Present Bias Amplifies the Household Balance-Sheet Channels of Macroeconomic Policy

David Laibson Peter Maxted Benjamin Moll

Bank of Canada Annual Economic Conference

1. Modelled institutional factors

- $\circ\;$ Stochastic income, stochastic interest rates, and stochastic lifecycle events
- Assets: liquid wealth and illiquid housing
- Liquidity constraints
- · Liabilities: credit card debt and fixed-rate mortgages
- Refinancing opportunities
- 2. Naive present-biased preferences
 - · Present Bias: one form of present-focused preferences
 - Naivete: unaware of future present bias

Preview of What We Find

- 1. Household consumption-savings behavior
 - Present bias fits range of empirical patterns from HF literature
 - $\circ~$ High-cost credit card borrowing
 - Substantial illiquid wealth holding
 - $\circ~$ Large MPCs for small and large wealth shocks
 - $\circ~$ "Refinancing inertia" from procrastination
- 2. Fiscal Policy
 - Present bias amplifies potency
 - $\circ~$ Present bias increases economy's average MPC
- 3. Monetary Policy
 - Present bias amplifies potency
 - $\circ~$ Cash-out refis imitate liquidity-injection of fiscal policy
 - $\bullet \ \ldots \ but also slows down the transmission speed$
 - $\circ\;$ Households slow to refinance due to procrastination
- 4. Methods (not today's focus, see paper for details)
 - Present bias in continuous time

Related Literature

- Consumption-Saving Decisions and Behavioral Biases
 - Allcott et al. (2021), Han et al. (2019), Lian (2021), Malmendier and Shen (2019), Pagel (2017), Thaler (1990)
- Macro Stabilization Policy with Heterogeneous Agents
 - Auclert (2019), Auclert et al. (2018), Kaplan and Violante (2014), Kaplan et al. (2018), McKay, Nakamura, and Steinsson (2016)
- Refinancing Channel of Monetary Policy & Refinancing Inertia
 - Beraja et al. (2018), Berger et al. (2019), Bhutta and Keys (2016), Di Maggio et al. (2019), Eichenbaum et al. (2019), Greenspan and Kennedy (2008), Hurst and Stafford (2004), Wong (2019)
 - Andersen et al. (2019), Johnson et al. (2018), Keys et al. (2016)
- Continuous-Time Present Bias
 - Barro (1999), Cao and Werning (2016), Harris and Laibson (2013), Laibson and Maxted (2020), Maxted (2020)

Model

Model: Household Balance Sheets

- Partial equilibrium model of household consumption-savings behavior
- Stochastic income y_t , liquid wealth b_t , housing h, and mortgage m_t :

$$\dot{b}_t = y_t + r_t b_t + \omega^{cc} b_t^- - (r_t^m + \xi)m_t - c_t$$
$$\dot{m}_t = -\xi m_t$$

- $\circ \ \ \mathsf{Liquidity} \ \mathsf{constraint:} \ \ b_t \geq \underline{b}$
- LTV constraint: $m_t \leq \theta h$
- Households can discretely adjust balance sheet by refinancing (details soon)

Interest Rates

- "Monetary Policy": movements in liquid rate r_t
- $\circ~$ FRMs: mortgage rate r_t^m fixed until refinance, then $r_t^m=r_t+\omega^m$

Model: Refinancing

- Refinancing = replace old mortgage with new mortgage
 - $\circ~$ Requires fixed \$ cost κ^{refi} + small effort cost e_t
 - Choose new mortgage amount m':

 $m' \in [0, heta h]$ and $b' = b_t - \kappa^{refi} + [m' - m_t]$

- $\circ~$ "Cash-Out Refi" when $m'>m_t$
- $\circ~$ Mortgage interest rate resets to $\mathit{r_t^m} = \mathit{r_t} + \omega^m$
- Why Refinance?
 - 1. Rate Refi Motive
 - \circ If market rate r_t falls then refinancing lowers mortgage interest payments
 - 2. Cash-Out Refi Motive
 - $\circ~$ Tap into housing wealth during low-income spells (consumption smoothing)
 - $\circ~$ Replace expensive credit card debt with cheaper mortgage debt
- Refinancing motives not mutually exclusive
 - Rate cut will incentivize wave of cash-out refis

