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Abstract 
Can Bitcoin remain tamper proof in the long run? We use block-level data from the Bitcoin 
blockchain to estimate the impact of congestion and the USD price on fee rates. The 
introduction and adoption of the Segwit protocol allows us to identify an aggregate demand 
curve for bitcoin transactions. We find that Segwit has reduced fee revenue by about 70%. Fee 
revenue could be maximized at a block size of about 0.6 MB when Segwit adoption remains at 
current levels. At this block size, maximum fee revenue would be equivalent to 1/8 of the 
current average block reward. Hence, large sustained price increases are required to keep 
mining rewards constant in the long run. 
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1 Introduction

Bitcoin is a decentralized payment system without a central institution that verifies and settles

transactions. The blockchain underlying Bitcoin uses a Proof-of-Work (PoW) protocol where miners

compete to include transactions into the blockchain, thereby keeping track of changes in ownership.1

This mining competition is crucial to make the blockchain tamper proof. Users can try to undo their

transactions by double spending where they replace their own transactions with an alternative one

that sends the payment back to themselves.2 When high rewards are offered for updating blocks,

mining activity will be high, giving little or no incentives to double spend, since the PoW protocol

induces honest miners to make expensive investments to win the competition.

In Bitcoin, the rewards for the PoW are financed in two ways. First, there are rewards in new

bitcoins for miners. And second, there are fees in bitcoins pledged by users to have their transaction

included into a block. Importantly, the design of Bitcoin is such that in the long run only fees will

be used to finance this competition as block rewards decline from 50 bitcoins initially to 0 bitcoins.

Hence, it is important to understand if only fees can generate sufficient rewards to ensure that

the Bitcoin blockchain remains tamper proof. We use block-level data from 2016 to early 2021 to

answer this question. Using current demand for Bitcoin transactions, we find that fees can at most

generate about 1/8 of the current level of average block rewards in USD. This casts some doubt on

the long-run viability of the Bitcoin blockchain.

To arrive at this conclusion, we develop a simple empirical model based on block-level data for how

the demand for bitcoin influences fees associated with transactions. A key aspect of our analysis is

to use two natural experiments – two rapid price increases since late 2017 and the introduction of

Segwit (segregated witness) – to identify supply and demand effects.

We first regress fee rates – the average fee in USD paid per KB for a transaction in bitcoin – on

the level of congestion, USD prices of bitcoin and a measure of price volatility. There is a positive

relationship between fee rates and these variables.3 This is not surprising. As congestion increases,

there are two positive effects on fee rates. When blocks are full, only transactions with the highest

fee rates are selected by miners. Moreover, as more users compete to make payments given a

1For an introduction to the Bitcoin protocol, see Böhme et al. (2015).
2For details and an economic analysis of this problem, see Chiu and Koeppl (2017).
3To account for endogeneity of congestion, we resort to using lagged congestion as an instrumental variable.
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fixed supply of block space, they have an incentive to post higher fees to get their transactions

settled. Similarly, if demand for bitcoin as a financial asset increases its price increases as well. As

a consequence, fee rates are likely to increase, since they are transaction costs to settle a financial

trade with a higher value. Finally, higher volatility increases the need to settle a transaction quickly,

again leading to higher fees.

Next, we rely on two events to identify an aggregate demand curve for Bitcoin. First, there were

periods of sharp increases in the price of Bitcoin – one from late 2017 to early 2018 and another

from late 2020 to the end of our data set. Many people have interpreted these as speculative

periods. Second, in mid-2017, the Segwit protocol was introduced. The adoption of Segwit over

time by Bitcoin users increases block space and thus acts like a shift along a long-run aggregate

demand curve once we control for the speculative period. Changes in congestion and in the USD

price of Bitcoin can then be interpreted as demand shocks that influence fee rates.

This allows us to use our empirical model of fee rates to estimate the maximum fee revenue that

can be generated by creating higher congestion. First, we find that the current block size is about

45% too large in order to maximize transaction fees. Second, Segwit helped to reduce capacity

pressures, but it also lowered fees significantly by about 70%. In fact, given current demand for

Bitcoin transactions, to maximize block rewards it would be optimal to not have the Segwit protocol

in place at all. Third, fee rates increase with the USD price of Bitcoin. In order to maintain the

level of block rewards, one would need sustained price increases in the neighborhood of 15-20% per

year as block rewards diminish.

There is very little economics literature on fees in Bitcoin. The closest work to our own is Easley

et al. (2019), who use a theoretical queuing model to analyze the incentives for Bitcoin users to

pledge positive fees. They find that median wait times as a measure of congestion drive fee revenue.

Huberman et al. (2017) were the first to theoretically model the relationship between congestion

and fee rates. Both these models do not, however, look at the empirical relationship between

fees and overall demand for Bitcoin. They also do not consider the implications of the demand

for transactions for the optimal design of Bitcoin. In a related context, Chiu and Koeppl (2019)

investigate how fees are set by users that compete to have asset trades settled on a blockchain

based on a PoW protocol that is optimally designed in terms of block time and block size. Finally,

Lehar and Parlour (2020) use fees to study collusion among miners. They argue that despite high

demand, prior to 2020 blocks were not always full, confirming that miners intentionally reduce
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throughput to keep fees and, hence, mining rewards high.

Only a few papers in economics have tackled the issue of how a declining reward structure will

influence mining in Bitcoin and, hence, its safety in the long run. Two exceptions are Auer (2019)

and Chiu and Koeppl (2017). Both papers use the double spending problem to evaluate the safety

and cost of Bitcoin for settling transactions. As pointed out earlier, mining rewards play a major

role in their analyses. Auer (2019) is skeptical that rewards will be enough in the long run to avoid

double spending. Interestingly, our estimate here puts the reward that could be generated by fees

alone in the long run at around 1.6 BTC at current average prices outside speculative periods.

This is close to the total amount of rewards that Chiu and Koeppl (2017) find to be optimal in

their quantitative exercises for an efficient system. They also argue, however, that it is in general

inefficient to rely on fees rather than on seignorage to raise rewards for a cryptocurrency.

2 Data Description

2.1 Overview

The time horizon for our analysis is January 1, 2016 to March 31, 2021.4 We use block-level data

to compute daily average values for transaction fees, bitcoin prices and block summary statistics

that measure the throughput for bitcoin transactions.5 We also use auxiliary data from Bitcoin’s

Mempool to complement this data set.6 This gives us a data set of N = 1, 917 observations. We

report some summary statistics of our data set in the appendix.

There are two important features to note when looking at our data set. First, there are episodes of

large movements in the bitcoin price. These occur in the second half of 2017 and in 2020. Below,

we estimate three break points in the data series for bitcoin prices that roughly correspond to

these episodes. We refer to these two time episodes as “speculative periods”, when Bitcoin demand

might not have reflected primarily payment activity. Second, the effective throughput of the Bitcoin

blockchain changed when the Segwit protocol was introduced in block 481,824 on August 24, 2017.

