The platform then commits to a high level of privacy protection to encourage consumer

activity.

In contrast to Proposition 1, under the optimal policy, a∗t and γ∗t may be non-monotone (see

18To see this, consider a situation in which the consumer’s activity level in the first period is decreasing in the
precision of the signal generated in the future period. A myopic platform would then commit to γt =∞ for all t ≥ 2
and σ2

t does not converge to 0.
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Online Appendix J for numerical examples). The activity level may decrease from period t− 1 to

t, when the platform decreases γ∗t to increase the signal quality at the expense of the activity level.

The platform may increase γ∗t if a lower σ2
t makes it easier for the platform to induce a high at

though privacy protection.

Remark 1. I assume that the platform can only commit to a deterministic sequence of privacy

levels. A natural question is whether the platform benefits from stronger commitment power—i.e.,

it can commit to an action-dependent policy that maps past actions (a1, . . . , at−1) to the privacy

level γt in any period t ≥ 2. Online Appendix M provides a sufficient condition under which the

platform earns a greater payoff from an action-dependent policy than under long-run commitment.

Intuitively, the platform with the stronger commitment power may induce consumers to choose

high activity levels by threatening them to set γt = 0 in future periods unless they choose a high

activity level today. At the same time, Section 5 shows that if the consumer has binary activity

levels and the players have the same discount factor, the platform does not benefit from action-

dependent policies.

4.1 The Long-Run Privacy Loss Under a General Payoff Specification

We now ask to what extent Theorem 1 depends on assumptions on preferences. In particular, I have

assumed that the consumer dislikes data collection and the platform cares only about information.

I now relax these restrictions on preferences. The platform’s per-period payoff is Π(at, σ
2
t ), which

is strictly increasing in at and decreasing in σ2
t . For example, an advertising platform benefits from

a high activity at and more data (i.e., low σ2
t ) because the consumer will then see many highly

targeted ads. We impose no restrictions on the relative importance of activity and data for Π.

The consumer’s per-period payoff is now û(at, σ
2
t ) that satisfies the following conditions: There

is some β > 0 such that for each σ2 ∈ [0, σ2
0] and a, a′ ∈ A with a > a′, û(a, σ2)− û(a′, σ2) ≥ β;

for each a ∈ A, û(a, σ2) is differentiable in σ2; and maxa∈A,σ2∈[0,σ2
0 ]

∣∣ ∂û
∂σ2 (a, σ2)

∣∣ < ∞. The last

inequality means that the marginal cost of losing privacy is uniformly bounded. For example, we

can allow û(a, σ2) = u(a) − C(σ2) for any C(·) with bounded derivatives. The term C(·) can be

first decreasing and then increasing, i.e., the consumer prefers some level of data collection. The

original setting is û(a, σ2) = u(a)− v(σ2
0 − σ2). Other parts of the game remain the same.
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Proposition 2. In the above setting, the following holds:

1. There exists a privacy policy (γt)t∈N under which the consumer eventually loses her privacy

and chooses the highest activity level: Any optimal choice of the consumer induces lim
t→∞

σ2
t =

0 and lim
t→∞

a∗t = amax.

2. Fix the consumer’s discount factor. Let σ2
∞(δP ) := lim

t→∞
σ2
t (δP ) denote the long-run posterior

variance under an arbitrarily chosen optimal policy given the platform’s discount factor δP .

Then, lim
δP→1

σ2
∞(δP ) = 0.

Point 1 states that the platform can induce privacy loss and a high activity level for a broad

class of consumer preferences. Whenever the consumer incurs bounded marginal costs ∂û
∂σ2 , the

marginal cost with respect to an activity level goes to zero as σ2
t → 0. Thus the platform can

induce the highest activity level and full information collection in the long run.19

Point 1 alone does not imply that the platform collects all the information under an optimal

policy. However, Point 2 states that a sufficiently patient platform does so. The consumer chooses

the highest activity level when she has no privacy, and such an outcome maximizes the long-run

profit of the platform. Thus for δP close to 1, even if a platform cares about user activity, it may

eventually collect as much information as exclusively data-driven firms in the long run.

The result concerns only the long-run outcome induced by a patient platform. As a result,

for a general δP and in a given period t, the platform may still induce a higher σ2
t and impose a

lower privacy cost when it cares more about consumer activity. Also, the result fixes δC and takes

δP → 1. Because a more patient consumer is less willing to raise an activity level (see Section

6.1), the long-run outcome in Proposition 2 may differ from the one in which the consumer and

the platform have the common discount factor that converges to 1.

4.2 Implications of Theorem 1 and Proposition 2

First, Theorem 1 potentially explains the privacy paradox: Consumers seem to casually share their

data with online platforms, despite their concerns about data collection.20 We may view this puz-
19Although in a different context, the intuition is similar to the idea that if a firm uses data for forecasts and the

gain to a perfect forecast is finite, the returns to data must diminish at some point (Farboodi and Veldkamp, 2020).
20Acquisti et al. (2016) conduct an insightful review of research on the economics of privacy, including the privacy

paradox. Recent empirical work includes, for example, Athey et al. (2017).
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zle as the long-run outcome of this model, in which the consumer faces a high privacy cost and

negligible marginal cost. Such an outcome can arise even if firms adopt business models that do

not much rely on data (Proposition 2), or the platform mainly cares about short-run profits. The

result also points to the difficulty of applying the revealed preference argument to static privacy

choices, because the consumer’s decision may depend on the stock of information they have al-

ready revealed.

Second, the result connects consumer privacy problem with rational addiction (Becker and

Murphy, 1988). The connection stems from that a high activity level today decreases the con-

sumer’s future utility, but increases her future marginal utility of using the platform. In contrast to

models of rational addiction, the current model has a platform that can choose its privacy policy to

influence the degree of “addiction.”21 As a result, even if consumers are patient and highly value

their privacy, they keep using the platform and lose privacy.

Finally, at an anecdotal level, the optimal policy of the platform, which offers high privacy

levels for early periods but not necessarily for later periods, seems consistent with how data poli-

cies of online platforms have evolved. In 2004, Facebook’s privacy policy stated that it would

not use (first-party) cookies to collect user information. In 2020, the privacy policy states that it

uses cookies to track users on and possibly off the website.22 Srinivasan (2019) describes how

Facebook’s policy has changed from the one that preserves consumer privacy to “broad-scale com-

mercial surveillance.” Also, Fainmesser et al. (2019) describe how online platforms’ business

models have changed from the initial phase, in which they expand a user base, to the mature phase,

in which they monetize the information collected. The dynamics presented in this paper is one way

to rationalize the pattern described.23

21Relatedly, Boone and Shapiro (2006), Zhang (2012), and Meng (2018) study dynamic contracts for addictive
goods. A general framework in Pavan et al. (2014) could also apply to the design of a mechanism that provides
addictive goods. In these papers, the principal uses monetary transfer and allocation rules to maximize profits, which
differs from my model in which the platform can directly affect the degree of “addition” through a privacy policy.
Methodologically, these papers use the first-order conditions to characterize the agent’s incentive; in my model, we
cannot use the first-order conditions because the consumer faces a concave cost function.

22In 2020, Facebook’s privacy policy states that “we use cookies if you have a Facebook account, use the Facebook
Products, including our website and apps, or visit other websites and apps that use the Facebook Products (including
the Like button or other Facebook Technologies).” https://www.facebook.com/policies/cookies

23In addition to the force described in this paper, the platform may have an even stronger incentive to lower privacy
protection if the expansion of user base strengthens a positive network externality and incentivizes users to increase
activity levels even at lower privacy protection.
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5 One-Period Commitment

I now study the game of one-period commitment, in which the two players move sequentially

in every period. One-period commitment could be realistic, for example, if a platform may be

sanctioned for the outright violation of its privacy policy, but it may still revise the policy over

time. For some of the results, I study the following equilibria:

Definition 1. A Markov perfect equilibrium (MPE) is an equilibrium in which after any history,

the platform’s choice γt depends only on σ2
t−1, and the consumer’s choice at depends only on

(σ2
t−1, γt).

Proposition 3. Any pure-strategy MPE satisfies exactly one of the following two properties:

1. lim
t→∞

γt = 0, lim
t→∞

at = amax, and lim
t→∞

σ2
t = 0; or

2. lim
t→∞

γt =∞, at > 0 for all t, and lim
t→∞

σ2
t > 0.

Moreover, there is a B > 0 such that if σ2
0 ≤ B, the unique equilibrium involves (γt, at) =

(0, amax) for all t ∈ N.

The first part of the result classifies any MPE into two types, depending on whether the long-

run privacy loss (i.e., limt→∞ σ
2
t = 0) occurs. In any equilibrium with limt→∞ σ

2
t = 0, the platform

eventually offers γt = 0 because if σ2
t is sufficiently low, the consumer will choose a high activity

level even without privacy protection. In contrast, in any equilibrium with limt→∞ σ
2
t > 0, the

platform offers perfect privacy protection (i.e., limt→∞ γt = ∞) in the long run. In such an

equilibrium, the weaker commitment power forces the platform to stop data collection. The second

part of the result implies that an equilibrium that satisfies Point 2 exists only if the platform has not

yet collected too much data on the consumer. Intuitively, if σ2
0 is small, the marginal privacy cost

is so small that the consumer prefers amax regardless of the current and future privacy protection.

Proposition 3 does not say whether both types of equilibria exist. I now construct such equi-

libria to provide an intuition regarding how weaker commitment power affects data collection. To

facilitate the analysis, we will use the following assumption:

Assumption 1. The consumer has a binary activity level: A = {0, amax}.
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In general, analyzing the consumer’s optimal choice can be complicated, because the con-

sumer’s payoffs contain the privacy cost, which is concave in a. For example, even if u(a) is

concave, the consumer’s flow payoff may be neither concave nor convex in a. Assumption 1 sim-

plifies the consumer’s incentive and enables us to derive stronger results regarding the equilibrium

dynamics. Moreover, the assumption is without loss of generality if u(a) is weakly convex, in

which case the consumer always finds it optimal to choose 0 or amax from a general A (see the

discussion at the end of Appendix G).

The following notions are useful for describing the results.

Definition 2. An equilibrium is consumer-worst if it minimizes the consumer’s ex ante sum of

discounted payoffs across all equilibria (including those that are not MPE). We analogously define

“consumer-best,” “platform-worst,” and “platform-best.”

