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Abstract 
We document five facts about banks: (1) market and book leverage diverged during the 2008 
crisis, (2) Tobin's Q predicts future profitability, (3) neither book nor market leverage appears 
constrained, (4) banks maintain a market-leverage target that is reached slowly, and (5) pre-
crisis, leverage was predominantly adjusted by liquidating assets. After the crisis, the 
adjustment shifted towards retaining earnings. We present a Q-theory where notions of 
leverage differ because book accounting is slow to acknowledge loan losses. We estimate the 
model and show that it reproduces the facts. We examine counterfactuals where different 
accounting rules produce novel policy tradeoffs. 
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1 Introduction

Models of banks are important because they shape financial regulation and, through regulation,

macroeconomic outcomes. However, developing suitable frameworks for policy analysis is a fine-

tuning process in which regulators and academics alike are constantly reassessing their models.

In fact, bank regulation was entirely redesigned in the aftermath of the Great Recession, only to

meet a global wave of regulatory forbearance in the first major crisis that followed—the Covid-19

crisis. Hence, the continuous development of banking models is a macroeconomic priority and

understanding the dynamics of bank leverage, in particular, is critical to that process.

This paper presents a novel theory of banks. Our theory is motivated by five stylized facts that

inform us about the dynamics of bank leverage. A unifying theme among these facts are the cross-

sectional and time-series variations in Tobin’s Q; i.e., variations in the market-to-book-equity ratio.

A novel aspect of our theory is the slow recognition of loan losses on banks’ accounting statements.

This slow loan-loss recognition causes the fundamental value of loans, which takes into account loan

losses, to differ from the book value of loans, which does not account for loan losses. We label the

ratio of fundamental-to-book value as little q, which differs from big Q (Tobin’s Q). In our theory,

variations in Q are in part driven by variations in q. Quantitatively, slow loan-loss recognition is

essential to explaining this study’s five stylized facts. We argue that our Q-theory improves our

understanding of bank-leverage dynamics and illustrates an important policy trade-off.

The five facts that motivate our Q-theory are as follows:

1. Banks’ book- and market-leverage ratios behave very differently during the 2008-2009 crisis.

Market leverage rises dramatically during the crisis whereas book leverage remains constant.

In particular, between 2007 Q3 and 2014 Q4, bank holding companies lose 54% of their

market capitalization. Book-equity losses are only 7% and these losses are entirely made up

by equity issuances.

2. Market values capture information that book values do not, in particular, information on

future portfolio losses and profitability.

3. The cross-section of market leverage shows a large dispersion across banks. This dispersion is

considerably smaller for book leverage and few banks are close to their regulatory constraints,

even in the midst of the crisis.

4. Banks appear to operate with a target for their market-leverage ratio. The adjustment to

that target is slow: In response to an unexpected negative-net-worth shock, proxied by a

shock to stock returns, market leverage increases on impact and takes several years to return

to its initial level. By contrast, book leverage does not respond on impact and the overall

response is muted.
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5. Prior to the crisis, in response to an unexpected negative-net-worth shock, banks primarily

sell assets in order to return to their market-leverage target. Post-crisis, banks intensify

their use of retained earnings and equity issuances and reduce the extent of their adjustment

through asset sales as a means to return to their market-leverage targets.

Fact 1 emphasizes the difference between banks’ book value of equity and their corresponding

market value.1 Understanding this difference is important because in models we must take a stance

on whether book or market equity (or both) is the relevant state variable.2 This stance matters

for evaluating the quantitative performance of models: empirically, book-measured leverage and

market-measured leverage lead to different inferences about the time-series properties of leverage

and the price of risk (see the debate between Adrian et al. 2014 and He et al. 2017), but typically

both measures co-move in models. Fact 2 implies that market valuations are informative about

bank losses much earlier than when losses are reported on balance sheets.3 Fact 3 points to

a rich cross section of market- and book-leverage ratios. Even before the 2008 crisis, the cross-

sectional dispersion of market leverage is wide. During the crisis, both the average market leverage

and its cross-sectional dispersion increase dramatically.4 In terms of book leverage, the pre-crisis

distribution is more concentrated and most banks maintain a substantial equity buffer beyond the

regulatory requirements. In the midst of the 2008-2009 crisis, the regulatory capital ratio of the

vast majority of banks remains far above their regulatory limits, even among banks whose market

valuations show significant erosion. 5 Taken together, these facts suggest that although market

values of bank equity are good predictors of bank health, banks’ market leverage does not appear to

be constrained as it dramatically increases for many banks during the crisis. In turn, book-equity

values are not timely predictors of bank health but regulatory constraints are explicitly stated in

terms of book equity. Since book values take time to incorporate information on losses, regulatory

constraints may not be binding even after a negative shock to banks’ assets. In this paper, we argue

that models should account for (i) the differences between book and market equity, and (ii) how

the slow loan-loss-recognition mechanism affects the tightness of banks’ regulatory constraints.

Facts 4 and 5 relate to the adjustment dynamics of banks’ balance sheets after a negative

1This dichotomy between banks’ book and market values of equity had prompted policy discussions during earlier
banking crises (see post savings and loans crisis survey in Berger et al. 1995).

2Papers that study the asset pricing implications of intermediary net worth (e.g., He and Krishnamurthy, 2013
and Brunnermeier and Sannikov 2014) focus on market measures of equity, while papers focused on the effects of
regulation focus on book measures of equity (e.g., Adrian and Boyarchenko 2013; Begenau 2020; Adrian and Shin
2013; Corbae and D’Erasmo 2019; Begenau and Landvoigt 2020).

3This observation is consistent with Blattner et al. (2019). This conclusion is also shared with the accounting
literature (see Laux and Leuz, 2010) that explains how banks have flexibility in accounting for losses. In fact, this
was an issue raised by the United States Congress after the Savings and Loans crisis (General Accounting Office,
1990).

4This suggests a countercyclical average leverage ratio. He et al. (2010) and He et al. (2017) document that
market-based leverage for intermediaries is countercyclical. Using the book-equity definition, Adrian and Shin
(2013) show that broker-dealer leverage is procyclical.

5An extreme example is Citibank, a bank that experienced market-based losses of up to 90% with only minor
changes in its book equity.
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shock to their assets. It is challenging to empirically identify such shocks: according to Fact 2,

accounting measures of bank equity do not convey all available information about shocks to bank

wealth. On the flip side, market valuations may capture additional information not contained

in banks’ books. But market valuations are also affected by variations in risk premia that are

unrelated to an individual bank’s health. To tackle this identification challenge, we exploit the

cross-sectional variation in banks’ stock returns and estimate impulse responses to innovations in

individual bank stock returns. This strategy builds on the efficient-market hypothesis: The idea is

that once we introduce adequate statistical controls, idiosyncratic deviations from average market

returns pick up idiosyncratic information about banks’ effective net worth that is not contained

in their books. Thus, we contend that idiosyncratic returns shocks proxy for net-worth shocks.

Once we construct a time series of returns shocks for each bank, we estimate the average impulse

responses of market and book leverage, liabilities, dividends, equity, and other variables to a shock

to returns. These impulse responses shed light on the adjustment process that takes place after

shocks that affect a bank’s net worth.

Fact 4 is obtained from this impulse-response analysis: The main observation is that the

behavior of banks is consistent with a pattern where they maintain a target for market-based

leverage, but the adjustment process of returning to that target is gradual. Namely, in response

to a negative returns shock, which mechanically increases market leverage on impact, banks take

actions to slowly reduce their market leverage to their leverage targets. This gradual response

indicates that frictions prevent banks from immediately returning to these leverage targets.6 Fact

5 describes the actual deleveraging process that takes place both before and after the 2008 financial

crisis. Pre-crisis, a bank that experiences negative returns shocks relies predominantly on reducing

its liabilities to lower its leverage with almost no change in its book equity.7 During and after

the financial crisis, the deleveraging process is faster but the reduction in bank debt slows down.

Instead, the increase in the deleveraging speed follows from an increase in retained earnings and

equity issuance.8 Fact 5 suggests that there is a regime shift in the frictions that govern the

leverage dynamics. Taken together, Facts 4 and 5 call for a theory that can account for the slow

balance-sheet-adjustment process and how this process changes over time.

This paper presents a partial-equilibrium model of banks that meets the challenges brought

by these facts. To reproduce these facts, the model features (1) meaningful differences between

book and market values, (2) accounting valuations that are less responsive than market values to

loan-default shocks, (3) a rich cross section of book- and market-leverage ratios, (4) an endogenous

leverage-ratio target and frictions that lower the speed of adjustment to that target, and (5) a

6Gropp and Heider (2010) document that banks’ capital ratios appear to follow a target leverage ratio and
analyze the empirical drivers of that target capital ratio.

7This is consistent with Figure 2 in Adrian and Shin (2013).
8One interpretation of this fact is that the cost of liquidating assets increased during the crisis, presumably

because the adverse selection problem got worse. This interpretation is consistent with models proposed by Gorton
and Ordonez (2011) and Dang et al. (2017).
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regime shift that can explain the switch in the deleveraging process.

In our model, banks are owned by diversified shareholders. Banks maximize the value of the

discounted stream of dividend income, under risk neutrality. Banks issue deposits and loans, where

loans are exposed to default shocks. The supply (demand) of deposits (loans) is perfectly elastic.

The expected returns spread between loans and deposits is positive and constant, a feature that

makes the returns on equity increasing in leverage. However, if its leverage is too high, then loan-

default shocks expose a bank to liquidation risk. In particular, a bank is liquidated if it violates

regulatory constraints or if it becomes insolvent. As in Leland and Pyle (1977a), there is a trade-

off between levered returns and liquidation risk. This trade-off induces a notion of a target for

fundamental leverage, which differs from book or market leverage.9 This trade-off is present even

though banks are owned by diversified shareholders and, thus, behave as risk-neutral firms. The

model has several frictions that drive a wedge between book and market values and that produce

a slow return to the market-leverage target. First, banks do not raise equity and have a preference

for dividend smoothing. This friction prevents market leverage from adjusting immediately via

equity finance. Furthermore, this friction drives a wedge between a dollar inside and outside the

bank, one source of variation in Tobin’s Q.10 Second, the market value of loans reflects losses that

book values do not reflect. Specifically, only a fraction of loan defaults are immediately recognized

on the books and the full recognition of losses takes time. Delayed accounting is a second source

of variation in Tobin’s Q. The combination of dividend smoothing and delayed accounting already

produces smooth responses of market leverage, similar to those observed in the data. Finally, the

theory features a cost of reselling loans, modeled as price adjustment costs in the spirit of O’Hara

(1983) or Shleifer and Vishny (1997).