This is significant as this protocol allows for more transactions to be included in a block and, thus,

4In the appendix, we show that our results are not affected when also including data from 2014 and 2015. We

exclude these extra years from the main analysis since Bitcoin gained broad popularity only around 2016.
5All block-level data have been obtained from the repositories of blockchair.com.
6All auxiliary data have been obtained from blockchain.info. Mempool data, however, are only available from

August 2016 onwards.
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can be used as a controlled experiment for how an increase in the potential throughput of the

Bitcoin blockchain would influence fees.7

2.2 What is Segwit?

Traditionally, blocks included all the information that is relevant for Bitcoin transactions. This

is information about the transaction itself and metadata that verify if a transaction is legitimate.

With the Segwit protocol, transactions can be broadcasted, but with meta information such as

signatures, public key and other information (witness data) being stripped and verified separately

from the block. Even though the size of a block is still capped at 1MB, this protocol allows the

number of transactions in a block to increase.

The upgrade was a so-called “soft fork”, implying that not the entire network needs to follow

it. Nodes in the blockchain are free to use Segwit or not. The key to understanding this fact is

that transactions with stripped information can still be determined to be legitimate by all nodes –

legacy or Segwit – given the blockchain. A legacy node can simply not access the Segwit data of the

transaction. Similarly, miners can choose whether to mine Segwit blocks or not. Crucially, legacy

miners cannot include Segwit transactions. While they can form a block containing both types of

transactions, they cannot communicate the Segwit data. Consequently, all Segwit-capable nodes

would reject the block. Notwithstanding this, non-Segwit miners can build on the same chain as

Segwit miners, since the digest of the chain for mining a new block uses only block headers that

do not depend on the type of transactions.

Both miners and users have an incentive to switch to a Segwit operating mode. Miners can still

include non-Segwit transactions if they want to. Hence, there is no reason for a single miner not

to follow the protocol. When using Segwit, transactions have a smaller size and, thus, are cheaper

given fees offered per byte.8

7During our time period, Bitcoin block rewards also halved twice. However, these events are immaterial to our

analysis.
8Adoption could be slow for several reasons. There could be collusion among some miners not to follow the

protocol in order to increase fees by keeping congestion high. Not all users may adopt wallets to store coins and

conduct transactions that are compatible with Segwit. Also, Segwit supports the so-called Lightning Network where

Bitcoin payments can be processed in a similar way to bilateral netting, which may not appeal to all users.
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2.3 Bitcoin Prices

We calculate prices on the daily level directly from the block data. To do so, we use the total daily

average fees in USD per block and divide this by the total daily average fees in bitcoin per block.

This gives us a consistent price estimate as reported in the block data. We also calculate a simple

volatility, which is the absolute value of the first difference in prices.

We first fit our time series of prices to a linear and filtered trend using the Hodrick-Prescott (HP)

filter. Using the method of Bai and Perron (2003), we then estimate breakpoints for this time

series with the restriction that we limit the number of breakpoints to a maximum of three. Figure

1 shows the time series together with the breakpoints, which are given as 10-12-2017, 05-23-2018

and 07-19-2020. These points later define a dummy variable that is set to 1 for the period between

the first two dates and after the third date. The dummy variable is then used to identify these

windows as speculative periods.9
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Figure 1: Bitcoin Price (in USD), Trend (linear & smoothed), Breakpoints

2.4 Congestion

2.4.1 Blockweight

The key variable in our analysis is congestion. Congestion refers to how much of the possible

throughput is being taken up by transactions that are included in the blockchain. Hence, we

9The precise dates of these breakpoints crucially depend on the horizon of our analysis. We decided to use only

data from after August 1, 2016 to determine these breakpoints so that they roughly line up with the large increases

in bitcoin price relative to the trend.
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measure congestion as the % of capacity used in a block. Before Segwit, capacity per block is given

by the constraint

∑
i

xi ≤ 1MB (1)

where xi is the size of transaction i in bytes.

The Segwit protocol uses a different measurement of the block size called “weight”. A weight unit

is given by the 1/4,000,000 part of a block, and the block size is restricted to 4 mega weight units

(MWU). The weight of a transaction is calculated as

3(xi − ρixi) + xi (2)

where ρi refers to the witness data included in the transaction, which we have expressed as a

fraction of the transaction size xi. Note that this is equivalent to every byte of non-witness data

of a transaction contributing 4 weight units, but witness data contributing only 1 weight unit per

byte.

There are then two constraints on block size with the Segwit protocol. First, we have a restriction

on the total weight of a block given by10

∑
i

3(xi − ρxi) + xi ≤ 4MWU. (3)

Second, blocks with witness data stripped still need to satisfy the 1 MB limit imposed by Bitcoin,

or

∑
i

(1− ρi)xi ≤ 1 MB. (4)

This ensures that the blockchain stays consistent across legacy and non-legacy nodes.

First, note that a non-Segwit block by definition has ρi = 0 for all transactions. It follows imme-

diately that both measures are identical. Second, for Segwit blocks by construction, the second

constraint holds whenever the first constraint is satisfied. Block sizes above 1 MB reflect that it is a

Segwit block and witness data have been removed to include more transactions. This implies that

the first constraint is the relevant one, if considering the block level and not individual transactions.

10Theoretically, this implies that blocks could have a limit of 4 MB, if there were only witness data associated with

transactions. Empirically, the maximum block size with Segwit, however, is around 2.3 MB.
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Figure 2: Congestion and Segwit Adoption

In summary, since we can scale pre-Segwit blocks by a factor of 4, we will use blockweight (as

defined in (2)) as a percentage of 4MWU or

CONGESTION =
blockweight

4MWU
(5)

as our congestion measure. To calculate a time series of congestion, we average blocks over each day

in our sample.11 We also use the percentage of Segwit transactions in a block – averaged for each

day – as a measure of the adoption of the protocol. Figure 2 shows how our congestion measure

changes over the time horizon and the degree to which Segwit has been adopted over time. The red

solid vertical lines indicate our windows for the price series and the dashed vertical line delineates

the introduction date of Segwit.

As Segwit transactions increase over time, there is less congestion until the end of our time series

when congestion increases again. Interestingly, during the first speculative window, Segwit at first

was adopted slowly until it increased sharply. More recently, adoption was fairly constant around

50%, even as congestion remained fairly high during the second speculative period.

2.4.2 Alternative Congestion Measures

We also look at some alternative congestion measures. First, we look at the daily stock of uncon-

firmed transactions in the Mempool for Bitcoin. The Mempool contains transactions that have

been submitted to the network but have not yet been included in a block. Hence, a larger num-

ber of unconfirmed transactions means more congestion as the queue of transactions to get in the

blockchain is longer.

11This also avoids the problem that blocks are not necessarily found in a specific time. Hence, blocks tend to be

fuller if a block has not been found for a long time and emptier if blocks are found in rapid succession.
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Second, an alternative measure can be constructed by relating the outflow of transactions from the

Mempool to its size. Specifically, we calculate

Avg. # Transactions per Block

# of Unconfirmed Transactions
(6)

on a daily level. For consistency, we cap this measure at 1. There is no congestion if the outflow of

transactions exceeds the size of the Mempool since all transactions get included immediately in a

block. Importantly, an increase in this measure means less congestion.