The following result presents a consumer-worst equilibrium, which is also platform-best under

a common discount factor. Note that in any MPE, the consumer’s strategy is written as a(σ2, γ),

which specifies her activity level given residual variance σ2 in the previous period and privacy

protection γ in the current period. Similarly, the platform’s strategy is written as γ(σ2).

Theorem 2. Under Assumption 1, there is a consumer-worst MPE. This equilibrium is independent

of the platform’s discount factor δP , and has the following properties:

1. The privacy level γ∗t is decreasing in t and hits zero in a finite time. The consumer loses her

privacy in the long run: limt→∞ σ
2
t = 0.

2. In every period, the platform chooses the lowest privacy level γt that induces the consumer

to take at = amax. Formally, given her equilibrium Markov strategy a(σ2, γ), the platform’s

equilibrium strategy is written as γ(σ2) = min {γ ∈ R+ : a(σ2, γ) = amax} for any σ2 ≤

σ2
0 .

Point 1 extends the intuition for Theorem 1. The consumer incurs high marginal privacy costs

in early periods, so the platform initially chooses high γt to incentivize the consumer to gener-

ate information. As the platform collects more information, the consumer’s incentive to protect

privacy declines; correspondingly, the platform sets a decreasing privacy level. Lemma 1 alone
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does not imply that the consumer faces a lower cost of choosing amax when σ2
t is small, because

her continuation value is endogenous. However, in this equilibrium, the consumer’s continuation

value V (1/σ2
t ), as a function of the amount of information collected, is decreasing and convex in

1/σ2
t . As a result, the consumer’s Markov decision problem exhibits a declining marginal loss of

generating information.

Point 2 implies that the platform’s optimal policy is greedy—i.e., in each period, the platform

maximizes the precision of the signal for that period. The greedy policy is optimal for the platform

because the decreasing marginal cost implies that the consumer’s future activity level is increasing

in the precision of the signal generated today. The optimality of greedy policy indicates that the

platform may not benefit from stronger commitment power. The following result confirms this

intuition. Recall that δC and δP denote the discount factors of the consumer and the platform,

respectively.

Corollary 1. Let γ∗t denote the privacy level in the consumer-worst equilibrium. If δC = δP ,

the optimal policy under long-run commitment is (γ∗t )t∈N. Moreover, the platform’s payoff in the

consumer-worst equilibrium is equal to the one when the platform can commit to any action-

contingent privacy policy—i.e., it can pre-commit to any strategy that determines privacy level γt

in every period t ≥ 2 as a function of past activity levels (a1, . . . , at−1).

This result indicates that the lack of long-run commitment may not prevent the platform from

collecting consumer data. At the same time, the result does not imply the uniqueness of the equi-

librium when σ2
0 is not small. Indeed, the platform with only one-period commitment power may

fail to collect any information.

Theorem 3. Suppose Assumption 1 and δC ≥ 1
2

hold. There is a σ2 < ∞ such that if σ2
0 ≥ σ2,

there is a consumer-best and platform-worst MPE, in which the platform sets γt = ∞ and the

consumer chooses at = amax in all periods.

In this equilibrium, the platform offers full privacy, because whenever it attempts to collect

information by setting γt < ∞, the consumer chooses at = 0. The consumer prefers at = 0

following the platform’s deviation, because the initial privacy loss, no matter how small, will

lead to complete privacy loss and impose her a high cost in the future. Indeed, after any off-

path event in which the platform collects some information (i.e., σ2
t < σ2

0), the consumer-worst
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equilibrium in Theorem 2 is played. A grim trigger strategy—i.e., the platform’s deviation induces

at = 0 forever— does not work, because the platform can set a large finite γt to render such

a punishment suboptimal for the consumer. We may view Theorem 3 as the plaform’s Coasian

commitment problem: The platform in period t competes with its future self, which offers the best

privacy protection in any period s ≥ t + 1. The result counters the idea that the platform’s weak

commitment power causes insufficient privacy protection.

Remark 2 (Welfare Implications). Under a common discount factor and binary activity levels, the

equilibria in Theorems 2 and 3 are Pareto optimal in terms of the ex ante payoffs of the consumer

and the platform. Indeed, once we write the platforms’ payoff as v[σ2
0−σ2

t ], the sum of the payoffs

of the consumer and the platform is
∑∞

t=1 δ
t−1u(at), which is maximized at at = amax for all t.

As a result, if the consumer chooses at = amax in all periods at two equilibria, both are Pareto

optimal. Therefore we can view Theorems 2 and 3 as two points on the Pareto frontier and the

platform’s commitment as a way to select the consumer-worst outcome.

6 Extensions

6.1 Speed of Learning

We provide comparative statics about the speed of learning. The following results show that the

platform collects information more slowly when consumers have a high value on privacy, a high

discount factor, or a high prior variance for their types. A high v, δC , or σ2
0 slows down data

collection by increasing the cost for the consumer of using the platform and generating information.

Proposition 4. Fix any privacy policy under long-run commitment. In any period, the optimal

activity level and the precision of the signal are lower if the discount factor δC , the value v of

privacy, or the prior variance σ2
0 is higher.

Proposition 5. Suppose Assumption 1 holds. Consider the consumer-worst equilibrium in Theo-

rem 2. In any period, the equilibrium privacy level is higher and the precision of the signal is lower

if the consumer’s discount factor δC , the value v of privacy, or the prior variance σ2
0 is higher.
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Because of Corollary 1, Proposition 5 also applies to long-run commitment: If the consumer

has binary actions and the players have common discount factor δC = δP = δ, the platform’s

optimal privacy levels increase in (v, δ, σ2
0) under long-run commitment.

6.2 Time-Varying Type

This extension allows the consumer’s type to change over time. The consumer’s type in period t is

Xt, and (Xt)t∈N now follows an AR(1) process: X0 ∼ N (0, σ2
0), Xt+1 = φXt+zt with φ ∈ [0, 1],

and zt
iid∼ N (0, (1−φ2)σ2

0). Note that V ar(Xt) = σ2
0 for all t ∈ N. As in the baseline model (which

corresponds to φ = 1), the platform observes a signal st = Xt + εt with εt ∼ N
(

0, 1
at

+ γt

)
.

Suppose that at the beginning of period t, the platform holds posterior variance σ2
t−1. If the

platform sets γt and the consumer chooses at, the platform observes a signal and holds posterior

variance σ̂2
t = 1

1

σ2
t−1

+ 1
1
at

+γt

. Then the consumer receives u(at)−v(σ2
0−σ̂2

t ) and the platform receives

σ2
0 − σ̂2

t . After the state transition, the platform’s posterior variance on Xt+1 at the beginning of

period t+ 1 is

σ2
t = φ2σ̂2

t + (1− φ2)σ2
0 ≥ σ̂2

t .

For example, if the state is independent across time (i.e., φ = 0), the posterior variance at the

beginning of each period is always σ2
0 , but the platform may still collect information within the

period (i.e., σ̂2
t < σ2

0 = σ2
t ). The following result generalizes Proposition 1.

Proposition 6. Let (a∗t )t∈N denote the optimal choice of the consumer under a stationary privacy

policy γt = γ. There is a cutoff value v∗(γ) ∈ R+ with the following properties.

1. If v < v∗(γ), then a∗t increases in t, and σ2
t decreases in t and converges to a non-negative

value as t→∞. The consumer’s continuation value decreases over time.

2. If v > v∗(γ), then a∗t = 0 and σ2
t = σ2

0 for all t ∈ N.

3. The cutoff v∗(γ) is increasing in γ, and limγ→∞ v
∗(γ) =∞.

The next result generalizes Theorem 2.

Proposition 7. Assume δC = δP . Under Assumption 1, there is a Markov perfect equilibrium with

the following properties:
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1. The equilibrium is consumer-worst and platform-best, and the equilibrium outcome coin-

cides with the one under long-run commitment.

2. The privacy level γ∗t and posterior variance σ2
t are decreasing in t.

3. In each period, both on and off the equilibrium paths, the platform chooses the lowest privacy

level γt that induces the consumer to take at = amax as opposed to at = 0.

4. The ex ante payoff of the consumer decreases and that of the platform increases in persis-

tence φ.

When the consumer’s type varies over time, the equilibrium no longer entails long-run privacy

loss. However, these results show that much of the equilibrium dynamics driven by the decreasing

marginal privacy cost continues to hold. Moreover, Proposition 7 shows that greater persistence of

the type could hurt the consumer and benefit the platform. From the platform’s perspective, higher

persistence could hinder data collection because the consumer is less willing to use the service.

However, a higher φ also means that the platform can use the information generated today to

predict future types. The result shows that under a certain setting, the beneficial impact dominates

and a higher persistence facilitates data collection.

6.3 General Noise Structure

We have assumed that the noise term of a signal is distributed according to N
(

0, 1
at

+ γt

)
. How-

ever, all the results hold if the variance takes a more general form σ2
ε(a, γ) that satisfies several

conditions. First, we assume that ∂σ
2
ε(a,γ)
∂γ

> 0, ∂σ
2
ε(a,γ)
∂a

< 0, ∂2σ2
ε

∂a∂γ
≥ 0, limγ→∞ σ

2
ε(a, γ) =∞, and

σ2
ε(0, γ) =∞. The posterior variance now evolves as follows:

σ2
t =

1
1

σ2
t−1

+ 1
σ2
ε(at,γt)

.

Second, we assume that
∂σ2

t

∂a
=
∂σ2

ε

∂a
(at, γt) ·

1(
σ2
ε(at,γt)

σ2
t−1

+ 1
)2 , (4)

which is negative, converges to 0 as γ →∞.
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Equation (4) implies that lower privacy (i.e., a lower σ2
t−1) leads to a lower marginal cost of

raising at, and the marginal cost approaches 0 as σ2
t−1 → 0. The condition ∂2σ2

ε

∂a∂γ
≥ 0 implies that

the right-hand side of (4) increases in γt, i.e., the marginal privacy cost decreases in γt. Also, ∂σ
2
t

∂a

approaches 0 as γt →∞, so the platform can induce positive activity levels with sufficiently high

privacy levels. These conditions are sufficient to extend all the results of this paper. An example

that satisfies all the conditions is σ2
ε(a, γ) = eγ−a

a
. An example that satisfies all the conditions

except ∂
2σ2
ε

∂a∂γ
≥ 0 is σ2

ε(a, γ) = γ
a
. In this case, ∂σ

2
t

∂a
could decrease in γ, so higher privacy protection

decreases the privacy cost but may increase the marginal cost.

