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Abstract 
Scaling behavior measured in cross-sectional studies through the tail index of a power law is 
prone to a bias. This hampers inference; in particular, time variation in estimated tail indices 
may be erroneous. In the case of a linear factor model, the factor biases the tail indices in the 
left and right tail in opposite directions. This fact can be exploited to reduce the bias. We show 
how this bias arises from the factor, how to remedy for the bias and how to apply our methods 
to financial data and geographic location data.  
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1 Introduction

A wide variety of economic data and natural processes exhibit scaling behavior, in
the sense that one variable varies as a power of another variable. For example, the
number of households in higher income brackets varies as a power of the level of
income (Pareto’s law). This implies that the upper tail of the income density falls
off by a power. If the tails of the density follow a power law, the shape is the same
regardless of the magnification of the quantiles; in other words, the tails are self simi-
lar. For the extreme order statistics this implies that the logarithm of the probability
of observing a realization above a certain threshold is linear in the logarithm of the
threshold. The ratio of the two logarithms is equal to (minus) the power, which is
generally known as the tail index. Distributions with such tail behavior only have
bounded moments up to the value of the tail index and are therefore referred to as
heavy-tailed distributions.

In economics, scaling behavior is found in wealth and income (Atkinson and Piketty,
2007), firm size (Axtell, 2001), executive compensation (Baker et al., 1988), produc-
tivity (Helpman et al., 2004) and stock markets (Jansen and Vries, 1991). More
generally, scaling behavior is found in a variety of natural processes, such as internet
data traffic (Resnick, 1997), city size (Gabaix, 1999) and natural disasters (Pisarenko
and Rodkin, 2010).

Considerable attention in economics has been paid to time series characterized by
heavy-tailed innovations, like returns to financial investments. Since investors gener-
ally choose a portfolio from a large multitude of different assets, recent literature also
investigates the cross-sectional scaling behavior. Kelly and Jiang (2014) estimate the
tail index from monthly cross sections of US stock returns. They find that the tail
index varies considerably across different months. More recently, Karagiannis and
Tolikas (2019), Atilgan et al. (2020) and Agarwal et al. (2017) use measures related
to the tail shape of cross sections (such as Value-at-Risk) to expose risks of different
assets not priced by the market.

To date little is known about the statistical properties of the estimates of scaling be-
havior in cross sections. In the cited literature considerable time variation is observed
in tail index estimates. The main issue that we investigate is the possible cause for
this variation that is particular to the cross-sectional nature of the data. Suppose the
data are generated by a linear factor model, that is, the dependent variable equals
a weighted sum of the factors and some idiosyncratic noise. Furthermore, assume
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that the scaling behavior is identical for all idiosyncratic noises in the cross section,
implying equality of the tail indices. In this setup, the tail index of the dependent
variable equals the tail index of the idiosyncratic noise. We show that cross-sectional
estimates of the tail index are biased and vary with the size of the factor realizations
at different points in time.

Subsequently, we use the specific properties of linear factor models to remedy for
the bias and variation in cross-sectional tail index estimates. Specifically, the factor
induces bias in opposite directions for left and right tail index estimates. We show
that this fact can be exploited to reduce the bias. If one does not correct for the
bias, one may misinterpret observed variation in tail index estimates.

We suggest two simple-to-implement procedures to alleviate the bias due to the lo-
cation shift originating from the factors. The first method takes advantage of the
symmetry in the bias for the left and right tail estimate. By taking the average of
the left and right tail estimates, the location shift is offset. Under tail symmetry,
this not only cancels out the bias, but also reduces the variance of the estimator.

A second approach is to subtract the average of the dependent variable in the cross
section from each observation before one applies the tail index estimator. This ap-
proach does not require the assumption that the left and right tail have the same
tail shape. As opposed to the first approach, the left and right tail indices can be
estimated separately. In this application we simply use the cross-sectional mean as
the tuning parameter. In a simulation exercise we show that both methods alleviate
bias caused by a cross-sectional location shift.

To test for the direction and size of the bias in real world data, we use monthly US
stock returns and annual US Census county population data. Both datasets contain
a wide cross section and a long time-series dimension. The wide cross section is vital
to estimate the tail index accurately. The long time-series dimension helps to elicit
the effect of the bias caused by the linear factor structure.

Cochrane (2009) shows that under mild restrictions, asset returns naturally follow
from a linear factor structure. The factor structure has been used to explain asset
prices empirically (see e.g., Fama and French (2015); Stambaugh and Lubos (2003)).
The combination of an innate factor structure, wide cross section and long time-series
dimension provides an ideal setting for a first test case. Assuming a linear five-factor
model, we isolate the effect of the variation that a single factor contributes to the
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bias in cross-sectional tail index estimates. When considered in isolation, correlation
between tail index estimates and factors explains a considerable amount of the vari-
ation over time. As predicted on the basis of our theory, we find that the bias indeed
induces a negative correlation between the left and right tail index estimates.

A second test case is based on county population growth rate data motivated by
literature on the heavy-tailed nature of geographical population clustering (Gabaix
(1999); Eeckhout (2004); Rozenfeld et al. (2011)). Furthermore, the abundance of
the data in both the time-series and cross-section dimension implies that these data
are amenable to our analysis. However, the difference with the financial data is that
a clear factor structure is lacking. County data therefore provide us with an example
in which there is only a weak factor structure. In the literature review by Chi and
Ventura (2011) a large number of possible factors are identified that may explain
population growth. We use five principal components to summarize a large subset of
the proposed factors. The weak factor structure behind population growth induces
less correlation between the bias and the principal components. Nevertheless, the
correlation is still marginally significant and in the predicted direction. The contrast
in results with the first test case underlines that a Data Generating Process (DGP)
with a strong factor structure suffers more severely from the cross-sectional bias.

2 Theory

Consider a linear factor model with n factors gi, i “ 1, ..., n. At any point in time
the dependent variable Yj for cross-sectional entity j is

Yj “
n
ÿ

i“1

γijgi `Xj,

where theXj are idiosyncratic shocks (omitting superfluous time indices on Yj, gi andXj).
At any point in time the factors gi are given.1 Define, as a shortcut:

hj “
n
ÿ

i“1

γijgi.

Thus at a specific point in time

Yj “ hj `Xj. (1)

1From the econometrician’s point of view, the gi may not be known or contain an error when
estimated.
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One can classify distributions according to their tail behavior. Either a distribution
has a bounded support or it has unbounded support. In the former case, the tail
behavior is captured by the Weibull distribution. In the latter case, the tail is either
of exponential decay or resembles a power law. Hereafter we focus on innovations Xj,
with tails that follow a power law. The tails of these distributions are always heavier
than the distributions with exponential tail behavior, i.e., they always have a higher
probability of extreme observations. These distributions only have a finite number
of bounded moments and are referred to as heavy-tailed distributions. Examples
are the Pareto distribution, the Student-t and the F-distribution. The entire class of
these distributions is closed under addition and characterized by the regular variation
property. Let Gp.q denote a cumulative distribution function (cdf). For the left tail,
regular variation entails:

lim
tÑ8

Gp´txq

Gp´tq
“ x´α,

and for the right tail:

lim
tÑ8

1´Gptxq

1´Gptq
“ x´α,

with x ą 0 and α ą 0 (the left and right α’s need not be equal). The power decline
implies self-scaling behavior. Note that a decrease in the α gives a heavier tail as
moments only exist up to α.

Below we first describe how α, commonly referred as the tail index, can be estimated
for the Pareto distribution. Then we investigate how the estimator is influenced by
adding a fixed factor such as hj. We show that the introduction of hj induces a bias
in the cross-sectional estimates. Lastly, we consider how this bias can be remedied.

2.1 Hill estimator

The tail index α can be estimated in a number of ways. Two of the most popular
methods are the Hill (1975) estimator and the regression approach. While the latter
method is often applied in regional economics, the former method is often used in
financial economics. One shows that the bias-variance trade-off differs for the two
methods; both methods, however, attain the best possible rate in larger samples. We
focus on the Hill estimator.

The Hill estimator uses the k highest-order statistics above threshold u to estimate
the (inverse of the) tail index α. Let Yj denote the descending order statistics from
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a cross section with m observations, that is:

Y1 ě Y2 ě ... ě Yk ě u ě ... ě Ym´1 ě Ym.

For the lower tail, one takes the negative of the observations and reorders these from
high to low. Here u is the threshold, typically chosen as a percentage of the sample
size. The Hill estimator calculates the average logarithmic difference between the
threshold and the higher-order statistics:

1

α̂
“

1

K

K
ÿ

i“1

lnp
Yi
u
q. (2)

If the sample is drawn from a standard Pareto distribution, the Hill estimator co-
incides with the maximum likelihood estimator. In this case all observations can
be used, i.e., u “ 1. Given that the estimator is unbiased in the pure Pareto case,
u “ 1 is optimal in the sense of lowest variance. In other cases, like the Student-t
distribution, only the tail of the distribution resembles the Pareto tail and u must be
chosen in the tail area to reduce bias. There are two versions of the Hill estimator:
one is with a fixed threshold u as in (2), while the other uses one of the upper-order
statistics as a threshold.2 In the fixed threshold version, the number K of order
statistics exceeding u is random.

2.2 Single observation

Consider a single observation X drawn from a standard Pareto distribution,

Gpxq “ 1´ x´α

on r1,8q. Take u ą 1 as one would do in the general case. In repeated samples,
suppose one records a zero if X ă u and otherwise records lnpX{uq. The expected
value of the estimator (2) is the conditional expectation

Erln
X

u
|X ą us “

α

u´α

ż 8

u

pln
x

u
qx´α´1dx “

1

α
. (3)

This shows that the expectation of the Hill estimator from a standard Pareto sample
of just one observation is unbiased, even if we choose u ą 1.

2Goldie and Smith (1987) argue that ”In practical terms, there is little to choose between these
two points of view.”
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Next consider the case with a non-zero fixed factor, h ‰ 0, added to the idiosyncratic
noise as in (1). For large s, a first-order Taylor approximation around hs´1 “ 0 yields
an expression for the tail of the distribution of Y :

PrtY ď su “ PrtX ` h ď su “ 1´ ps´ hq´α

» 1´ s´αr1` αhs´1
s. (4)

Apply the expectation in (3) twice to get

Erln
Y

u
|Y ą us »

1

α
´

1

α ` 1
hu´1. (5)

In comparison to (3), we now have an additional term signifying the bias due to
the location shift. Thus, given a fixed α over time, variation in the cross-sectional
estimates may stem from a variation in h.