Our final measure is the median confirmation time for a transaction on a daily level.12 Table 1

shows that all these measures are correlated with each other with the right sign. By design, the

congestion measure that relates the flow of transactions to the average number of unconfirmed

transactions is negatively correlated with all other measures.

Table 1: Correlation

Cong. Mempool Alt. Cong. Med. Conf. Time

Cong. 1 0.480 −0.617 0.537

Mempool 0.480 1 −0.540 0.432

Alt. Cong. −0.617 −0.540 1 −0.420

Med. Conf. Time 0.537 0.432 −0.420 1

2.5 Fee Rates

To capture the cost of a Bitcoin transaction, we use fee rates that control for the size of the

transaction. Also, we report these rates as USD denominated since we view all transactions being

made for services in the numeraire of USD. Hence, what matters is the cost in USD and not in

bitcoins.13

We again need to take Segwit into consideration so that we measure the cost of a transaction

appropriately. After Segwit, what matters for a transaction is its size stripped of Segwit data.

12Note that data of these measures vary across sources as Mempools differ across miners, whereas block data are

the same across all sources.
13This may not be true for certain transactions such as ones that consolidate bitcoin balances.
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Figure 3: Fee Rates (in USD)

Consider two Segwit transactions. Miners prefer to include the transaction with the smaller weight

for the same transaction size and fee. Hence, for a user to get a transaction included in a block, what

matters is the stripped transaction size. Consider a Segwit and a non-Segwit transaction. Miners

again will prefer the smaller stripped size, for the same transaction size and fee. Hence, non-Segwit

transactions of a small size can be more attractive than large Segwit transactions even though

witness data cannot be stripped from the former ones. Importantly, for non-Segwit transactions,

stripped transaction sizes and transaction sizes are identical. We thus conclude that not the overall

size but the stripped size of an individual transaction matters in terms of adding congestion and,

hence, for posting fees.

On the block level, we thus use the stripped block size corresponding to constraint (4) to calculate

fee rate =
Total fees per block in USD

Stripped block size
(7)

as our measure for the costs of making a Bitcoin transaction. In our analysis, we again average the

fee rate over blocks on the daily level.

Figure 3a plots the time series of fee rates. Interestingly, fee rates increase sharply during the

speculative windows. We then plot in Figure 3b fee rates against bitcoin prices for different time

periods. The red dots indicate data points outside the speculative window, whereas the blue ones

refer to the first speculative episode and the green ones to the second one. Hence, fees are not only

positively correlated but are more sensitive to price movements, at least during the first speculative

period.

Finally, we also report the relationship between congestion and fees (see Figure 4). There is clearly

a positive relationship since congestion reflects the scarcity of block space. This seems to be stable
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Figure 4: Fee Rates (in USD) and Congestion

across the period before and after Segwit. Note that the scale for fees is different, as prices are

higher, especially during the first speculative window. Importantly, we include a non-parametric

fit in these graphs, which indicates that the relationship between fees and congestion is convex,

especially when congestion nears its limit.

3 Estimation

3.1 A Simple Model of Bitcoin Fees

We postulate that fees are driven by three considerations. First, the Bitcoin blockchain works like

a “club good”. Users need to post fees to have their transactions included in the blockchain. Since

block sizes are capped at 1MB, users face a fixed supply of capacity to have their transactions

processed. Hence, as blocks get full, users are willing to post higher fees.

Second, Bitcoin can be seen as a speculative instrument. As prices increase, Bitcoin becomes a

more attractive financial asset to invest in. Hence, speculators have an incentive to pay higher fees

to purchase Bitcoin.

Finally, volatility of prices may matter for both payments and speculation. If prices change a lot, it

is important for payments to clear quickly to lock in the exchange rate of Bitcoin to other physical

currencies. For speculators speed matters, as they want to move in and out of the market quickly,

in particular during times when prices change a lot. These motivations lead us to formulate a

simple model of Bitcoin fees that can be described by the following linear regression model.

log fee ratet = α0 + α1 congestiont + α2 congestion2t + α3 log pricet + α4 log |∆pricet|+ ϵt (8)
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Note that we have chosen to use log-transformed values for the fee rate, the price and its volatil-

ity. This is for two reasons. First, the fit o f t he model i nceases s ignificantly wh en us ing th e log 

transformation. Second, the transformation allows us to interpret most parameters as elasticities.

We expect that the influence of all regressors i s positive on fee r ates. Figure 4  shows that there is 

a non-linearity in how fee rates vary with congestion. Hence, we have also introduced a quadratic 

term for congestion in the regression. We will also report results for two other specifications, where 

congestion either enters only linearly or enters only as a quadratic term. The motivation for the 

latter specification is that it forces a monotone relationship between fee rates and congestion, which 

can be motivated from basic theory (see, for example, Easley et al. (2019) and Chiu and Koeppl 

(2019)).

3.2 Results

Our benchmark formulation exhibits a lot of heteroskedastic and autocorrelated errors. For that 

reason, we resort to a heteroskedasticity- and autocorrelation-consistent (HAC) estimator when 

reporting standard errors on our regression results.14 The results presented in Table 2 use a 

quadratic spectral kernel (see Andrews (1991)).

From a theoretical perspective, there is an endogeneity problem, as we are working with equilibrium 

realizations of average fee rates. As congestion increases, we expect fees to increase for two reasons. 

First, there is a selection by miners for high fees. Second, participants will pledge higher fees to 

increase their chances of getting into the blockchain. As fees increase, however, some participants 

will choose not to make a payment in Bitcoin, switch to other means of payment or simply wait. 

In other words, we expect congestion to be endogenous.

To address this issue, we introduce an instrument – congestion lagged by one day – and re-estimate 

our benchmark specification with 2SLS, still adjusting our standard errors with an HAC estimator. 

Table 3 reports the results from an IV regression. We also include the results from a Durbin-Wu-

Hausman test, which calls for an IV approach to be warranted with a p-value close to 0.