We calibrate the parameters of the model except for three parameters that we estimate. Each

of these three parameters corresponds to a financial friction in the model. We estimate these

parameters to gauge the importance of each friction to explaining our facts. Concretely, we estimate

the parameters that govern banks’ dividend-smoothing motive, delayed loan-loss recognition, and

loan-adjustment costs. We estimate these parameters by matching the impulse responses of market

leverage, book leverage, and liabilities to the returns shocks. Identification is obtained as follows:

the difference between the responses of market and book leverage is informative about the delayed

recognition of losses. Once this parameter is obtained, the responses of market leverage and

liabilities are informative about the degree of dividend-smoothing and the loan adjustment costs,

respectively. A striking result is that to match the pre-crisis responses, the estimation requires

virtually no loan-adjustment costs. That is, to match the pre-crisis impulse responses, the model

9In corporate finance, it is standard to explain a leverage target through either trade-off theory (a tax advantage)
or a risk-return trade-off (e.g., Kraus and Litzenberger, 1973; Leland and Pyle, 1977a; Myers, 1984; Hennessy and
Whited, 2005; Frank and Goyal, 2011). In an early dynamic model of banks, O’Hara (1983) shows that a leverage
target follows from undiversified ownership that induces risk-averse behavior.

10Because of its importance, a slow adjustment to leverage was the topic of Darrell Duffie’s presidential address
to the American Finance Society in 2010 (Duffie, 2010).
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only needs dividend smoothing and delayed loan-loss recognition. The economic intuition behind

this result is that because banks do not immediately recognize losses and prefer to stay levered,

they do not take immediate actions to delever when hit by a loan-default shock. This reflects in

an immediate response of market leverage upon the shock but only a negligible response of book

leverage. Over time, banks gradually delever as loan losses are slowly recognized on the books. As

these losses are slowly recognized, the regulatory constraints tighten over time. As a result, banks

need to reduce debt but only at the pace at which their loan losses are recognized. Through this

channel, delayed accounting is enough to explain the slow responses of market leverage through a

slow reduction of liabilities during the pre-crisis sample.

To rationalize the change in the impulse responses after the 2008 financial crisis, we feed the

model with a common aggregate loan-loss shock of 2.5% and then re-estimate the model. For the

post-crisis moments, the estimation needs to account for an effect that speeds up the adjustment

of market leverage but slows down the reduction in liabilities. Because the market-to-book ratio

(on impact) is about the same for the pre- and post-crisis samples, the estimate of the parameter

that governs the recognition of loan losses remains the same. Hence, to explain the regime change

in the deleveraging pattern, the estimation calls for an increase in the loanadjustment costs from a

negligible to a non-negligible value. This increase in adjustment costs permits the model to explain

the even slower response of liabilities in the post-crisis period.11 In turn, the estimation of post-

crisis parameters needs a reduction in the dividend-smoothing motive to explain the more-intensive

use of retained earnings as a deleveraging device and the overall faster decline in leverage. These

larger estimates for the adjustment costs speak to a reduction in liquidity in the secondary market

for loans, which is itself consistent with systemic delayed accounting after an aggregate shock. The

reduction in dividend smoothing is interpreted as banks’ greater pressure to cut back on dividends

upon a negative shock in the aftermath of the crisis, even for banks that are not pressured by

policy. The model is not only able to reproduce the impulse responses of the data but it also goes

a long way in explaining the cross-sectional variation in Tobin’s Q and its predictive power, items

that the estimation procedure does not target. Furthermore, with an aggregate shock of 2.5%, the

model explains about 50% of the observed decline in Tobin’s Q during the crisis; a decline that is

exclusively attributed to changes in q, that is, excluding changes in investor risk premia.12

Our Q-theory allows us to study the effects of changing the degree of slow loan-loss recognition

for bank-equity growth and lending. This reveals a trade-off: more-lenient accounting rules allow

banks to increase their fundamental leverage beyond regulatory limits. However, more-lenient

accounting rules also mitigate the effects of loan-losses as banks are no longer forced to immediately

reduce their assets in order to adjust their leverage back to target. This creates a tension between

riskier banks and a milder lending contraction thanks to laxer accounting rules. All in all, the

11The aggravation of adjustment costs is consistent with adverse selection in the secondary loans market, which
is in turn consistent with the idea that banks can delay the recognition of losses.

12Atkeson et al. (2018) explain the reduction in the aggregate market-to-book ratio of banks, post-crisis, with a
reduction in government guarantees.
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mechanism of delayed loan-loss recognition acts like a counter-cyclical regulation that allows the

capital requirement constraint to remain slack during a crisis with the advantage of being bank

specific.

Related literature. The financial crisis of 2008 has renewed interest in banking models as banks

are viewed to be critical in reallocating resources in the economy—see, e.g., Adrian and Shin 2010;

Rampini and Viswanathan 2012; Jermann and Quadrini 2012; Gertler et al. 2012; Adrian and

Shin 2013; He and Krishnamurthy 2012; Brunnermeier and Sannikov 2014; Gertler et al. 2016.

Bank leverage is at the heart of theories that can be organized into those where markets impose

constraints on leverage and others where regulation limits leverage. From a theoretical angle,

more equity and lower leverage relax financial constraints and allow a bank to expand its lending.

Models in this category include those of Gertler and Kiyotaki (2010); Brunnermeier and Sannikov

(2014); He and Krishnamurthy (2013); Gertler et al. (2016); Nuño and Thomas (2017).13 For these

models, a market-based equity value is the natural empirical counterpart because it measures the

value of the equity that affects incentives. The second group of models takes regulation as a

given institutional feature. Such models study the effects of declines in equity buffers (Adrian and

Boyarchenko, 2013; Begenau, 2020; Bianchi and Bigio, 2017; Martinez-Miera and Suarez, 2011;

Corbae and D’Erasmo, 2019). The present paper makes two contributions: First, it presents a set

of facts that shed light on the relevant state variables and constraints that affect bank decisions.

Second, it presents a Q-theory of banks that is consistent with these facts. A key contribution of

this paper is to show how both market- and equity-based measures are relevant state variables. In

particular, we put forth the idea that delayed accounting is important and we quantify the trade-

offs involved in the design of different accounting regimes for financial stability and economic

growth.

In terms of models with market-based constraints, our empirical findings suggest that such

constraints operate in richer ways than conceived by many of these models. Although some of

these models can generate the counter-cyclical movements we see in the data on market leverage,

they typically cannot account for the cross-sectional changes in leverage: upon an aggregate shock,

most of these models would predict a compression of the distribution of leverage at a higher level

after a large shock as more banks get closer to their constraints.

In addition, these models cannot account for the lack of responses in book values because

book and market values co-move in those models. Adrian et al. (2016) raises a similar point

when they argue that “as for market leverage, we show that virtually all the cyclical variation

13Financial frictions on banks matter for the provision of credit —and hence economic performance. Examples of
these frictions include costly verification (Townsend, 1979; Bernanke and Gertler, 1989), lack of commitment (Hart
and Moore, 1994), or moral hazard (Holmstrom and Tirole, 1997, 1998). Bernanke and Gertler (1989) and Kiyotaki
and Moore (1997) were the first to model the connection between firm equity and aggregate outcomes. A different
perspective is taken by Diamond and Rajan (2000) who argue that deposits through bank runs (a là Diamond and
Dybvig, 1983) act as a disciplining device in the presence of agency frictions.
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of market leverage is driven by fluctuations in the book-to-market ratio, reflecting the valuation

changes of free cash flows generated by the bank.” To meet this challenge, models based on market

constraints would need to generate changes in both time and in the cross section of leverage ratios.

In our model, due to delayed loss recognition, regulatory constraints become more slack upon an

aggregate shock and book values barely move but the average market leverage and its dispersion

increase.

Our model shares elements with He and Krishnamurthy (2013) and Brunnermeier and San-

nikov (2014) in that banks’ equity accumulates slowly over time (see the survey by Gertler et al.,

2016). Unlike these papers though, bankers are risk neutral despite the fact they perform dividend

smoothing. Like these papers, banks face market-based constraints. Regulation that limits book

leverage also connects this paper to the work of Adrian and Boyarchenko (2013). Our paper is also

connected with Milbradt (2012) because we distinguish between the fundamental value of assets

and book assets where losses are not registered in real time. We differ from Milbradt (2012) in

that we focus on aggregate and cross-sectional bank-lending-and-leverage dynamics. Furthermore,

we do not interpret delayed accounting as exclusively resulting from accounting practices but also

as following from deliberate evergreening practices as described in Caballero et al. (2008).

Our evidence on the gradual adjustments in market leverage relates to two other theories on

adjustment costs (see Hayashi 1982, for a neoclassical Tobin’s Q theory). In finance, adjustment

costs are not thought of as stemming from physical constraints. Instead, one financial literature

strand rationalizes the slow adjustment of leverage with equity-issuance costs and asymmetric

information. Early models of equity-issuance costs that are based on agency problems are a debt

overhang model found in Myers (1977) and a private information model found in Myers and Majluf

(1984). Adjustment costs on assets arise naturally when banks hold informationally sensitive assets

that are typically viewed as a specialty of banks—e.g., Leland and Pyle (1977b); Diamond (1984a);

Williamson (1986); Tirole (2011); Dang, Gorton, Holmström and Ordonez (2017); Shachar (2012);

Hachem (2011). In a more recent strand of work, e.g.,DeMarzo and He (2016) and Gomes et

al. (2016), a leverage target and slow adjustment emerge due to long-term debt and default; i.e.,

as the result of debt dilution. A novel feature of our Q-theory is that slow-moving leverage can

exclusively result from the delayed loss-recognition mechanism. Furthermore, to explain the pre-

crisis patterns, our model only needs delayed-loss accounting. However, for the post-crisis period,

the model needs higher balance-sheet-adjustment costs, which are consistent with these theories.

The closest papers to ours are Corbae and D’Erasmo (2019) and Rios-Rull et al. (2020). Like

these papers, we also try to match cross-sectional bank-leverage data. The novelty of our work,

relative to these studies, is that our focus is on the importance of book- and market-value differences

that follow from delayed accounting in shaping banks’ decisions. Finally, our paper also relates

to the literature on macro-prudential bank regulation. Some authors hold the view that marking

assets to market can amplify a crisis by worsening financial frictions (Shleifer and Vishny, 2011;

Laux and Leuz, 2010; Plantin and Tirole, 2018). In the midst of the Covid-19 crisis, questions such
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as how and whether to mark loans to market and how much regulatory forbearance is good for

the economy are once again at the center of the discussion (Blank, Hanson, Stein and Sunderam,

2020). Our focus on delayed accounting suggests policy should also evaluate the role of evergreening

practices in the formation of zombie banks (Caballero et al., 2008). In the final part of the paper,

we study the effect of delayed loan recognition and also highlight a policy-relevant trade-off.