The location shift has a different effect when considering the left tail. If the idiosyn-
cratic noise term again follows a standard Pareto distribution, then

PrtY ď ´su “ Prt´X ą s` hu “ ps` hq´α

» s´αr1´ αhs´1
s.

This again results in a bias dependent on h:

Erln
Y

u
|Y ď ´us »

1

α
`

1

α ` 1
hu´1. (6)

The bias, however, is of the opposite sign. This implies that a location shift h biases
the left and right tail index estimates in different directions. The two biases are each
other’s mirror image.

In general, heavy-tailed distributions, i.e., distributions that vary regularly at in-
finity, only resemble the Pareto distribution in the tail area. That is to say, these
distributions have second-order terms not due to a shift. For example, the Student-t
satisfies the following expansion:

Gpxq “ 1´ Cx´αr1`Dx´θ ` opx´θqs. (7)

Here α ą 0, C ą 0, θ ą 0 and D is a real number. In fact, most known heavy-
tailed distributions satisfy this so-called Hall expansion (Hall and Welsh, 1985). The
expansion also applies to the stationary distribution of an ARCH process, see e.g.,
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Sun and Vries (2018). But the second-order term is not necessarily a power function.
In the remainder of the paper we assume that expansion (7) applies. For the general
case in (7), we show in Appendix 7.1 that the expected value of the Hill statistic is

Erln
Y

u
|Y ą us “

1

α
´

θ

αpα ` θq
Du´θ ` opu´θq.

In the simplest case, that is, the shifted Pareto distribution in (4), C “ 1, D “ αh
and θ “ 1. For a Student-t distribution θ “ 2, and expressions for C and D can be
found in Sun and Vries (2018). One shows that adding a shift h to the Student-t
distribution changes the second-order term into the third-order term. The second-
order term in expansion (7) in the shifted Student law then resembles the second-
order term of the shifted Pareto distribution (with the sign of D depending on which
tail is considered).

2.3 Cross section

Following the bias based on a single observation, we examine how the Hill statistic
fares for multiple observations in a cross section with only idiosyncratic shocks Xj.
Suppose that the Xj satisfy (7) and that the tail indices α and θ are equal. But the
scale parameters C and D may differ.3 Thus consider

Gjpxq “ 1´ Cjx
´α
r1`Djx

´θ
` op1qs. (8)

Let K “ k ď m be the number of elements in the cross section that exceed u. The
expected value of the Hill statistic in the cross section is

Er
1

α̂
|K “ ks »

1

α
´

θ

αpα ` θq
p
1

k

k
ÿ

j“1

Djqu
´θ,

where j “ 1, ..., k are the elements of Xj that exceed u. The difference with the
case of a single observation is that the bias term now contains the average of the
second-order scale coefficients. Also note that the first-order scale coefficients Cj do
not play a role.

3In Appendix 7.3, we relax the assumption that the powers are the same. In large samples, the
Xj with the lowest αj dominate. For smaller samples, we show that the idiosyncratic shocks with
less heavy tails bias the estimates. The cross-sectional tail estimate is then a weighted average of
the tail indices of the cross section. Einmahl and He (2020) show that the tail index estimates
remain consistent if the scale coefficients differ.
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Furthermore, suppose that each entity j is influenced by an individual factor hj
(non-stochastic from the point of view of the cross section). Hence, the linear model
becomes Yj “ hj`Xj. To estimate the tail index of Yj we again use the Hill estimator
from (2). The introduction of hj now has a slightly more complicated effect on the
value of the estimate. In particular, hj affects the distribution of Yj in the tail area
as follows:

Gjpxq “ 1´ Cjpx´ hjq
´α
´ CjDjpx´ hjq

´α´θ
` op1q.

A Taylor approximation yields

Gjpxq “ 1´ Cjx
´α
p1´ hjx

´1
q
´α
´ CjDjx

´α´θ
p1´ hjx

´1
q
´α´θ

` op1q

» 1´ Cjx
´α
´ αCjhjx

´α´1
´ CjDjx

´α´θ
´ pα ` θqCjDjhjx

´α´θ´1.

The question then is which term is the second-order term? This depends on the
value of θ. If θ ă 1, then the same first- and second-order terms figure as before.
But if θ “ 1 the new second-order term is pαhj `Djqx

´α´1, while for θ ą 1, the new
second-order term is αhjx

´α´1. Denote the Hill estimate of Yj by 1{α̂Y . We have
the following intermediate result:

Lemma 1. The conditional expectation up to a second-order term with a shift
factor hj is as follows:

Er
1

k

k
ÿ

j“1

ln
Yj
u
|Yj ą us “ Er

1

α̂Y
|Yj ą us »

$

’

&

’

%

1
α
´ θ

αpα`θq
1
k

řk
j“1Dju

´θ, if θ ă 1
1
α
´ 1

αpα`1q
1
k

řk
j“1pDj ` αhjqu

´1, if θ “ 1
1
α
´ 1

α`1
1
k

řk
j“1 hju

´1, if θ ą 1

Note that if θ ą 1 the tail index of the second-order term changes. This affects the
bias of the Hill estimator on Yj.

Denote the average of the k shift factors of the Yj by

h “
1

k

k
ÿ

j“1

hj.

We have the following proposition:

Proposition 1. For the upper tail of the cross-sectional distribution and if θ ě 1,
the Hill statistic declines if h increases, since

BEr
1

k

k
ÿ

j“1

ln
Yj
u
|Yj ą us{Bh « ´

1

α ` 1
u´1

ă 0. (9)
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Thus if a single factor increases, this affects all Yj with a positive coefficient γj in
such a way that the downward bias in the Hill statistic becomes more severe. Note
that one has to sum over all hj. So in a one-factor model setup hj “ γjg, we get

BEr
1

k

k
ÿ

j“1

ln
Yj
u
|Yj ą us{Bg « ´

γ

α ` 1
u´1 (10)

where γ is the average of the k number of γj coefficients.

A similar proposition applies for the lower tail:

Proposition 2. For the lower tail of the cross-sectional distribution and if θ ě 1,
the Hill statistic increases if h increases, since

BEr
1

k

k
ÿ

j“1

ln
Yj
´u
|Yj ď ´us{Bh «

1

α ` 1
u´1

ą 0.

Note that while the bias in the upper tail is negative, the bias in the lower tail is
positive. This implies a negative (positive) correlation between the factor and lower
(upper) tail index estimate (inverse of the Hill estimate). Moreover, the bias also
generates a negative correlation between the left and the right tail index estimates.4

Given the coefficients γij, movement in the factors induce changes in the cross-
sectional Hill estimates over time. Even if the coefficients are constant over time,
the Yj (and therefore the γij) that are included in the Hill estimate at any time is
random. This implies a variation in the included γij. Thus the bias varies over time,
due to changes in the gi and due to the fact that different coefficients γij enter the
estimator at each point in time. Suppose that the γij at some points in time have
a sign opposite to the sign of factor gi; this may even lead to a sign reversal of the
correlation between Yj and the factor gi.

Suppose one wants to identify the contribution of the factors to the bias. This can
be done, to some extent, by estimating the γij and deducting the sum of the γ̂ijgi
from the Yj. Assume that the parameters γij are constant over time and can be

4A third-order expansion provided in Appendix 7.2 reveals that the third-order term has the
same sign for the left and right tail. This implies that, even though the second-order term dominates
the correlation, the biases in the left and right tail are likely not perfectly negatively correlated.
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recovered from a time-series regression. The estimate of idiosyncratic noise from the
linear factor model reads:

X̂j “ Yj ´
n
ÿ

i“1

γ̂ijgi.

Consider the (estimated) bias contribution of an individual factor, say gf . To this
end define the semi-residual with respect to gf :

Sfj “ Yj ´
ÿ

i‰f

γ̂ijgi. (11)

Thus Sfj contains the estimated contribution of the remaining factor γfgf and Xj.

Assume that the distribution of Xj satisfies (8) and θ ą 1, then:

Er
1

α̂X̂j
|X̂t ą us “ Er

1

k

k
ÿ

j“1

ln
X̂j

u
|X̂j ą us

“
1

α
´

1

α ` 1

˜

1

k

k
ÿ

j“1

”

n
ÿ

i“1

pγij ´ γ̂ijqgi

ı

¸

u´1
` opu´1

q.

A result with an opposite sign for the bias applies to the other tail. Note that in a
correctly specified model some bias due to other factors nevertheless remains due to
estimation errors in the coefficients γij.

If θ ą 1, the bias in the tail index estimates of the semi-residuals is as follows:

Er
1

α̂Sf
|Sfj ą us “ Er

1

k

k
ÿ

j“1

ln
Sfj
u
|Sfj ą us

“
1

α
´

1

α ` 1

˜

1

k

k
ÿ

j“1

”

ÿ

i‰f

pγij ´ γ̂ijqgi ` γfjgf

ı

¸

u´1
` opu´1

q.

This partially isolates the influence of γfjgf on the variation in α̂Y . Furthermore,
the effect of the factors on the tail index estimate is expected to be in a different
direction for the left and right tail index estimates, implying a negative correlation
between the two.
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The contribution to the bias of gf can be approximated by the difference between
the tail index estimate of the semi-residual and the tail index of the idiosyncratic
noise:

1

α̂f
“

1

α̂Sf
´

1

α̂X̂j
. (12)

If one ignores the estimation error in the γ̂ij and θ ą 1, then the expected difference
is approximately equal to

Er
1

α̂f
|Sfj , X̂j ą us “ Er

1

α̂Sf
´

1

α̂X̂j
|Sfj , X̂j ą us

» ´
1

1` α

˜

1

k

k
ÿ

j“1

γfjgf

¸

u´1
` opu´1

q. (13)

The RHS in (13) isolates the bias contributed by a single factor, with a different
sign for the other tail. Given positive coefficients γfj, one can expect a negative
correlation between 1{α̂f and gf in the right tail. Recall that α has the intuitive
interpretation as the number of bounded moments. For this reason, we report in
the empirical application how α relates to a factor. Note that this flips the sign
predictions for the bias contribution of a factor in the left and the right tail.

From the above (9), (10) and (13) it can be noted that the size of the bias diminishes
in the size of the threshold u. This also opens up the possibility to reduce the bias
by increasing the threshold u. For this reason we report correlation estimates at two
different thresholds: 5% (the conventionally used threshold) and 0.5% of the sample
fraction. There is a limit to how deep one can go into the tail area, i.e., how high one
can take u, since with too few observations the tail index estimates become highly
variable. That is why we consider two alternative methods of bias correction based
on the above sign predictions.