7 Conclusion

This paper studies a dynamic model of consumer privacy and platform data collection. The fun-

damental feature of the model is that consumers use a platform’s service more actively when they

expect high privacy protection or have already lost their privacy. The platform can collect informa-

tion over time by committing to not collect too much information in early periods. In equilibrium,

the consumer eventually loses privacy but keeps choosing a high level of activity. This outcome

can arise even if the platform prioritizes user activity over data collection. If the platform has

weaker commitment, it may end up offering the highest privacy protection: The consumer refuses

to provide information, anticipating that small privacy loss will lead to complete privacy loss.
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Appendix

A A Microfoundation of the Privacy Cost and the Platform Revenue

This appendix microfounds the payoff functions. We first describe a static interaction between a

consumer and a “seller” in a product market, without considering the platform. We then embed it

into the original model.

Consider a market that consists of a consumer and a seller. The consumer chooses a quantity

q ∈ R to maximize her utility Xq − 1
2
q2 − pq given a unit price p ∈ R. Her type X ∼ N (µ0, σ

2
0)

is now the willingness to pay for the product. The seller knows the prior distribution (µ0, σ
2
0) and

receives a signal s = X + ε with ε ∼ N (0, σ2
ε). Only the consumer observes the true X . The

seller first sets p to maximize its revenue, then the consumer chooses q to maximize her utility.

Although a more general setup appears in the literature, I provide the analysis for completeness.

Suppose the seller observes a signal and holds a posterior mean µ of X . The consumer’s demand

is q = X − p, and thus the seller’s expected revenue is p(µ − p), so the optimal price is p∗ = µ
2

with the quantity X − µ
2
. The consumer’s expected payoff is

E
[
(X − p∗)q∗ − 1

2
(q∗)2

]
=

1

2
E

[(
X − 1

2
µ

)2
]

=
1

2
E
[
(X − µ)2]+

1

8
E
[
(µ− µ0)2]+

1

8
µ2

0

=
1

2
E
[
(X − µ0)2]− 3

8
E
[
(µ− µ0)2

]
+

1

8
µ2

0.

25



The expectation E is with respect to the joint distribution of (X,µ). The first and the last terms

do not depend on the signal structure. As a result, the signal decreases consumer surplus from this

transaction by
3

8
E[(µ− µ0)2] =

3

8
· (σ2

0)2

σ2
0 + σ2

ε

. (5)

The posterior variance σ2
t ofX and the variance σ2

ε of the noise ε satisfy the equation 1
σ2
t

= 1
σ2

0
+ 1

σ2
ε
.

Solving this equation with respect to σ2
ε and plugging it into (5), we obtain

3

8
· (σ2

0)2

σ2
0 + 1

1

σ2
t
− 1

σ2
0

=
3

8
·

(σ2
0)2 ·

(
1
σ2
t
− 1

σ2
0

)
σ2

0 ·
(

1
σ2
t
− 1

σ2
0

)
+ 1

=
3

8
·

(σ2
0)2 ·

(
1
σ2
t
− 1

σ2
0

)
σ2

0

σ2
t

=
3

8

(
σ2

0 − σ2
t

)
,

which is the original privacy cost function v(σ2
0 − σ2

t ) with v = 3
8
. Similarly, the information

increases the seller’s revenue by
1

4

(
σ2

0 − σ2
t

)
, (6)

which is equivalent to the platform’s payoff in the original model.

We obtain the original model by assuming that the platform sells information to sellers who

use it to price discriminate the consumer. The detail is as follows. Outside of the platform, the

consumer interacts with seller t in period t, and her willingness to pay for seller t’s product isXt ∼

N (µ0, σ
2
0), which is now IID across t.24 The consumer’s activity on the platform in each period

yields her utilities and generates signals for future sellers. Specifically, each period t consists of

the following events: (i) the consumer chooses at, (ii) the platform collects and sells information

(by posting a price) to seller t, and (iii) the seller sets the price and the consumer chooses quantity.

Precisely, the platform can sell seller t the signal st = Xt + εt with

εt ∼ N

0,
1∑t

s=1
1

1
as

+γs

 .

That is, the platform collects information about the consumer’s willingness to pay for product t

based on her past activities. We now obtain the baseline model: The platform’s per-period payoff,

which is the revenue it can earn by selling the signal to seller t, is 1
4

(σ2
0 − σ2

t ), where σ2
t evolves

24I impose the IID assumption so that the prior distribution of the consumer’s willingness to pay in the product
market is the same across t.
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according to (1). The consumer’s payoff is u(at)− 3
8

(σ2
0 − σ2

t ).

B Proof of Lemma 1

Proof. Point 2 follows from

∂C

∂a
= v ·

1
a2

( 1
a

+γ)
2(

1
σ2 + 1

1
a

+γ

)2 =
v(

1
σ2 (1 + γa) + a

)2 .

C The Existence of an Optimal Policy Under Long-Run Commitment

I prove the existence of an optimal policy under long-run commitment with δC > 0. I introduce

some notations. Let A := A∞ denote the set of all sequences of activity levels. Because A ⊂ R+

is finite, it is compact, so A is compact with respect to product topology. Let a denote a generic

element of A, with the t-th coordinate denoted by at. Let Γ := [0,∞]N denote the set of all

privacy policies. Let γ denote a generic element of Γ, with the t-th coordinate denoted by γt. I

consider the ordered topology for R+ and the product topology for Γ. Finally, let Ut(a,γ) denote

the consumer’s flow payoff in period t, given an outcome (a,γ). Note that Ut(a,γ) depends only

on (a1, . . . , at) and (γ1, . . . , γt).

Given any privacy policy γ ∈ Γ, the consumer’s problem is

max
a∈A

∞∑
t=1

δt−1
C

u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+γs

 . (7)

For any γ ∈ Γ, let A∗(γ) ⊂ A denote the set of all maximizers of (7).

Lemma 3. The correspondence A∗(γ) is non-empty, compact, and upper hemicontinuous in γ.

Proof. First, A is compact with respect to product topology. Second, the objective function is

continuous: To see this, take any sequence of the consumer’s choices (an)∞n=1 such that an → a∗.

This implies that for each t ∈ N, limn→∞ a
n
t → a∗t . The consumer’s period-t payoff Ut(a,γ) :=
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u(at) − v ·

(
σ2

0 − 1
1

σ2
0

+
∑t
s=1

1
1
as

+γs

)
is bounded from above and below by u(amax) and −vσ2

0 ,

respectively. Define B := max(u(amax), vσ
2
0) > 0. Take any ε > 0, and let T ∗ satisfy δT

∗
C

1−δC
B < ε

4
.

Take a sufficiently large n so that for each t ≤ T ∗, δt−1
C |Ut(an,γ) − Ut(a

∗,γ)| < ε
2T ∗

. These

inequalities imply that ∣∣∣∣∣
∞∑
t=1

δt−1
C Ut(a

n,γ)−
∞∑
t=1

δt−1
C Ut(a

∗,γ)

∣∣∣∣∣ < ε.

Thus the objective function in (7) is continuous in a. Berge maximum theorem implies thatA∗(γ)

is non-empty, compact, and upper hemicontinuous in γ.

Next, I show properties of the consumer’s objective U(a,γ) :=
∑∞

t=1 δ
t−1
C Ut(a,γ). Abusing

notation, for any a,a′ ∈ A, write a ≥ a′ if and only if at ≥ a′t for all t ∈ N. ≥ is a partial order

on A, and (A,≥) is a lattice.

Lemma 4. For any γ, U(a,γ) is supermodular in a.

Proof. Take any γ. Below, I omit γ and write U(·,γ) as U(·). Take any a, b ∈ A. For each

n ∈ N, define (a ∨ b)n as

(a ∨ b)n =

max(at, bt) if t ≤ n,

at if t > n.

(8)

Similarly, define (a ∧ b)n as

(a ∧ b)n =

min(at, bt) if t ≤ n,

at if t > n.

(9)

Also, define bn as

bn =

bt if t ≤ n,

at if t > n.

(10)
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In product topology, (a ∨ b)n → a ∨ b, (a ∧ b)n → a ∧ b, and bn → b as n → ∞. For each

t ∈ N and n ∈ N, Ut(a,γ) is supermodular in (a1, . . . , an), because it has increasing differences

in each pair (at, as). Thus for each n ∈ N, U(a) is supermodular in the first n activity levels,

(a1, . . . , an) ∈ Rn
+. We then have U((a ∨ b)n) + U((a ∧ b)n) ≥ U(a) + U(bn). Because U(·) is

continuous, we can take n→∞ and obtain U(a ∨ b)) + U(a ∧ b) ≥ U(a) + U(b).

The supermodularity implies the consumer has the “greatest” optimal choice. This is the con-

sumer’s optimal choice I select using the tie-breaking rule.

Lemma 5. For each γ, the setA∗(γ) of optimal choices is a sublattice ofA. There is an ā ∈ A∗(γ)

such that for any a ∈ A∗(γ), ā ≥ a.

Proof. First, Corollary 2 of Milgrom et al. (1994) implies that A∗(γ) is a sublattice of A. Let

A∗t (γ) denote the projection of A∗(γ) on the t-th coordinate, i.e.,

A∗t (γ) := {a ∈ A : ∃a∗ ∈ A∗(γ) s.t. a∗t = a} . (11)

For each k ∈ N, let ak denote an optimal policy such that the consumer chooses ak = maxA∗k(γ)

in period k. Define āk := a1∨· · ·∨ak. BecauseA∗(γ) is sublattice, for any k ∈ N, āk maximizes

(7). We also have āk → ā, where āt = maxA∗k(γ) for any k ∈ N. Because A∗(γ) is compact,

ā ∈ A∗(γ). By construction, for any a ∈ A∗(γ), ā ≥ a.

For each γ ∈ Γ, let ā(γ) := (āt(γ))t∈N denote the greatest strategy of the consumer defined

in Lemma 5.

Lemma 6. For each t ∈ N, āt(γ) is upper semicontinuous in γ ∈ Γ.

Proof. By Lemma 3, A∗(γ) is upper hemicontinuous, so the set A∗t (γ) of all activity levels that

can be chosen in period t is upper hemicontinuous in γ. Thus, it is enough to show that for

any upper hemicontinuous and compact-valued correspondence φ : X � R, f(x) := maxφ(x)

is upper semicontinuous. To show this, take any xn → x. For each n, define yn = f(xn).

Because there is a subsequence yn(k) of yn that converges to lim sup yn, it holds that lim sup yn =

lim yn(k) = lim f(xn(k)) ≤ f(limxn(k)) = f(x). The inequality holds because φ has a closed

graph. Connecting the left and right sides, we establish that f(·) is upper semicontinuous.
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Lemma 7. There exists an equilibrium in the game of long-run commitment power.