The rest of this paper is organized as follows. Section 2 presents our set of five facts while

Section 3 presents the model and its results. Section 4 concludes.

2 Five Stylized Facts

Data. We use panel-level data on top-tier United States Bank Holding Companies (BHCs).14

BHCs provide a comprehensive picture of the activities of a financial organization beyond the

narrower accounts of their commercial bank subsidiaries. We take BHC accounting data (balance

sheet and income statements) from the FR-Y-9C regulatory reports filed with the Federal Reserve.

We merge the accounting data with market data from the Center for Research in Security Prices

(CRSP). We focus on the sample period from 2000 Q1 to 2015 Q4.15 BHCs file FR-Y-9C forms if

they have assets above $500 million.16 This sample is highly representative of the banking sector.

Appendix Section A.2 presents the time series of key balance sheet variables for all BHCs in our

sample and the four largest BHCs: Bank of America; J.P. Morgan, Citigroup, and Wells Fargo.

2.1 Characteristics of bank equity

Book equity versus market equity. In most models of banks net worth is a key state variable

that puts a cap on leverage. However, bank net worth can be measured in terms of accounting

measures (book equity) or market value (market equity). Figure 1 presents the time series of book

and market equity aggregated across all of the BHCs in our sample (left-hand panel) and the same

time series for the four largest BHCs (right-hand panel).17 The figure shows a stark discrepancy

between market and book equity, particularly during the crisis. This discrepancy raises the question

of which empirical counterpart best captures the economic concept of net worth. Just looking at

book equity, it is hard to detect that 2008-2009 are the years of a major financial crisis! The

14A bank holding company is an umbrella company that holds banks and other financial institutions. A com-
mercial bank is a single bank that provides traditional banking services such as deposits and loans. For example,
Citibank, a commercial bank, is held by Citigroup, a BHC that holds Citibank and other banks, including non-
commercial banks.

15We extend the sample when we estimate impulse-response functions. When constructing aggregate time series,
we drop entrants to correct for the entry of major financial institutions, such as Goldman Sachs and Morgan Stanley.
Without this correction, aggregate bank assets increase due to the reclassification of large actors, such as Morgan
Stanley and Goldman Sachs, into bank holding companies.

16Prior to 2006 Q1, this threshold was $100 million, and the threshold became $1 Billion in March 2015.
17Book equity for publicly traded BHCs is close to book equity for all BHCs, which shows that the publicly traded

sample compromises most of the banking sector (weighted by equity).
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sharp drop in market equity, on the other hand, clearly indicates a crisis. The pattern for the

largest banks is very similar.18 Citigroup is an extreme example of the discrepancy between book

and market values: Citigroup loses 90% of its market capitalization but its book equity remains

intact.19

This difference between market and book equity is not the result of the composition of public

equity injections. Although these injections are counted as preferred equity in accounting books

and market equity is measured relative to common equity, Figure 1 shows that preferred equity

cannot explain the discrepancy between market and book equity.20

To get a quantitative sense of how much book and market equity differ during the crisis, in Table

1 we present the percentage change in banks’ market-equity valuations (top two rows) and book-

equity valuations (middle two rows), together with the change in the S&P 500 stock returns index

from the beginning of the crisis in 2007 Q3 to the end of each of 2008, 2009, and 2010, respectively.

We report simple percentage changes in the real value (columns entitled “real change”) as well as

the changes in the fitted log-linear trends (columns entitled “log linear”). Between 2007 Q3 and

2008 Q4, the market capitalization of the banking sector drops by 54%, compared to a 42% drop

in the S&P 500. By 2010 Q4, market equity is still down 30% from its value in 2007 Q3. Much

of this rebound follows from new equity issuances. By contrast, book equity does not fall during

the crisis and actually increases substantially post-crisis. In fact, recorded book-equity losses are

entirely made up for by new equity issuances. This large discrepancy implies that banks’ average

Tobin’s Q, defined as the market-to-book-equity ratio, drastically declines during the crisis and

remains much lower thereafter. 21 To summarize, our first fact is as follows:

Fact 1. Book and market values substantially diverge during the crisis.

The divergence between book and market equity during the crisis is already known from other

studies (see for example Adrian and Shin, 2010; He et al., 2017). However, this variation in Tobin’s

Q is a common thread in the paper and begs the question of what empirical counterpart of equity

should be used in macro models. We next turn to some cross-sectional evidence that sheds some

light on this question.

Information content in market and book equity. A natural question is whether differences

between the market- and book-equity valuations reflect differences in the informational content of

these measures. Conceptually, book measures are backward looking in that they register historical

18The discontinuities in the individual bank series reflect mergers and acquisitions; e.g., the acquisition of Wa-
chovia by Wells Fargo during the crisis.

19Citigroup suffers heavy losses during the crisis and does not undergo any major mergers or acquisitions, making
it a particularly clean case example.

20Preferred equity rises temporarily during the crisis due to the Troubled Asset Relief Program (TARP). Note
that preferred equity is included in book equity but not in market equity.

21We are referring to the market-to-book-equity ratio as Tobin’s Q, as opposed to the market-to-book-assets
ratio.
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losses. By contrast, market-equity measures are forward looking in that they price future expected

cash flows. Still, this conceptual difference does not imply that both measures contain different

information: In principle, we can write a model where the history of events is encoded in banks’

balance sheets and the information contained in the books is enough to predict future cash flows.

In such a case, the informational content of market values would be the same while the time-series

and cross-sectional variation of Tobin’s Q would only respond to changes in the risk premia.

However, we suspect that market- and book-value measures contain different information: one

reason is that changes in the underlying market value of loans (see filing instructions for FR-Y-

9C BHCs regulatory reports) reflect default expectations. These expectations are not updated

in loan accounting books. During our sample period, a loan is only written off once the loss

has occurred, in contrast to when the loss is expected.22 This alone could produce differences in

the informational content.23 Another reason is the delayed acknowledgment of known losses. If

banks can delay recognizing losses, or refinance non-performing loans to avoid registering losses

(evergreening), then book values will be over-optimistic. If market participants can update their

valuations quickly, thereby detecting these losses, then differences in informational content will

emerge. A casual indication that market values contain more information can be seen from Figure

2, which shows that loan charge-offs peak in 2010, when the economy is no longer officially in a

recession. The decomposition of net charge-offs shows that these losses are heavily driven by real

estate, which is consistent with the nature of the crisis.24

Next, we formally analyze the differences in informational content. Our strategy builds on the

following idea: If market-equity values contain more information about bank profitability than

book-equity values do, then Tobin’s Q, i.e., the market-to-book-equity ratio, should predict future

profitability once it controls for book equity. In addition, Tobin’s Q should be correlated with

contemporaneous predictors of future performance. In Figure 3, we show binned scatter plots of

(logged) outcomes on the log market-to-book ratio (market capitalization over book equity); for

a pre-crisis quarter (2006 Q1) these are shown in navy and for a post-crisis quarter (2009 Q1)

they are in maroon—the plots control for the log book equity.25 The top left panel shows the log

22At the time of writing, a new accounting standard had been developed. According to this standard, loan
losses should be calculated according to “current expected credit losses” (CECL). Publicly traded banks have
been following CECL (expected loss accounting rules) since January 1st, 2020. Smaller banks were supposed
begin following these rules over the next year. However, on March 27, 2020 (https://www.federalreserve.
gov/newsevents/pressreleases/bcreg20200327a.htm), the Fed moved to provide an optional extension of the
regulatory capital transition for the new credit-loss accounting standard.

23In Appendix A.3 we survey important contributions from the accounting literature on the issue of delayed loss
recognition. See also Bushman (2016) and Acharya and Ryan (2016) for useful discussions.

24When a bank has a loss that is estimable and probable, it first provisions for the loan loss and this show up
as Provisions for Loan Losses (PLLs).. Later when a loss occurs, the asset is charged off and thus taken off the
books; this shows up as a charge-off, although occasionally the bank can recover the asset later. Net charge-offs are
charge-offs minus recoveries. We show a decomposition by category for net charge-offs but not for PLLs because
the FR Y-9C does not provide information on PLLs by loan category.

25To control for log book equity, the left- and right-hand variables are residualized on the log book equity, and
then the mean of each variable is added back to maintain the centering. It is important to control for the log book

10

https://www.federalreserve.gov/newsevents/pressreleases/bcreg20200327a.htm
https://www.federalreserve.gov/newsevents/pressreleases/bcreg20200327a.htm


returns on equity over the past year, plotted against the log market-to-book ratio. Banks with

higher Tobin’s Qs earn higher returns on equity. The top-right panel examines the log returns on

equity over the next year: the higher market-to-book ratios predict higher future profits. These

correlations are especially strong in the post-crisis quarter. Banks with higher market-to-book

ratios also have lower shares of delinquent loans (bottom-left panel) and, in the post-crisis quarter,

have lower net charge-off rates on their loans over the next quarter (bottom right).

The results suggest that market participants have some ability to predict future profitability

beyond what they see in accounting books and they incorporate this into their valuations.26 This

is consistent with the view that books are slow to reflect their true conditions. Indeed, the results

suggest that banks with lower profitabilities and more delinquencies have lower Tobin’s Qs, and

these Tobin’s Qs will predict future loan writedowns and future profitability. Our second fact is

the take-away from this analysis.

Fact 2. Tobin’s Q predicts future cash flows in the cross section of banks. That is, market values

capture information that book values do not and book values do not fully respond to shocks.

The time series and cross section of book and market leverage. Models of banks typically

impose constraints on either market or book leverage. In this section, we show the time-series

pattern of banks’ market- and book-leverage ratios and their cross-sectional differences. In the

left-hand panel of Figure 4, we plot the aggregate market and book leverage for the entire sample

of public BHCs. In the right, we show the corresponding series for the four largest banks. A

common pattern is evident: Book leverage rises only moderately pre-crisis and actually falls during

the crisis. Market leverage, by contrast, dramatically spikes during the crisis and remains almost

twice as high for at least four years.

In terms of the cross section, Figure 5 presents different sections of the distribution of market

leverage over time. The figure plots the median market leverage (in maroon) and each 10th

percentile (in blue). Market leverage increases across the board and takes a long time to return

to its pre-crisis levels. Strikingly, the distribution of market leverage fans out, with a substantial

10% of banks sustaining market-leverage ratios of nearly 80. This suggests that in the midst of a

deep financial crisis there is no strictly binding ceiling on market leverage.