2.4 Bias correction in Hill estimates

The characterization of the bias in the Hill estimates specified in (5) and (6) suggests
two potential methods of bias correction. First, under tail symmetry one can exploit
the opposite sign of the bias in the left and the right tail. The average of the
two cross-sectional Hill estimates (α̂mirror) could reduce the bias due to the factor
structure. If one is unsure about tail symmetry, one may also reduce the bias on a
per-tail basis by removing the mean from the dependent variable, i.e., Yj ´ ErYjs.
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2.4.1 Exploiting the mirror image

To a first order, the bias in the cross-sectional Hill estimates is caused by the contri-
bution of the factor realizations (provided that θ ą 1). As we show in (5) and (6),
the bias terms are their mirror images under tail symmetry. This gives an opportu-
nity for bias reduction by taking the average of the left and right tail index estimates.

Consider a single factor model. Without bias correction the Hill estimate for the
upper tail has the following asymptotically normal distribution:

?
k
´ 1

α̂`
´

1

α

¯

„ N
´

´
γjg

1` α
u´1;

1

α2

¯

,

where k is the number of intermediate-order statistics such that k Ñ 8, while
k{mÑ 0 and mÑ 8. In the lower tail the bias has the opposite sign. If k increases
at too high a rate, this diminishes the bias but raises the variance. Conversely, if k
increases more slowly, the bias dominates asymptotically. The typical approach in
tail index estimation tries to strike a balance between the two vices.

If the tails of the distribution of the Xj are symmetric, taking the average of the left
tail estimate 1{α̂´ and the right tail estimate 1{α̂` yields a new estimator with an
asymptotic normal distribution:

?
k
´ 1

α̂mirror
´

1

α

¯

“
?
k
´1{α̂´ ` 1{α̂`

2
´

1

α

¯

„ N
´1

2

pγj´ ´ γj`qg

1` α
u´1;

1

2α2

¯

, (14)

where γj´ and γj` are the average of the coefficients found in the left and right
tail area, respectively. The mirror method exploits that in a large cross section any
γj has an equal probability of appearing in either tail if the idiosyncratic shock Xj

dominates the tail behavior of Yj so that the average difference appearing in (14) is
small. Due to the law of large numbers, as k Ñ 8, asymptotically the difference
goes to zero and hence the asymptotic bias will be of lower order.5 Thus there is a
double benefit of taking the average: the bias is reduced and the variance is halved.

2.4.2 Exploiting the cross-sectional mean

If the tail indices on the left and the right side of the distribution differ, the averaging
procedure described above is less meaningful. In this case, assume again that the

5Due to the contribution of higher-order terms in the tail expansion of the idiosyncratic noise
terms, Xj , some bias will remain; see Appendix 7.2.
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second-order tail index θ ą 1. If the bias is caused by a factor shift, one can try
to correct for the bias by shifting the data back in the other direction (we refer to
this procedure as the shift method). This is similar to the procedure outlined in
Ivette Gomes and Oliveira (2003). Consider the following revised estimator:

1

α̂Y´Y
“

1

k

k
ÿ

j“1

lnp
Yj ´ Y

u
q.

The idea is that by subtracting the average of the cross section of Yj , factor contri-

butions that generate the bias are more or less netted out. But the variance remains 
as 1{α2. For ease of presentation, we derive the bias for this estimator under the 
assumption of a one-factor model, i.e., i “ 1. The average in the cross section is

Y “
1

m

m
ÿ

j“1

Yj “
1

m

m
ÿ

j“1

pγjg `Xjq.

Note that this average is approximately equal to p1{mqp
řm
j“1 γjqg, as the idiosyn-

cratic noise is assumed to have mean zero. By shifting the observations in the
cross section by the average factor realization in the cross section we get

Yj ´ Y “ pγj ´
1

m

m
ÿ

j“1

γjqg `Xj ´
1

m

m
ÿ

j“1

Xj.

The first term containing the factor is non-stochastic in the cross section.

The second term contains the random elements. Our assumption is that the Xj are
i.i.d. and at large s

PrtXj ď ´su „ Cjs
´α.

If the Xj exhibit the same tail behavior, it follows from Feller’s convolution theorem
(1971, Section VIII, 8) that the linear combination exhibits the same tail behavior.
Thus the sum also declines by a power of α. But the scale parameter as in (7)
changes, resulting in

Pr
! 1

m

m
ÿ

j“1

Xj ď ´s
)

„ m´α
´

m
ÿ

j“1

Cjs
´α
¯

.

This specification allows us to use (6) to derive the bias in the left tail by substituting
(where γ “ p1{mq

řm
j“1 γj):

hj “ pγj ´ γqg.
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This yields a bias in the left tail as

Erln
Y ´ Y

u
|Y ´ Y ď ´us »

1

α
`

1

α ` 1

´1

k

k
ÿ

j“1

pγj ´ γqg
¯

u´1. (15)

Recall that the bias in a one-factor model in the left tail before bias correction equals

1

α ` 1

´1

k

k
ÿ

j“1

γjg
¯

u´1. (16)

Note that the elements γj that enter into (16) may not necessarily enter into (15),
since due to the fixed threshold the shift changes the number of k elements that enter
into the estimator (15). The efficacy of correcting the bias by the cross-sectional mean
therefore depends on how well the average of all m factor coefficients approximate
the average of the k factor coefficients that are part of the tail observations.

3 Simulations

To investigate the efficacy of the above methods of bias reduction, we conduct sim-
ulations. In the first model we simulate a cross section by adding a deterministic
constant (positive or negative) to a heavy-tailed innovations term. The second ap-
proach simulates from a linear factor model, where factor g is multiplied with a
coefficient specific to entity j.

Thus, in the first model data are simulated from

Yj “ h`Xj, (17)

where h is constant and j “ 1, ..., 20000 signifies the cross section. The Xj are heavy-
tailed innovations drawn from a Student-t distribution with 3 degrees of freedom.6

In the second model, data are simulated from

Yj “ γjg `Xj, (18)

6Note that in finite samples, bias will remain due to the fact that we simulate from a Student-t
distribution; the Hill estimator is only unbiased when data are simulated from the Pareto distribu-
tion.
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where Xj „ Student-t and where γj „ N p1, 0.52q.7 We again take j “ 1, ..., 20000.

The above can be used to study the efficacy of the mirror method of bias reduction.
To examine the efficacy of the shift method in the case of tail asymmetry, we sim-
ulate from a Student-t (2.5) and a Student-t (3.5) for the left and right side of the
distribution, respectively. In the calculation of Hill estimates, we set the threshold
u at 4.54, which corresponds to the 99% quantile for a Student-t (3) distribution.

3.1 Mirror method

Figure 1 presents cross-sectional Hill estimates on the simulated data for the left
and the right tail with the inclusion of bias-corrected estimates using the mirror
method. Panel (a) shows the Hill estimates of the model with the deterministic shift
described in (17). The figure confirms the linear relationship between the value of
h and the bias in Hill estimates as derived in (5) and (6). The value of the bias
in left (right) tail index estimates is signified by the downward (upward) pointing
triangles. In the left tail an increase in h produces an increased bias, as shown in
(6). This opposite relationship can be observed for the right tail, as in (5). Since
the Hill estimates change at the same (absolute) linear rate in the left and the right
tail, bias correction using the mirror method produces estimates (green diamonds)
that are close to being unbiased. Furthermore, the bars indicate that the variances
of α̂Y´ and α̂Y` differ. This is due to the fact that the bias shifts the estimates away
from α. As a result, the mirror method reduces the average of these two variances.
Panel (b) presents the Hill estimates of the linear model described in (18). For the
model with random shift, the relationship between the value of the bias and g is no
longer linear. Instead, the bias also depends on the values of the coefficients γj that
enter through the observations in the tail. However, their influence is moderate to
small on the efficiency of the mirror method.

Using the relationship between (5) and (6) to remove the cross-sectional location shift
works under tail symmetry only. Under tail asymmetry there are three problems that
surface. The obvious one is that the estimate neither reflects the left nor the right
tail index. The more subtle effect is that 1{p1` αq in (5) and (6) are different in the
left and the right tail, i.e., α´ and α` differ. This induces a different effect of h in

7To bring the simulations closer to our empirical application we also draw γj from a subsample
of estimated CAPM betas (n “ 13, 535) for US stocks obtained from the CRSP database. The
distribution of the CAPM betas has a mean of 1.14 and a standard deviation of 0.72. The unreported
results are very similar and are available on request.
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Figure 1: Bias correction for 1{α̂ using the mirror method
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(b) Linear model

This figure presents the results of bias correction using the mirror method discussed in Section 2.4.1. In panel (a)
and (b), data are simulated from the models described in (17) and (18), respectively, where the Xj are drawn from
a Student-t (3). The x-axis gives different values of the deterministic constant h in panel (a) and different values
of factor g in panel (b). The y-axis indicates the bias by subtracting 1/3 from the Hill estimates with threshold

u “ 4.54 (99% quantile of the Student-t (3)). The upward pointing black triangles (Ÿ) show the bias of uncorrected

Hill estimates in the right tail, the downward pointing black triangles (Ź) show the bias of uncorrected Hill estimates
in the left tail and the green diamonds (�) show the bias of corrected Hill estimates using the mirror method. The
bars surrounding the mean estimates present the standard deviation of the estimates.

the left and right tail. Additionally, the optimal threshold u may differ for the left
and right tail. The optimal threshold u varies inversely with the tail index α, thus
it may not be optimal to use the same threshold for both tails.

3.2 Shift method

The cross-sectional Hill estimates for the case with asymmetric tails is presented
in Figure 2. Panel (a) shows the Hill estimates for the model with a deterministic
shift described in (17). The bias-corrected estimates using the shift method for the
left (right) tail are indicated by the red downward (blue upward) pointing arrows.
Bias correction using the shift method also produces estimates with near zero bias,
despite the asymmetry between the bias in Hill estimates on the left and the right tail.