There are several interesting findings f rom the benchmark m odel. First, f ee rates are significantly 

and positively related to congestion. Second, the price level and price changes both have a significant 

positive impact on fee rates. The coefficient estimates on price and volatility are minimally affected
14See the appendix for a comparison of different estimators.
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Table 2: Benchmark Results (OLS with HAC Estimator)

Dependent variable: log Fee Rate

(1) (2) (3)

Congestion 3.7616 −19.0530

(0.2270) (1.5350)

p = 0.0000∗∗∗ p = 0.0000∗∗∗

Congestion2 2.4790 14.4031

(0.1341) (1.0167)

p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 0.7350 0.7279 0.7034

(0.0248) (0.0239) (0.0216)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.1093 0.1018 0.0801

(0.0146) (0.0141) (0.0131)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Constant −8.9489 −7.5006 0.1482

(0.2275) (0.1751) (0.5936)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.8029

Observations 1,917 1,917 1,917

R2 0.8093 0.8193 0.8416

Adjusted R2 0.8090 0.8190 0.8413

Residual Std. Error 0.6523 (df = 1913) 0.6350 (df = 1913) 0.5946 (df = 1912)

F Statistic 2,705.63∗∗∗ (df = 3; 1913) 2,890.41∗∗∗ (df = 3; 1913) 2,540.40∗∗∗ (df = 4; 1912)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Benchmark Results (IV with HAC estimator)

Dependent variable: log Fee Rate

(1) (2) (3)

Congestion 4.9114 −32.3181

(0.3040) (3.3204)

p = 0.0000∗∗∗ p = 0.0000∗∗∗

Congestion2 3.1732 23.2688

(0.1768) (2.0920)

p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 0.7229 0.7148 0.6758

(0.0242) (0.0234) (0.0211)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0921 0.0839 0.0505

(0.0148) (0.0144) (0.0135)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0002∗∗∗

Constant −9.7663 −7.8438 5.1947

(0.2631) (0.1791) (1.3120)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0001∗∗∗

Observations 1,917 1,917 1,917

R2 0.7999 0.8106 0.8251

Adjusted R2 0.7996 0.8103 0.8247

Residual Std. Error 0.6682 (df = 1913) 0.6501 (df = 1913) 0.6249 (df = 1912)

DWH Statistic 118.6 126.4 91.28

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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by using an IV approach and by changing from a linear to a quadratic fit, with respect to our

congestion variable.

In what follows, we rely on the specification with only a quadratic term for congestion and relegate

results for the other specifications to the appendix. Using only a quadratic term avoids the possi-

bility of a negative relationship between fee rates and congestion for low levels of congestion, which

seems theoretically implausible. Our estimates also tend to be very robust across the different

specifications, as we show in the appendix.

3.3 Natural Experiments: Speculation and Segwit

Our simple benchmark specification does not take into account some important features in the

data. First, there were two periods where the price of Bitcoin rose sharply, with the first one being

followed by a sharp decline. As pointed out earlier, we interpret these time periods as speculative

periods that added some additional, temporary demand for Bitcoin transactions.

Second, in August 2017, the Segwit improvement protocol came into effect. This protocol allows

for more transactions to be included in a block. Hence, as usage of the protocol increases, the

capacity for payments increases on the Bitcoin blockchain. We take these effects into account by

estimating the following model that controls for these demand and supply shifts.

log fee ratet = β0+β1congestion
2
t+β2 log pricet+β3 log |∆pricet|+β4percent segwitt+β5Dt+ϵt (9)

The dummy variable Dt takes a value of 1 during speculative windows and 0 otherwise. Hence, one

would expect that a positive coefficient would pick up an increase in the fee rate due to speculation.

The second additional variable picks up the usage of Segwit as a percentage of all transactions. As

users use the Segwit protocol, the space for transactions in blocks increases, which is equivalent to

providing more throughput for transactions – or, equivalently, supply – in the Bitcoin blockchain.

Consequently, we expect the sign of the coefficient to be negative.

Table 4 reports the results, including several interaction terms for the speculative period. We

report only IV results based on 2SLS with lagged congestion as an instrumental variable, as Durbin-

Wu-Hausman tests indicate that we should reject the hypothesis that simple OLS estimates are

consistent.

The parameter estimates remain essentially unchanged across the different models. Also, in all
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Table 4: Full Model – Quadratic Specification / IV with HAC

Dependent variable: log Fee Rate

(1) (2) (3) (4)

Congestion2 2.1988 2.2353 2.2100 2.2214

(0.1098) (0.1131) (0.1067) (0.1139)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 1.2642 1.2743 1.2639 1.2676

(0.0452) (0.0471) (0.0455) (0.0492)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0317 0.0304 0.0415 0.0396

(0.0085) (0.0084) (0.0092) (0.0094)

p = 0.0002∗∗∗ p = 0.0003∗∗∗ p = 0.00001∗∗∗ p = 0.00003∗∗∗

Segwit (%) −3.3786 −3.3880 −3.4166 −3.4143

(0.2499) (0.2538) (0.2528) (0.2524)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

D 0.1483 0.9136 0.4082 0.6443

(0.0729) (0.7313) (0.1268) (0.8385)

p = 0.0420∗∗ p = 0.2117 p = 0.0014∗∗∗ p = 0.4424

D × log Price −0.0821 −0.0295

(0.0749) (0.0958)

p = 0.2733 p = 0.7586

D × log Volatility −0.0502 −0.0428

(0.0186) (0.0264)

p = 0.0072∗∗∗ p = 0.1050

Constant −10.6319 −10.7315 −10.6611 −10.6925

(0.2767) (0.3003) (0.2781) (0.3153)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Observations 1,917 1,917 1,917 1,917

R2 0.9099 0.9095 0.9102 0.9100

Adjusted R2 0.9097 0.9093 0.9099 0.9097

Residual Std. Error 0.4486 (df = 1911) 0.4496 (df = 1910) 0.4480 (df = 1910) 0.4485 (df = 1909)

DWH Statistic 112.4 113.9 113.1 111.4

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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models, fee rates tend to be higher during speculative periods, but this effect is not always highly

significant.

Congestion still matters when we take into account the speculative window and price developments

during that time period. A 1% increase in congestion increases fee rates by about 4% when the

level of congestion is around 85%. This confirms our intuition that higher congestion on average

increases fees, not only because miners can select higher fee transactions but also because users

submit larger fees to get their transactions confirmed in the blockchain.

The impact of Segwit on fees is always negative at a very high level of significance. This gives

us some confidence in treating this parameter estimate seriously later on. The effect seems to be

relatively large. A 1% increase in the usage of Segwit tends to reduce the fee rate by more than

3%.

The bitcoin price significantly increases fees across all specifications. More importantly, during the

speculative window this influence increases, but this effect is not always significant. Using the first

column in the table, a 1% increase in price tends to raise the fee rate by about 1.26%. Interestingly,

the price and its volatility tend to matter less during the speculative time periods.

This indicates that (i) Bitcoin transactions are not necessarily driven by pure payment concerns and

(ii) that during speculative periods, investors are willing to pay more to purchase bitcoins quickly.

The reason is, with a payment motive, the transaction value in USD is constant and, hence, fees

in USD should not depend on the price of Bitcoin. In financial transactions, however, fees in USD

are seen as a percentage of the entire transaction, and such transaction costs tend to matter less

when the value of the transaction increases. This could explain the negative sign on the cross effect

between speculative periods and price.

3.4 Robustness

We now check the robustness of our results with respect to the variable used for congestion. In

Table 5, we report the results for our full model when using these other measures. Note that all

models require an IV approach, as the Durbin-Wu-Hausman test is significant. Our estimation

results are very robust. The impact of prices on fee rates remains positive and highly significant,
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while Segwit still has a negative impact of the same magnitude.15

4 Sensitivity of Bitcoin Fees

We now use our estimates to help us determine how much revenue can be generated from fees in

Bitcoin. Table 6 reports the summary statistics that we use to assess the impact on fees. All the

data are taken for the period after the introduction of Segwit and for the period between the two

speculative episodes.