Whereas constraints on market leverage are a theoretical possibility that have to be empirically

validated, regulatory constraints are indisputable. Regulation is based on book-equity ratios. Does

the cross section of book leverage show evidence of distress? How many banks are close to violating

equity to prevent spurious results that could be due to ratio bias (see Kronmal, 1993). The log book equity is
part of the right-hand side, and it also appears on the left-hand side of many of these regressions; it would have a
mechanical effect if it were not controlled for.

26Of course, an alternative explanation is that market equity overreacts to information about future profitability.
However, the fact that book equity did not decline during the crisis suggests that the sluggishness of these books
played a role. Also, to the extent that variation in the discount rate will similarly affect most banks, it is unlikely
to drive the results in this cross-sectional regression.
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their regulatory constraints during the crisis? Figure 6 presents the share of BHCs that are below

different levels of regulatory capital ratios.27 We can observe that the vast majority of banks keep a

capital buffer above the regulatory minimum. The distance to the regulatory constraints shortens

for a significant number of banks during the crisis but, still, only a minority of banks are close to

their regulatory constraints. We summarize these observations into our third fact:

Fact 3. Most banks keep an equity buffer above the regulatory minimum capital ratio; fewer banks

do so during the crisis. Market leverage and the dispersion of market leverage substantially increase

during the crisis.

Fact 3 poses a challenge for standard models of banks. We should expect systemic loan defaults

during a crisis like the one that occurrs in 2008 and this should lead to an increase in market leverage

for all banks, provided that liabilities are not immediately liquidated. At the same time, we

should expect substantial reallocation of assets from highly levered banks toward banks with lower

leverage. This means that we should expect a compression in the dispersion of leverage in the cross

section of banks. Figure 5 suggests that there is no such compression. This observation suggests

there is a delay in the reallocation of assets across banks. In terms of regulatory constraints, this

third fact suggests that only a minority of banks hit their regulatory constraints. In light of fact

2, we argue that this is partially due to the slow response of book values. Interestingly, the share

of banks that are near the regulatory limits peak in the first quarter of 2010, at least 2 years after

the first symptoms of a mortgage crisis are apparent. From the perspective of models of banks,

we contend that neither regulatory nor market constraints bind in a static way. Of course, just

because a constraint is not actively binding, we cannot conclude that a constraint does not affect

banks. On the contrary, banks may worry that a constraint will bind in the future and they will

take steps to avoid hitting the constraint, and this is the spirit of our Q-theory. The next section

analyzes the dynamic responses of banks to shocks.

27Under Basel II (the regulatory standard in place during the crisis), bank holding companies are subject to
regulatory minimums on their total capital ratios and their tier-1 capital ratios. These capital ratios are computed
as qualifying capital/risk-weighted assets and, thus, a bank with a higher capital ratio has lower leverage. Basel II
requires that banks hold a minimum tier-1 capital ratio of 4% and a minimum total capital ratio of 8%. In order
to be categorized as “well capitalized,” banks have to meet minimum capital ratios that are two percentage points
higher (6% and 10%, respectively). Being categorized as well capitalized is desirable because banks that are not are
subject to additional regulatory scrutiny (Basel Committee on Banking Supervision, 1998, 2006). After the crisis,
tighter capital requirements are phased in under Basel III. The minimum total capital ratio stays at 8% throughout
our sample period, but the tier-1 capital ratio rises to 4.5% in 2013, to 5.5% in 2014, and finally settles at 6%
starting in 2015. Also under Basel III, additional capital ratios (e.g., tier-1 leverage and common equity capital
ratios) begin being monitored (however these ratios are quite similar to the preexisting tier-1 and total capital
ratios) and, starting in 2016, a “capital conservation buffer” and special requirements for systemically important
financial institutions are introduced (Basel Committee on Banking Supervision, 2011). Kisin and Manela (2016)
study whether banks violate different regulatory constraints and find that they do not typically violate multiple
regulatory constraints.
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2.2 Characterizing bank-leverage and balance sheet dynamics

This section analyzes the dynamics of leverage and the balance sheet. This analysis is informative

about the constraints banks face and their process of leverage adjustment, as we will argue.

Empirical framework. We empirically investigate whether and how a target leverage ratio and

adjustment costs drive the leverage dynamics of banks. To test this hypothesis, we estimate the

following panel regressions:

∆ log(yi,t) = αt +
k∑

h=0

βh · log(1 + εi,t−h) + γh · Postt log(1 + εi,t−h) + ψi,t, (1)

where i indexes over banks, t indexes over quarters, yi,t is the outcome of interest, αt is a time

fixed effect, εi,t denotes our measure of a cash flow shock to net worth (i.e., the idiosyncratic excess

stock returns innovations over the past quarter for bank i in quarter t; see detailed description

below), and Postt is an indicator variable that is equal to one if the current quarter is post-

crisis (we treat 2007 Q4 as the first quarter for which Postt = 1).28 These regressions allow us

to construct impulse-response functions for liabilities, market leverage, market equity, and book

equity.29 We include time fixed effects, αt, to absorb aggregate shocks; e.g., changes in investors’

discount rates or the price of loans due to demand shocks. We thus recover a partial equilibrium

supply-side impulse response, estimated from the cross-sectional variation in returns shocks. In

all specifications, we use k = 20. Due to these many lags, we extend our data to 1990 Q3 in order

to obtain precise pre-crisis estimates.30 We cluster standard errors by bank. Finally, to report the

impulse-response function, we sum the coefficients: the pre-crisis contemporaneous response is β0,

the next period is β0 + β1, and so on. For the post-crisis, we also add the corresponding γ terms.

Before we show the results, we first discuss how we obtain the shock measure εi,t. We follow

Gandhi and Lustig (2015) to adjust bank stock returns for aggregate risk factors. That is, we

regress the excess stock returns ri,t− rft of bank i on a bank fixed effect αi and a matrix of factors

28One might favor an alternative specification that includes lags of the dependent variable in addition to con-
temporaneous and lagged returns. This poses two issues: Nickell bias and bad control. Including the dependent
variable as a lag will induce bias, as documented by Nickell (1981). Dealing with this bias is challenging and may
result in poor precision. Perhaps more importantly, the lagged dependent variable is a "bad control" in that it is
endogenous to the regressor. We wish to back out the effect of a returns shock in t− 3 on the change in liabilities
in t: if we condition on the liabilities in t − 1, which is itself also affected by the past returns shock, then we will
not identify our parameter of interest.

29Since market returns are changes in market equity valuations, taking the first differences in logs provides a
tight conceptual link between the outcome and the regressor. Using levels would mean that the outcome is highly
correlated with bank size. This would raise concerns about stationarity. Using levels could also result in a regression
that is heavily influenced by a few large banks, given the highly skewed distribution of bank size. For the same
reason, we do not weight our regressions: the distribution of bank size is highly skewed and so a weighted regression
would be equivalent to a regression with only a handful of the largest banks. If the variance of the residuals were
lower for larger banks, then using weights would yield a more-efficient estimator. Empirically, however, the variance
of the residuals does not appear to vary substantially by bank size.

30This is the first quarter in which we can identify which banks are top-tier BHCs from the FR Y-9C.
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Xt as follows:

rit︸︷︷︸
Raw returns

− rft︸︷︷︸
Risk-Free Rate

= αi + Xt︸︷︷︸
factor

βi︸︷︷︸
loadings

+ εi,t︸︷︷︸
Idiosyncratic Component

. (2)

The vector of factor loadings β has dimension K × 1 and the matrix of factors Xt has dimension

T × K. We include the same factors as in Gandhi and Lustig (2015), namely the three Fama-

French factors (Fama and French, 1993), a credit factor calculated as the excess returns on an index

of investment-grade corporate bonds and an interest rate factor calculated as the excess returns

on an index of 10-year U.S. Treasury bonds.31 (See Appendix Section B.1 for further details on

the risk-adjustment process.) The idea behind risk-adjusting returns and using their innovations

is that we want to isolate information about banks’ cash flows as opposed to discount rates, the

latter which are driven by aggregate movements in the factors.32 Crucially, we rely on the efficient-

markets hypothesis according to which excess returns variations should be unpredictable ex ante

after adjusting for the risk premium. By stripping out the predictable components of returns, the

innovations, εi,t, to the risk-adjusted returns are ex-ante unpredictable across banks. This forms

the basis of our identification strategy: we treat the cross-sectional variation in εi,t as unanticipated

shocks that perturb bank equity. In the Appendix (see Figure 4), we show for the largest four

banks that the time series of εi,t indeed resembles white noise. In Section 2.2, we conduct a variety

of robustness checks to validate our identification strategy and interpretation of εi,t as cash flow

shocks. For the rest of the paper, we refer to these innovations, εi,t, as returns shocks.

Impulse responses. How do shocks affect banks’ balance sheets, financing, and payout choices?

We estimate impulse-response functions for liabilities, market capitalization, book equity, market

leverage, and the common dividend rates and show the results in Figure 7. To normalize the effect,

we report the response to a negative one percent returns shock. The y-axis of our plots shows

the contemporaneous response (−β0 for pre-crisis and −β0 − γ0 for post-crisis) as quarter 1, the

cumulative response one quarter later (−β0 − β1 and −β0 − β1 − γ0 − γ1) as quarter 2, and so

on. If banks maintain a target market-leverage ratio, then we would expect banks to respond to

a negative wealth shock (which mechanically increases market leverage) by moving back towards

their target leverage. As we can see from the impulse-response function of market leverage in

Panel a of Figure 7, the data is consistent with an apparently slow adjustment back to the target,

presumably due to adjustment costs. As discussed before, adjustment costs are a key ingredient

of our Q-theory.

31The three Fama-French factors are downloaded from Ken French’s website. The credit factor is the excess
returns on the Dow Jones Corporate Bond Index that we download from Global Financial Data. The interest rate
factor is the U.S. 10-year Treasury Bond Total Return Index (ltg) that we also download from Global Financial
Data. We use the one-month risk-free rate from Ken French’s website to calculate excess returns.

32The results for simply adjusting returns with a time fixed effect are qualitatively and quantitatively similar and
are also reported in the Appendix Section B.2.

14



The impulse response of the log market leverage, defined here as log(liabilities/market capitalization),

is simply the difference between the response of the log market capitalization (Panel b) and the log

liabilities (Panel c).33 The impulse-response function for the log market capitalization reveals that

in the quarter of the impact of a returns shock, a mechanical effect on the denominator dominates

and explains the jump in market leverage. The adjustment on the numerator is slow and the effect

of returns shocks on market leverage does not vanish, even after five years. This yields our fourth

fact:

Fact 4. Banks appear to operate with a target leverage ratio to which they only return slowly after

shocks, suggesting adjustment costs that are consistent with the Q-theory.