Model: Naive Present Bias

- Discrete-Time Setting
 - $\circ~$ Present Bias: current self discounts all future selves by $\beta < 1$

$$u(c_0) + \beta \sum_{s=1}^{\infty} \delta^s u(c_s)$$

 \circ Naivete: current self believes future selves time consistent (eta=1)

Model: Naive Present Bias

• Continuous-Time 'Instantaneous Gratification' (Harris & Laibson '13)

-

- $\circ~$ Present Bias: current self discounts all future selves by $\beta < 1$
- Take the period length $\rightarrow 0$ (each self instantaneous)

Discount Fxn =
$$\begin{cases} 1 & \text{if } s = 0 \\ \beta e^{-\rho s} & \text{if } s > 0 \end{cases}$$

Model: Naive Present Bias

- Continuous-Time 'Instantaneous Gratification' (Harris & Laibson '13)
 - $\circ~$ Present Bias: current self discounts all future selves by $\beta < 1$
 - Take the period length $\rightarrow 0$ (each self instantaneous)

Discount Fxn =
$$\begin{cases} 1 & \text{if } s = 0 \\ \beta e^{-\rho s} & \text{if } s > 0 \end{cases}$$

• Why continuous time? Tractable approx. of daily/weekly time-steps e.g., Augenblick (2018), Augenblick & Rabin (2018), McClure et al. (2007)

Model: Refinancing Procrastination

- Empirical literature documenting households slow to refinance E.g., Keys et al. (2016), Andersen et al. (2019), Johnson et al. (2019)
- Naive $\beta < 1$ generates such refinancing procrastination
 - \circ Key ingredient: small effort cost e_t
 - Naifs procrastinate on immediate cost, delayed benefit tasks (e.g., refi)
 E.g., O'Donoghue and Rabin (1999), DellaVigna and Malmendier (2006)
- Calvo-style procrastination with two-state effort cost $e_t \in \{\underline{\varepsilon}, \overline{\varepsilon}\}$
 - Assume $\beta \overline{\varepsilon} > \underline{\varepsilon} > 0$
 - $\circ~$ Make both effort costs small (converge to zero)
 - Assume e_t sits at $\overline{\varepsilon}$, momentarily drops to $\underline{\varepsilon}$
- $\beta = 1$: small effort cost has no effect
- $\beta < 1$: small effort cost leads to procrastination
 - Never refi when $e_t = \overline{\varepsilon}$; only refi when $e_t = \underline{\varepsilon}$
 - Why? When $e_t = \overline{\varepsilon}$, self t will wait (one instant) to refi

Model: Summary

- Household problem has six state variables:
 - 1. b: liquid wealth, which when negative represents credit card debt
 - 2. y: stochastic labor income
 - 3. m: mortgage, which pins down illiquid home equity h m
 - 4. r^m : household's mortgage rate
 - 5. r: market interest rate (e.g., 10-yr Treasuries)
 - 6. e: effort cost to refinance
- Households make two decisions:
 - 1. Consumption (chosen continuously)
 - 2. Mortgage refis, cash-outs, and pay-downs (stopping problems)
- Study Three Cases:
 - 1. Rational Benchmark: $\beta = 1$, No Procrastination
 - 2. Intermediate Case:
 - eta < 1, No Procrastination
 - 3. Present-Bias Benchmark: $\beta < 1$, Procrastination

Model Calibration

Externally Calibrated Parameters (Selected)

• Average income normalized to 1

	Description	Value				
Preferences						
ϕ	Procrastination Decay Rate	$-\log(0.5)$				
Housing and Assets						
h	House Value	3.1				
θ	Max LTV	0.8				
<u>b</u>	Credit Limit	$-\frac{1}{3}$				
		5				
Interest Rates						
ω^m	Mortgage Wedge	1.7%				
ω^{cc}	Credit Card Wedge	10.3%				

Internally Calibrated Parameters: Discount Rates

- Calibrate discount function to match empirical wealth moments
- Using 2016 SCF wave for homeowners:
 - $\circ~$ Calibrate ρ to match average LTV ratio of 0.54 ~
 - $\circ~$ Calibrate β to match average credit card debt to income ratio of 0.09

	Data	Exponential Benchmark	Intermediate Case	Present-Bias Benchmark
Discount Function				
β	-	1	0.70	0.83
ho	-	1.47%	0.64%	0.97%
Calibration Targets				
LTV	0.54	0.54	0.54	0.54
Avg. C.C. Debt	0.09	0.03	0.09	0.09