Panel (b) presents the Hill estimates of the linear model described in (18). Due to the
inclusion of a random shift term, the value of the bias has again become dependent
on the values of the coefficients in the tail. By moving from a deterministic shift to
a random shift the efficacy of bias correction decreases somewhat, especially for the
estimate in the left tail. However, bias correction remains highly effective, producing
tail estimates with far smaller bias than the uncorrected estimates.
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Figure 2: Bias correction using the shift method
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(b) Linear model

This figure presents the results of bias correction using the shift method discussed in Section 2.4.2. In panel (a) and
(b), data are simulated from the models described in (17) and (18), respectively. The Xj innovations are drawn
from a Student-t (2.5) and (3.5) for the left and right tail, respectively. The x-axis gives different values of the
deterministic constant h in panel (a) and different values of factor g in panel (b). The y-axis indicates the bias by
subtracting 1/2.5 and 1/3.5 from the Hill estimates in the left and right tail, respectively. The threshold is set at

u “ 4.54 (99% quantile of the Student-t (3)). The upward pointing black triangles (Ÿ) show the bias of uncorrected

Hill estimates in the right tail, and the downward pointing black triangles (Ź) show the bias of uncorrected Hill

estimates in the left tail. The blue upward pointing triangles (Ĳ) show the bias of the corrected Hill estimates using

the cross-sectional mean in the right tail. The red downward pointing triangles (İ) show the bias of the corrected
Hill estimates using the cross-sectional mean in the left tail. The bars surrounding the mean estimates present the
standard deviation of the estimates.

4 Data

To test for the presence, direction and size of the bias in real world data, we use
monthly US stock returns and annual US Census county population data. We also
test the two above-outlined methods for bias correction on US stock returns. Both
datasets are known to exhibit power law behavior. Moreover, the data are sufficiently
rich in both the time-series and cross-sectional dimension to investigate the efficacy
of our methods.

4.1 Firm stock returns

The Center for Research in Security Prices (CRSP) provides a wide cross section of
firm return data for the US equity market with 13,535 individual US traded firms.8

8We exclude stocks with a price below 5 dollars, as is the standard in the asset pricing literature,
noting that their inclusion leads to almost identical results. Stocks with exchange codes -2, -1 or 0
are not included in the analysis. In addition, only common stocks with share code 10 and 11 are
included in the analysis.
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These daily data are collected from the NYSE, AMEX, NASDAQ and NYSE Arca
exchanges since 1925. In accordance with the financial literature on asset pricing,
we use monthly stock (log) returns from 1963 to 2019.

There is a large body of literature that uses co-movement between excess returns
and factors to explain the cross-sectional variation in expected excess stock returns.
The combination of the rich dimensions of the data and the theoretical and em-
pirical backing for a factor structure in stock returns provides an exemplary test
case to verify factor bias in tail index estimates. In line with existing literature, we
use the Fama and French (1996) three-factor model augmented by the momentum
(MOM) factor from Carhart (1997) and the liquidity factor from Stambaugh and
Lubos (2003). In Table 7 in Appendix 7.4, the analysis is repeated using the Fama
and French (2015) five-factor model. In their model the momentum and liquidity
factor are substituted by the Robust-Minus-Weak (RMW) and Conservative-Minus-
Aggressive (CMA) factor.9

4.2 County population data

Another heavily researched field in power laws is the geographical distribution of
population. The US Census Bureau has collected county population statistics since
1970. Analysis on the county level offers the most consistent cross-sectional classi-
fication over time. The annual county population data provided from the Census
is from 1970 to 2017. In contrast to the 648 time-series dimension for the monthly
US stock data, these data have a length of 46. Moreover, the US Census is only
conducted every 10 years. Annual data are estimated using births, deaths and net
migration, including net immigration from abroad. In every census after 2000, the
county populations for each year of the census are updated yearly, leading to incon-
sistent comparisons between the last year of the previous census and the first of the
current census. Consequently, we omit the years 2000 and 2010 from our data.

We conduct our analysis on the (log) growth rate of the population in line with
existing literature.10 For the creation of population change, we use the Federal In-
formation Processing Standards (FIPS) codes, which uniquely identifies counties and

9We obtain the five Fama and French (1996) factors and the momentum factor from the data
library of Kenneth R. French and the liquidity factor from the website of Lubos Pastor. Table 8
presents the pairwise correlations between the different factors.

10Most studies focus on the upper tail of geographical density of population. Due to data limi-
tations, only recently have studies (Devadoss and Luckstead, 2016; Ioannides and Skouras, 2013)
shown that the left tail also adheres to power law behavior.
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county equivalents in the United States. The documentation on a clear factor struc-
ture is notably weaker than for stock returns. Chi and Ventura (2011) conduct a
review of the existing literature and propose variables that can broadly be placed in
one of five categories: demographic characteristics, socio-economic conditions, trans-
portation accessibility, natural amenities and land development. So far, the models
used to explain population growth have varying degrees of success and significance.
As there is no consensus in the literature as to what constitutes the best combination
of factors, we conduct a PCA and extract the first five principal components. The
factors used as inputs for the PCA are suggested in Chi and Ventura (2011), which
we describe in Table 9 in Appendix 7.4. By using five principal components (PCs),
we avoid multicollinearity and over-fitting, which is likely to arise in a model with
many explanatory variables.

4.3 Empirical implementation

To distinguish between factor values at different instances in time, we now introduce
a time index t. To obtain estimates of Xjt and semi-residuals Sfjt in (11) for factor
f , we run linear time-series regressions to estimate the factor coefficients γij. In a
linear factor model for stock returns, Yjt “ Rjt ´ rt, where Rjt is the log return of
stock j at time t. Here rt is the one-month Treasury bill rate, which is used as the
risk-free rate at time t. In case of county population growth, Yjt is the percentage
change in county j’s population at time t. Thus we run regressions:

Yjt “
n
ÿ

i“1

γijgit `Xjt for t “ 1, 2, ..., T.

We repeat this for all j “ 1, ...,m entities. We also use these regressions to construct
estimates of the Xjt. To estimate the tail index for the different quantities like X̂jt

and Sfjt we use the Hill estimator as defined in (2).

The Hill estimator requires a choice of threshold, upkq. We follow common practice
of selecting the threshold on order statistic k at a fixed percentage of the sample
size. Specifically, we choose k at 5% and 0.5% of the empirical quantile to study the
influence of factors in a linear model on estimates of the tail index. Recall that the
thresholds selected in this way are MSE consistent estimates of the quantiles at 5%
and 0.5% of the cross section, respectively.
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5 Results

5.1 US financial returns

Section 2 demonstrates that the Hill estimator in (2) applied to Yjt, that is, α̂Yt
contains a specific bias caused by underlying factors and coefficients. We investigate
this relationship between commonly known asset pricing factors and estimates of the
tail index in the cross section. Table 1 shows the partial correlations between the
asset pricing factors and α̂Yt . The ”+” (”-”) subscript for the Hill estimate indicates
that the estimate is on the right (left) tail of the empirical distribution.

From Table 1, we note that the correlation between tail index estimates and the
market factor is particularly strong. This is a first indication of the influence a
factor can have in cross-sectional tail estimation. Although somewhat smaller, the
correlation for the SMB factor is still pronounced. The correlation between the
tail index and the other factors is smaller and the signs are the opposite of what one
would initially expect. This may be partly caused by the simultaneous effect that the
different factors have on α̂Yt ; see Table 8 in Appendix 7.4, which records the partial
correlations between all factors. Furthermore, for a given stock the coefficients for
the different factors can vary in size and sign. These issues may dilute the effect of
the bias caused by a single factor.

Table 1: Cross-sectional tail index
Market SMB HML MOM Liq

α̂Y
t´ -0.69 -0.45 0.19 0.09 0.05
α̂Y
t` 0.75 0.52 -0.12 -0.15 -0.02

This table presents the correlation between cross-sectional Hill estimates on excess returns and the asset pricing
factors. The α̂Yt´ and α̂Yt` are the inverses of the cross-sectional Hill estimates for the cross section of stock returns
for the left and right tail, respectively. The threshold u is set to 5% of the sample fraction. The factor with which
the correlation is calculated is reported in the columns.

To isolate the bias that a single factor induces in α̂Yt , we use α̂ft` as defined in (12).
Figure 3 plots the (normalized) time series of the market factor and α̂Mt` graphically.
The time series illustrates the clear positive relationship between α̂Mt` and the market
factor, as predicted by the inverse of the expectation in (13).

In Section 2, we derived that a shift in heavy-tailed variables induces a bias in left
and the right tail index estimates of opposite sign. To investigate whether this is
indeed the case for the most dominant factor, we plot the α̂Mt` and α̂Mt´ in Figure 4.
The two estimates indeed appear to be each other’s mirror image. This confirms the
predictions from Proposition 1 and Proposition 2. Figure 7 in the Appendix presents
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Figure 3: Mt vs α̂Mt`
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This figure presents the time series of the market factor (solid black line) and its isolated effect on α̂Mt` (blue dotted

line). The time series of the market factor and α̂Mt` are normalized. Furthermore, the data have been annualized by
averaging the monthly estimates for a given year.

the same figures for the SMB, HML, momentum and liquidity factors. While weaker,
the relationship for the SMB and HML factors still shows substantial negative co-
movement between the estimate of the tail index in the right and the left tail during
some periods. The momentum and liquidity factors show a somewhat weaker pat-
tern. The relationship between the tail index and the factors hinges on the validity of
the factor structure, i.e., the relative importance of factors and the correct specifica-
tion of the factors. A number of these constructed factors are possibly poor proxies
for the factors in the DGP, leading to some of the weaker relationships.11

We summarize the patterns observed in Figures 3 and 4 for all factors by means of
correlations in Table 2. In Table 2 the first two rows show that isolating the contribu-
tion of a specific factor leads to a higher correlation between the tail index estimates
and the factor. This implies that the interaction between the factors obfuscates the
relationships as shown in Table 1. The correlations for the market and SMB factor
are substantial. Isolating the effect of the HML factor changes the correlation in the
predicted direction for both the left and right tail of the distribution, cf. Table 1.
The correlations in Table 2 for the momentum factor have a sign that is somewhat
counter-intuitive. One possibility that could generate the counter-intuitive sign is
that the observations included in the tail measurement have negative coefficients. In

11A possible cause of the weaker relationship is time varying explanatory power of asset pricing
factors. This is discussed in more detail in Hwang and Rubesam (2015).
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Figure 4: α̂Mt` vs α̂Mt´
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This figure presents the time series of the isolated effect of the market factor on the cross-sectional Hill estimator,
α̂M
t´p`q

defined in (13), for the left (right) tail. The right tail α̂Mt` (blue dotted line) is contrasted with left tail

estimate α̂Mt´ (red dashed line). The presented data are annualized by averaging the monthly estimates for a given
year. In contrast to Figure 3, these series are not normalized.

unreported results we multiply the factor by the average coefficients found for the
tail observations each month, which alters the signs in the predicted direction.