Proof. The platform’s objective is

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γs

 . (12)

To show it is upper semicontinuous, take γn → γ. Then,

lim sup
n→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


= lim

k→∞
sup
n≥k

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


≤ lim

k→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 limk→∞ supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

lim infn→∞
1

ās(γn)
+γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
lim supn→∞ ās(γn)

+limk→∞ infn≥k γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γ

 .

The second equality comes from the dominated convergence theorem, and the last inequality uses

the upper semicontinuity of ās(γ). Thus, given the consumer’s optimal behavior, the platform’s

objective is upper semicontinuous. Since Γ is compact, there is a privacy policy γ∗ that maximizes

the platform’s objective. The strategy profile (γ∗, ā(·)) is an equilibrium.

30



D Consumer Behavior Under a Stationary Privacy Policy:

Proof of Proposition 1

This Appendix uses notations introduced at the beginning of Appendix C.

D.1 Properties of Consumer Value Function

First, I prove useful properties of the consumer’s value function that hold for any privacy policy.

Let (āt(γ))t∈N denote the greatest best response of the consumer constructed in Lemma 5. For

each privacy policy γ ∈ Γ, define

Vγ(ρ) :=
∞∑
t=1

δt−1
C

u(āt(γ))− v ·

σ2
0 −

1

ρ+
∑t

s=1
1

1
ās(γ)

+γs

 . (13)

Vγ(ρ) is the consumer’s continuation value, starting from the posterior variance σ2 = 1
ρ
.

Lemma 8. For any γ ∈ Γ, Vγ(·) : R++ → R is decreasing and convex. For any ρ > 0 and ∆ > 0,

limρ→∞ Vγ(ρ)− Vγ(ρ+ ∆) = 0.

Proof. Fix any privacy policy γ. Hereafter, I omit γ from subscripts (thus, the consumer value

function is V (·)). Consider the “T -period problem, ” in which the consumer’s payoff in any period

s ≥ T +1 is exogenously set to zero. For any t ≤ T , let V T
t (ρ) denote the consumer’s continuation

value in the T -period problem starting from period t given 1
σ2
t−1

= ρ:

V T
t (ρ) = max

(at,...,aT )∈AT−t+1

T∑
s=t

δs−tC

u(as)− v

σ2
0 −

1

ρs−1 + 1
1
as

+γs

 .

Here, ρt−1 = ρ, and (ρt, . . . , ρT−1) are recursively defined by Bayes’ rule given (at, . . . , aT−1).

The standard argument of dynamic programming implies that for each t = 1, . . . , T ,

V T
t (ρ) = max

a∈A
u(a)− v ·

(
σ2

0 −
1

ρ+ 1
1
a

+γt

)
+ δCV

T
t+1

(
ρ+

1
1
a

+ γt

)
, (14)

where V T
T+1(·) ≡ 0. I use induction to show that V T

1 (ρ) is decreasing and convex. First, V T
T+1 ≡

0 is trivially decreasing and convex. Suppose V T
t+1 is decreasing and convex. Because −v ·
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(
σ2

0 − 1
ρ+ 1

1
a+γt

)
has the same property and the upper envelope of decreasing convex functions are

decreasing and convex, so does V T
t (·). This induction argument implies that for each T , V T (ρ) =

V T
1 (·) is decreasing and convex. Also, for any ρ and ∆ > 0, limρ→∞ V

T (ρ)− V T (ρ+ ∆)→ 0.

Define V ∞(ρ) := limT→∞ V
T (ρ). V ∞(ρ) is decreasing and convex, because these properties

are preserved under pointwise convergence. I show that V ∞(ρ) is the value function of the original

problem, i.e., V ∞(·) = V (·). Take any ρ, and let (ā1, ā2, . . . ) ∈ A∗(γ) denote the optimal policy.

For any finite T ,

V T (ρ) ≥
T∑
s=1

δs−1
C

u(ās)− v

σ2
0 −

1

ρs−1 + 1
1
ās

+γs

 . (15)

By taking T →∞, we obtain V ∞(ρ) ≥ V (ρ). Suppose to the contrary that V ∞(ρ) > V (ρ). Then,

there is a sufficiently large T ∈ N such that V T (ρ) − δTC
1−δC

vσ2
0 > V (ρ). If the consumer in the

original infinite horizon problem adopts the T -optimal policy that gives V T (ρ) up to period t, then

she can obtain a strictly greater payoff than V (ρ), which is a contradiction. Thus, V ∞(ρ) = V (ρ).

Finally, I show that for any ρ and ∆ > 0, limρ→∞ V (ρ)−V (ρ+∆)→ 0. Suppose the consumer

starting from ρ+ ∆ chooses the policy (āρt )t∈N that is optimal for ρ. Let (ρ̂t)
∞
t=1 denote the induced

sequence of the precisions after ρ + ∆, i.e., ρ̂t = ρ + ∆ +
∑t

s=1
1

1

ā
ρ
s

+γs
. Note that ρ̂t ≥ ρt for all

t ∈ N. Then, it holds that 0 ≤ V (ρ) − V (ρ + ∆) ≤
∑∞

t=1 δ
t−1
C

(
1
ρ
− 1

ρ+∆

)
= 1

1−δC

(
1
ρ
− 1

ρ+∆

)
.

Thus, limρ→∞ V (ρ)− V (ρ+ ∆) = 0.

D.2 Proof of Proposition 1

Proof. If γt is constant across t, the consumer problem is a stationary dynamic programming.

Suppose γt = γ ∈ R+ for all t. The value function V (·) satisfies the Bellman equation

V (ρ) = max
a∈A

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δCV

(
ρ+

1
1
a

+ γ

)
. (16)

Again, I suppress the dependence of V (·) on γ. Lemma 8 implies that V (·) is decreasing and

convex. Thus, the maximand in (16) has the increasing differences in (a, ρ). Thus, ā(v, γ, ρ), the

greatest maximizer, is increasing in ρ. Note that ρt ≤ ρt+1, and the inequality is strict if and only
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if at > 0. As a result, the consumer’s optimal behavior is either (i) at = 0 for all t, or (ii) a1 > 0

and at is increasing in t. Now, define

v∗(γ) := sup {v ∈ R : ā (v, γ, ρ0) > 0} , where ρ0 =
1

σ2
0

. (17)

The consumer’s payoff from any strategy with a1 > 0 is strictly decreasing in v and strictly increas-

ing in γ, whereas her payoff from at ≡ 0 is independent of (v, γ). As a result, if ā (v, γ, ρ0) > 0,

then ā (v′, γ′, ρ0) > 0 for any v′ < v and γ′ > γ. Therefore, the consumer’s behavior follows (i)

and (ii) above if v > v∗(γ) and v < v∗(γ), respectively, and v∗(γ) is increasing in γ. For any given

v, as γ →∞, the consumer’s ex ante payoff from (say) at = amax > 0 for all t becomes positive.

Thus, limγ→∞ v
∗(γ) =∞.

If v < v∗(γ), then at ≥ a1 > 0 for all t. Since γ < ∞, we obtain limt→∞ σ
2
t → 0,

or equivalently, limt→∞ ρt = ∞ with ρt := 1
σ2
t
. By Lemma 8, for any ρ > 0 and ∆ > 0,

limρ→∞ V (ρ)−V (ρ+∆) = 0. This, combined with limt→∞ ρt =∞, implies limt→∞ āt(v, γ, ρt) =

amax.

E The Optimal Policy Under Long-Run Commitment: Proof of Theorem 1

E.1 Lemmas

Proof of Lemma 2. Let β be any one of γ and γ ′. I decompose the consumer’s problem (7) into

two steps. First, given any (at)t∈T , the consumer chooses (at)t6∈T to maximize the following

hypothetical objective function:

∞∑
t=1

δt−1
C

1{t6∈T }u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+βs

 . (18)

The consumer receives a benefit of u(at) only in period t 6∈ T . This leads to a mapping that maps

any (at)t∈T to the (greatest) optimal choice of (at)t6∈T . In the second step, the consumer chooses

(at)t∈T to maximize her original objective, taking the mapping (at)t∈T 7→ (at)t6∈T as given.

For any t ∈ T , at affects (18) only through 1
at

+γt, because 1{t6∈T } = 0. Also the same argument

as in the proof of Lemma 4 implies that (18) is supermodular in
(

(at)t6∈T ,

{(
1
as

+ γs

)−1
}
s∈T

)
.
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This implies that if 1
āt(γ)

+γt ≤ 1
āt(γ′)

+γ′t for all t ∈ T , then āt(γ) ≥ āt(γ
′) for all t ∈ N\T .

Next, the platform can commit to a high privacy level to induce amax in any period.

Lemma 9. There is a γmax < +∞ such that if the platform commits to γt = γmax, then regardless

of the privacy levels in other periods, the consumer chooses at = amax. Also, there is a σ̄2 such

that if σ2
T−1 ≤ σ̄2, then the consumer chooses at = amax for all t ≥ T and for any (γτ )τ≥T .

Proof. Let a′ denote the second highest activity level in A. Take any (at)t∈N ∈ A such that

at < amax. Suppose the consumer changes her action in period t from at to amax. This change

increases her period-t benefit from u(·) by at least u(amax)−u(a′) > 0. The change also increases

the sum of discounted privacy costs (from the perspective of period t) by

∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1

amax
+γmax

+
∑s

τ=t+1
1

1
aτ

+γτ

− ∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1
at

+γmax
+
∑s

τ=t+1
1

1
aτ

+γτ


≤
∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1

amax
+γmax

− ∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1
at

+γmax


=

1

1− δ

 1
1

σ2
t−1

+ 1
1
at

+γmax

− 1
1

σ2
t−1

+ 1
1

amax
+γmax

 =: D(σ2
t−1, γmax).

First, we have limγmax→∞D(σ2
0, γmax) = 0, and D(σ2

t , γmax) ≤ D(σ2
0, γmax) for any σ2

t ≤ σ2
0 .

Thus, for any γmax such that D(σ2
0, γmax) < u(amax) − u(a′), the consumer’s optimal action is

amax in period t. Also, even for γmax = 0, limσ2
t−1→0D(σ2

t−1, 0) = 0. Thus for a sufficiently small

σ2
t−1, the consumer chooses aτ = amax for all τ ≥ t under any (continuation) privacy policy.