Results

Fiscal Policy: \$1000 Helicopter Drop

• Consumption IRF at time $t = \frac{\text{Change in avg. consumption at }t}{\$1000}$

Fiscal Policy: \$1000 Helicopter Drop

• Consumption IRF at time $t = \frac{\text{Change in avg. consumption at }t}{\$1000}$

• Present bias amplifies the potency of fiscal policy

▶ IRF Details → MPC Table → MPC & MPX Table

Fiscal Policy: \$1000 Helicopter Drop

• Consumption IRF at time $t = \frac{\text{Change in avg. consumption at } t}{\$1000}$

• Present bias amplifies the potency of fiscal policy

▶ IRF Details → MPC Table → MPC & MPX Table

Fiscal Policy: Intuition

β < 1 creates large MPCs + large mass of households near <u>b</u>
 o Intuition: β < 1 households don't smooth consumption near b
 c(x) for Exp. → c(x) for Inter. → c(x) for P.B. → g(x) for Exp. → g(x) for Inter. → g(x) for P.B.

Monetary Policy: 1% Interest-Rate Cut

Monetary Policy: 1% Interest-Rate Cut

• Present bias amplifies the potency of monetary policy

o Intuition: cash-out refis imitate liquidity-injection of FP

Monetary Policy: 1% Interest-Rate Cut

- Present bias amplifies the potency of monetary policy
 - o Intuition: cash-out refis imitate liquidity-injection of FP
- ...but procrastination slows transmission speed
 - $\circ~$ Intuition: procrastination \implies cash-out channel operates more slowly

▶ Refi Regions ($\beta = 1$) ▶ MP Moments ▶ MP Decomposition

Summary: $\beta < 1$ on Magnitude and Timing

• Fiscal Policy: $\beta < 1$ amplifies potency

• Monetary Policy: $\beta < 1$ amplifies potency but slows transmission

- "Positive Household Finance" matters for macro stabilization policy • Interaction of present bias and balance sheet complexity important
- Fiscal Policy
 - Present bias amplifies potency
- Monetary Policy
 - Present bias amplifies potency
 - ... and generates a slow burn with respect to monetary transmission

Thank You!

Model: Discrete Adjustment and Refinancing

- "(S,s)": Households can conduct two types of discrete adjustment
 - 1. Mortgage refinancing (with possibility of cash-out):
 - $\circ~{\rm Fixed}~{\rm cost}~\kappa^{\it refi}$
 - $\circ \ \, \text{New mortgage rate } r_t^m = r_t + \omega^m$
 - Choose (b', m') such that:

$$m' \in [0, \theta h]$$

 $b' \geq \underline{b}$
 $b' - m' = b_t - m_t - \kappa^{refi}$

- 2. Mortgage prepayment:
 - $\circ~$ Fixed cost $\kappa^{\textit{prepay}}\approx$ 0
 - Choose (b', m') such that:

$$egin{aligned} & m' \in [0, m_t] \ & b' \geq \underline{b} \ & b' - m' = b_t - m_t - \kappa^{ extsf{prepay}} \end{aligned}$$

• Stochastic effort cost *e*_t for discrete adjustments

Model: Refinancing Procrastination

- Benefit of procrastinating (one instant in expectation):
 o Effort cost e_t discounted by β
- Cost of procrastinating (one instant in expectation): $_\circ~0$
- Intuition robust to time-step > dt, but still "short"
 - $\circ~$ In our model, average outstanding mortgage balance \approx \$150,000
 - $\circ~$ Reducing mortgage rate by 1% cuts payments by:

\$1,500/year \$375/quarter \$125/month ----\$29/week \$4/day \$0.17/hour

 $\circ~$ Time-step matters: cost of procrastination depends on expected duration

- Household problem characterized by five state variables
 Let x_t = {b_t, m_t, y_t, r^m_t, r_t}
- Households have CRRA utility over consumption $u'(c) = c^{-\gamma}$
- Value function $v(x_0)$ for exponential ($\beta = 1$) agent:

$$v(x_0) = \max_{\{c_t\},\tau} \mathbb{E}_0 \int_0^\tau e^{-\rho t} u(c_t) dt + e^{-\rho \tau} v^*(x_\tau), \text{ where}$$
$$v^*(x_t) = \max_{b',m'} v(b',m',y_t,r_t^{m'},r_t) \text{ and } b'-m' = b_t - m_t - \kappa$$