Table 2: Correlations cross-sectional tail index
Market SMB HML MOM Liq

α̂ft´ -0.81 -0.81 -0.24 0.47 -0.05

α̂ft` 0.85 0.85 0.39 -0.42 -0.04

ρpα̂ft´, α̂
f
t`q -0.91 -0.83 -0.07 -0.28 -0.02

(a) Threshold u at 5% of sample fraction

Market SMB HML MOM Liq

α̂ft´ -0.51 -0.49 0.04 0.25 0.01

α̂ft` 0.54 0.39 0.07 0.13 -0.02

ρpα̂ft´, α̂
f
t`q -0.39 -0.24 -0.11 0.15 0.03

(b) Threshold u at 0.5% of sample fraction
This table reports the correlations between the isolated effect of factors on the cross-sectional Hill estimates and an

individual factor. In the first and second row of each panel, α̂ft is the cross-sectional tail index estimate where factor
f ’s effect is isolated, as defined in (12). The sign ”+” (”-”), indicates that the estimate is made on the right (left)
tail of the distribution. The factor with which the correlation is calculated is reported in the column. The last row

shows the correlation between the left and right tail estimates of α̂ft for the respective factors.

The implication of Propositions 1 and 2 is that α̂ft´ and α̂ft` should be each other’s
mirror image and their correlation is therefore expected to be negative. The negative
sign in the last row of panel (a) of Table 2 illustrates that the effect of variation in
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the factors on the left and right tail index estimates is in the opposite direction,
as is apparent from Figure 4 for the market factor. The market and SMB factors
have the strongest effect on the cross-sectional estimate and also the strongest nega-
tive correlation between their respective left and right tail estimates. This might be
attributed to the quality of these factors as proxies for factors in the underlying DGP.

Equation (13) implies that the bias originating from the factors in α̂Yt´ diminishes as
threshold u increases. In panel (b) of Table 2, we lower the percentage of the sample
fraction used in the tail estimation to 0.5%. This indeed leads to a sharp decrease
in the correlations between the factors and the tail index estimates for most factors.

In Table 3, we report on regressions that investigate the degree to which variation in
the isolated bias α̂ft` explains variation in the cross-sectional Hill estimate of Yt, i.e.,
α̂Yt`. Panel (a) shows results of these regressions for the right tail index estimate.
The coefficients for the Market and SMB factors are significantly different from zero,
resonating the strong correlations in Table 2. The R2 of the first regression shows
that about 42% of the variation in the cross-sectional tail index is driven by the
market factor in the right tail.12 The second most important factor is the SMB
factor, which contributes about 12% to the variation in α̂Yt`. The HML, momentum
and liquidity factors have a marginal role in explaining the variation in α̂Yt`. Similar
regression results for the left tail are reported in panel (b). The contribution of the
individual factors are quantitatively similar in the left tail.

The explanatory power of the idiosyncratic part of the linear factor model explains
only about 7% of the variation in the right tail. This suggests that indeed most
variation in cross-sectional tail index estimates stems from variation in the factor
realizations. This is somewhat different for the left tail. The R2 of the regression
with the idiosyncratic factor is 24%. Aside from correlated measurement errors and
variation in α, we may not have isolated all the factors that influence the left tail
realizations.

In the last column, we report the results of a multiple regression to investigate the
contribution of all individual factors together on α̂Yt`. The contribution of all factors
is significant and produces a high R2 of 64%. This suggests that each factor con-
tributes significantly to the bias, even when considering the correlation amongst the
factors. The results for the left tail in panel (b) are quite similar to the results for
the right tail.

12See Table 10 in the Appendix for regression results for the factors (instead of for the α̂f
t ).
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Table 3: Regression cross-sectional tail index

α̂M
t` 0.95˚˚˚ 1.09˚˚˚

(0.05) (0.04)
α̂SMB
t` 0.90˚˚˚ 1.22˚˚˚

(0.10) (0.07)
α̂HML
t` 0.31 ´0.69˚˚˚

(0.27) (0.17)
α̂MOM
t` ´0.40 0.41˚˚

(0.31) (0.20)

α̂Liq
t` ´0.25 ´0.53˚˚

(0.40) (0.25)
α̂X
t` 0.52˚˚˚

(0.08)
Constant 2.57˚˚˚ 2.58˚˚˚ 2.57˚˚˚ 2.56˚˚˚ 2.56˚˚˚ 1.20˚˚˚ 2.59˚˚˚

(0.02) (0.02) (0.03) (0.03) (0.03) (0.21) (0.02)

R2 0.42 0.12 0.002 0.003 0.001 0.07 0.64

(a) Right cross-sectional tail index, i.e., α̂Yt`

α̂M
t´ 0.96˚˚˚ 1.16˚˚˚

(0.05) (0.05)
α̂SMB
t´ 0.82˚˚˚ 1.23˚˚˚

(0.10) (0.07)
α̂HML
t´ 0.001 ´1.26˚˚˚

(0.30) (0.21)
α̂MOM
t´ ´0.46 ´0.50˚˚

(0.32) (0.23)

α̂Liq
t´ 0.79˚˚ 0.36

(0.38) (0.27)
α̂X
t´ 0.78˚˚˚

(0.06)
Constant 2.76˚˚˚ 2.77˚˚˚ 2.76˚˚˚ 2.75˚˚˚ 2.76˚˚˚ 0.58˚˚˚ 2.76˚˚˚

(0.03) (0.03) (0.03) (0.03) (0.03) (0.16) (0.02)

R2 0.33 0.10 0.00 0.003 0.01 0.24 0.55

(b) Left cross-sectional tail index, i.e., α̂Yt´
This table presents the regression results for the effect of the factors on the cross-sectional Hill estimate. The
dependent variable in the upper panel is the Hill estimate for the left tail of the raw cross-sectional excess returns

(α̂Yt´). The independent variable is the cross-sectional tail index where the factor f ’s effect is isolated (α̂ft ). In the

sixth row α̂Xt´ is the tail index estimated on the estimated idiosyncratic noise terms of the five-factor asset pricing
model. Panel (b) illustrates the results for the right tail of the distribution. The threshold u used to estimate the Hill
estimate is set to 5% of the sample fraction. The asterisks in the table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.

Table 11 in Appendix 7.4 presents the regression results for a threshold based on
the 0.5% sample fraction. We find that only a small share of the variation in α̂Yt is
explained by the individual factors. The role of the bias caused by the factor has
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diminished by looking deeper into the tail. In this case, variation in α̂Xt explains
about 58% for the left and 51% for the right tail of the variation in α̂Yt . Abstracting
away from correlated measurement errors, the increase in R2 strongly suggests that
the role of known and unknown factors in the bias has diminished. Therefore, α̂Xt
captures variation in α̂Yt more strongly.

5.1.1 Bias correction for US stock returns

The analysis above provides ample evidence for the type of bias arising from factors.
Therefore, we subject the US stock return data to the two bias reduction methods.
In Figure 5 we show the results of bias correction, by presenting the time series of
uncorrected tail index estimates in tandem with bias-corrected estimates.

Panels (a) and (b) in Figure 5 present the results of bias correction using the cross-
sectional mean for the left and the right tail, respectively. In panel (a), for the left
tail, one notices a number of outliers in the uncorrected tail estimates α̂Yt´. These
outliers can be dated at, respectively, the first and second oil crisis, Black Monday
(1987), the dot-com bubble burst (2001) and the credit crisis (2008). The bias-

corrected estimates α̂Y´Ȳt´ for these crisis periods show that the bias correction is
substantial. The corrected estimates are more in line with the preceding and suc-
ceeding estimates. This can be understood from (6). Due to the negative value of
the shift parameter h, capturing the large declines in the market factor during crisis
periods, the estimated 1{α is lowered and hence the estimated α is larger. This also
explains why we see the opposite pattern arise around crisis periods on the right tail
α̂Yt` presented in panel (b).

Panel (c) and (d) present the mirror method for bias correction with inclusion of
the (inverse) Hill estimate on US stock returns, α̂Yt , on the left and right tail, re-
spectively. Note that the green diamonds (mirror method estimates) also give a
substantial correction during periods of market turmoil. When comparing panel (a)
and panel (c), very similar behavior is observed for the mirror estimate α̂mirrort and

the shift method in the left tail α̂Y´Ȳt´ . For both correction methods, the estimators
successfully dampen the effects of large factor realizations. This correspondence is
not as clearly observed when comparing α̂mirrort and the shift estimate in the right

tail α̂Y´Ȳt` in panel (d) and (b), respectively. The mirror estimate does not increase
to the same degree as the shift estimate in the right tail during economic crises.
Figure 6 in the Appendix presents the three bias-corrected estimates in one figure.
The figure confirms the close correspondence between α̂Y´Ȳt´ and α̂mirrort .
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Figure 5: Bias-corrected α̂
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(d) Right tail: α̂Y
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This figure presents the time series of tail estimates for US stock returns after applying bias reduction methods. The
y-axis shows the value of the estimates in terms of α. In panel (a) the red triangles (İ) show the Hill estimates for

the left tail of Yjt ´ Y t. The black open downward triangles (Ź) are tail estimates extracted from Yjt on the left

side of the distribution. In panel (b) the blue triangles (Ĳ) show the Hill estimates for the right tail of Yjt´Y t. The

black open upward pointing triangles (Ÿ) are tail estimates extracted from Yjt on the right side of the distribution.
The green diamonds (�) in panel (c) and (d) are the estimates of the tail index after correcting for bias using the
mirror method. The estimates are extracted from the cross section each month and subsequently averaged within a
year for ease of presentation. The threshold is set at the 5% sample fraction.