A few noteworthy differences in the pre- and post-crisis impulse responses emerge from Figure

7. First, banks adjust their leverage ratios more quickly during the post-crisis years compared to

the pre-crisis. As a way to delever and return to the target leverage ratio, banks can increase their

equity and/or decrease their liabilities. Second, Panel b shows that, during the pre-crisis period,

market equity does not change after a shock decreases it (a returns shock mechanically lowers

equity one-for-one). Third, by contrast, in the post-crisis period, half of the impact is reversed

over 5 years. In particular, Panel c shows that banks decrease liabilities by around 0.6% during the

pre-crisis period and but only by 0.2% in the post-crisis in response to a 1% returns shock. Panel

d, in turn, shows that book equity values adjust slowly in the pre- and post-crisis periods. This is

consistent with Section 2.1, where we show that book values respond only slowly to losses that are

more quickly reflected in market returns. The final observation regards the behavior of dividends:

In Panel e of Figure 7, we estimate the impulse response of the common dividend rate.34 The

response of the common dividend rate to a negative returns shock (top left panel) is surprisingly

positive pre-crisis. This is driven by the initial mechanical effect on the denominator. Market

equity falls in response to a negative returns shock. Post-crisis, the initial positive mechanical

effect is overtaken by the negative effect on dividends. All in all, these impulse responses show

that banks switch from responding exclusively by decreasing their assets and liabilities in the pre-

crisis period to a combination of balance sheet and equity adjustments in the post-crisis period,

with equity adjustments being more important. To summarize, our final stylized fact is as follows:

Fact 5. Prior to the crisis, banks adjust leverage primarily by reducing debt and keeping equity

unchanged. Post-crisis leverage adjustments appear to be more gradual. During this period, banks

also adjust their leverage by raising equity.

Identification and robustness. Our interpretation of the estimates relies on the assumption

that bank-specific variations in risk-adjusted bank stock returns identify cash flow shocks on ex-

33The impulse responses of leverage instead defined as log(liabilities +
market capitalization)/market capitalization) are nearly identical.

34For this ratio, we use ∆ log(1 + yi,t) as the outcome variable in our specification 1, since log(1 + yi,t) provides
an approximation to percentage points and flow variables such as dividends can be equal to zero.
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isting portfolios, such as specific default shocks, as opposed to shocks to the profitability of future

business opportunities. We conduct various analyses to alleviate identification concerns, including

a narrative approach to validate our interpretation of the returns shocks as being unanticipated

and specific cash flow shocks.

As stated above, one could be concerned that the returns shocks capture idiosyncratic informa-

tion about the relative profitability of a bank’s future portfolio (e.g., the default rate on this bank’s

future mortgages) and, thus, affect the bank’s problem through channels other than perturbing

equity. If a bank’s expected returns on its future assets fall, then this bank would want to reduce

its equity or lower its scale for a reason that would be unrelated to a target leverage ratio and

adjustment costs.

To investigate this concern, we study how banks’ liquid asset ratios respond to a negative

returns shock. If negative returns shocks indeed predict lower future investment opportunities

rather than current cash flows, we would expect banks to respond to these shocks by moving their

portfolios into liquid assets. We test this notion by looking at the impulse-response function of

banks’ liquidity ratios, calculated as (cash + treasury bills) / total assets. The impulse-response

function in the Appendix, Figure 9, shows no statistically significant response pre-crisis. There is

a small temporary response post-crisis that is reversed within a few quarters (recall that we show

cumulative responses).35 In sum, banks do not tilt their portfolios towards safe and liquid assets in

response to our returns shock, which pushes against a story of worsening investment opportunities.

The lack of response of the liquid-asset ratio is suggestive for our interpretation of the returns

shocks. However, we cannot fully rule out that the shock picks up information about the profitabil-

ity of future assets. To provide additional corroborating evidence for our identification strategy,

we use a narrative approach, which is detailed in Appendix B.3. To this end, we take the largest

positive and negative values of the returns shocks, εi,t, over the sample period for each of the four

largest banks (J.P. Morgan Chase, Bank of America, Citigroup, and Wells Fargo). We then search

various newspapers for articles that mention the names of any of the four banks in the quarter for

which the absolute value of εi,t is high. Table 5 in the Appendix lists the results of our newspaper

article search. In most cases, we can find supporting evidence for our εi,t estimates. For example,

in the second quarter of 2009, the Bank of America has a high and positive value of εi,t. Our

article search reveals that this bank fares better in the stress test and exceeds expectations. In

1999 Q1, Citigroup has a large positive εi,t. This coincides with a Wall Street Journal article that

states that Citigroup exceeds its profit expectations even though its profits fall. In 2001 Q1, a

negative shock at Wells Fargo coincides with news reports that state that Wells Fargo’s venture

capital portfolios are incurring significant losses.

In Appendix Section B.3, we provide additional robustness checks. We verify that our results

35This is not a perfect test as perhaps banks would also want to raise liquidity in response to a cash flow shock
on their current portfolio. A hypothetical example is the following: Suppose the bank is caught in unfair lending
practices that cause a lawsuit. Banks might respond by increasing their cash holdings to prepare for the upcoming
lawsuit.

16



are not driven by mergers, or by specific events during the crisis, by excluding mergers and the

crisis years 2008 and 2009 from our sample. For more details refer to Appendix Section B.3.36

2.3 Taking stock

In this section we presented five facts about bank leverage, a key variable in models of banks.

The denominator of leverage, net worth, can have two different empirical counterparts: book or

market equity. However, these two measures diverge during the Great Recession (fact 1) and in

ways related to their informational content (fact 2). Importantly, leverage constraints based on

market equity measures do not seem to put a cap on market leverage during the crisis (fact 3).

Furthermore, regulatory constraints, which depend on book leverage, seem to be circumvented by

delaying losses. We also argue that banks operate as if they have a market-leverage target, but

the adjustment to that target is slow (fact 4). Furthermore, pre-crisis, banks would predominantly

reduce liabilities as a means to delever, but the deleveraging pattern changes in the post-crisis

period and retained earnings gain a predominant role to the point that leverage adjusts faster

(fact 5).

What do these facts mean for macro-finance-oriented banking models? They call for a theory

that can explain book- and market-value differences and that can account for slow responses of

leverage. They also call for thinking of leverage constraints as not directly binding but rather as

affecting banks in a dynamic sense. In the neo-classical Q-theory of investment (Hayashi, 1982),

the discrepancy between market and book measures follows physical adjustment costs that create

a wedge between the average and the marginal cost of capital. Since bank assets consist mainly

of financial contracts, it is difficult to interpret this difference as the result of decreasing returns

to technology. However, there is a tradition in finance that explains financial adjustment costs

through various financial frictions. For example, the illiquidity of loans can result from asymmetric

information—Leland and Pyle, 1977b; Diamond, 1984b; Dang, Gorton, Holmström and Ordonez,

2017— or from fire-sale costs as in Shleifer and Vishny (1997). Thus, taking the insights from the

neoclassical Q-theory, one route is to explain the slow adjustments and variation in Q through

asset adjustment costs.

A model with only loan adjustment costs would not explain why book equity reacts so little

during the crisis (upon a large shock) and would not explain the predictive power of Tobin’s Q.

For that reason, the Q-theory we develop in the next section is motivated by the idea of delayed

accounting. We introduce loan adjustment costs for comparison and also because they are needed

to explain the fifth fact, but we will show that delayed accounting can explain the discrepancies

between book and market values, the predictability of Tobin’s Q, the lack of binding constraints

and also the delayed responses in market leverage. In particular, delayed accounting can explain

36We also test for heterogeneous impulse responses by type of bank. We do not find evidence of sizable hetero-
geneity, but we have limited statistical power to detect these differences.

17



the slow adjustment of market leverage because, upon a shock, leverage does not have to be

adjusted immediately to satisfy regulatory constraints. Rather, liabilities are gradually reduced as

losses are slowly recognized.

There is substantial work on delayed accounting in the accounting literature. In particular, like

us, Laux and Leuz (2010) also argue that delayed accounting is a prevalent phenomenon during

the Great Recession. In Appendix A.3, we further detail the bank accounting literature (Bush-

man, 2016; and Acharya and Ryan, 2016 also offer useful discussions). In macro-finance, delayed

accounting is a topic that is being overlooked, with some exceptions. Among these, in Milbradt

(2012) distorted incentives are brought about by Level 3 fair-value accounting and Caballero et al.

(2008) note that regulatory constraints may be a factor contributing to evergreening. Motivated

by the facts presented in this paper, we argue that delayed accounting is furthermore important

to explaininig the dynamics of book and market leverage. We also argue that delayed accounting

has important policy implications. We will argue that with delayed accounting, banks can weather

loan losses and hope to recover some of the loans. On the flip side, delaying expected losses al-

lows banks to maintain greater leverage or continue to extend loans to businesses that should fail

(Caballero et al., 2008; Blattner et al., 2019).

3 Q-Theory

We now present our Q-theory of banks. The theory is inspired by the facts presented in Section

2. The main innovation is that the dynamics of leverage are affected by accounting rules. The

model has three frictions: first, equity-financing frictions prevent banks from offsetting loan losses

with equity issuances. Second, delayed loan-loss recognition induces a dynamic tradeoff between

loan origination and the tightening of future regulatory constraints. Finally, we introduce loan

adjustment costs that, although not central to our theory, allow us to contrast our Q-theory with

models of adjustment costs and to fit the post-crisis responses. Later in the section, we match

the model with the data and discuss the model’s ability to replicate the facts we highlight above.

Proofs and derivations are provided in Appendix C.

3.1 The Model

Environment. Time is continuous, infinite, and indexed by t.37 There is a continuum of banks.

Loan defaults are the only source of risk. Each bank maximizes the expected discounted value of

dividends, Ct. Banks are risk neutral but prefer to smooth dividends across time. Their objective

function is defined recursively as

37We choose a continuous-time setup for computational reasons: An earlier version of this paper presented the
same model in discrete time. Whereas the cross-sectional properties of both models are quantitatively practically
identical, the speed of computation is substantially faster in the continuous-time setup, something that facilitates
the estimation step.
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Vt = Et
[∫ ∞

t

f (Cs, Vs) ds

]
,

where

f (C, V ) ≡ ρ

1− θ

[
C1−θ − {1 + (1− ψ)V }

1−θ
1−ψ

{1 + (1− ψ)V }
1−θ
1−ψ−1

]
.