- Household problem characterized by five state variables
 Let x_t = {b_t, m_t, y_t, r^m_t, r_t}
- Households have CRRA utility over consumption $u'(c) = c^{-\gamma}$
- Value function $v(x_0)$ for exponential ($\beta = 1$) agent:

$$v(x_0) = \max_{\{c_t\},\tau} \mathbb{E}_0 \int_0^\tau e^{-\rho t} u(c_t) dt + e^{-\rho \tau} v^*(x_\tau), \text{ where}$$
$$v^*(x_t) = \max_{b',m'} v(b',m',y_t,r_t^{m'},r_t) \text{ and } b'-m' = b_t - m_t - \kappa$$

$$\begin{split} \min \left\{ \rho v(x) - \max_{c} \{ u(c) + \partial_{b} v(x) (y_{t} + r_{t} b_{t} + \omega^{cc} b_{t}^{-} - (r_{t}^{m} + \xi) m_{t} - c_{t}) \\ - \partial_{m} v(x) (\xi m_{t}) \\ + \sum_{y' \neq y_{t}} \lambda^{y'} \left[v(b_{t}, m_{t}, y', r_{t}, r_{t}^{m}) - v(b_{t}, m_{t}, y_{t}, r_{t}, r_{t}^{m}) \right] \\ + \sum_{r' \neq r_{t}} \lambda^{r'} \left[v(b_{t}, m_{t}, y_{t}, r', r_{t}^{m}) - v(b_{t}, m_{t}, y_{t}, r_{t}, r_{t}^{m}) \right] \\ + \lambda^{R} \left[v^{R}(x) - v(x) \right] \\ + \lambda^{F} \left[v^{*}(x) - v(x) \right] \\ v(x) - v^{*}(x) \right\} \\ = 0 \end{split}$$

- Blanchard-Yaari retirement at rate λ^R
 - Retirement value of $v^R(b,m) = \frac{u(y_L + \bar{r}(h-m+b))}{\rho}$
 - \circ Replaced by households with $m_t = heta h$ and $b_t \sim U[0, y_L]$

- Forced refinancing at rate λ^{F}
 - Captures various reasons for mortgage pre-payment (e.g., moving)
 - o Assume households refinance optimally when forced

• In discrete-time, current-value function given by (no adjustment):

$$w(x_0) = \max_{c} u(c)\Delta + \beta e^{-\rho\Delta}v(x_\Delta)$$

• Note: v(x) is *expected* value function for $\beta = 1$ (naivete)

• Taking $\Delta \rightarrow 0$ gives present-biased FOC: $\frac{\partial u(c)}{\partial c} = \beta \frac{\partial v}{\partial b}$

(i.e., MU of consumption = MV of liquid wealth)

• Assumption: CRRA utility $u'(c) = c^{-\gamma}$

Proposition (Present Bias and Consumption)

Consumption obeys Euler equation:

$$\mathbb{E}_t \frac{du'(c(x_t))/dt}{u'(c(x_t))} = \left[\rho + \gamma \left(1 - \beta^{\frac{1}{\gamma}}\right) \frac{\partial c(x_t)}{\partial b}\right] - r_t(b_t)$$
• Current-value function for naive present-biased agent (no effort costs):

$$w(x_0) = \max\left\{\max_{c} u(c)\Delta + \beta e^{-\rho\Delta}v(x_{\Delta}), w^*(x_0)
ight\},$$

where $w^*(x_0)$ is current-value after refinancing optimally

• Note: v(x) is *expected* value function for $\beta = 1$ (naivete)

• (Outer max) Taking $\Delta \rightarrow 0$, refinancing decision independent of β :

$$\max\left\{\max_{c} u(c)\Delta + \beta v(x_{\Delta}), \max_{c} u(c)\Delta + \beta v(x_{\Delta}^{*})\right\}$$

Refinancing Decisions: (i) which x to refi; (ii) reallocation across b, m

- Notation: $x = (b, m, y, r^m, r, e)$
- $\mathfrak{R}: x \to \{0,1\}$ denotes mortgage adjustment (No/Yes)
- $m': x \rightarrow [0, \theta h]$ denotes new mortgage conditional on adjustment
- $b': x \to [\underline{b}, \infty)$ denotes new liq. wealth conditional on adjustment