We are now able to investigate whether the bias, likely caused by some of the factors
on α̂Yt , is still present after bias correction. To enable a direct comparison between
Table 3 and Table 4, the independent variable α̂ft` is left unchanged, while in Table
4 the dependent variable α̂Yt is bias-corrected. Panel (a) in Table 4 gives the effect
of the shift method and panel (b) gives the effect of the mirror method.13

If the bias correction methods work (i.e., the bias arising due to the factors has been
reduced), one should observe less significance for the coefficients for the isolated bias

13Table 10 in Appendix 7.4 presents the results on the factors themselves.
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Table 4: Bias correction for US stock returns

(1) (2) (3) (4) (5) (6) (7)

α̂M
t´ 0.02 0.04

(0.05) (0.05)
α̂SMB
t´ ´0.13˚ ´0.12

(0.08) (0.08)
α̂HML
t´ ´0.42˚˚ ´0.57˚˚˚

(0.20) (0.21)
α̂MOM
t´ ´0.34 ´0.45˚

(0.22) (0.23)

α̂Liq
t´ 0.67˚˚˚ 1.03˚˚˚

(0.26) (0.27)
α̂X
t´ 0.99˚˚˚

(0.02)
Constant 2.80˚˚˚ 2.80˚˚˚ 2.80˚˚˚ 2.80˚˚˚ 2.80˚˚˚ 0.04 2.80˚˚˚

(0.02) (0.02) (0.02) (0.02) (0.02) (0.06) (0.02)

R2 0.0002 0.01 0.01 0.004 0.01 0.76 0.04

(a) Left cross-sectional tail index, i.e., α̂Y´Ȳt´

(1) (2) (3) (4) (5) (6) (7)

α̂M
t´ 0.03 0.07˚˚

(0.03) (0.03)
α̂SMB
t´ 0.09˚ 0.11˚˚

(0.05) (0.05)
α̂HML
t´ ´0.22˚ ´0.35˚˚˚

(0.13) (0.13)
α̂MOM
t´ ´0.06 ´0.13

(0.14) (0.15)

α̂Liq
t´ 0.25 0.39˚˚

(0.16) (0.17)
α̂X
t´ 0.58˚˚˚

(0.02)
Constant 2.66˚˚˚ 2.66˚˚˚ 2.66˚˚˚ 2.66˚˚˚ 2.66˚˚˚ 1.04˚˚˚ 2.66˚˚˚

(0.01) (0.01) (0.01) (0.01) (0.01) (0.05) (0.01)

R2 0.002 0.01 0.01 0.0003 0.004 0.66 0.03

(b) Mean left and right tail index estimate cross-sectional tail index, i.e., α̂mirrort

This table presents the regression results for the two bias reduction methods and the asset pricing factors. In panel
(a) the dependent variable is the Hill estimate for the (left) tail of Yi´Y . In panel (b) the dependent variable is the
average of the left and right tail estimate on the Yi, i.e., α̂mirrort . The independent variable is the cross-sectional

tail index where the factor’s effect is isolated (αft`). The lower panel shows the results for the right tail of the
distribution. The threshold u to estimate the Hill estimate is set to 5% of the sample fraction. The asterisks in the
table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.
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of the different individual factors. Moreover, the R2 of the regressions should de-
crease. Panel (a) shows that the isolated bias with respect to the market (α̂Mt´) and
SMB factor (α̂SMB

t´ ) lose almost all of their explanatory power. While the estimated
coefficients for both factors were close to 1 in Table 3, now the estimates have almost
become indistinguishable from 0. The R2 drops from 33% and 10% to 0% and 1%
for the isolated bias of the market and SMB factor, respectively. This breaks the
link between the bias found in the Hill estimate and the factors. Although the coef-
ficients for αHML

t´ and αLiqt´ have become significant, the explanatory power remains

low. The R2 for the regression of α̂Y´Ȳt on α̂Xt´ has increased to 0.76 (and a similar
result applies for the mirror method). This indicates a far more intimate relationship
between the bias-corrected estimate and the true value of the tail index.

The results for α̂mirrort in panel (b) show that the relationship between the bias
and the estimates again decreases significantly. For the original isolated bias of the
market and SMB factors, both the coefficients become almost zero. Additionally,
the R2 values decrease to close to zero for all factors. The relationship for the HML,
momentum and liquidity factors are largely unchanged.

5.2 County population

Due to the lack of a clear emergent set of factors in the population size literature,
we use PCA to extract five PCs from 39 suggested factors. The first five principal
components explain about 60% of the variation in our original variables. Table 12
in the Appendix presents summary statistics of the PCs.

In the same vein as for the US stock data, Table 5 presents the correlations for the
county population growth data and is comparable to the combination of Tables 1
and 2. We first consider panel (a), where tail index estimates are measured at 5%
of the sample fraction. The correlations between α̂Yt and the PCs is weaker than for
the US stock return data. However, as is the case for the data on US stock returns,
these correlations are stronger when the effect of the PCs are isolated, depicted in
rows three and four. The correlation with the first PC increases in magnitude from
-0.45 to -0.83 for the left tail and from -0.07 to 0.82 for the right tail. Since the sign
of a PC is indeterminate, one should not interpret the direction of the bias. Finally,
the last row indicates that the isolated bias in tail index estimates on the left and
right side of the distribution are negatively correlated for all but the second PC.

Panel (b) of Table 5 presents the correlations when the threshold is lowered to 0.5%.
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Table 5: Correlations of cross-sectional tail indices (county data)

PC1 PC2 PC3 PC4 PC5

α̂Yt´ -0.45 -0.09 -0.34 0.18 0.28
α̂Yt` -0.07 0.02 0.06 0.01 -0.05

α̂ft´ -0.83 -0.22 -0.74 0.75 0.59

α̂ft` 0.82 0.57 0.75 -0.68 -0.58

ρpα̂ft´, α̂
f
t`q -0.71 0.23 -0.64 -0.41 -0.45

(a) Threshold u at 5% of sample fraction

PC1 PC2 PC3 PC4 PC5

α̂Yt´ -0.18 -0.17 -0.44 0.08 -0.05
α̂Yt` 0.07 -0.08 -0.31 -0.08 0.06

α̂ft´ -0.66 0.01 -0.39 -0.09 -0.16

α̂ft` 0.42 0.05 0.40 0.17 0.20

ρpα̂ft´, α̂
f
t`q -0.31 -0.24 -0.15 -0.10 -0.10

(b) Threshold u at 0.5% of sample fraction
This table reports the correlations between the isolated effects of PCs on the cross-sectional Hill estimates and the
PCs themselves. Here α̂Yt´ and α̂Yt` are the cross-sectional Hill estimates for the cross section of county population

growth for the left and right tail, respectively. The α̂ft , stated in the third and fourth rows of each panel, is the
cross-sectional tail index where the effect of the PCs is isolated, as defined in (13). The five factors are the first five
principal components from an assortment of variables suggested by the literature. The last row shows the correlation

between the left and right tail estimates of α̂ft . The upper panel presents the correlations where the threshold u is
set to 5% of the sample fraction, and for the lower panel this threshold is set to 0.5% of the sample fraction.

As with the data on US stock returns, correlations decrease in magnitude substan-
tially and frequently have signs opposite from those found in panel (a). In the final
row, negative correlations are still observed between the isolated bias on the left and
the right tail index estimates, but the magnitude has decreased substantially. Thus
again, lowering the threshold limits the influence of the factor structure in cross-
sectional tail index estimates.

Table 6 presents the results of the regressions between the isolated bias of the differ-
ent individual PCs α̂ft and the cross-sectional Hill estimate on Yt, i.e., α̂Yt . Panel (a)
illustrates the results when using the estimate of the left cross-sectional tail index
and αft´, while panel (b) uses the estimate of the right cross-sectional tail index. We
observe that only the isolated bias with respect to PC1 in the left tail (α̂PC1

t´ ) can
significantly account for variation in the cross-sectional tail index estimate of county
population change (α̂Yt´). For the right tail, α̂PC1

t` is not significant but attains the
highest R2 of the five principal components in panel (b). This implies that the previ-
ously presented correlations for the PCs most likely come with large standard errors.
The high R2 attained by α̂Xt´ and α̂Xt` in the penultimate column further illustrates

30



the marginal influence of the factor structure on cross-sectional tail index estimates;
in other words, the idiosyncratic shock Xjt is dominant and the factors contribute
little towards explaining the dependent variable. The contrast with the strong re-
sults for financial return data highlights the role of the strength of the factors in the
DGP that drives the bias.14 Due to the orthogonality of the PCs, the penultimate
columns in panel (a) and (b) do not change much relative to the respective univariate
regressions.

The foregoing shows that while county population change may not be perfectly de-
scribed by a linear factor model, factor variation does bias tail index estimates in
the cross section. Furthermore, the bias tail index estimates in the right and left
tail are negatively correlated. Thus, even when investigating factors with a weak
or unclear underlying factor structure, inference on the basis of cross-sectional tail
index estimates may lead to incorrect conclusions.

14Table 13 in Appendix 7.4 presents the regression results for a 0.5% threshold. The coefficient
for α̂PC2

t` becomes significant at this lower threshold. Given that this does not occur for the right
tail estimates in panel (b), it is possible this is caused by correlated measurement errors in α̂PC2

t`

and α̂Y
t`.
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Table 6: Regression cross-sectional tail index (county population growth)

α̂PC1
t´ 0.41˚ 0.49˚

(0.21) (0.26)
α̂PC2
t´ 0.13 -0.77

(0.51) (0.61)
α̂PC3
t´ 0.32 0.30

(0.33) (0.35)
α̂PC4
t´ 0.29 -0.02

(0.40) (0.41)
α̂PC5
t´ 0.44 0.53

(0.38) (0.40)
α̂X
t´ 0.63˚˚˚

(0.12)
Constant 2.46˚˚˚ 2.50˚˚˚ 2.50˚˚˚ 2.50˚˚˚ 2.49˚˚˚ 0.90˚˚ 2.43˚˚˚

(0.07) (0.07) (0.07) (0.07) (0.07) (0.32) (0.07)

R2 0.08 0.001 0.02 0.01 0.03 0.38 0.15

(a) Left cross-sectional tail index, i.e., α̂Yt´

α̂PC1
t` ´0.18 -0.21

(0.18) (0.19)
α̂PC2
t` 0.006 0.02

(0.29) (0.35)
α̂PC3
t` 0.08 0.04

(0.30) (0.32)
α̂PC4
t` 0.16 0.30

(0.30) (0.35)
α̂PC5
t` ´0.15 -0.26

(0.23) (0.29)
α̂X
t` 0.66˚˚˚

(0.11)
Constant 2.99˚˚˚ 3.00˚˚˚ 3.00˚˚˚ 3.00˚˚˚ 3.00˚˚˚ 1.45˚˚˚ 2.99˚˚˚

(0.04) (0.04) (0.04) (0.04) (0.04) (0.27) (0.05)

R2 0.02 8.48¨10´6 0.002 0.007 0.01 0.44 0.06

(b) Right cross-sectional tail index, i.e., α̂Yt`
This table presents the regression results for the cross-sectional Hill estimate extracted from US county level pop-
ulation growth. The dependent variable in the upper panel is α̂Yt´, i.e., the Hill estimate for the left tail of the

cross-sectional county level population growth. The independent variables α̂ft , given in the first column, is the
cross-sectional tail index where the effect is isolated with respect to the given PC, as defined in (13). The tail index
estimated on the disturbance terms (α̂Xt´) is given in the penultimate row. The five PCs are the first five principal
components from an assortment of variables suggested by the literature, as discussed in Table 9. Panel (b) shows
the results for the right tail of the distribution. The Hill estimate is calculated by setting the threshold u at 5% of
the sample fraction. The asterisks in the table indicate the following: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.
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6 Conclusion

We show that tail index estimates representing scaling behavior extracted from the
cross section contain a bias. This bias is caused by common time-series fluctuations,
which, for instance, can originate from an underlying factor structure. The bias
fluctuates with the factors. For the left and right tail of the distribution the sign of
the bias differs. This offers an opportunity to correct for the bias induced by the
factors. We propose two methods to alleviate this bias. Moreover, the bias can also
be diminished by looking deeper into the tail.