Ct denotes dividend payouts at time t and f is a Duffie-Epstein aggregator with a time discount

rate ρ > 0, an intertemporal elasticity of substitution (IES) of 1/θ, and a risk aversion of ψ.38

The Duffie-Epstein aggregator is the continuous-time counterpart of the Epstein-Zin preferences.

The recursive formulation allows us to characterize banks as risk neutral (assuming ψ → 0), as is

standard in the theory of the firm.39 At the same time, we retain flexibility to introduce dividend-

smoothing motives that deliver smooth dividend payout patterns that are consistent with the

empirical evidence; e.g., Lintner (1956); Dickens et al. (2002); Leary and Michaely (2011).

Bank balance sheet. Banks hold long–term loans that are funded with deposits and equity. At

each instant, a fraction δ of loans matures. Maturity is innocuous but is introduced to distinguish

between loan flows and stocks. Loan-default shocks are governed by a Poisson process Nt: a default

event occurs with instantaneous probability σ and a constant fraction ε of loans defaults during

said event.

Book accounting and fundamental values differ.40 Defaults are slowly recognized in the ac-

counting values, whereas they are immediately captured in the fundamental values. We denote

the fundamental value of loans by Lt and the book value of loans by L̄t. Deposits, denoted Dt, are

risk free and, thus, their accounting and fundamental values coincide. The banks’ state variables

are
{
L, L̄,D

}
.

Financing frictions. Banks face an equity-financing friction: banks cannot issue equity and

must rely on retained earnings to grow equity. As we noted, the banks’ utility embeds a dividend-

smoothing motive that violates the assumptions of the Modigliani-Miller theorem. The assumption

of no equity finance can be relaxed by defining utility over net dividends.

38With other forms of dividend adjustment costs, dividend smoothing and risk aversion are coupled together. In
the model, however, the bank can be risk averse (due to its franchise value) or risk loving (due to the option to
default), as we explain later.

39Similar objective functions for banks are found in Bianchi and Bigio (2017) and Di Tella and Kurlat (Forth-
coming). We are the first to model dividend smoothing in isolation from risk aversion.

40This is a novel feature of our model and is critical to capturing banks’ ability to engage in evergreening and
to avoid the immediate recognition of losses (see empirical evidence in Blattner, Farinha and Rebelo (2019)).
Evergreening, as described in Caballero, Hoshi and Kashyap (2008), occurs when banks roll over a loan that will
not be paid. The objective is to avoid registering losses. Since rolling over a loan does not require new funds,
evergreening allows the bank to reduce its accounting equity without incurring a cost.
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Laws of motion. The law of motion for the fundamental value of loans is

dL = (−δL+ I) dt− εLdN. (3)

The change in the fundamental value equals new issuance I, net of maturing loans δL, minus the

defaulting fraction of loans εL, in the event of default dN = 1.

The law of motion for book loans is

dL̄ = (−δL+ I) dt− α
(
L̄− L

)
dt− τεLdN. (4)

This law of motion is similar to Equation (3). It fully captures the flow of repaid principal and

new loans, (−δL+ I) dt. Differently from Equation (3), the loan-default shock affects the book

value with a delay. When the fraction ε of loans L defaults, only a fraction τ ∈ [0, 1] is recognized

immediately.41 The term α
(
L̄− L

)
reflects the speed of the loss recognition: α is the rate at which

the gap between L̄ and L closes. This partial recognition of losses in the model is motivated by

the above discussion of evergreening and internal-valuation accounting.

The law of motion for deposits is

dD =
[
rDD −

(
rL + δ

)
L+ Φ (I, L) + C

]
dt. (5)

The bank issues deposits to pay out dividends, C, to fund the cost of new lending, Φ (I, L), and

to pay the interest, rD, on deposits. The bank receives an inflow of deposits from the interest, rL,

earned on loans and from the repayment of maturing loans, δL. The interest rates, rL and rD, are

exogenous and constant.42

Loan market friction. The loan market is simplified for tractability. Each instant, banks choose

a flow of new loans, It. The cost of issuing loans (in deposits) is

Φ (I, L) = I +
γ

2
(I/L− δ)2 L,

where γ ≥ 0. Given L, Φ (I, L) determines the increase (or decrease) in bank funds that stem from

issuing (selling) new loans.43

41If τ = 0, then books do not acknowledge any fraction of the loss on impact. If τ = 1, then the book and
fundamental values are equal since the losses are fully accounted for immediately. An initial condition for any bank
is that L̄0 ≥ L0, which guarantees that L̄t ≥ Lt.

42A constant interest margin is consistent with the empirical evidence in Atkeson, d’Avernas, Eisfeldt and Weill
(2018) or Wang (2018). It is important to note that constant net-interest-rate margins are not informative about
banks’ interest rate risk exposure, as shown by Begenau et al. (2015) and Begenau and Stafford (2019). Gomez et
al. (2020) and Haddad and Sraer (2019) present empirical evaluations of banks’ interest rate exposures.

43This function has the following properties: First, Φ (δL, L) = δL; that is, the bank does not incur a higher
issuance cost when it replaces maturing loans. Second, Φ (I, L) is increasing in I (ΦI (I, L) > 0) for any I > Ī ≡
(δ − 1/γ)L. Note that the bank would never choose to sell assets (negative issuance) below Ī as the bank would
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The function Φ induces an exogenous portfolio readjustment cost. For I > δL, the convexity

in I in Φ (I, L) can be interpreted as representing decreasing returns to lending activities. For

I < δL, the marginal cost of selling can represent fire-sale costs, as in Shleifer and Vishny (2011),

different areas of lending expertise, or adverse selection in the secondary loans market.

Notation. Before we proceed, we define the ratio of the fundamental value to the book value of

loans by qt ≡ Lt/L̄t ∈ [0, 1]. The fundamental value of bank equity is Wt ≡ Lt−Dt. In addition, we

define leverage as λt ≡ Dt/Wt. Our notion of qt is purposely chosen to relate to Tobin’s Q, which

measures the ratio of market-to-book values: In our model, market values differ from fundamental

values due to the external funding frictions and the accounting rules. Hence, qt and Tobin’s Qt are

different but related concepts.

Since the laws of motion feature drifts and jumps produced by defaults, we introduce the

following notation: We use µxW to denote the drift of a variable, x; and µx is the drift scaled by

wealth, W . Similarly, we use JxW to refer to the jump in x in proportion to W .

Liquidation. Banks continue to operate as long as they satisfy two constraints. First, banks

are subject to a regulatory requirement that stipulates that deposits cannot exceed a fraction ξ of

their book loans D ≤ ξL̄, for ξ < 1. We can express this regulatory constraint more conveniently:

λ ≤ ξ/ (q − ξ) . (6)

Notice that the higher the q, the tighter the constraint. This is the main constraint of interest

in our theory. Second, banks are subject to a market-based leverage constraint. This constraint

requires bank leverage to be below λ̄:

λ ≤ λ̄ ≡ (1− ε) /ε. (7)

The value of λ̄ guarantees solvency in all states, (1− ε)L−D > 0.

If either the market or the regulatory conditions are violated, then the bank is liquidated. The

value after liquidation is an exogenous value that is proportional to equity Vo ≡ voW
1−ψ. Because

of its franchise value, the bank has incentives to avoid defaults: when active, it earns a positive

intermediation spread. The problem is that a bank cannot fully control its leverage since loans

are subject to random default shocks and adjusting leverage takes time. Let Γr be the state where

regulatory liquidations occur and Γm the state where market liquidations occur. The overall states

that trigger liquidations are Γ ≡ Γr ∪ Γm.

actually have to pay another bank to take its loans. Third, Φ (I, L) is convex in I, ΦII (I, L) ≥ 0. The latter
property captures that the greater the loan issuance, the costlier each additional unit of I becomes; i.e., the bank
has to issue more deposits on the margin. When a loan is sold, the bank receives fewer deposits in return for each
additional unit I < δL that is sold.
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Bank problem. At each t, banks choose a dividend payout C and a flow of new loans I to solve

the following problem:

Problem 1 [Bank’s Problem] The bank’s policy functions are the solutions to the following:

0 = max
{C,I}

f
(
C, V

(
L, L̄,D

))
+ VL

(
L, L̄,D

)
µLW + VL̄

(
L, L̄,D

)
µL̄W + VD

(
L, L̄,D

)
µDW

+σ
[
V
(
(1− ε)L, (1− τε) L̄,D

)
− V

(
L, L̄,D

)]
subject to(3), (4), (5) and liquidation V

(
L, L̄,D

)
= voW

1−ψ if
{
L, L̄,D

}
∈ Γ.

This problem is a standard Hamilton-Jacobi-Bellman (HJB) equation, associated with the

Duffie-Epstein preferences. The last term is the change in value that results from liquidation.

Market value of equity. To construct market returns, we need an asset pricing model of banks.

For that, we assume that banks are owned by outside investors. Investors can hold bank shares

but they cannot directly lend or issue deposits. Because of this friction, the market value of

equity diverges from W, the fundamental value of bank equity. Hence, we distinguish between

three concepts of bank equity: the market value, the accounting value, and the fundamental value.

Investors price bank shares according to the net present value of discounted dividends. We assume

that investors are diversified so that a bank’s idiosyncratic risk does not affect their discount factor.

Because we are interested in the cross-sectional behavior of banks, we abstract from the expected

aggregate shocks and the shocks to the investor’s risk premia. For that reason, we endow the

investor with a constant discount rate ρI .44

We construct a pricing equation for the bank’s equity and map the underlying default shocks

to the returns shocks, to be able to build the analogue impulse responses to those presented in

Section 2. The market value of a bank, S
(
L, L̄,D

)
, satisfies the following recursive representation:

ρIS
(
L, L̄,D

)
= C

(
L, L̄,D

)
+ SL

(
L, L̄,D

)
µLW + SL̄

(
L, L̄,D

)
µL̄W + SD

(
L, L̄,D

)
µDW(8)

+σ
[
S
(
(1− ε)L, (1− τε) L̄,D

)
− S

(
L, L̄,D

)]
.

This captures the dividend flow C
(
L, L̄,D

)
determined by the payout policy. Naturally, this

recursive representation reflects the law of motion of the bank’s state variables. The valuation

takes into account how changes in the state variables will affect future valuations, considering the

effect of loan defaults. We assume that, upon liquidation, the investor receives zero for their equity.

An important point is that, implicitly, Equation (8) assumes that investors observe dN . Thus,

information about losses is contained in market prices but not in book values. This is important

44In principle, we could allow discount rates to vary with time, ρIt , which would not change the cross-sectional
implications of the model. For simplicity, we set investors’ discount rate to a constant.
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for our analysis because it implies that market values are indeed informative about loan-default

shocks beyond the information content in banks’ books, as we argue in Section 2.