Proposition (Present Bias and Refinancing)

m'(x) and b'(x) are independent of β
 (a) For e = 0, ℜ(x) is independent of β
 (b) For e > 0, ℜ(x) = 0 if β < 1

- Why does refinancing only affect future selves? Three Intuitions:
 - 1. Delays to refinancing mean current self won't get cash
 - 2. Better to put "one-day splurge" on credit card (unless at \underline{b})
 - 3. At 1-day frequency, overconsume ~ \$100 (or \$36,500 per year!) Not going to pay $\kappa^{refi} \approx$ \$5,000 in future to consume extra \$100 today
- Formally only need intuition #3, but others help

Externally Calibrated Parameters

	Description	Value	Target / Source				
Preferences							
γ	Risk Aversion	2	Literature				
ϕ	Procrastination Decay Rate	$-\log(0.5)$	Andersen et al. (2020)				
,	2	0()					
Income							
V+	Transitory Income	{0.75.0.98.1.28}	Guerrieri and Lorenzoni (2017)				
Ay	Income Transition Matrix	(see paper)	Guerrieri and Lorenzoni (2017)				
		(see paper)					
Interest	Rates						
r.	Short Rate	$\{-1\% \ 0\% \ 1\% \ 2\%\}$	10-Year TIPS				
Δr	Short Rate Transition Matrix	(see paper)	10-Vear TIPS				
	Cuedit Caud Madae	(See paper)	Credit Card 10 Vr Trassum Samed				
ω m	Credit Card Wedge	10.5%	Credit Card - 10- fr Treasury Spread				
ω^{m}	Mortgage Wedge	1.7%	30-Yr FRM - 10-Yr Treasury Spread				
Accete -	Annah and Linkiliting						
L 22013 2		2.1	2016 505				
n 0		3.1	2010 SCF				
θ	Max LI V	0.8	Greenwald (2018)				
ξ	Mortgage Paydown	0.035	20 Year Halt-Life				
κ^{prepay}	Prepayment Fixed Cost	0.002	Numerical Stability				
κ^{refi}	Refi Fixed Cost	0.05	FRB Documentation				
<u>b</u>	Credit Limit	$-\frac{1}{3}$	2016 SCF				
		5					
Other Structural Assumptions							
λ^F	Rate of Forced Refi	1	2016 CPS Avg. Moving Rate				
λ^R	Retirement Rate	10	Average Working Life				
-	Birth Distribution	$m_0 = \theta h, b_0^{30} \sim U(0, y_L)$	Lifecycle Dynamics				

- 2016 SCF wave used to calibrate household wealth accumulation
 - $\circ~$ Illiquid wealth (LTV) identifies ρ
 - $\circ~$ Liquid credit card debt identifies β
- Sample restrictions to align data with model:
 - $\circ~$ Head in labor force, aged 25-66, owns a home, possesses credit card
 - $\circ~$ Home value to income ratio between the 25th and 75th percentile
 - Credit card borrowing adjusted by a factor of 1.5 due to underreporting (see Zinman (2015) and Beshears et al. (2019, Appendix C))
- Calculate LTV and credit card debt to permanent income
 - $\circ~$ Use reported "normal income" as measure of permanent income

Internally Calibrated Parameters: Discount Rates Back

- Calibrate discount function to match empirical wealth moments
- Using 2016 SCF wave of homeowners:
 - $\circ~$ Calibrate ρ to match average LTV
 - $\circ~$ Calibrate β to match average credit card debt to income ratio

	Data	Exponential	Intermediate	Present-Bias
	Dala	Benchmark	Case	Benchmark
Discount Function				
β	-	1	0.70	0.83
ρ	-	1.47%	0.64%	0.97%
Calibration Targets				
LTV	0.54	0.54	0.54	0.54
Avg. C.C. Debt	0.09	0.03	0.09	0.09
Share C.C. Debt > 0	60%	26%	52%	47%