We find that data with a strong underlying factor structure, as is the case for US
stock return data, show considerable cross-sectional bias, which dominates fluctu-
ations in tail index estimates. In data with a weak factor structure (US county
population growth) this bias is present, but weak.

The conclusions drawn from studying tail index estimates extracted from the cross
section could therefore be misleading. The time variation in these estimates can be
caused by fluctuations in known factors, unknown factors, measurement error or the
tail index. Therefore, we advise caution when attributing variation in the tail index
estimates to the scaling behavior in the DGP. Be aware of the factor and choose your
threshold wisely.
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7 Appendix

7.1 Bias under second-order Hall expansion

Recall the so-called Hall expansion (Hall and Welsh, 1985) in (7):

F pxq “ 1´ Cx´αr1`Dx´θ ` opx´θqs. (19)

Here α ą 0, C ą 0, θ ą 0 and D is a real number. Here C and D are the first-
and second-order scale parameters, where α and θ are the first- and second-order
shape parameters. We give a short derivation of the (conditional) bias in case the
distribution function adheres to the above expansion. If the distribution function
satisfies the monotone density theorem (see Bingham et al., 1987), it is sufficiently
smooth so that the derivative gives its density with tail expansion

fpxq “ αCx´α´1
` pα ` θqCDx´α´θ´1

` op1q.

The conditional expectation can now be found as follows:

Erln
Y

u
|Y ą us

»
1

Cu´αr1`Du´θs

ż 8

u

pln
x

u
q
“

αCx´α´1
` pα ` θqCDx´α´θ´1

‰

dx,

if we omit the terms that are of order small. Note that we can cancel the C factor
from the numerator and denominator. If we then apply the calculus result

α

ż 8

u

pln
s

u
qs´α´1ds “ ´pln

s

u
qs´α|8u `

ż 8

u

s´α´1ds “
1

α
u´α

to the two parts separately, we obtain

Erln
Y

u
|Y ą us »

uα

1`Du´θ

„

1

α
u´α `

1

α ` θ
Du´α´θ



“
1

α
` p

1

α ` θ
´

1

α
q

Du´θ

1`Du´θ

»
1

α
´

θ

αpα ` θq
Du´θ

as 1`Du´θ Ñ 1 for u large.
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7.2 Higher-order bias due to the factor model

Using the second-order expansion in (7)

F pxq “ 1´ Cx´αr1`Dx´θ ` opx´θqs,

we can analyze the bias in Hill estimates induced by factors in a linear model. Con-
sider the single linear factor model

Yj “ γjg `Xj,

where the tails of the distribution of the idiosyncratic shocks Xj are symmetric and
satisfy the Hall expansion to the second order:

PrtXj ą su “ Prt´Xj ą su » Cjs
´α
` CjDjs

´α´θ
` opx´θq.

Here Cj ą 0, but Dj can be of either sign and we assume that θ “ 2. This expansion
holds for e.g., Student-t distributions and the stationary distribution of stochastic
processes like ARCH and GARCH. The right side of the distribution function of the
Yj can be written as:

PrtYj ą su “ PrtXj ą s´ γjgu

» Cjps´ γjgq
´α
` CjDjps´ γjgq

´α´θ
` opx´θq

» Cjs
´α
p1´ γjg{sq

´α
` CjDjs

´α´θ
p1´ γjg{sq

´α´θ
` opx´θq

» Cjs
´α
` αCjγjgs

´α´1
`
αpα ` 1q

2
Cjpγjgq

2s´α´2
` CjDjs

´α´θ
` opx´θq

where the last line follows from taking a second-order Taylor approximation of
p1 ´ γjg{sq

´α and a first-order Taylor approximation of p1 ´ γjg{sq
´α´θ. Under

the monotone density assumption this results in a density function with right tail:

fpsq » αCjs
´α´1

` αpα ` 1qCjγjgs
´α´2

`
αpα ` 1qpα ` 2q

2
Cjpγjgq

2s´α´3

`pα ` θqCjDjs
´α´θ´1.

A similar expression applies for the left tail. Using the calculus result from the
previous subsection one can derive the following conditional expectation:

Erln
Yj
u
|Yj ą us ´

1

α
» ´

1
α`1

γjgu
´1 ` α`1

α`2
pγjgq

2u´2 `
θ{α
α`θ

Dju
´θ

1` αγjgu´1 `
αpα`1q

2
pγjgq2u´2 `Dju´θ

.
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By tail symmetry the conditional expectation we find on the left tail:

Erln
´Yj
u
| ´ Yj ą us ´

1

α
» ´

´ 1
α`1

γjgu
´1 ` α`1

α`2
pγjgq

2u´2 `
θ{α
α`θ

Dju
´θ

1´ αγjgu´1 `
αpα`1q

2
pγjgq2u´2 `Dju´θ

.

Note that the two conditional expectations are almost symmetric, except for the
sign on the first term in the numerators and the sign on the second term in the
denominators.

7.3 Differences in tail indices

To analyze the bias in case of cross-sectional heterogeneity in tail indices, we return
to the analysis of the pure Pareto case. However, now assume that one proportion
of the sample comes with a tail index α and the other proportion with a larger index
α ` ε, ε ą 0. Denote the observation with index α by Yi and the observation with
index α ` ε by Yj. Thus in the case of the Pareto distribution

PrtYi ą su “ s´α

and
PrtYj ą su “ s´α`ε.

Conditional on being above threshold u, we get from the above to a first-order

Erln
Yi
u
|Yi ą us “

1

α

and

Erln
Yj
u
|Yj ą us “

1

α ` ε
.

Suppose that u ą 1 as a proportion λ of the sample size n. Of course in the Pareto
case it is optimal to use all data, but the presumption is that the researcher does not
have this detailed information. Thus

u „ λn.

Then in larger samples the proportion of observations on each type that are above
the threshold u are respectively

λu´αn

and
λu´α´εn
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in probability. The expected value of the Hill estimator is a mixture of the two
conditional expectations weighted by the proportion by which the two types of ob-
servations appear:

Er
1

K

K
ÿ

m“1

ln
Ym
u
|Ym ą us “

λu´αn

λu´αn` λu´α´εn

1

α
`

λu´α´εn

λu´αn` λu´α´εn

1

α ` ε

“
1

1` u´ε
1

α
`

u´ε

1` u´ε
1

α ` ε

for m “ i, j. Thus, in large samples as u increases one recovers 1{α. In smaller
samples there is a bias. One can extend this analysis with the effects of a shift factor
h. If ε ą 1, then the second-order term is due to the shift factor, otherwise the
second-order term is due to α ` ε.
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7.4 Tables and Figures

Table 7: Correlations cross-sectional tail index RMW and CMA factors
Market SMB HML RMW CMA

α̂Yt´ -0.69 -0.45 0.19 0.16 0.28
α̂Yt` 0.75 0.52 -0.12 -0.19 -0.22

α̂ft´ -0.76 -0.78 -0.17 -0.06 0.08

α̂ft` 0.82 0.81 0.21 0.04 0.01

ρpα̂ft´, α̂
f
t`q -0.91 -0.82 -0.04 -0.04 -0.01

(a) Threshold u at 5% of sample fraction

Market SMB HML RMW CMA

α̂Yt´ -0.31 -0.25 0.04 0.09 0.13
α̂Yt` 0.33 0.33 -0.02 -0.19 -0.07

α̂ft´ -0.49 -0.44 -0.08 0.10 -0.02

α̂ft` 0.48 0.41 0.06 -0.03 0.01

ρpα̂ft´, α̂
f
t`q -0.40 -0.16 -0.01 0.04 -0.06

(b) Threshold u at 0.5% of sample fraction

This table presents the correlation between various specifications of the cross-sectional Hill estimates. In the first
two rows, α̂Yt´ and α̂Yt` are the cross-sectional Hill estimates for excess stock returns for the left and right tail,

respectively. The α̂f
t´p`q

, stated in the third and fourth rows of each panel, is the cross-sectional tail index where the

factor f ’s effect is isolated, as defined in (13) for the left (right) tail. The five factors are the market, small-minus-big
(SMB), high-minus-low (HML), robust-minus-weak (RMW) and conservative-minus-aggressive (CMA). The last row

shows the correlation between the left and right tail estimates of α̂ft . The upper panel presents the correlations
where the threshold u is set to 5% of the sample fraction, and for the lower panel this threshold is set to 0.5% of the
sample fraction.

Table 8: Correlation asset pricing factors.
Market SMB HML MOM Liq RMW CMA

Market 1.00 0.27 -0.27 -0.14 -0.01 -0.24 -0.40
SMB 0.27 1.00 -0.08 -0.05 0.00 -0.37 -0.08
HML -0.27 -0.08 1.00 -0.19 0.04 0.08 0.70

MOM -0.14 -0.05 -0.19 1.00 -0.01 0.11 -0.01
Liq -0.01 0.00 0.04 -0.01 1.00 -0.01 0.02

RMW -0.24 -0.37 0.08 0.11 -0.01 1.00 -0.01
CMA -0.40 -0.08 0.70 -0.01 0.02 -0.01 1.00

This table reports the correlation between the factors for the financial returns data. The seven factors are the
market, small-minus-big (SMB), high-minus-low (HML), momentum (SMB), liquidity factor (Liq), robust-minus-
weak (RMW) and the conservative-minus-aggressive (CMA) factor.
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Figure 6: Bias-corrected estimates for US stock returns (mirror and shift method)
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This figure presents the time series of tail estimates for US stock returns after applying the two bias reduction
methods. The y-axis shows the value of the estimates in terms of α. The blue triangles (Ĳ) and red triangles

(İ) show the Hill estimates for the right and left tail of Yjt ´ Y t, respectively. The green diamonds (�) are the
estimates of the tail index after correcting for bias using the mirror method. The estimates are extracted from the
cross section each month and subsequently averaged within a year for presentational purposes. The threshold for the
Hill estimates is set at 5% of the sample fraction.
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Table 9: PCA input variables used for county data