The ratio of market-to-accounting book values, Tobin’s Q, is given by

Q
(
L, L̄,D

)
≡
S
(
L, L̄,D

)
L̄−D

.

We exploit this expression in Section 3.4. In the model, variations in Q will result from changes

in the value of loans that are not immediately recognized on the books.

The optimization problem of banks. The bank’s problem is scale invariant, as we show

formally in Appendix 1. Banks with the same λ and q but different Ws are scaled replicas. We

express the dividend rate as c ≡ C/W and the loan growth rate by ι ≡ I/L− δ. The growth rate

of bank equity satisfies the following stochastic differential equation:

dW

W
=

rL (λ+ 1)− rDλ︸ ︷︷ ︸
net interest income

− γ

2
ι2 (λ+ 1)︸ ︷︷ ︸

capital loss from adjustment

− c︸︷︷︸
dividend rate


︸ ︷︷ ︸

≡µW

dt+ (−ε (λ+ 1))︸ ︷︷ ︸
loss after default︸ ︷︷ ︸

≡JW

dN, (9)

where µW denotes the drift and JW the jump in wealth after a default. The first term of Equation

(9) captures the interest income on loans per unit of wealth, λ+ 1, net of the interest on leverage,

λ. The second term is the net capital loss from adjusting the loan portfolio: when the issuance

rate equals the maturing fraction of loans, loan issuances do not eat up bank capital. The greater

the deviation, the greater the cost. The third term is the dividend rate. The final term is the

jump in wealth after a default: the jump scales with leverage, λ. Hence, the expression captures

how leverage increases risk. In turn, the law of motion for leverage is

dλ =
(
ι− µW

)
(λ+ 1)︸ ︷︷ ︸

≡µλ

dt+
ε (λ+ 1)

1− ε (λ+ 1)
λ︸ ︷︷ ︸

≡Jλ

dN. (10)

The drift in leverage is the difference between the growth rate of loans, ι, and the growth rate of

equity, µW , scaled by leverage λ + 1. The jump in leverage Jλ reveals how leverage changes with

defaults. The jump in leverage increases with leverage. Finally, q has the following law of motion:

dq = (ι+ α) (1− q) q︸ ︷︷ ︸
≡µq

dt+

(
−
(
ε− τεq
1− τεq

)
q

)
︸ ︷︷ ︸

≡Jq

dN, (11)

where µq denotes the drift and Jq its jump. Notice that q drifts to one with the loan growth and

loss recognition rates, {ι, α}. The term (1− q) q is intuitive: when q is close to zero, the ratio does
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not move because the numerator is very small relative to the denominator; when q is 1, accounting

loans already reflect the fundamental value and the issuances do not change this aspect. The

following proposition is a characterization of the bank’s problem and the market values:

Proposition 1 [Bank’s Problem] Given {λ, q}, V
(
L, L̄,D

)
= (1 + v (λ, q))W − 1, C

(
L, L̄,D

)
=

c (λ, q) ·W and I
(
L, L̄,D

)
= (ι (λ, q) + δ) · L, where {v, c, ι} solve

0 = max
{c,ι}

f (c, v) + vλµ
λ + vqµ

q︸ ︷︷ ︸
change in financial ratios

+ (1 + v)µW︸ ︷︷ ︸
equity growth

(12)

+ σ
[(

1 + v
(
λ+ Jλ, q + Jq

)) (
1 + JW

)
− (1 + v)

]︸ ︷︷ ︸
default jump in wealth

in (λ, q) /∈ Γ

and v = vo for {λ, q} ∈ Γ. The bank’s market value is S
(
L, L̄,D

)
≡ s (λ, q) · W , where s

solves a version of (12) where f (c (λ, q) , s) is substituted with c (λ, q)− ρIs. Finally, Tobin’s Q is

Q (λ, q) = s (λ, q)× ((q−1 − 1)λ+ 1)
−1
.

A takeaway from this proposition is that the model is scale invariant. Also, a key object of

interest is the equity multiplier function, v: the term 1+v represents how a unit of bank net worth

is transformed into a unit of the certainty-equivalent net present value of dividends. By itself, v

is the solution to (HJB) Equation (39). The novelty of this HJB is that it takes into account the

growth in equity and the evolution of bank ratios. Notice that although the model is not stationary

in levels, it is stationary in ratios. For common {λ, q}, the dividend and lending policies scale with

W . Since the problem is scale invariant, the market capitalization is also proportional to W ,

where the price per unit of wealth s depends only on {λ, q}. Below, we describe how v governs the

dynamics of leverage through its influence on the dividend and also through its issuance policies,

given q.

3.2 Inspecting the Mechanism

We next proceed to explain the model’s mechanics, turning on one friction at a time. Formal

results are relegated to Appendix C.

Immediate accounting without loan adjustment costs. To shed light on the mechanics of

our Q-theory, we first solve for the case where the default shocks are instantaneously recognized

(τ = 1) and there are no adjustment costs (γ = 0). In this case, q = 1 at all times so α plays no

role. Since q = 1, only the regulatory liquidation matters and the liquidation boundary is given by

a threshold leverage, Γ = {λ|λ > ξ/ (1− ξ)}. Also, since γ = 0, the bank can choose a jump in the

stock of loans and deposits and, hence, controls a jump in λ.45 By J̄x, we refer to the controlled

(endogenous) jump for any variable x.

45In this version, the path of loans does not have to be continuous even in the absence of shocks.
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A key object for the dynamics is the shadow liquidation boundary, Λ. The shadow boundary

is the leverage rate such that upon a loan-default shock, leverage jumps exactly to the boundary

of the liquidation set. Thus, Λ solves

Λ + Jλ = ξ/ (1− ξ) ,

where Jλ is the jump in leverage after a default shock, starting from leverage Λ.

For this limiting case of the model, the multiplier v is a constant and leverage solves

max
λ∈[0,ξ/(1−ξ)]

(1 + v)
(
rL − rD

)︸ ︷︷ ︸
value of levered returns

λ+ σ

(1 + v)
(
1 + JW

)
I [λ ≤ Λ]︸ ︷︷ ︸

wealth upon default shock

+ voI [λ > Λ]︸ ︷︷ ︸
liquidation value

 . (13)

This problem clarifies that leverage results from a trade-off between intermediation profits and

liquidation risk. The first term in the objective describes how leverage increases levered returns:

intermediation profits
(
rL − rD

)
increase equity at the margin. In turn, the marginal value of

equity is the multiplier 1 + v. The second term is the value after a loan default. Defaults occur

with intensity σ and lead to two possibilities. The bank can avoid liquidation if λ ≤ Λ and, in

that case, the cost of default is only the reduction in the bank’s scale by 1 + JW . Otherwise,

the bank is liquidated and recovers vo per unit of equity. Because the objective is piece-wise

linear, the target leverage is a corner solution. The interesting parameter combination satisfies(
rL − rD

)
∈ [εσ (1 + v) , σvo].

46 Under this combination, the expected returns from increasing

leverage are positive up to λ = Λ. Past the shadow boundary, the hazard of default makes the

benefit of increasing leverage negative. Hence, under those parameters, the bank sets its target

leverage to λ∗ = Λ.47

To guarantee that λ∗ = Λ always, the endogenous jump must neutralize the jump caused by

defaults J̄λ = −Jλ (Λ). With neither delayed accounting nor loan adjustment costs the bank can

do that adjustment at no cost. When dN = 0, the dividend and loan issuance rates are constant.

In particular, c∗ is given by a formula that captures the wealth and substitution effects48

c∗ (v) = ρ1/θ (1 + v)1−1/θ . (14)

46Otherwise, leverage is set to zero or the bank is liquidated upon its first default: If
(
rL − rD

)
< εσ [1 + v̄], then

the expected returns of increasing leverage are negative and λ∗ = 0. If
(
rL − rD

)
> εσ [1 + v̄], then the bank would

like to lever up as much as possible. If vo >
(
rL − rD

)
> σ, then the returns spread exceeds the bank’s expected

liquidation value σvo. In that case, the bank operates at the fringe of solvency, setting λ∗ to its permissible limit.
As soon as it suffers a loan default, the bank is liquidated. Generically, leverage can be set to either of three values,
depending on the parameters: to zero, to the shadow boundary value, or to the liquidation boundary value.

47Critical to this result is that the risk aversion is zero. Otherwise, leverage would involve an additional trade-off
between the returns and the equity growth risk.

48Here, 1 + v acts like a total return on wealth. When θ > 1 (θ < 1), the substitution (wealth) effect dominates
and the bank retains (pays out) more dividends as v increases.
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Given c∗, the loan issuance rate ι∗ is such that leverage is constant, µλ = 0. Finally, the equity

multiplier solves

0 = f (c∗ (v) , v) + (1 + v)
(
µW + σ

(
JW − 1

))
.

Turning back to our motivating facts, this limit case produces a leverage target, as desired.

However, the impulse response of leverage to a returns shock looks like a blip with no persistence.

In turn, the response of total liabilities looks like a one-time shock. Clearly, other aspects of the

model are needed to match all of the facts highlighted above.

Delayed accounting without loan adjustment costs. We now study the case with only

delayed accounting (τ < 1 and γ = 0). This case explains most of the intuition of the general

model. In this case, since losses are not immediately recognized , in general q < 1. The liquidation

region therefore depends on q, and Γ(q) =
{
λ|λ > min

{
ξ/ (q − ξ) , λ̄

}}
. As a result, the shadow

boundary is no longer a scalar but a function of q, which we now label Λ (q). To construct the

shadow boundary, we must consider the jumps Jq and Jλ. The shadow boundary Λ (q) solves

Λ (q) + Jλ (Λ (q)) = min

{
ξ

q + Jq (q)− ξ
, λ̄

}
. (15)

As with immediate loss-recognition accounting, a loan default takes the bank from a point {λ, q}
in the shadow boundary to a point in the boundary of the liquidation set Γ. Again, for suitable

parameter conditions, the dynamics are such that a bank will immediately delever until it reaches

another point in the shadow liquidation boundary Λ (q). The necessary loan sale to return to the

shadow boundary induces a jump J̄λ, but it also alters q, inducing a jump J̄q. Hence, the bank no

longer returns to the same leverage but rather a loan default takes the bank from a point {q, λ}
in the shadow boundary to another point, {q′, λ′} =

{
q + Jq + J̄q, λ+ Jλ + J̄λ

}
, in the shadow

boundary.

It is important to understand the choices of {λ, q} and {c, ι} along the boundary to understand

the ability to match the impulse responses in the data. Figure 1 allows us to sketch these dynamics:

the y-axis represents values of λ and the x-axis values of q. Starting from an arbitrary point {q, λ}
in the shadow boundary, a loan-default event takes the bank to a point on the boundary of Γ.