This is important since we are explicitly trying to control for time periods where bitcoin transactions

are dominated by short-run speculation and not by payment purposes or long-run investment.

Moreover, in all of our quantitative exercises we rely on the estimated coefficients where we control

for the speculative window by introducing a dummy variable (see Table 4 above).

The table shows that the usage of Segwit does not depend on whether blocks are full or not.

Also, the increase in the fee rate when blocks are full during a day is larger than predicted by our

estimates. However, this is not surprising in that the variable measuring congestion is censored at

1. We therefore also report the Mempool size.

15We also include other lagged variables referring to congestion as additional instruments and conduct a GMM

estimation. This allows for an overidentification test where we can test the joint hypothesis that the model is

misspecified and some instruments are not valid. For all combinations of such additional instruments, the model is

misspecified or the instruments are not valid.
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Table 5: Robustness – Different Measures for Congestion

Dependent variable: log Fee Rate

(1) (2) (3) (4)

Congestion2 2.2214

(0.1139)

p = 0.0000∗∗∗

log Mempool 0.4982

(0.0248)

p = 0.0000∗∗∗

Trans./Unconf. −3.1033

(0.2630)

p = 0.0000∗∗∗

Med. Conf. Time 0.1436

(0.0132)

p = 0.0000∗∗∗

log Price 1.2676 1.1547 1.2358 1.4147

(0.0492) (0.0482) (0.0516) (0.0530)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0396 0.0526 0.0480 0.0464

(0.0094) (0.0105) (0.0155) (0.0130)

p = 0.00003∗∗∗ p = 0.000001∗∗∗ p = 0.0021∗∗∗ p = 0.0004∗∗∗

Segwit (%) −3.4143 −2.8756 −2.7032 −3.5864

(0.2524) (0.2217) (0.2466) (0.2436)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

D 0.6443 1.9543 2.4236 −1.7266

(0.8385) (0.5078) (0.6867) (0.6000)

p = 0.4424 p = 0.0002∗∗∗ p = 0.0005∗∗∗ p = 0.0041∗∗∗

D × log Price −0.0295 −0.1517 −0.2219 0.1727

(0.0958) (0.0585) (0.0830) (0.0684)

p = 0.7586 p = 0.0096∗∗∗ p = 0.0076∗∗∗ p = 0.0117∗∗

D × log Volatility −0.0428 −0.0802 −0.0559 −0.0150

(0.0264) (0.0200) (0.0312) (0.0267)

p = 0.1050 p = 0.0001∗∗∗ p = 0.0740∗ p = 0.5734

Constant −10.6925 −12.8499 −8.0758 −11.6261

(0.3153) (0.3334) (0.3626) (0.3784)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Observations 1,917 1,704 1,703 1,704

R2 0.9100 0.8817 0.7329 0.8328

Adjusted R2 0.9097 0.8812 0.7318 0.8321

Residual Std. Error 0.4485 (df = 1909) 0.4425 (df = 1696) 0.6647 (df = 1695) 0.5261 (df = 1696)

DWH Statistic 111.4 229.6 234.2 93.28

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 6: Summary Statistics – Post Segwit / Excl. Speculative Periods

Overall Full Blocks

(757 days) (100 days)

Fee Rate (USD/KB stripped) 2.84 6.48

Price (USD/BTC) 7,334 7,788

Segwit (%) 44.0 43.3

Congestion (%) 83.7 100

Avg. Transaction (per block) 2,050 2,409

Avg. Mempool (# of transactions) 12,204 32,023

Avg. Stripped Size (KB) 766.86 906.51

Note: Daily Averages from June 24, 2018 to July 19, 2020

In what follows, we conduct four quantitative exercises to assess the viability of Bitcoin in the

future. For all our exercises, we correct for speculative demand for bitcoins.

The first two exercises look at how much fee revenue could be generated based on our estimated

model for fees. We then infer the price increase that would be necessary to keep block rewards

constant when Bitcoin ceases to pay significant block rewards.

Our last two exercises concern the optimal design of throughput. We first look at the impact of

Segwit adoption on overall fee revenue. Finally, we ask what the optimal block size in Bitcoin

would be to maximize fee revenue. To do so, we use our estimates to set up a simple linear demand

model for Bitcoin transactions.

4.1 Demand – The Impact of Congestion

We first hold the usage of Segwit fixed and consider an increase in demand for transactions in

Bitcoin that drives congestion to reach 100%. The block size of Bitcoin is restricted to 1MB and

the adoption rate of Segwit is held constant around 40-50%. Hence, we can interpret changes in

the level of congestion as shocks to the aggregate demand for Bitcoin transactions that shift the

demand curve upwards, inducing a movement along a given supply curve.

There are two impacts on fees from such a demand shock. First, the total stripped block size
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increases. Second, congestion increases from about 80-100%, which increases the fee rate per KB

stripped. We can use the summary statistics and our estimate for the elasticity of fee rates to

calculate the total impact on fees. Using our estimates from (9), we obtain

∆ log Fee Rate = β1 ×∆ Congestion2

where β1 = 2.1988 and ∆ Congestion2 = 1− 0.8372. Hence, ∆ log Fee Rate = 0.6584 so that the

percentage increase in the fee rate is given by e0.6584 − 1 or 93.16%. This leads to an estimated fee

rate of 5.49 USD/KB. Hence, the total change in fees per block is given by

5.49 USD/KB × 907 KB − 2.84 USD/KB × 767 KB = 2, 797 USD

meaning that fee revenue per block would roughly double.

We could also rely on transactions in the Mempool as an alternative congestion measure. This

measure of congestion is not censored. According to the summary statistics, during periods of full

capacity, the size of the Mempool increases by 162.4%. Hence, we have

β1 ×∆log Mempool = 0.4982× 162.4 = 81 (10)

or an increase in the fee rate of about 81%. This translates into a slightly lower gain in overall fees

of 2,484 USD.

Using the average price for Bitcoin for the time period, block rewards are on average about 88,500

USD with fees being only about 2.5% of the total reward. Hence, it is highly unlikely that total

rewards per block in USD will stay constant, as the block reward in bitcoin will decline over time

unless there is a very large increase in the usage of Bitcoin. Bitcoin throughput, however, is already

fairly close to full capacity. Unless users accept very long wait times to settle transactions, which is

unlikely, this implies that block capacity needs to increase with demand, albeit keeping congestion

at a fairly high level.

