NEXT-GENERATION AGENT-BASED MODEL OF CANADA (CAN-ABM)

2021 Bank of Canada Annual Economic Conference (Behavioral Macroeconomics and Finance: Implications for Central Bankers) Cars Hommes*, Sebastian Poledna[†] & Yang Zhang*

* Bank of Canada

International Institute for Applied Systems Analysis (IIASA)

Disclaimer

The views expressed in this presentation are solely those of the authors and may differ from official Bank of Canada views. No responsibility for them should be attributed to the Bank of Canada.

Models are Built to Adapt to Economic Context

Source: https://www.bankofcanada.ca/2017/01/models-art-science-making-monetary-policy/

New macro modelling

Some Progress Made within DSGE framework

DSGE	Enhanced DSGE (Next Generation)	
Representative agents	TANK, HANK	
Solved at the aggregate level		
Rational or model-consistent expectations	Bounded rationality through myopia or limited foresight	
Agents optimize given expectations		
Match the historical evolution of variables		

Research from Het-Lab & Inflation-Target Renewal

Optimal policy under HANK

0 Optimal monetary policy and inequality. - Acharya, Challe and Droga (2020)

Distributional impact of monetary policy

- Labor heterogeneity. Kuncl and Ueberfeldt (2021)
- 0 Cost of inflation Cao, Meh, Rios-Rull, Terajima (2021)

Alternative expectation

- Limited foresight and optimal stabilization policies Woodford and Xie (2021)
- Horse Race of history-dependent policies under bounded rationality Wagner, Schlanger and Zhang (2021)

Consider ABM into NextGen Model Suite

DSGE	Enhanced DSGE (Next Generation)	CAN-ABM* (Next Generation)	
Representative agents	TANK, HANK	Heterogeneous agents	
Solved at the aggregate level		Solved numerically at the agent level	
Rational or model-consistent expectations	Bounded rationality through myopia or limited foresight	Bounded rationality in expectations	
Agents optimize given expectations		Agents use <mark>simple heuristics</mark> calibrated to data	
Match the historical evolution of variables		Match historical evolution of macro variables and reproduce stylized facts	

* Poledna, S., Miess, M.G., & Hommes, C.H. (2020). Economic Forecasting with an Agent-Based Model. IIASA Working Paper. Laxenburg, Austria: WP-20-001

Agents & Markets in CAN-ABM

Multi-sector Production Network

Firm *i* produces $Y_{i,t}$ with Leontief technology using labour $N_{i,t}$, intermediate inputs $M_{i,t}$ and capital stock $K_{i,t-1}$:

$$Y_{i,t} = \min(Q_{i,t}^{s}, \alpha_{i,t} N_{i,t}, \beta_{i,t} M_{i,t}, \kappa_{i,t} K_{i,t-1})$$

Firm Quantity and Price Setting

Source: Delli Gatti, D., Desiderio, S., Gaffeo, E., Cirillo, P., & Gallegati, M. (2011). The Market for Consumption Goods. In Macroeconomics from the bottom-up (pp. 54–57). essay, Springer Milan.

Firm Quantity and Price Setting

 $\pi_{i,t}^{d} = \begin{cases} positive, if optimistic about demand and price is competitive negative, if positive inventory but charged higher price than average$

Adaptive Learning

- Behavioral learning equilibrium (BLE) (Hommes and Zhu [2014])
 - 0 Actual law of motion of the economy high dimensional linear stochastic system

O But agents don't fully recognize this structure

• **Expectations** on GDP growth and inflation are formed using AR(I):

$$1 + \pi_t^e = \mathrm{e}^{\alpha_t^\pi \pi_{t-1} + \beta_t^\pi + \epsilon_t^\pi}$$

$$P_{i,t} = P_{i,t-1} \cdot \underbrace{\left(1 + \pi_{i,t}^{c}\right)}_{Supply \ channel} \cdot \underbrace{\left(1 + \pi_{i,t}^{d}\right)}_{Demand \ channel} \cdot \underbrace{\left(1 + \pi_{t}^{e}\right)}_{Inflation \ expectation}$$