Variable name Description Source
B279RA3A086NBEA Real private investment: Trucks, buses and truck trailers FRED
B280RA3A086NBEA Real private investment: Autos FRED
B281RA3A086NBEA Real private investment: Aircraft FRED
B282RA3A086NBEA Real private investment: Ships & boats FRED
DMUSRC1A027NBEA Personal consumption: Museums and libraries FRED
FCTAX Tax receipts on corporate income FRED
G160291A027NBEA Government expenditures: Education FRED
I3GTOTL1SN000 Government fixed assets investment: Transportation FRED
SPDYNTFRTINUSA Fertility rate FRED
STTMINWGFG Federal minimum wage rate FRED
W188RC1A027NBEA Government fixed assets: Transportation structures FRED
W691RC1A027NBEA Government expenditures: Libraries FRED
AHETPI Average earnings of production and nonsupervisory employees FRED
CPITRNSL Consumer price index: Transportation FRED
CUSR0000SETB01 Consumer price index: Gasoline FRED
CUUR0000SAS4 Consumer price index: Transportation sevices FRED
CWSR0000SA0 Consumer price index: All items in U.S. city average FRED
FEDMINFRMWG Minimum hourly wage for farm workers FRED
FEDMINNFRWG Minimum hourly wage for non-farm workers FRED
LNS12300002 Employment-population ratio: Women FRED
MSACSR Monthly supply of houses FRED
UNRATE Unemployment rate FRED
USEHS Employees: Education & health services FRED
A939RC0Q052SBEA Gross domestic product/capita FRED
A939RX0Q048SBEA Real gross domestic product/capita FRED
ASPUS Average sales price of houses sold FRED
FGEXPND Federal government: Current expenditures FRED
GCEC1 Real government consumption and gross investment FRED
MSPUS Median sales price of houses sold for the United States FRED
W006RC1Q027SBEA Federal government current tax receipts FRED
W068RCQ027SBEA Government total expenditures FRED
W369RG3Q066SBEA Terms of trade index FRED
HCCSDODNS Consumer credit; Liability FRED
Citizens 25+ college degree (%) US Census
NE.TRD.GNFS.ZS Trade (% of GDP) World Bank
SP.DYN.CDRT.IN Death rate, crude (per 1,000 people) World Bank
SI.POV.GINI GINI index World Bank
BN.CAB.XOKA.CD Current account balance World Bank
SM.POP.NETM Net migration World Bank

This table presents the variables used as input for the PCA to describe the county data. The variables are obtained
from the websites FRED, the World Bank and the US Census.
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Table 10: Regression cross-sectional tail index and factors

(1) (2) (3) (4) (5) (6)

Market ´0.18˚˚˚ ´0.16˚˚˚

(0.01) (0.01)
SMB ´0.17˚˚˚ ´0.11˚˚˚

(0.01) (0.01)
HML 0.07˚˚˚ ´0.003

(0.01) (0.01)
MOM 0.03˚˚˚ ´0.001

(0.01) (0.01)
Liq 1.23 1.04

(1.25) (0.71)
Constant 3.33˚˚˚ 3.27˚˚˚ 3.21˚˚˚ 3.22˚˚˚ 3.23˚˚˚ 3.33˚˚˚

(0.03) (0.04) (0.04) (0.04) (0.04) (0.03)

R2 0.58 0.25 0.04 0.01 0.002 0.68

(a) α̂Yt´

(1) (2) (3) (4) (5) (6)

Market 0.08˚˚˚ 0.08˚˚˚

(0.003) (0.003)
SMB 0.08˚˚˚ 0.05˚˚˚

(0.01) (0.005)
HML ´0.02˚˚ 0.02˚˚˚

(0.01) (0.01)
MOM ´0.01˚˚ 0.003

(0.005) (0.003)
Liq ´0.42 ´0.39

(0.62) (0.41)
Constant 2.17˚˚˚ 2.20˚˚˚ 2.22˚˚˚ 2.22˚˚˚ 2.21˚˚˚ 2.16˚˚˚

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01)

R2 0.49 0.20 0.01 0.01 0.001 0.57

(b) α̂Yt`
This table presents the regression results for the cross-sectional Hill estimate and the five asset pricing factors. Here
the dependent variable in the upper panel is α̂Yt , i.e., the Hill estimate for the left tail of the raw cross-sectional
excess returns. The independent variables are the five asset pricing factors: the market, small-minus-big (SMB),
high-minus-low (HML), momentum (MOM) and the liquidity (Liq) factor. The lower panel shows the results for the
right tail of the distribution. The threshold u to estimate the Hill estimate is set to 5% of the sample fraction. The
asterisks in the table indicate: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.
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Table 11: Regression cross-sectional tail index 0.5% threshold

α̂M
t´ 0.38˚˚˚ 0.46˚˚˚

(0.10) (0.11)
α̂SMB
t´ 0.41˚˚˚ 0.46˚˚˚

(0.10) (0.11)
α̂HML
t´ ´0.04 ´0.32˚˚

(0.13) (0.14)
α̂MOM
t´ ´0.06 ´0.31˚

(0.15) (0.16)

α̂Liq
t´ 0.17 0.10

(0.14) (0.16)
α̂X
t´ 0.81˚˚˚

(0.03)

R2 0.02 0.02 0.0002 0.0003 0.002 0.58 0.06

(a) Left cross-sectional tail index, i.e., α̂Yt´

α̂M
t` 0.32˚˚˚ 0.35˚˚˚

(0.08) (0.09)
α̂SMB
t` 0.47˚˚˚ 0.53˚˚˚

(0.09) (0.09)
α̂HML
t` 0.09 ´0.07

(0.12) (0.13)
α̂MOM
t` ´0.06 ´0.52˚˚˚

(0.14) (0.15)

α̂Liq
t` 0.27˚ 0.16

(0.14) (0.15)
α̂X
t` 0.80˚˚˚

(0.03)

R2 0.02 0.04 0.001 0.0003 0.01 0.51 0.08

(b) Right cross-sectional tail index, i.e., α̂Yt`
This table presents the regression results for the effect of the factors on the cross-sectional Hill estimate for a lower
threshold u. The threshold u to estimate the Hill estimate is set to 0.5% of the sample fraction. Here the dependent
variable in the upper panel is α̂Yt´, i.e., the Hill estimate for the left tail of the raw cross-sectional excess returns.

The independent variables α̂ft , stated in the first column, is the cross-sectional tail index where the factor f ’s effect
is isolated, as defined in (13). Furthermore, α̂Xt´ is the tail index estimated on the estimated disturbance terms of
the five-factor asset pricing model: the market, small-minus-big (SMB), high-minus-low (HML), momentum (MOM)
and the liquidity (Liq) factor. The lower panel shows the results for the right tail of the distribution. The constant
included in the regression is excluded from the presented results. The asterisks in the table indicate: ˚ pă0.1; ˚˚

pă0.05; ˚˚˚ pă0.01.
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Table 12: Summary of principal components for county data

PC1 PC2 PC3 PC4 PC5

Standard deviation 2.89 2.66 1.87 1.65 1.59
Proportion of variance 0.21 0.18 0.09 0.07 0.06
Cumulative proportion 0.21 0.39 0.47 0.54 0.60

This table presents a summary of the principal components extracted from the percentage change of county popu-
lation. The first two rows give the standard deviation and the proportion of variance explained by each principal
component, respectively. The proportion of variance being explained is that of the variables discussed in the data sec-
tion for county data. The last row gives the cumulative proportion of variance that is explained by the corresponding
principal component and all those previous to it.
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Table 13: Regression cross-sectional tail index 0.5% threshold (county data)

α̂PC1
t´ 0.04 0.20

(0.21) (0.25)
α̂PC2
t´ ´0.19 -0.50

(0.24) (0.31)
α̂PC3
t´ 0.42 0.68˚

(0.33) (0.37)
α̂PC4
t´ ´0.21 -0.13

(0.37) (0.48)
α̂PC5
t´ ´0.14 -0.07

(0.33) (0.46)
α̂X
t´ 0.83˚˚˚

(0.11)
Constant 3.30˚˚˚ 3.32˚˚˚ 3.33˚˚˚ 3.28˚˚˚ 3.30˚˚˚ 0.42 3.32˚˚˚

(0.19) (0.18) (0.18) (0.19) (0.19) (0.40) (0.200)

R2 0.0009 0.02 0.04 0.008 0.004 0.57 0.11

(a) Left cross-sectional tail index, i.e., α̂Yt´

α̂PC1
t` 0.49 0.68

(0.43) (0.47)
α̂PC2
t` ´1.43˚ -1.65˚˚

(0.67) (0.78)
α̂PC3
t` ´0.31 -0.08

(0.38) (0.43)
α̂PC4
t` ´0.52 -0.29

(0.64) (0.66)
α̂PC5
t` 0.34 0.19

(0.72) (0.78)
α̂X
t` 1.04˚˚˚

(0.25)
Constant 4.39˚˚˚ 4.37˚˚˚ 4.41˚˚˚ 4.40˚˚˚ 4.40˚˚˚ 1.10 4.33˚˚˚

(0.22) (0.22) (0.22) (0.22) (0.23) (0.83) (0.22)

R2 0.03 0.10 0.02 0.02 0.01 0.28 0.17

(b) Right cross-sectional tail index, i.e., α̂Yt`
This table presents the regression results for the effect of the PCs on the cross-sectional Hill estimate extracted from
US county level population growth for a lower threshold u. The threshold u to estimate the Hill estimate is set
to 0.5% of the sample fraction. Here the dependent variable in the upper panel is α̂Yt´, i.e., the Hill estimate for

the left tail of the cross-sectional county level population growth. The independent variables α̂ft , stated in the first
column, is the cross-sectional tail index where the PC f ’s effect is isolated, as defined in (13). Furthermore, α̂Xt´ is
the tail index estimated on the estimated disturbance terms of the five principal components model. The five PCs
are the first five principal components from an assortment of variables suggested by the literature. The lower panel
shows the results for the right tail of the distribution. The constant included in the regression is excluded from the
presented results. The asterisks in the table indicate the following: ˚ pă0.1; ˚˚ pă0.05; ˚˚˚ pă0.01.
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Figure 7: Effects of asset pricing factor on cross-sectional Hill estimator
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These figures display the time series of the asset pricing factors and the isolated effect of these factors on the cross-

sectional Hill estimates α̂ft , as defined in (13). In the left column of figures, α̂ft` for the right tail (blue dotted line)

and the respective normalized factors (solid black line) are plotted. In the right figures, α̂ft´ (red dashed line) and

α̂ft´ (blue dotted line) are plotted (not normalized). These annual observations are created by averaging the monthly
observations within a year. The plots are for the small-minus-big (SMB), high-minus-low (HML), momentum (MOM)
and the liquidity factor (Liq). The threshold for the Hill estimates is set at 5% of the sample fraction.
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