E.2 Proof of Theorem 1

Proof. First, I show limt→∞ σ
2
t = 0. Let γ∗ denote the equilibrium privacy policy, and let a∗

denote the equilibrium activity levels. Suppose to the contrary that limt→∞ σ
2
t 6= 0. Because σ2

t is

decreasing, limt→∞ σ
2
t > 0 exists. This implies 1

a∗t
+ γ∗t →∞. I derive a contradiction.

Let γmax ∈ [0,+∞) denote the privacy level defined in Lemma 9—i.e., the consumer chooses

at = amax if γt = γmax. If the platform commits to γt = γmax, the variance of the noise of the

signal in period t is B := 1
amax

+ γmax. Take T ∗ such that for all t ≥ T ∗, 1
a∗t

+ γ∗t > B. If the
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platform replaces γ∗t with γmax for all t ≥ T ∗ and commits to such a new policy ex ante, then the

precision of the signal increases from 1
1
a∗t

+γ∗t
to B−1 in any period t ≥ T ∗. Lemma 2 implies that

after the policy change, the consumer also chooses a weakly greater at for all t < T ∗. To sum

up, the platform can strictly increase its profit by replacing γ∗t with γmax for all t ≥ T ∗, which is

a contradiction. The second part of Lemma 9 then implies that there is some T such that for all

t ≥ T , a∗t = amax.

Next, I write γ∗t (v) to clarify the dependence of the equilibrium privacy level on v. Suppose

to the contrary that there is a T such that, for any v, there is some v ≥ v such that γ∗t (v) = 0 for

some t ≤ T . Then we can find vn →∞ and t∗ ≤ T such that γ∗t∗(vn) = 0 for all n. However, for a

sufficiently large vn, a∗t∗ = 0 if γ∗t∗(vn) = 0. The reason is as follows. If the consumer changes her

activity level from 0 to some a > 0, her gross payoff from u(·) increases by at at most u(amax). In

contrast, her privacy cost increases by at least

v

(
1

1
σ2

0
+ (t∗ − 1)amax

− 1
1
σ2

0
+ (t∗ − 1)amax + amin

)
> 0,

where amin is the smallest positive activity level in A. This expression is independent of the

history and diverges to∞ as v → ∞. Thus for a large v, the consumer prefers a = 0. However,

the platform can then commit to a high privacy level for period t∗ to induce at∗ > 0. By the same

argument as the previous paragraph, this change also weakly increases the activity levels in all

other periods. This is a contradiction.

F General Payoffs: Proof of Proposition 2

Proof of Proposition 2. First, we show Point 1. Note that Point 1 is a “non-equilibrium” result and

only shows the existence of the platform’s policy that induces the long-run privacy loss. Define

v := supa,∈A,x∈[0,σ2
0 ] | ∂û∂σ2 (a, x)| and C(x) = v(σ2

0 − x). Define u(a) = βa for β > 0 that satisfies

û(a, σ2) − û(a′, σ2) ≥ β for any σ2 and a > a′. We have C ′(σ2) = −v ≤ − ∂û
∂σ2 (a, σ2) and

û(a′, σ2)− û(a, σ2) ≥ u(a′)− u(a) > 0 for any a′ > a. As a result, the consumer incurs a lower

marginal privacy cost and a higher marginal gross benefit under û than under (u,C), uniformly

across all σ2. Proposition 1 implies that there is a γ∗ such that if the platform commits to γt = γ∗

for all t ∈ N, the consumer’s optimal behavior induces at → amax and σ2
t → 0 when she has
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(u,C). Suppose to the contrary that σ2
t does not converge to 0 when the consumer with û acts

optimally. Then for some T ∈ N, at = 0 for all t ≥ T . In any period t ≥ T , the consumer with

(u,C) strictly prefers some at > 0 to at = 0 (i.e., Point 1 of Proposition 1). The consumer with

û can mimic this strategy to strictly increase her continuation value relative to taking zero activity

levels forever. This is a contradiction. Finally, σ2
t → 0 implies at → amax by the same argument

as Lemma 9.

Second, we show Point 2. Throughout the proof, we fix the consumer’s discount factor. For

each δP ∈ [0, 1], let (σ2
t (δP ))t∈N denote the equilibrium sequence of posterior variances, and define

σ2
∞(δP ) = limt→∞ σ

2
t (δP ). Suppose to the contrary that we can find a sequence δn → 1 and ε > 0

such that σ2
∞(δn) ≥ ε for all n. Then, the platform’s average revenue satisfies

(1− δn)
∞∑
t=1

Π(at(δn), σ2
t (δn)) ≤ Π(amax, ε).

Point 1 implies that the platform has a privacy policy γ∗ that induces limt→∞(at, σ
2
t ) = (amax, 0).

As δP → 1, the platform’s average payoff converges to Π(amax, 0). Thus, a sufficiently patient

platform strictly prefers γ∗ to the equilibrium policy, which is a contradiction.

G Omitted Proofs for Section 5

Proof of Proposition 3

Proof. We begin with the second part of the result. Let a′ denote the second highest activity level

inA. Take anyB that satisfies u(amax)−u(a′)− v
1−δB > 0. In any period, if the consumer chooses

at = amax instead of at ∈ A \ {amax}, her gross payoff increases by at least u(amax)− u(a′) > 0,

and her privacy cost increases by at most v
1−δB. Thus for σ2

0 ≤ B, the consumer chooses amax

after any history. Anticipating such behavior, the platform chooses γt = 0 after any history.

To show the first part, take any pure-strategy MPE. Because σ2
t is non-negative and decreasing,

it converges to a non-negative value. If σ2
t → 0, then σ2

s < B for a sufficiently large s, so the

second part of the result implies Point 1.

Next, suppose that σ2
t converges to a positive value. We show at > 0 for all t. Let t∗ denote the

smallest t such that at = 0 in equilibrium. Then σ2
t∗+1 = σ2

t∗ . Because we consider an MPE, we
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can inductively show that as = 0 for all s ≥ t∗. However, the platform will then have a profitable

deviation: In period t∗, the platform can choose a sufficiently high but finite γt. If the consumer

chooses at∗ = 0, then as = 0 for all s ≥ t∗ according to the equilibrium strategy (following the

platform’s deviation). Compared to this outcome, the consumer is strictly better off if she chooses

at∗ > 0 and as = 0 for all s ≥ t∗ + 1. This is a contradiction, so at > 0 for all t. Now, suppose

to the contrary that γt does not diverge to∞. It means that there is some γ̄ <∞ and the platform

chooses γt ≤ γ̄ for infinitely many t’s. Because A is finite, the lowest positive activity level is

well-defined. Therefore the platform can use the signals in these periods to perfectly learn the

consumer’s type in the long run, i.e., σ2
t → 0. This is a contradiction, so we have γt →∞.

Consumer-Worst Equilibrium: Proof of Theorem 2

Proof. We use precision ρt = 1
σ2
t

as a state variable of MPE. Let γ(ρ) denote the platform’s choice

of γt given ρt−1 = ρ, and let a(ρ, γ) denote the consumer’s choice of at given (ρt−1, γt) = (ρ, γ).

We adopt notations 1
0

=∞ and 1
∞ = 0. We construct (W (·), V (·, ·),Π(·), a(·, ·), γ(·)) that satisfies

the following functional equations: For all ρ ∈ [ 1
σ2

0
,∞) and γ ≥ 0,

W (ρ, γ) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δV

(
ρ+

1
1
a

+ γ

)}
, (19)

a(ρ, γ) is the largest maximizer of the right-hand side of (19),

V (ρ) = W (ρ, γ(ρ)), (20)

Π(ρ) = max
γ≥0

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δΠ

(
ρ+

1
1

a(ρ,γ)
+ γ

) , and (21)

γ(ρ) is the largest maximizer of the right-hand side of (21). (22)

Let V ∗ denote the solution of

V (ρ) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δV (ρ+ a)

}
. (23)

This Bellman equation describes the consumer’s choice when the platform always sets γt = 0.

Blackwell’s condition for a contraction implies that the equation has a unique solution V ∗. The
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relevant contraction mapping maps any decreasing convex function to a decreasing convex func-

tion. Thus V ∗ is decreasing and convex. Let W (ρ, γ) satisfy (19) with V = V ∗. If the consumer

increases a from 0 to amax, she incurs a flow privacy cost and a loss from a lower continuation

value. These losses are smaller when ρ and γ are higher, so the maximizer a(ρ, γ) is increasing

in ρ and γ. Given a(ρ, γ), equation (21) defines a Bellman equation. The similar argument as

equation (19) implies that we have a unique solution Π(·) to equation (21), and it is increasing.

Equation (22) then determines γ(ρ).

The remaining equation is (20). Consider the platform’s problem in the right-hand side of (21).

Note that Π(·) is increasing. If a(ρ, 0) = amax, the platform chooses γ(ρ) = 0. If a(ρ, 0) = 0, the

platform chooses the lowest γ such that a(ρ, γ) = amax, so the consumer is indifferent between

amax and 0. In either case, the right-hand side of (19) evaluated at γ = γ(ρ) is equal to the one

such that she chooses a optimally against γ = 0. As a result we have

W (ρ, γ(ρ)) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δV ∗ (ρ+ a)

}
= V ∗(ρ).

Thus we have constructed (W (·), V (·, ·),Π(·), a(·, ·), γ(·)) that satisfies equations (19)-(22).

We show that (γ(·), a(·, ·)) consists of an equilibrium. Equations (19) and (20) imply that the

consumer has no profitable one-shot deviation after any history. Equation (21) implies the plat-

form has no profitable one-shot deviation. The one-shot deviation principle implies (γ(·), a(·, ·))

consists of an equilibrium.

As shown above, in this equilibrium the consumer’s payoff is the same as when she faces the

platform that sets γt = 0 after any history. Thus the equilibrium is consumer-worst. Note that the

platform’s strategy is γ(ρ) = min {γ ∈ R+ : a(ρ, γ) = amax}, so Point 2 holds. Both a(ρ, γ) and

γ(ρ) are independent of δP ; therefore, the equilibrium strategy is independent of δP .

Finally, we show Point 1. Because a(ρ, γ) is increasing in ρ, γ(ρ) is decreasing in ρ. Because

ρt is increasing on-path, γt decreases over time. Moreover, we have ρt+1 ≥ ρ0 + t · 1
1

amax
+γ(ρ1)

, and

thus limt→∞ ρt =∞. Proposition 3 implies γt = 0 after some finite t.
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Proof of Corollary 1

We describe the game of action-contingent commitment. Before t = 1, the platform publicly

commits to a mapping γ(·) : {φ} ∪ (∪∞s=1A
s)→ R+, which determines γ1 = γ(φ) and maps past

actions (a1, . . . , at−1) ∈ At−1 to the privacy level γt in every period t ≥ 2. The consumer observes

γ(·) and chooses activity levels over time.