4.2 Demand – Long-Run Price Trend

Our estimation shows that fee rates increase with price. Hence, we can exploit our estimate to see

whether price increases alone can increase fee rates sufficiently to keep the total mining rewards

constant as block rewards decrease over time. This thought experiment is based on the fact that
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constant block rewards keep the hashrate and, thus, the security of the blockchain constant.16

For this experiment, we take the average block reward of 88,500 USD as given and ask by how

much the price of Bitcoin needs to increase to generate that amount as fee revenue. Holding the

average stripped block size of 767 KB constant, the fee rate has to increase to about 115 USD/KB.

This implies a significant cost increase for using Bitcoin as a payment instrument but could still be

sufficiently small for large enough transaction sizes in USD.

Using the price elasticity of β2 = 1.2642, the bitcoin price would need to be about 32 times the

average one used for calculating the average reward for our sample. Alternatively, we could use the

fact that in the long run congestion reaches 100% and use the data for when blocks are full. This

would lower the required bitcoin price to about 13 times the average one used for calculating the

average reward.

As Bitcoin block rewards mostly disappear over the next 20 years due to halving of the rewards,

we can translate these measures into annual growth rates that are required to keep block rewards

constant. This leaves us with a range of about 13.7% to 18.9% growth in the price per year. These

figures are not out of line, taking into account that our linear trend estimates in Section 2 yield an

average annual growth rate of about 60% for the bitcoin price over the 7 years of data we use.

4.3 Supply – The Impact of Segwit

There are two ways to increase throughput capacity further in Bitcoin.17 The first is further

adoption of the Segwit protocol by users, while the second is a formal change in the block size of 1

MB adopted by Bitcoin.

We regard Segwit adoption as a long-run decision by users that is not affected by demand fluctu-

ations. As Figure 2 shows, the adoption rate of Segwit has been stable over time after an initial

introduction phase. Hence, we can view the demand function for Bitcoin as fixed on average and

think of a change in the usage of Segwit as shifting the effective supply, inducing a movement along

this demand curve.

16This implicitly assumes that there are no extra incentives to double spend when the price of Bitcoin increases.

This would not be the case when a double spending attack relied on using Bitcoin balances that were acquired long

in the past.
17Another alternative is using different channels such as the Lightning Network, which settles transactions off the

blockchain roughly based on the idea of netting transactions.
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Segwit adoption reduces our congestion measure, as the blockweight of a Segwit transaction is

smaller than the blockweight of the original transaction. To translate changes in Segwit into

changes in congestion, we first regress the ratio of stripped size to block size on the percent of

Segwit being used, or

Stripped block sizet
Block sizet

= ρ0 + ρ1percent segwitt + ϵt (11)

using daily data for the time period after the introduction of Segwit. Our estimates for the co-

efficients are ρ0 = 0.99 and ρ1 = −0.587 (for details, see the appendix). Note that we can set

the coefficient for ρ0 simply to 1 for theoretical reasons. The coefficient ρ1 is an estimate for the

reduction ρi in block size due to the Segwit protocol (see equation (4)). Using the definition of

blockweight, we thus obtain as our estimate that congestion changes by about 0.75ρ1 = −0.441

percentage points for each percentage of adoption of Segwit (see equation (3)).18

Consider then a situation where there is no usage of the Segwit protocol whatsoever. According to

our estimate this would have increased the average daily congestion level by 44×0.75ρ1 = 19.404%

and consequently to a level of 100% congestion, from the mean of 83.7%. Beyond this indirect

effect, there is also a direct effect from the reduction of Segwit, which is given by the estimated

parameter β4.

This gives us a preliminary estimate for the elasticity of fee rates with respect to Segwit usage.

With full congestion, we have a percentage increase of the fee rate equal to

(eβ1(1−0.8372) − 1)× 100 + β4 × 44 = 241.82

percent. Using the initial fee rate of 2.84 USD/KB and 1MB for a full block without Segwit,19 our

estimate indicates that fee revenue has changed by about 68% from 6,686 USD to 2,178 USD due

to the introduction of Segwit.

4.4 Supply – Optimal Block Size

We next calculate an estimate for the maximum of fees that can be generated per block. Without

full congestion, it is always optimal to decrease the block size in order to increase total fees raised per

18With Segwit, some block sizes have reached up to 2.3 MB in total, which translates into the stripped size being

about 43.5% of the actual (raw) size of a full block. Hence, our estimate seems to be consistent with this fact using

a maximum stripped block size of 1 MB.
19Recall that the stripped size equals the full block size without Segwit.
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block. Since the capacity constraint is not binding, increasing congestion does not limit throughput,

but increases the fee rate. For this reason, we look at a situation where demand is such that Bitcoin

is at full capacity; i.e., all blocks are full during a day. In such a situation, an increase in the block

size would decrease the fee rate but increase capacity. We now use our estimates to analyze this

trade-off.

To do so, we again view the empirical relationship between Segwit and fee rates as a supply curve

shifting along a given demand curve. We assume that the demand curve takes on a simple linear

form described by

p(x) = (a+ b)− bx (12)

where x is the block size – now a design parameter – and p is the fee rate per KB stripped. The

fee rate is equal to a whenever the design of the block size is x = 1 MB. Hence, the optimal block

size maximizes total fee revenue

p(x)αx (13)

and is given by

x∗ =
a+ b

2b
(14)

where α is a constant that translates actual block sizes into stripped block size for a fixed level of

Segwit adoption (see equation (11)).

If we can pin down the two parameters – a and b – we obtain the optimal block size under the

assumption that the blockchain remains at full capacity and that the demand curve is linear. For

a, we consider the summary statistics for full blocks from above and set a = 6.48 USD/KB.

For b, which is the elasticity of fee rates with respect to block size x, we use our estimate for how

Segwit changes fee rates. Note that we can translate changes in Segwit once again into changes in

congestion according to equation (3). A change in Segwit is equivalent to a change in block size

equal to
d block size

d % Segwit
= − 1

0.75ρ1
= 2.27. (15)

Since we measure block size in MB, this implies that 100% of Segwit would lead to an effective

block size limit of 2.27 MB. This yields a change in fee rates of

β4 ×
(
− 1

0.75ρ1

)
= 7.67 (16)
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percent due to a 1% change in block size. To obtain the parameter b, we use the fact that a

100% reduction (or x = 0) would yield an increase of 767% in fee rates or b = 6.48 × 7.67 = 49.7

USD/KB.20

Finally, note that stripped size is a constant fraction of block size if we hold Segwit adoption con-

stant. Hence, assuming that we have full congestion and a linear demand function for transactions,

the block size that maximizes fees is given by

x∗ =
6.48 + 49.7

2× 49.7
= 0.565. (17)

Hence, given current Segwit adoption, the current block size limit is about 45% too high. Since

Segwit adoption is at about 44% when blocks are full, the optimal stripped block size is at

(1− 0.587× 0.44)× 0.565 MB = 0.419 MB

so that the estimated maximum fee revenue is given by 11,777 USD.

To put this into perspective, this is about 1/8 of the fee revenue generated by total rewards over the

sample we use in this section. Consequently, relying on fees only and an optimally designed block

size would generate rewards that are equal to a block reward of 1.6 BTC using the average price

of Bitcoin. Interestingly, this is close to the optimal block reward simulated in Chiu and Koeppl

(2017).