	Exponential	Intermediate	Present Bias
Avg. c	0.93	0.92	0.93
(уL, УМ, УН)	(0.84, 0.93, 1.02)	(0.83, 0.93, 1.01)	(0.81, 0.94, 1.03)
Avg. Quarterly MPC (\$1,000)	4.3%	8.5%	12.5%
(y_L, y_M, y_H)	(5.2, 5.3, 2.3)	(14.8, 8.5, 2.1)	(25.8, 9.8, 2.5)
Avg. Quarterly MPC (\$10,000)	4.2%	6.2%	8.7%
(y_L, y_M, y_H)	(5.2, 5.0, 2.1)	(10.6, 6.2, 1.8)	(17.5, 6.7, 2.2)
Avg. Quarterly MPX (\$1,000)	13.7%	23.9%	31.7%
Avg. Quarterly MPX (\$10,000)	13.2%	19.3%	26.2%
Share $b = 0$	5.9%	6.3%	4.7%
Share $b < 0$	25.8%	52.2%	46.9%
Share $b = \underline{b}$	0.2%	9.3%	13.1%

- There's an informal intuition floating around that present bias incentivizes households to extract equity from their homes in order to finance short-term consumption
- Does present bias incentivize home-equity extraction?
- Model shows that it's complicated:
 - Conditional on x, the refinancing region depends on ρ but not β
 - Procrastination slows down refinancing
 - + Present bias generates credit card debt, incentivizing cash-out refis

Steady State: Consumption ($\beta = 1$)

• Large MPCs at soft constraint (b = 0) for middle income households

Steady State: Consumption (Intermediate)

• Consumption discontinuity at <u>b</u> for low and middle income households

Steady State: Consumption (Present Bias)

• Consumption discontinuity at <u>b</u> for low and middle income households

Model Steady State: Quarterly MPCs

Model Steady State: Stationary Distribution

Steady State: Stationary Dist. (Intermediate)

Steady State: Stationary Dist. (Present Bias)

• $\tau\text{-year}$ MPC = integral of Consumption IRF from 0 to τ

• Consumption IRF at point x:

$$IRF_t(x) = \frac{\partial}{\partial b} \mathbb{E}[c(x_t)|x_0 = x]$$

• MPC at point x:

$$MPC_{\tau}(x) = \frac{\partial}{\partial b} \mathbb{E} \left[\int_{0}^{\tau} c(x_{t}) dt | x_{0} = x \right]$$
$$= \int_{0}^{\tau} IRF_{t}(x) dt$$

\$1000 MPCs

	Exponential	Intermediate	Present Bias
$\frac{1}{4}$ Year MPC	4%	9%	13%
1 Year MPC	15%	22%	28%
2 Year MPC	26%	34%	41%
3 Year MPC	35%	42%	49%

• Note: au-year MPC is integral of Consumption IRF from 0 to au

\$1000 MPCs and MPXs

	Exponential	Intermediate	Present Bias
$\frac{1}{4}$ Year MPC	4%	9%	13%
1 Year MPC	15%	22%	28%
2 Year MPC	26%	34%	41%
3 Year MPC	35%	42%	49%
$\frac{1}{4}$ Year MPX	14%	24%	32%
1 Year MPX	22%	30%	37%
2 Year MPX	31%	39%	46%
3 Year MPX	39%	46%	53%

• Note: au-year MPC is integral of Consumption IRF from 0 to au

Monetary Policy: Refinancing $(\beta = 1)$

• Steady State: $r_t = 1\%$ and $r_t^m = 1\% + \omega^m$ · Intermediate · Present Bias

• Interest Rate Cut: $r_t = 0\%$ and $r_t^m = 1\% + \omega^m$

Monetary Policy: Refinancing (Intermediate)

• Steady State: $r_t = 1\%$ and $r_t^m = 1\% + \omega^m$

• Interest Rate Cut: $r_t = 0\%$ and $r_t^m = 1\% + \omega^m$

Monetary Policy: Refinancing (Present Bias)

Back

• Steady State: $r_t = 1\%$ and $r_t^m = 1\% + \omega^m$

• Interest Rate Cut: $r_t = 0\%$ and $r_t^m = 1\% + \omega^m$

	Exponential	Intermediate	Present Bias
Share Refi Region (On Impact)	73.1%	68.5%	74.9%
(Share Cash Out)	81.0%	66.8%	77.3%
$\frac{1}{4}$ Year Realized Refi	75.2%	71.0%	13.6%
1 Year Realized Refi	80.0%	76.5%	42.0%
2 Year Realized Refi	84.5%	81.2%	62.7%
3 Year Realized Refi	87.8%	84.6%	74.3%
Average Refi Amount	0.31	0.17	0.29

- Decompose on-impact consumption response into:
 - 1. Direct effect on liquid wealth
 - $2. \ 1 + \mathsf{rate-refis}$
 - 3. 1 + 2 + cash-outs