Proof of Corollary 1. We show the first part. Let (γ∗t )t∈N denote the (on-path) equilibrium privacy

levels in the consumer-worst equilibrium. I show that if the platform commits to a deterministic

sequence of (γ∗t )t∈N ex ante, the consumer chooses amax in all periods. To see this, we compare

(i) the consumer’s (single-agent) decision problem given (γ∗t )t∈N under long-run commitment to

(ii) her problem given the platform’s Markov strategy under one-period commitment. Take any

strategy of the consumer, and consider the privacy level in period t. In (i), the consumer faces γ∗t .

In (ii), the consumer faces γ∗n+1, where n is how many times the consumer chose a = amax instead

of a = 0 before (and including) period t − 1. We have γ∗n+1 ≥ γ∗t after any history. Thus for any

strategy, the consumer faces lower privacy levels in all periods under long-run commitment than

one-period commitment. As a result, the consumer’s optimal payoff under the former cannot ex-

ceed the one under the latter. Now, the consumer’s optimal strategy under one-period commitment

is at = amax for all t ∈ N. She can achieve the same outcome under long-run commitment by

choosing at = amax for all t ∈ N. As a result, the consumer prefers at = amax for all t under

long-run commitment.

We now show that (γ∗t )t∈N is indeed optimal. We begin with two observations. First, multiply-

ing a positive constant to the platform’s payoff does not change the optimal policy. Thus we can

assume that the platform’s payoff equals the consumer’s privacy cost, v[σ2
0 − σ2

t ]. Second, recall

that in the consumer-worst equilibrium, the consumer’s ex ante payoff is V (ρ0), which is her ex

ante payoff when she acts optimally against a (hypothetical) platform that always sets γt = 0 in

any period. The consumer can secure a payoff of at least V (ρ0) regardless of the platform’s behav-

ior. Thus under long-run commitment and action-contingent commitment, the consumer’s ex ante

payoff satisfies
∞∑
t=1

δt−1u(at)−
∞∑
t=1

δt−1πt ≥ V (ρ0),

where πt is the privacy cost (which equals the platform’s payoff) in period t. As a result, the

39



platform’s ex ante payoff satisfies

∞∑
t=1

δt−1u(amax)− V (ρ0) ≥
∞∑
t=1

δt−1πt. (24)

In the consumer-worst equilibrium, the consumer chooses amax in all periods and obtains ex ante

payoff V (ρ0). Thus the platform’s payoff is exactly the upper bound
∑∞

t=1 δ
t−1u(amax)−V (ρ0) in

(24). Since the platform with long-run commitment can attain the same outcome with (γ∗t )t∈N, it is

an optimal policy under long-run commitment. The same upper bound
∑∞

t=1 δ
t−1u(amax)−V (ρ0)

applies to the case of action-contingent commitment. Therefore the consumer-worst equilibrium

gives the platform the best possible payoff under action-contingent commitment.

Consumer-Best Equilibrium: Proof of Theorem 3

Proof. We write δC = δ ≥ 1/2. Following the proof of Theorem 2, we write a Markov strategy

of each player as a function of a precision ρt = 1
σ2
t
. Let ρ0 = 1

σ2
0
. Define the strategy profile as

follows: Let γ(ρ0) = ∞. For any ρ > ρ0, let γ(ρ) be the strategy in the consumer-worst MPE in

Theorem 2. Let a(ρ0,∞) = amax, and a(ρ0, γ) = 0 for any γ <∞. For any ρ > ρ0, let a(ρ, γ) be

her strategy in the MPE in Theorem 2. On the path of play, (γt, at) = (∞, amax) is chosen in all

periods. This outcome is best for the consumer and worst for the platform.

Given the above strategy profile, suppose the platform deviates and offers γ < ∞ at ρ = ρ0.

If the consumer chooses a = 0, her future continuation value is 1
1−δu(amax), which is her best

possible outcome. As a result, a necessary condition for the consumer to choose amax following

the platform’s deviation at ρ0 is that she obtains a nonnegative payoff in the current period:

u(amax)− v

 1

ρ0

− 1

ρ0 + 1
1

amax
+γ

 = u(amax)− v
1

1
amax

+γ

ρ0

(
ρ0 + 1

1
amax

+γ

) ≥ 0. (25)

Let γ̂(ρ0) denote the minimum γ that satisfies this constraint. γ̂(ρ0) is decreasing in ρ0, positive

for a small ρ0, and limρ0→0 γ̂(ρ0) =∞.

Recall from the proof of Theorem 2 that in the consumer-worst equilibrium, there is a cutoff

state ρ(0) such that if ρt ≥ ρ(0), (γ, a) = (0, amax) is chosen in the continuation game, and if
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ρt < ρ(0), the consumer’s continuation value is the same as taking at = 0 for all t.

Take any ρ̄ > 0 such that ρ̄+ 1
1

amax
+γ̂(ρ̄)

≤ ρ(0). For any initial state ρ0 ≤ ρ̄, the above strategy

profile is an equilibrium. First, it is an equilibrium at any (off-path) state ρ > ρ0 by construction.

At ρ = ρ0, the consumer has no profitable deviation when the platform offers γ = ∞, because

she can receive the best payoff of u(amax) in the current and any future periods. Suppose that the

platform deviates for the first time in period t and chooses γt < ∞. Suppose to the contrary that

the consumer strictly benefits from the one-shot deviation to a = amax. Then ρ0 + 1
1

amax
+γt
≤ ρ(0)

must hold, because ρ0 ≤ ρ̄ and the platform chooses γt ≥ γ̂(ρ0) ≥ γ̂(ρ̄). Thus her payoff in

period t is at most u(amax), whereas her continuation value from period t + 1 is equal to the one

from choosing as = 0 for all s ≥ t + 1. In contrast, if the consumer chooses at = 0 and follows

her strategy thereafter, her payoff is δ
1−δu(amax), because she sets at = 0 in period t and the state

remains ρ0. Thus, the consumer has a profitable deviation only if δ
1−δu(amax) < u(amax), which

contradicts δ ≥ 1/2.

Discussion on Assumption 1

The assumption of binary actions is without loss of generality if u(a) is weakly convex (or pre-

cisely, u(·) : A → R is a restriction of a weakly convex function û : R+ → R to A). Under this

assumption, the consumer chooses 0 or amax as an optimal activity level, so we can solve the game

as if she has binary actions. To see this, consider the proof of Theorem 2. We can extend equations

(19)-(23) by replacing “a ∈ {0, amax}” with “a ∈ A.” Without any restriction on A or u(a), the

value function V that solves (23) is decreasing and convex, a(ρ, γ) is increasing in ρ and γ, and

Π is increasing. However, we need Assumption 1 to verify (20), which implies that V is indeed

the consumer’s value function when the platform follows γ(·). For a general A and u(a), there

is no guarantee that (20) holds, i.e., the consumer’s value function W (ρ, γ(ρ)) is not necessarily

equal to V (ρ), which is her optimal payoff facing γt ≡ 0. However, if u(a) is weakly convex, the

maximands of the consumer’s Bellman equation (19) is strictly convex in a. Thus for any ρ, we

have a(ρ, γ) = 0 if γ is below some threshold, and a(ρ, γ) = amax if γ is above the threshold.

The platform’s Markov strategy γ(ρ) is then defined as the lowest γ that induces the consumer to

choose amax. Therefore we obtain (20) by the same logic as in the original proof.

We can also prove Theorem 3 for a general A if u(a) is weakly convex. The only part of the
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proof we need to modify is that we redefine γ̂(ρ0) in the proof as the lowest γ under which the

consumer’s flow payoff from an optimal a ∈ A is non-negative when she faces (ρ0, γ).

H Speed of Learning: Appendix for Section 6.1

Proof of Proposition 4. Fix any privacy policy of the platform and all parameters except the con-

sumer’s discount factor. Take two discount factors of the consumer, δV and δW > δV . As in the

proof of Lemma 8, we begin with the “T -period problem, ” in which the consumer’s payoff in any

period s ≥ T + 1 is exogenously set to zero. For any t ≤ T , let V T
t (ρ) denote the consumer’s

continuation value in the T -period problem starting from period t given 1
σ2
t−1

= ρ:

V T
t (ρ) = max

(at,...,aT )∈AT−t+1

T∑
s=t

δs−tV

u(as)− v

σ2
0 −

1

ρs−1 + 1
1
as

+γs

 .

Here, ρt−1 = ρ, and (ρt, . . . , ρT−1) are recursively defined by Bayes’ rule given (at, . . . , aT−1).

The standard argument of dynamic programming implies that for each t = 1, . . . , T ,

V T
t (ρ) = max

a∈A
u(a)− v ·

(
σ2

0 −
1

ρ+ 1
1
a

+γt

)
+ δV V

T
t+1

(
ρ+

1
1
a

+ γt

)
, (26)

where V T
T+1(·) ≡ 0. Similarly if the consumer has discount factor δW , the relevant value function

W T
t satisfies

W T
t (ρ) = max

a∈A
u(a)− v ·

(
σ2

0 −
1

ρ+ 1
1
a

+γt

)
+ δWW

T
t+1

(
ρ+

1
1
a

+ γt

)
, (27)

where W T
T+1(·) ≡ 0. We can recursively show that V T

t and W T
t are decreasing and convex for any

t. We show that for any x, y ≥ 0 such that y > x, W T
k (y) −W T

k (x) ≤ V T
k (y) − V T

k (x) for all

k = 1, . . . , T +1. The inequality holds with equality for k = T +1. Suppose it holds for k = t+1.

Let aVt (ρ) and aWt (ρ) denote the maximizers for (26) and (27), respectively. The envelope theorem
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implies

V T
t (y)− V T

t (x) = −
∫ y

x

v(
ρ+ 1

1

aVt (ρ)
+γt

)2 + δV
dV T

t+1

dρ

(
ρ+

1
1

aVt (ρ)
+ γt

)
dρ (28)

and

W T
t (y)−W T

t (x) = −
∫ y

x

v(
ρ+ 1

1

aWt (ρ)
+γt

)2 + δW
dW T

t+1

dρ

(
ρ+

1
1

aWt (ρ)
+ γt

)
dρ. (29)

The induction hypothesis states thatW T
t+1 decreases more rapidly than V T

t+1, which implies aWt (ρ) ≤

aVt (ρ). Thus we haveW T
t (y)−W T

t (x) ≤ V T
t (y)−V T

t (x). By induction, we have V T
1 (y)−V T

1 (x) ≥

W T
1 (y) − W T

1 (x). Taking T → ∞, we have W1(y) − W1(x) ≤ V1(y) − V1(x). We can ap-

ply the same argument to the consumer’s problem that starts from period t and conclude that

Wt(y)−Wt(x) ≤ Vt(y)− Vt(x) for any t ≥ 1.