5 Conclusions

Our empirical estimates confirm that the introduction of the Segwit protocol reduced congestion.

As a consequence, we show that the protocol – while increasing throughput – has lowered fees

significantly. Indeed, given current prices and average demand for Bitcoin transactions, in order

to maximize fee revenue it would be optimal to have a much smaller block size or, equivalently, no

adoption of the Segwit protocol at all.

This underscores the hesitation of the Bitcoin community to agree with a protocol change in 2015

when an increased block size of 8MB was under discussion. As Segwit has effectively doubled the

block size, we show here that concerns about block size increases were warranted.

20Note that this implies that the intercept of the demand curve is at a fee rate of a + b = 56.18 USD/KB, which

corresponds to the maximum fee rate of a Bitcoin transaction, given our linear model.
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With revenue from block rewards falling over time to zero, fees will eventually need to generate all

the revenue. If Segwit adoption remains at 40-50%, the maximum revenue for mining that could

be generated through fees using an optimal design of the block size is only about 1/8 of current

total rewards per block.

In summary, our paper casts some doubt on the sustainability of Bitcoin in the long run if it relies

on high rewards to avoid double spending attacks. Sustained price increases of about 15-20% per

year over the next 20 years would be required to keep block rewards at a constant level through

to 2040. According to our empirical findings, such price increases would be accompanied by steep

increases in transaction fees, possibly making regular payments in Bitcoin prohibitively expensive.
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Appendix

Summary Statistics

Table 7: Block Level (averaged daily) or Daily Average

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Fee Rate (USD/KB stripped) 1,917 7.006 13.934 0.109 0.897 6.057 160.513

Price 1,917 7,923.414 9,641.191 372.470 1,259.530 9,525.600 61,200.000

Volatility 1,917 231.370 498.774 0.020 13.540 231.630 7,724.000

Blockweight (% of 4 KWU) 1,917 0.857 0.133 0.379 0.769 0.978 0.999

Transactions/Unconfirmed 1,704 0.267 0.251 0.009 0.074 0.374 1.000

Med. Confirmation Time (min) 1,704 10.468 3.598 3.367 7.848 12.356 29.250

Mempool (# of unconfirmed) 1,704 24,309.800 33,746.460 174.240 4,577.227 28,800.910 226,159.700

Standard Errors – Comparison

Table 8 compares standard errors for our three benchmark models across three different methods.

The first one uses spherical errors, the second one uses an HAC estimator based on a quadratic

spectral kernel (see Andrews (1991)) and the last one uses the methods of Newey and West.
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Table 8: Standard Errors – Benchmark

(Intercept) Cong. log Price log Volatility

SE 0.15255 0.11841 0.01883 0.01128

QS 0.22754 0.22696 0.02478 0.01457

NW 0.25722 0.26367 0.02857 0.01618

(Intercept) Cong.2 log Price log Volatility

SE 0.12893 0.07245 0.01834 0.01100

QS 0.17509 0.13409 0.02393 0.01414

NW 0.19874 0.15784 0.02743 0.01571

(Intercept) Cong. Cong.2 log Price log Volatility

SE 0.48073 1.15912 0.72859 0.01724 0.01039

QS 0.59358 1.53501 1.01674 0.02158 0.01310

NW 0.76484 2.00373 1.35161 0.02782 0.01610

Figure 5 shows standard errors plotted against the fitted values for the IV regressions of the bench-

mark model with the quadratic term only on the left and the full model with all interaction terms

on the right. Similar graphs arise for the other specifications, all showing that residuals are not

normally distributed.
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Figure 5: Heteroskedastic Errors
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Linear and Linear-Quadratic Specifications

Tables 9 and 10 show the regression results from the alternative specifications. Three features

stand out. First, the impact of price on fee rates does not change across specifications. Second, the

impact of Segwit is roughly constant across the three models. Finally, the impact of congestion on

fee rates does not vary much from the specification used in the main part of the paper, if one looks

at a level of around 80% congestion.
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Table 9: Linear Model (IV with HAC Estimator)

Dependent variable: log Fee Rate

(1) (2) (3) (4)

Congestion 3.4058 3.4581 3.4250 3.4349

(0.1842) (0.1897) (0.1793) (0.1910)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 1.2762 1.2853 1.2759 1.2779

(0.0456) (0.0480) (0.0464) (0.0506)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0355 0.0343 0.0455 0.0444

(0.0087) (0.0086) (0.0095) (0.0096)

p = 0.00005∗∗∗ p = 0.0001∗∗∗ p = 0.000002∗∗∗ p = 0.000004∗∗∗

Segwit (%) −3.4416 −3.4505 −3.4799 −3.4788

(0.2518) (0.2566) (0.2582) (0.2581)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

D 0.1714 0.8590 0.4350 0.5647

(0.0752) (0.7446) (0.1325) (0.8590)

p = 0.0229∗∗ p = 0.2489 p = 0.0011∗∗∗ p = 0.5111

D × log Price −0.0737 −0.0162

(0.0763) (0.0981)

p = 0.3342 p = 0.8692

D × log Volatility −0.0509 −0.0468

(0.0192) (0.0270)

p = 0.0080∗∗∗ p = 0.0828∗

Constant −12.0011 −12.1113 −12.0383 −12.0595

(0.2897) (0.3251) (0.2931) (0.3469)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Observations 1,917 1,917 1,917 1,917

R2 0.9055 0.9052 0.9058 0.9057

Adjusted R2 0.9053 0.9049 0.9055 0.9054

Residual Std. Error 0.4593 (df = 1911) 0.4603 (df = 1910) 0.4587 (df = 1910) 0.4591 (df = 1909)

DWH Statistic 110.6 111.5 111.3 109.0

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 10: Linear-Quadratic Model (IV with HAC Estimator)

Dependent variable: log Fee Rate

(1) (2) (3) (4)

Congestion −18.4972 −18.4531 −18.3138 −18.3402

(2.7033) (2.7398) (2.7170) (2.7265)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Congestion2 13.7670 13.7750 13.6613 13.6950

(1.7107) (1.7263) (1.7174) (1.7161)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 1.2449 1.2548 1.2448 1.2503

(0.0428) (0.0439) (0.0429) (0.0452)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0161 0.0148 0.0241 0.0212

(0.0083) (0.0082) (0.0089) (0.0089)

p = 0.0519∗ p = 0.0707∗ p = 0.0071∗∗∗ p = 0.0174∗∗

Segwit (%) −3.2553 −3.2647 −3.2870 −3.2834

(0.2382) (0.2409) (0.2401) (0.2394)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

