Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson Peter Maxted Ben Moll

Discussion Greg Kaplan

Bank of Canada Annual Economic Conference November 2021

What the Paper is About

- Study aggregate spending response to various shocks in a partial equilibrium model of household savings
- Macroeconomic policy:
 - 1. Fiscal Policy = unexpected one-time real helicopter drop of \$1,000 per household
 - 2. Monetary Policy = permanent drop in risk-free real interest rate from 1% to 0%
- Households make two decisions:
 - 1. Consumption: how much to spend vs how much to save in liquid assets
 - 2. Refinancing: discrete choice about whether to re-finance or pay off mortgage
- Continuous time model with present bias: instantaneous gratification

Present Bias

• Elegant way to model time inconsistency in continuous time, discount function:

$$D(t) = \begin{cases} 1 & \text{if } t = 0\\ \beta e^{-\rho t} & \text{if } t > 0 \end{cases}$$

 \Rightarrow standard exponential discounting with $\beta < 1$

- Assume naive present bias: very tractable, couple of extra lines of code
- Effects of present bias relative to exponential model
 - Different decision rules for consumption and refinancing
 - Different decision rules generate different household wealth distribution

"Present Bias Amplifies ... Macroeconomic Policy"

Figure 4: Consumption Response to Fiscal Policy.

CHICAGO

Figure 6: Consumption Response to Monetary Policy.

- Q: Why big difference in consumption response with vs without present bias?
- A: (i) Consumption: higher average MPC (ii) Refinancing: less frequent adjustment

Grea Kaplan

Effects of Present Bias on Consumption

- 1. Endogenous state dependent discount rate:
 - Euler equation with exponential discounting:

$$\mathbb{E}\left[\frac{\dot{c}}{c}\right] = \frac{1}{\gamma} \left(r - \rho\right)$$

Effects of Present Bias on Consumption

- 1. Endogenous state dependent discount rate:
 - Euler equation with exponential discounting:

$$\mathbb{E}\left[\frac{\dot{c}}{c}\right] = \frac{1}{\gamma} \left(r - \rho\right)$$

• Euler equation with present bias:

$$\mathbb{E}\left[\frac{\dot{c}}{c}\right] = \frac{1}{\gamma}\left(r - \left[\rho + \left(1 - \beta^{\frac{1}{\gamma}}\right)c'(b)\right]\right)$$

Low wealth *b*: steeper consumption function \Rightarrow higher effective discount rate ρ

Effects of Present Bias on Consumption

- 1. Endogenous state dependent discount rate:
 - Euler equation with exponential discounting:

$$\mathbb{E}\left[\frac{\dot{c}}{c}\right] = \frac{1}{\gamma} \left(r - \rho\right)$$

• Euler equation with present bias:

$$\mathbb{E}\left[\frac{\dot{c}}{c}\right] = \frac{1}{\gamma} \left(r - \left[\rho + \left(1 - \beta^{\frac{1}{\gamma}}\right) c'(b) \right] \right)$$

Low wealth b: steeper consumption function \Rightarrow higher effective discount rate ρ

2. Discontinuous consumption function at borrowing constraint: consumption is discretely lower on borrowing constraint than just above.

Average MPC With and Without Present Bias

Q: In which model is MPC larger? Offsetting effects, so can go either way:

- Exponential model: higher calibrated ρ , so higher MPC away from constraint
- Present bias model: discontinuity at constraint, so higher MPC at constraint

A: Key moment: fraction of households very close to borrowing constraint or kink in rates at zero

Liquid Wealth Distribution

Model

SCF 2019 (same units)

Liquid Wealth Distribution

- Present bias model: overstates fraction of households on constraint ٠
- Exponential model: matches shape better at bottom, but understates fraction constrained
- Both models could be calibrated to match the same fraction of households with high MPCs CAGO

Effect of Present Bias on Refinancing

- Two types of adjustment costs
 - 1. Fixed monetary costs: κ (menu cost)
 - 2. Fixed effort cost $\varepsilon = \overline{\varepsilon}$. Switches lower effort cost $\varepsilon = \underline{\varepsilon}$ for an instant at Poisson rate ϕ

Effect of Present Bias on Refinancing

- Two types of adjustment costs
 - 1. Fixed monetary costs: κ (menu cost)

2. Fixed effort $\cos \epsilon = \overline{\epsilon}$. Switches lower effort $\cos \epsilon = \underline{\epsilon}$ for an instant at Poisson rate ϕ

- Exponential model: effort cost has no effect on refinancing choice when $\{\underline{\varepsilon}, \overline{\varepsilon}\}$ small
- Present bias model: effort cost induces procrastination:
 - 1. When effort cost is high $\varepsilon = \overline{\varepsilon}$, household never adjust (almost always)
 - 2. When effort cost is low $\varepsilon = \underline{\varepsilon}$ household might choose to adjust

Effect of Present Bias on Refinancing

- Two types of adjustment costs
 - 1. Fixed monetary costs: κ (menu cost)

2. Fixed effort cost $\varepsilon = \overline{\varepsilon}$. Switches lower effort cost $\varepsilon = \varepsilon$ for an instant at Poisson rate ϕ

- Exponential model: effort cost has no effect on refinancing choice when $\{\varepsilon, \overline{\varepsilon}\}$ small
- Present bias model: effort cost induces procrastination:
 - 1. When effort cost is high $\varepsilon = \overline{\varepsilon}$, household never adjust (almost always)
 - 2. When effort cost is low $\varepsilon = \varepsilon$ household might choose to adjust
- Present bias model isomorphic to exponential model with Calvo adjustment at rate ϕ (random menu cost model)
- Micro-foundation for Calvo? Parameter ϕ is no less fairy-like, but perhaps it makes the Calvo assumption more palatable CHICAGO

Suggestion to Make Conclusions More Convincing

"...constrained households with high MPCs compose the dry powder that is ignited by the cash-out channel of monetary policy. The effect of $\beta < 1$ is to create a larger stock of dry powder. However, the speed at which this dry powder is ignited depends on procrastination "

Suggestion to Make Conclusions More Convincing

... constrained households with high MPCs compose the dry powder that is janited by the cash-out channel of monetary policy. The effect of $\beta < 1$ is to create a larger stock of dry powder. However, the speed at which this dry powder is ignited depends on procrastination "

- Dry powder is observable: average quarterly MPC $\approx 15\% 30\%$
- Speed of ignition is observable: 50% annual adjustment prob if optimal to adjust
- Calibrate both models to same key moments:
 - 1. Fraction of households close to constraint and kink, and hence average MPC
 - 2. Arrival rate of adjustment opportunities: $\phi = -\ln 0.5$. Calvo model in exponential case
- Show that these two calibrated models either
 - Generate different aggregate consumption response, or
 - Generate different distribution of consumption responses, or
- Imply important differences in other implications, moments or parameter values CHICAGO