In t = 1, the consumer’s problems under δV and δW are respectively

max
a∈A

[
u(a)− v ·

(
σ2

0 −
1

ρ0 + 1
1
a

+γ1

)
+ δWW2

(
ρ0 +

1
1
a

+ γ1

)]
(30)

and

max
a∈A

[
u(a)− v ·

(
σ2

0 −
1

ρ0 + 1
1
a

+γ1

)
+ δV V2

(
ρ0 +

1
1
a

+ γ1

)]
. (31)

Because W2(·) decreases more rapidly than V2(·), we have aW1 (ρ) ≤ aV1 (ρ) and ρW1 ≤ ρW1 . Sup-

pose now that inequalities aWk (ρ) ≤ aVk (ρ) and ρWk ≤ ρVk hold up to period k = t− 1. In period t,

the consumer solves

max
a∈A

[
u(a)− v ·

(
σ2

0 −
1

ρWt + 1
1
a

+γt

)
+ δWWt+1

(
ρWt−1 +

1
1
a

+ γt

)]
(32)

and

max
a∈A

[
u(a)− v ·

(
σ2

0 −
1

ρVt + 1
1
a

+γt

)
+ δV Vt+1

(
ρVt +

1
1
a

+ γt

)]
. (33)
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Thus we have aWt+1(ρ) ≤ aVt+1(ρ) and ρWt+1 ≤ ρVt+1.

The same argument implies that if v is higher, the consumer chooses a lower activity level in

every period.

Finally, suppose the prior variance σ2
0 of the consumer’s type increases, or equivalently, ρ0

decreases. We use V for the continuation value of the consumer. In t = 1, the consumer solves

max
a∈A

u(a) +
v

ρ0 + 1
1
a

+γ1

+ δV2

(
ρ0 +

1
1
a

+ γ1

)
. (34)

Because V is decreasing and convex, the consumer chooses a lower activity level when ρ0 is small.

Thus if ρ0 is smaller, ρ1 becomes smaller and the consumer chooses a lower activity level in t = 2.

Repeating the same argument, we can show that the consumer chooses a lower activity level in

every period when she starts from a greater σ2
0 .

Proof of Proposition 5. Take two discount factors of the consumer, δV and δW > δV . Let V and

W satisfy equation (23) in the proof of Theorem 2 given δV and δW , respectively:

V (ρ) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δV V (ρ+ a)

}
, (35)

W (ρ) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δWW (ρ+ a)

}
. (36)

We show δW > δV implies W decreases more rapidly than V , i.e., W (y)−W (x) ≤ V (y)− V (x)

for all y > x ≥ 0. For δ ∈ {δW , δV }, define an operator Fδ as follows:

Fδh(ρ) = max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δh (ρ+ a)

}
. (37)

The operator Fδ maps any decreasing and convex h to a function with the same property. We show

that if h decreases more rapidly than g, i.e., if h(y)− h(x) ≤ g(y)− g(x) for all y > x ≥ 0, then

FδWh decreases more rapidly than FδV g. The envelope theorem implies

FδWh(y)−FδWh(x) =

∫ y

x

−v
(ρ+ aW,h(ρ))2

+ δWh
′(ρ+ aW,h(ρ))dρ, and

FδV g(y)−FδV g(x) =

∫ y

x

−v
(ρ+ aV,g(ρ))2

+ δV g
′(ρ+ aV,g(ρ))dρ,
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where

aW,h(ρ) ∈ arg max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δWh (ρ+ a)

}
(38)

aV,g(ρ) ∈ arg max
a∈{0,amax}

{
u(a)− v

(
σ2

0 −
1

ρ+ a

)
+ δV g (ρ+ a)

}
. (39)

We have aW,h(ρ) ≤ aV,g(ρ) because δWh (ρ+ a) decreases more rapidly than δV g (ρ+ a). Thus

we have FδWh(y) − FδWh(x) ≤ FδV g(y) − FδV g(x). For any n ∈ N, we have FnδWV (y) −

FnδWV (x) ≤ FnδV V (y) − FnδV V (x) = V (y) − V (x). Taking n → ∞, we have W (y) −W (x) ≤

V (y)− V (x).

In the consumer-worst equilibrium, the platform sets the lowest privacy level that makes the

consumer willing to choose amax as opposed to 0. Given δW , the platform sets

γW (ρ) = min

{
γ ∈ R+ : u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δWW

(
ρ+

1
1
a

+ γ

)
≥ −v

(
σ2

0 −
1

ρ

)
+ δWW (ρ)

}
.

Given δV , the platform sets

γV (ρ) = min

{
γ ∈ R+ : u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δV V

(
ρ+

1
1
a

+ γ

)
≥ −v

(
σ2

0 −
1

ρ

)
+ δV V (ρ)

}
.

The consumer incurs a greater loss from a lower continuation value given δW than δV , so we

have γW (ρ) ≥ γV (ρ). We now show that the platform chooses a greater privacy level when the

consumer is more patient. In period 1, the statement holds because γW (ρ0) ≥ γV (ρ0). Suppose

the statement holds up to period t− 1. Let ρt−1(W ) and ρt−1(V ) denote the states at the beginning

of period t under δW and δV , respectively. We have ρt−1(W ) ≤ ρt−1(V ), because the consumer

chooses amax and the platform chooses higher privacy levels before period t. Because γW and γV

are decreasing, we have γW (ρt−1(W )) ≥ γV (ρt−1(W )) ≥ γV (ρt−1(V )). Therefore the platform

sets a higher privacy level and obtains a less accurate signal in every period if the consumer’s more

patient.

Applying the same argument as above, we can show that the platform offers a higher privacy

level if v is higher or σ2
0 is higher. In either case, the platform has to choose a higher privacy level

to induce the consumer to choose amax, because she faces a higher incremental cost of increasing
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an activity level.

I Time-Varying Type: Appendix for Section 6.2

Proof of Proposition 6. The consumer’s problem is a dynamic programming with state variable

ρt := 1
σ2
t
. The Bellman equation is

V (ρ) = max
a∈A

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δCV

 1

φ2

(
1

ρ+ 1
1
a+γ

)
+ (1− φ2)σ2

0


 . (40)

Blackwell’s sufficient condition ensures that the equation has a unique solution, V ∗. We show

V is decreasing and convex. The second term of the maximand is decreasing and convex in ρ.

The last term has the same property, because it is a composite of a decreasing convex function V

and increasing concave function φ2

(
1

ρ+ 1
1
a+γ

)
+ (1 − φ2)σ2

0 . The upper envelope of decreasing

and convex functions is decreasing and convex, so the right-hand side of the Bellman equation

is decreasing and convex in ρ. As a result V ∗ is decreasing and convex. A similar fixed point

argument implies that for any ρ, V ∗(ρ) decreases in v.

Given precision ρ in the current period, let a(ρ) denote the consumer’s optimal choice derived

from the Bellman equation. The maximand of the Bellman equation has increasing differences in

(a, ρ). Thus a(ρ) is increasing. Let g(ρ) denote the precision in the following period:

g(ρ) =
1

φ2

(
1

ρ+ 1
1

a(ρ)
+γ

)
+ (1− φ2)σ2

0

. (41)

Because a(ρ) is increasing, so is g(ρ). If and only if a(ρ) > 0, we have g(ρ0) > ρ0. Thus we

have one of the following dynamics. If a(ρ0) = 0, the consumer chooses at = 0 in any period

t. If a(ρ0) > 0, the consumer chooses a(ρt) with ρt = gt(ρ0) in period t. Precision ρt and the

consumer’s activity level a(ρt) increase in t. The existence of cutoff v∗(γ) and the comparative

statics follow from the same proof as Proposition 1.

Proof of Proposition 7. Let δC = δP = δ. The construction of the equilibrium follows that of
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Theorem 2: Consider the following set of functional equations:

W (ρ, γ) = max

u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ

+ δV

 1

φ2

(
1

ρ+ 1
1

amax
+γ

)
+ (1− φ2)σ2

0

 ,

(42)

−v
(
σ2

0 −
1

ρ

)
+ δV

 1

φ2
(

1
ρ

)
+ (1− φ2)σ2

0

 ,

V (ρ) = W (ρ, γ(ρ)), and (43)

Π(ρ) = max
γ≥0

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δΠ

 1

φ2

(
1

ρ+ 1
1

amax
+γ

)
+ (1− φ2)σ2

0


 , (44)

where a(ρ, γ) is the maximizer of (42) and γ(ρ) is the maximizer of (44). We show that there exists

(W (·), V (·, ·),Π(·), a(·, ·), γ(·)) that satisfies the above equations. Let V ∗ denote the solution of

V (ρ) = max

u(amax)− v
(
σ2

0 −
1

ρ+ amax

)
+ δV

 1

φ2
(

1
ρ+amax

)
+ (1− φ2)σ2

0

 ,

−v
(
σ2

0 −
1

ρ

)
+ δV

 1

φ2
(

1
ρ

)
+ (1− φ2)σ2

0

 (45)

The standard argument of dynamic programming implies that the equation has a unique solution

V ∗, which is decreasing and convex. Let V = V ∗ in (42), which also determines the left-hand side

W (ρ, γ). The maximizer a(ρ, γ) is increasing in ρ and γ. Equation (44) uniquely determines Π(·).

Because the relevant contraction mapping for (44) maps an increasing function to an increasing

function, Π(·) is increasing. To solve the right-hand side of (44), the platform chooses γ(ρ) =

min {γ ∈ R+ : a(ρ, γ) = amax}. Specifically, if a(ρ, 0) = amax, the platform chooses γ = 0. If

a(ρ, 0) = 0, the platform choose γ that makes the consumer indifferent between amax and 0. As a
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result we have

W (ρ, γ(ρ)) = max

u(amax)− v
(
σ2

0 −
1

ρ+ amax

)
+ δV

 1

φ2
(

1
ρ+amax

)
+ (1− φ2)σ2

0

 ,

−v
(
σ2

0 −
1

ρ

)
+ δV

 1

φ2
(

1
ρ

)
+ (1− φ2)σ2

0


= V (ρ).