"In principle it might even be possible to create an agent-based economic model capable of making useful forecasts of the real economy, although this is ambitious ... like climate modelling, [it's] a huge undertaking." (Farmer & Foley, 2009)

Out-of-Sample Forecasts Outperform VAR(1)

	GDP	Inflation	Consumption	Investment	Exports	Imports		
VAR(1)	RMSE-statistic for different forecast horizons							
1q	0.55	0.67	0.34	1.43	2.34	1.6		
2q	0.83	0.61	0.54	2.78	3.04	2.48		
4q	1.37	0.61	0.99	5.56	3.81	4.72		
8q	1.98	0.7	1.62	10.43	4.73	9.34		
12q	2.21	0.72	1.98	15.21	4.72	13.83		
AR(1)	Percentage	gains $(+)$ or	losses (-) relative	e to $VAR(1)$	model			
1q	2.6(0.35)	15.6(0.02)	17.7(0.06)	-0.3(0.51)	-1.6(1.00)	12.5(0.03)		
2q	1.6(0.40)	1.9(0.33)	7.1(0.23)	9.6(0.19)	4.4(0.99)	29.9(0.05)		
4q	11.2(0.00)	0.7(0.42)	10.9(0.12)	18.6(0.05)	1.6(1.00)	47.3(0.04)		
8q	10.3(0.00)	3.8(0.15)	11.6(0.24)	21.8(0.01)	-6.3(0.99)	61.8(0.05)		
12q	19.3(0.03)	2.8(0.12)	8.8(0.36)	26(0.00)	-14.1(0.99)	68.6(0.28)		
ABM	<u>Percentage</u> gains $(+)$ or losses $(-)$ relative to VAR (1) model							
1q	3(0.32)	13.5(0.06)	-19(0.87)	-4.7(0.83)	5.6(0.15)	14(0.12)		
2q	2.9(0.29)	-2.6(0.66)	-17.4(0.83)	11(0.02)	11.1 (0.06)	33.6(0.03)		
4q	12(0.06)	-4.8(0.77)	12.4(0.29)	23.1(0.05)	7.4(0.09)	49.5(0.01)		
8q	17.3 (0.02)	9.3 (0.06)	19.3(0.34)	33(0.04)	2.8(0.38)	65.6(0.01)		
12g	27.1(0.00)	3.1(0.36)	33.4(0.32)	43.2(0.00)	2.7(0.41)	77.7 (0.03)		

Table 1: Out-of-sample forecast performance

Note: RMSE-statistic for main aggregates from ABM simulations in comparison to VAR(I) and AR(I) models for the forecast period from 2010:Q2-2019:Q4 for Canada.

Source: Model simulations, Statistics Canada

Useful Tool For Developing Macro Scenarios

Source: Model simulations, Statistics Canada

Useful Tool For Developing Macro Scenarios

Simulated Price Distribution (2019Q4 = 100)

Source: Model simulations

Simulated Price Distribution (2019Q4 = 100)

Source: Model simulations

Source: Model simulations

Measuring Labour Market Condition Essential for CBs

Chart 4: Measures of labour market inclusiveness

a. Unemployment rate

Source: Ens, Savoie-Chabot, See and Wee (2021), "Assessing Labour Market Slack for Monetary Policy" Last observation: 2021 Q3

ABM Could Provide Some Insights for Inclusive Recovery

Visions

- CAN-ABM offers a complementary tool to DSGEs for central bank policy analysis
 - \circ Rich household and firm heterogeneity
 - 0 Nonlinear effects
 - Competitive out-of-sample forecasting performance
- Strength in realistic expectation formation and behavior modelling
 - Bounded rationality
 - \odot Crucial for monetary policy transmission
- Great potential for policy analysis & scenario building
 - \circ Climate scenario