(no refis allowed) (no cash-out refis allowed) (full model)

	Exponential	Intermediate	Present Bias
Step 1. No Refis	0.79 (21%)	0.89 (18%)	0.83 (23%)
Step 2. No Cash-Outs	1.74 (46%)	2.08 (41%)	1.81 (50%)
Step 3. Full Response	3.76 (100%)	5.03 (100%)	3.58 (100%)

Fiscal Policy: Liquid vs. Illiquid Stimulus

• In response to 07-08 Financial Crisis, a combination of liquid and illiquid fiscal transfers were used (e.g., stimulus checks vs. mortgage reductions)

For β < 1, liquidity of stimulus critical for consumption response
 High MPCs come from liquidity-constrained households

- In our model (as most others), focus on utility-generating consumption

 Durables key differentiator between expenditure vs. consumption
- Empirical literature often estimates both
 - $\circ~$ Expenditure used especially when imputing from balance-sheet data
- Propose simple/general technology to bridge gap!
 - $\circ~$ Key: extension with durables that's isomorphic to benchmark model

Proposition (Marginal Propensity for Expenditure)

The Marginal Propensity for Expenditure (MPX) is given by:

$$MPX_{\tau}(x) = MPC_{\tau}(x) + \frac{s}{\nu + r_0} \times \frac{\partial}{\partial b} \mathbb{E}\left[c(x_{\tau})|x_0=x\right],$$

where s is durable share of consumption and ν is depreciation rate

• Even for large transfers, FP a powerful policy tool when $\beta < 1$

Extension: A Call to ARMs?

- Study monetary policy in ARM environment
 - Since 07-08 Crisis, economists have called for downwardly flexible mortgages (like ARMs) to improve potency of monetary policy

Present bias creates a tradeoff between FRMs and ARMs

- ARM Benefit: fast pass-through of policy to r^m (offsets procrastination)
- ARM Cost: reduces cash-out channel of monetary policy
- \circ ARM=Fast+small stimulus to all; FRM=slow+large stimulus to some

Extension: Procrastination Sensitivity

• Introduce procrastination to $\beta = 1$ case (dashed black line)

• $\beta < 1$ economy more sensitivity to procrastination

 \circ Intuition: fewer constrained $\beta = 1$ households \implies smooth out refi delays

Extension: MP with Procrastination Reduction Back

• Experiment: turn down procrastination at time of MP shock (see Andersen et al. (2020) for discussion)

Robustness: Monetary Policy & House Price Shocks Back

• Main result holds: $\beta < 1$ amplifies consumption response to MP

Fiscal Policy: -5% Income Shock

• Results not sensitive to recessionary income shocks

- Conjecture present bias continues to amplify fiscal policy in GE
 - "Keynesian Cross" logic
 - $\circ~$ Primary GE effect through labor income $\uparrow~$
 - $\circ~$ Since $\beta<1$ increases MPCs, $\beta<1$ likely amplifies indirect effect
- Conjecture present bias continues to amplify monetary policy in GE
 - "Keynesian Cross" logic
 - $\circ~$ Primary GE effect through labor income $\uparrow~$
 - $\circ~$ Since $\beta<1$ increases MPCs, $\beta<1$ likely amplifies indirect effect
 - $\circ~$ Also, additional GE effects through stock / house valuation changes

Back

- Why Present Bias?
- $\beta < 1$ model replicates range of patterns from household finance lit. that have collectively proven difficult to fit with exponential discounting

• Consumption

- ✓ MPCs for small shocks (Parker et al., 2013) ✓ MPCs for large shocks (Fagereng et al., 2019) (Auclert et al., 2018) ✓ Intertemporal MPCs ✓ Different MPCs from liquid vs. illiquid transfers (Ganong and Noel, 2018) \checkmark Cons. fxn with discontinuity at borrowing limit (Ganong and Noel, 2017) Wealth ✓ High interest credit card borrowing by homeowners (SCF, 2016) Buildup of liquidity-constrained households (Gross and Souleles, 2002) ✓ LTV distribution (SCF, 2016) Refinancing 0 ✓ Refinancing inertia (Andersen et al., 2020) \checkmark Cash-out share of refis (Chen et al., 2019) ✓ Cash-out magnitude (Bhutta and Keys, 2016)
- Above, red bullets only matched with $\beta < 1$

Back