We can now construct an equilibrium in which the platform follows γ(ρ) and the consumer follows

a(ρ, γ). Equations (42) and (43) imply that the consumer has no profitable one-shot deviation after

any history. Equation (44) implies the platform has no profitable one-shot deviation. The one-shot

deviation principle implies (γ(·), a(·, ·)) consists of an equilibrium.

The consumer’s ex ante payoff V (ρ) is what she can secure by acting optimally against zero

privacy levels. Thus the equilibrium is consumer-worst. It is also platform-best because the sum of

the players’ payoffs is maximized (i.e., it is u(amax)
1−ρ ) and the consumer’s payoff is minimized. The

same logic as Corollary 1 implies that the equilibrium outcome is the same as the outcome under

long-run commitment, which proves Point 1. Point 2 follow from the same proof as Proposition 6,

and Point 3 follows from the derivation of γ(·) above.

We show Point 4. Take φ and φ̂ > φ. Let Fφ and Fφ̂ denote the relevant contracting mappings

for the Bellman equation (45) given persistence φ and φ̂, respectively. Also let Vφ and Vφ̂ denote

the corresponding solutions. We show Vφ(ρ) ≥ Vφ̂(ρ) for all ρ. We have Vφ(ρ) = Fφ[Vφ](ρ) ≥

Fφ̂[Vφ](ρ). Because Fφ and Fφ̂ are monotone, for any n we have Vφ = Fnφ [Vφ] ≥ Fn
φ̂

[Vφ]. Taking

n → ∞, we have Vφ ≥ Vφ̂, i.e., the consumer is worse off when φ is high. The platform is

better off when φ is high, because the profit is proportional to the consumer’s privacy cost given

δC = δP .
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Online Appendix: Not for Publication

J Numerical Examples for Section 4

J.1 Non-monotonicity of flow payoffs under a stationary privacy policy

Consider the following parametrization: A = {0, 1, 3}, u(1) = 1, u(3) = 1.04, v = 2, δ = 0.9,

σ2
0 = 0.1, and γt = 0 for all t ∈ N. Define U(a) :=

∑∞
t=1 δ

t−1

[
u(a)− v

(
σ2

0 − 1
1

σ2
0

+ta

)]
. First,

under the consumer’s optimal policy, there is some period t∗ such that at∗−1 = 1 and at∗ = 3 if

U(1) > U(3) > U(0). The reason is as follows. Proposition 1 states that the optimal policy under

a stationary privacy policy is either at = 0 for all t, or at is positive and weakly increasing in t.

U(3) > U(0) implies that the consumer chooses the latter, and U(1) > U(3) implies that a1 = 1.

Because a1 = 1 and at = 3 for some finite t, there is a t∗ such that at∗−1 = 1 and at∗ = 3. The flow

payoff increases from t∗−1 to t∗ if u(3)−v

(
σ2

0 − 1
1

σ2
t∗−2

+1+3

)
> u(1)−v

(
σ2

0 − 1
1

σ2
t∗−2

+1

)
. The

inequality holds if u(3) − u(1) > B := 3v(
1

σ2
0

+4

)(
1

σ2
0

+1

) . We can numerically show that U(1) ≈

9.17, U(3) = 9.13, u(3) − (1) = 0.04, and B = 0.039. Thus we have U(1) > U(3) > U(0) and

u(3) − u(1) > B, so the consumer receives a higher flow payoff in period t∗ than in t∗ − 1. This

example shows that the consumer’s flow payoffs are non-monotone, because once at hits amax, the

flow payoffs strictly decrease in t.

J.2 Non-monotonicity of at in equilibrium

Figure 1 depicts the equilibrium dynamics for a myopic consumer. I assumeA = {0, 0.01, 0.02, . . . , 2}

and use Claim 1 in Appendix K to compute an equilibrium. (Claim 1 also implies that long-run

commitment and one-period commitment lead to the same outcome given a myopic consumer.)

Figure 1(a) shows that the platform offers a decreasing privacy level, hitting zero in t = 5. Figure

1(b) shows that the equilibrium activity level first decreases but eventually approaches amax = 2.

The non-monotonicity of a∗t contrasts with the case of a stationary privacy policy.
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Figure 1(b): Activity level at

Figure 1: Equilibrium under u(a) = 2a− 1
2
a2, v = 10, and σ2

0 = 1.

J.3 Non-monotonicity of γt in equilibrium

Under different parameters, Figure 2 depicts another equilibrium dynamics for a myopic consumer.

Figure 2(a) shows that γt can be non-monotone. In particular, the platform increases a privacy

level from t = 1 to t = 2 because it becomes less costly to induce the highest activity level through

privacy protection.

K Myopic Consumer

I characterize the equilibrium under a myopic consumer, which facilitates numerical analysis. Let

a∗(γ, σ2) ∈ A denote the best response of a myopic consumer, given a privacy level γ in the current

period and the posterior variance σ2 from the previous period:

a∗(γ, σ2) := max

arg max
a∈A

u(a)− v

σ2
0 −

1
1

σ2
+

1
1
a

+ γ



 . (46)

The following result characterizes the equilibrium.

Claim 1. Consider the game with long-run commitment. If the consumer is myopic, the plat-
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Figure 2(b): Activity level at

Figure 2: Equilibrium under A = {0, 1, 2}, u(1) = 10, u(2) = 11, v = 20, and σ2
0 = 1.

form adopts a greedy policy that myopically maximizes the precision of the signal in each period.

Formally, the equilibrium policy (γ∗1 , γ
∗
2 , . . . ) is recursively defined as follows:

γ∗t ∈ arg min
γ≥0

1

a∗(γ, σ̂2
t−1)

+ γ, ∀t ∈ N, (47)

σ̂2
0 = σ2

0, (48)

σ̂2
t =

1
1

σ̂2
t−1

+ 1
1

a∗(γ∗t ,σ̂
2
t−1)

+γ∗t

,∀t ∈ N. (49)

Proof. Lemma 1 implies a∗(γ, σ2) is increasing in γ and decreasing in σ2. Take any privacy policy

(γt)t∈N and let (σ2
t )t∈N denote the sequence of posterior variances induced by a∗(·, ·). I show

σ̂2
t ≤ σ2

t for all t ∈ N. The inequality holds with equality for t = 0. Take any τ ∈ N. Suppose

σ̂2
t ≤ σ2

t for t = 0, . . . , τ − 1. It holds that

σ2
τ =

1
1

σ2
τ−1

+ 1
1

a∗(γτ ,σ2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γτ ,σ̂2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γ∗τ ,σ̂2
τ−1)

+γ∗τ

= σ̂2
τ .

The first inequality follows from the inductive hypothesis and decreasing a∗(γ, ·). The second

inequality follows from (47). We now have σ̂2
t ≤ σ2

t for all t, which implies the privacy policy
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described by (47), (48), and (49) is optimal.

L General Payoffs of the Platform

Most of the results continue to hold if the platform’s final payoff from a sequence of posterior

variances is Π((σ2
t )t∈N), where Π : R∞+ → R is coordinate-wise strictly decreasing. This general-

ization does not change the analysis, because in equilibrium a deviation by the platform increases

σ2
t for all t ∈ N. An exception is Theorem 1, where the platform’s deviation may not uniformly

increase posterior variances. However, the proof of this theorem rests on the argument that if the

equilibrium fails to meet certain conditions such as σ2
t → 0, the platform can deviate and uniformly

decrease posterior variances. Thus, Theorem 1 continues to hold with the same proof under this

general Π(·).

For example, suppose the platform sells information to a sequence of short-lived data buyers.

Any information sold in period t is freely replicable later and thus has a price of zero in any period

s ≥ t + 1. The profit in period t equals the value of information generated in period t—i.e., the

platform’s ex ante payoff is
∑∞

t=1 δ
t−1
P (σ2

t−1 − σ2
t ), which is decreasing in each σ2

t .

M Full Commitment

This appendix considers the platform with action-contingent commitment power: Before t = 1,

the platform publicly commits to a mapping γ(·) : {φ} ∪ (∪∞s=1A
s) → R+, which determines

γ1 = γ(φ) and maps past actions (a1, . . . , at−1) ∈ At−1 to the privacy level γt in every period

t ≥ 2.

To provide a condition under which action-contingent commitment benefits the platform, we

prepare some notations. First, take any equilibrium under long-run commitment. Let (ât)t, (γ̂t)t,

and (σ̂2
t )t denote the activity levels, privacy levels, and posterior variances at the equilibrium,

respectively. Let Û2(σ2) denote the consumer’s continuation value starting from t = 2 when the

posterior variance at the beginning of t = 2 is σ2 and the consumer faces (γ̂t)t≥2. Also, let U0(σ2)

denote the consumer’s sum of discounted payoffs when the platform always set γt = 0 and the

posterior variance is σ2.

Claim 2. Suppose â1 < amax. The platform’s payoff under action-contingent commitment is
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strictly greater than the one under long-run commitment if

u(amax)− v

σ2
0 −

1
1
σ2

0
+ 1

1
amax

+γ̂1

+ δCÛ2

 1
1
σ2

0
+ 1

1
amax

+γ̂1

 (50)

≥max
a∈A

{
u(a)− v

[
σ2

0 −
1

1
σ2

0
+ 1

1
a

+γ̂1

]
+ δCU

0

(
1

1
σ2

0
+ 1

1
a

+γ̂1

)}
. (51)

Proof. Given the deterministic policy (γ̂t)t under long-run commitment, we create an action-

dependent policy that is strictly better for the platform. Consider the following policy γ∗(·). If

the consumer chooses a1 < amax in t = 1, the platform sets γt = 0 in any period t ≥ 2. If the con-

sumer chooses amax in t = 1, the platform sets γ̂t in any period t ≥ 2, i.e., it adopts a deterministic

policy from t = 2 on. The left-hand side (50) is the consumer’s payoff when she chooses amax in

t = 1 and behave optimally from t = 2 on. The right-hand side (51) is the consumer’s payoff from

the best possible deviation in t = 1. Thus the display inequality means that the consumer chooses

amax > â1 in t = 1. Note that the consumer’s behavior after t = 2 under γ∗(·) is different from

that under long-run commitment. However, the consumer faces a lower posterior variance in t = 2

under the former. Proposition 4 implies that the consumer’s activity level under γ∗(·) is greater

than the one under long-run commitment in any period t ≥ 2. Thus, γ∗(·) gives the platform a

higher payoff in any period than under long-run commitment.
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