D 0.0090 0.7553 0.2190 0.5727

(0.0685) (0.6433) (0.1225) (0.7358)

p = 0.8952 p = 0.2406 p = 0.0741∗ p = 0.4365

D × log Price −0.0800 −0.0442

(0.0658) (0.0840)

p = 0.2241 p = 0.5992

D × log Volatility −0.0403 −0.0292

(0.0183) (0.0247)

p = 0.0277∗∗ p = 0.2376

Constant −3.2539 −3.3685 −3.3505 −3.3870

(1.1420) (1.1784) (1.1496) (1.1787)

p = 0.0045∗∗∗ p = 0.0044∗∗∗ p = 0.0037∗∗∗ p = 0.0042∗∗∗

Observations 1,917 1,917 1,917 1,917

R2 0.9165 0.9163 0.9168 0.9166

Adjusted R2 0.9162 0.9160 0.9165 0.9162

Residual Std. Error 0.4319 (df = 1910) 0.4327 (df = 1909) 0.4313 (df = 1909) 0.4319 (df = 1908)

DWH Statistic 66.73 67.57 66.8 66.29

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Auxiliary Regression

Table 11: Impact of Segwit on Block Size

Dependent variable: Stripped Block Size/Block Size

Segwit (%) −0.5868

(0.0117)

p = 0.0000∗∗∗

Constant 0.9894

(0.0041)

p = 0.0000∗∗∗

Observations 1,316

R2 0.854

Adjusted R2 0.854

Residual Std. Error 0.034 (df = 1314)

F Statistic 7,694.490∗∗∗ (df = 1; 1314)

Note: OLS w/ HAC estimator ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Robustness – Hashrate

Bitcoin demand could also depend on how secure the blockchain is for making payments. A proxy

for security is the hashrate on the Bitcoin network. Higher mining activities show up as a higher

hashrate to solve for new blocks.

The Bitcoin protocol is designed so that the average block time is roughly constant at 10 minutes.

Hence, a larger hashrate speeds up the time to solve for a new block and, consequently, the protocol

increases the difficulty of solving a block. A more difficult problem also makes it more difficult to

attack the Bitcoin blockchain via a double spending attack. In summary, a higher hashrate increases

the difficulty, which leads to more security for making payments in bitcoin.

Table 12 shows the correlation of the hashrate with other variables in our empirical specification.
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Figure 6: Impact of Segwit on Block Size

This raises some concerns, as our other key variables such as price and congestion clearly move

together with the hashrate. This raises a problem of collinearity between the hashrate and two of

our other explanatory variables.21

Table 12: Correlation w/ Hashrate

Hashrate Price Reward Congestion Fee Rate

Hashrate 1 0.750 0.687 0.481 0.348

Price 0.750 1 0.932 0.442 0.698

Reward 0.687 0.932 1 0.489 0.783

Congestion 0.481 0.442 0.489 1 0.374

Fee Rate 0.348 0.698 0.783 0.374 1

Furthermore, fees are part of the block reward and thus matter for the hashrate, so there is again an

endogeneity problem. Below, we report results when we adjust our model to include the logarithm

of the hashrate. The first model uses it as an additional explanatory variable in our benchmark IV

21Also, one can easily verify that halving the block reward had little to no impact on the growth of the hashrate.
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regression. The second one uses both lagged congestion and the lagged hashrate as instrumental

variables. The last one uses the hashrate only as an additional instrument for a GMM estimation.

Here the Hansen J Test shows a p-value of 0.06338, so we cannot reject the hypothesis that both

instruments are valid at a 5% confidence level. Hence, the hashrate could serve as an instrument

to control for the endogeneity of some other variables.
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Table 13: Models w/ Hashrate

Dependent variable: log Fee Rate

IV Benchmark IV w/ add. Instrument GMM

(1) (2) (3)

Congestion2 2.2778 2.3172 2.1672

(0.1250) (0.1292) (0.1077)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 1.3537 1.3984 1.2610

(0.0688) (0.0749) (0.0459)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0299 0.0291 0.0296

(0.0085) (0.0086) (0.0085)

p = 0.0005∗∗∗ p = 0.0008∗∗∗ p = 0.0005∗∗∗

log Hashrate −0.1495 −0.2240

(0.0800) (0.0939)

p = 0.0618∗ p = 0.0171∗∗

Segwit (%) −2.6497 −2.2863 −3.3571

(0.4494) (0.5091) (0.2568)

p = 0.0000∗∗∗ p = 0.00001∗∗∗ p = 0.0000∗∗∗

D 0.1117 0.0934 0.1544

(0.0778) (0.0791) (0.0730)

p = 0.1516 p = 0.2379 p = 0.0345∗∗

Constant −4.9707 −2.1475 −10.5805

(3.0071) (3.5390) (0.2809)

p = 0.0985∗ p = 0.5440 p = 0.0000∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results show that the coefficients on all of our main variables are very close to the benchmark

model we use in our analysis in Section 4. The hashrate can be significant, albeit on a much lower
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level than the other main variables. Also, the sign is negative, meaning that a 1% increase in the

hashrate lowers fee rates. This is hard to interpret. One possible explanation is that block times

decrease over small time intervals as difficult adjustments lag by up to two weeks. This can lower

confirmation lags, which leads to less urgency to have short verification lags (see Chiu and Koeppl

(2019)).

Benchmark Results for Extended Data Series

Table 14 presents results for the IV regressions in the extended model for an extended data set that

starts on January 1, 2014. The results do not change, except for a smaller impact of congestion on

fee rates. This is not surprising, as congestion rates were lower in 2014-2016 compared to post-2016.

Interestingly, including more data increases the fit of the model.
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Table 14: Extended Data Set (2014-01-01 to 2021-03-31)

Dependent variable: log Fee Rate

(1) (2) (3) (4)

Congestion2 1.4039 1.4024 1.4037 1.4009

(0.0693) (0.0706) (0.0690) (0.0701)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Price 1.2818 1.2774 1.2815 1.2728

(0.0389) (0.0395) (0.0392) (0.0409)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

log Volatility 0.0459 0.0457 0.0486 0.0539

(0.0068) (0.0070) (0.0073) (0.0069)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Segwit (%) −3.7030 −3.6961 −3.7146 −3.7266

(0.2395) (0.2417) (0.2414) (0.2419)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

D 0.1790 −0.5535 0.2695 −0.8651

(0.0855) (0.7794) (0.1334) (0.9097)

p = 0.0365∗∗ p = 0.4777 p = 0.0435∗∗ p = 0.3417

D × log Price 0.0780 0.1413

(0.0783) (0.1018)

p = 0.3191 p = 0.1654

D × log Volatility −0.0172 −0.0536

(0.0180) (0.0263)

p = 0.3408 p = 0.0413∗∗

Constant −10.1268 −10.0943 −10.1297 −10.0769

(0.2246) (0.2303) (0.2262) (0.2376)

p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗ p = 0.0000∗∗∗

Observations 2,647 2,647 2,647 2,647

R2 0.9536 0.9538 0.9536 0.9540

Adjusted R2 0.9535 0.9536 0.9535 0.9538

Residual Std. Error 0.4045 (df = 2641) 0.4040 (df = 2640) 0.4045 (df = 2640) 0.4032 (df = 2639)

DWH Statistic 65.99 64.15 63.68 63.33

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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