Since the bank survives but wishes to avoid a future liquidation, it immediately sells assets to

delever. This takes the bank to another point in the shadow boundary, Λ (q′) . Absent defaults,

when dN = 0, the state variable {λ, q} drifts along the shadow boundary. This is because to the

right of the boundary, liquidation risk is positive. To the left of the boundary, the bank prefers to

lever up to increase its equity returns. Hence, the choice of issuances and dividends must guarantee

a smooth drift along the shadow boundary, slowly taking the bank to q = 1, as shown in the figure.

Because the shadow boundary has a negative slope, Λq (q), the bank must guarantee a decline in

leverage as q increases with the pace of the loan-loss recognition.

Turning to the impulse responses: on impact, q falls whereas λ increases. As a result, the market
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leverage features a jump by more than the book leverage, a feature of our impulse responses. After

the period of impact, λ will fall along the boundary whereas q approaches 1. This is consistent

with a mean reversion in the market leverage and only a modest response in the book leverage,

as in the data. We can also describe in detail the dynamics of the liabilities in the model. With

delayed accounting, each point in the boundary is associated with a value v (q). The dividend

policy is modified to

c∗ = ρ1/θ

 (1 + v (q))(
1 + v (q) + vq

(1+Λ(q))
Λq(q)

)1/θ

 . (16)

The expression reveals that even under delayed accounting, the dividend choice is still governed by

a race between wealth (in the numerator) and the substitution effects (in the denominator). The

substitution effect is modified because on the margin, the choice of dividends indirectly affects q.
49 Once the dividends are determined, to stay at the shadow boundary, issuances {ι} must satisfy

the restriction that Λq (q) = µλ/µq. We can obtain a formula for issuances that guarantees that

the bank stays in the shadow boundary:

ι (q) = µW (q)ω (q)− α (1− ω (q)) (17)

with the weight given by

ω (q) ≡ (1 + Λ (q))

q (1− q)
/

(
(1 + Λ (q))

q (1− q)
− Λq (q)

)
.

The intuition for the slow adjustment of liabilities that what we find in the impulse responses

is also found in the formula. Upon a default shock, losses are slowly recognized on the books,

at the rate α. As the losses are recognized, and q increases, banks must take gradual actions to

delever because their fundamental leverage is too high. The expression banks use for their issuances

captures how they chose to use issuances to reduce their leverage. Leverage has a tendency to fall

because retained earnings increase equity, µW (q); recall that Λq (q) has a negative slope. Hence,

the higher the growth in equity, the less the need to reduce loan issuances to reduce leverage. By

contrast, a higher α implies that the losses are recognized faster. Hence, with a higher α, the

bank requires lower (and possibly negative) issuances. Since liabilities increase one-to-one with

issuances, the expression captures how liabilities fall after a default shock. This formula captures

the pattern for issuances, which fall with the rate of loan-loss recognition. However, notice that the

issuance rate only affects liabilities slowly which, unlike the version without delayed accounting,

is capable of explaining the slow response of the liabilities.

To summarize, the model with delayed accounting is consistent with dynamics where, upon a

49Because leverage must stay in the boundary, (1 + Λ) /Λq (q) measures the change in q corresponding to a change
in leverage that keeps the bank along the boundary. The change in q effectively has a price of vq.
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q0

λ

λ̄

λ̄− Jλ

1

Γ(q)

Γ(1)− Jλ

Λ(q)

{q, λ}

default jump: {q + Jq, λ+ Jλ}

controlled jump: {q + Jq + J̄q, λ+ Jλ + J̄λ}

Figure 1: Illustration of {λ, q} dynamics.

default shock, the bank takes quick action to return to the shadow boundary. Once at the shadow

boundary, the bank continues a slow deleveraging, which induces a slow response of market leverage

and total liabilities, as we observed in the data. Thus, even though there are no loan adjustment

costs, the leverage adjustment is gradual along the shadow boundary as the losses are slowly

recognized on the balance sheet. This slow adjustment forms the basis of our Q-theory.

Delayed accounting and loan adjustment costs. We now discuss the dynamics that allow

for loan adjustment costs (τ < 1 and γ > 0). These only introduce inertia to any attempt to

deviate from ι = 0, but the mechanics are very similar to those of the earlier case. From the

previous limit cases, we know that banks have a target for leverage that trades off returns for

liquidation risk. We also know that without adjustment costs, upon receiving a default shock,

banks rapidly delever to return to the shadow boundary and then slowly drift along this boundary.

Loan adjustment costs slow down the endogenous response on impact and slightly perturb the

dynamics along the shadow boundary.

Unfortunately, this case must be solved numerically. Figure 8 presents a numerical solution to

v, the drift of λ and the policy functions {ι, c} for different values of λ in the x-axis and for various

cross sections of q. The figure is constructed under the calibration detailed in the following section.

Panel (a) depicts v. The trade-off between returns and liquidation risk is evident from the shape

of v: for a fixed q, the value v is first increasing but becomes flatter as leverage approaches the

shadow liquidation boundary. Past the liquidation region, the value function jumps to a value that

is equal to its liquidation value. From the figures, we can also observe that v is decreasing in q, a

reflection that a bank that seems better capitalized in its books faces fewer regulatory constraints.

Panel (b) presents the drift of leverage for various values of q. The figure shows how, in this

complete version of the model, leverage is again mean reverting. The target leverage is the point

where the expected change in λ is zero: when leverage is low the drift is very high, reflecting

the effort to increase leverage. To the right of the shadow boundary, the drift is negative and,
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furthermore, very steep, reflecting a slightly smoother version of the jumps that occur without

adjustment costs.

As before, the behavior of leverage is governed by the bank’s payout and lending policies. The

dividend rate in this case solves

c∗ = ρ1/θ

[
(1 + v)

((1 + v)− vλ (λ+ 1))1/θ

]
. (18)

Relative to the dividend policy in Equation (14), the substitution effect is also corrected by the

change in the value function as a result of the change in leverage produced by dividends.

The loan growth policy solves

γ ((1 + v)− vλ) · ι∗︸ ︷︷ ︸
marginal cost of change in assets

= vq
(1− q) q
(λ+ 1)

+ vλ.︸ ︷︷ ︸
marginal benefit of change in financial ratios

(19)

The left-hand side is the marginal cost of changing loans. These deviations cost γ in equity and

have a marginal value of (1 + v) but carry an effect by increasing leverage vλ. The right-hand side

is the marginal benefit of changing the bank’s ratios. Panels (c) and (d) of Figure 8 show how the

desire to delever is reflected in the bank’s loan growth and payout policies. When leverage is low,

the bank has incentives to lever up; it cuts back on dividends and lending. Close to the liquidation

boundary, the bank is eager to delever. It cuts back its loans growth and slashes dividends. The

effects are more dramatic the more realistic its books.

The desire to remain in the neighborhood of the shadow boundary is still present. This is

evident from the invariant distribution depicted in Figure 10 but not from the Equations (18) and

(19) because this desire is encoded in the shape of v, which is not evident from the formula. This

is why it is important to describe the mechanics of the model in layers. For completeness, Figure

9 is the analogue of Figure 8 along the q-dimension.

3.3 Calibration and Estimation

We now describe the calibration and estimation procedures and then investigate the model’s ability

to reproduce the five facts. We use quarterly data from 1990 Q3 to 2015 Q4, as described in

Section 2, to produce the target moments. Thus, all corresponding model moments are also at the

quarterly frequency. To keep the parametrization tractable, we calibrate
{
rL, rD, δ, ξ, ρ, ρI , ε, σ, α

}
independently, matching model moments to target moments in the data. Then, conditional on

these calibrated parameters, we jointly estimate {γ, θ, τ}, the parameters that govern the delay in

the balance sheet responses. As in Section 2, we break the sample into two periods, corresponding

to the pre- and post-crisis periods, and estimate the pre- and post-crisis values for {γ, θ, τ} to

match the impulse-response functions to returns shocks, as discussed in Section 2. The parameter
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values are listed in Table 2. Table 3 presents both the targeted and untargeted moments in the

data and the corresponding model moment.

Calibrated parameters. The exogenous returns on loans and deposits, rL and rD, are respec-

tively set to 1.01% and 0.51%, consistent with the quarterly yield on loans (total interest income

on loans divided by total loans) and the rate banks pay on their debt (total interest expenses

divided by interest-bearing liabilities) in bank call reports. These values are consistent with the

calibration in Corbae and D’Erasmo (2019).

We set the capital requirement parameter ξ to 92.6% in order to reflect a tier-1 risk-based

capital ratio requirement of 8%, a value for which a bank is considered well capitalized.50 This

means that banks’ book-leverage ratios (debt-to-book equity) cannot exceed 14.

The parameters {α, τ} directly speak to our Q-theory. Whereas τ accounts for loan-loss recog-

nition on impact, α governs the speed of loan-loss recognition over time. We estimate τ but

calibrate α because we have a direct counterpart for α. Namely, we set α to 4%. With this value

for α, 65% of unrecognized losses are recognized within 10 quarters.51 This delay is consistent with

Figure 2, Panel (d), where the net charge-offs taper off by the end of 2010, about two and a half

years after the trough in bank market values.

In our model, banks choose a book-leverage ratio on the shadow boundary. The distance

between the shadow boundary and the liquidation set is determined by the size of the idiosyncratic

loan-default shock ε. Thus, once ξ is fixed, we pick ε = 0.25% to match the ergodic mean of banks’

book-leverage ratio to the average pre-crisis book-leverage ratio of 10.6. We choose the pre-crisis

period to calibrate this idiosyncratic shock parameter as the post-crisis sample is more likely to

capture the effects of the financial crisis, which is an aggregate event.

Market leverage is a function of the market price of equity, which in turn is increasing in the

bank’s discount rate, ρ. Therefore, given a value for book leverage that is pinned by the regulatory

parameter, ρ, affects market leverage by moving dividends and, therefore, the market price of

equity, we set ρ to 0.25% to target an average market leverage of 6.8 for the pre-crisis period.

Note that while most of the parameters discussed in this section are calibrated as if they influence

only their target moment, ρ and ε alone do not pin down book leverage and market leverage. We

would ideally estimate ρ and ε jointly with τ , θ, and γ, if we were not limited by computational

tractability. For this reason, the targets are not matched exactly.

Finally, given the value for the default shocks ε, the default intensity σ is set to match the

mean net charge-off rate of 0.48% per year in the full sample. We use the full sample of the net

charge-off rates to allow for a larger time series as credit events are rare. Also, because investors

are risk neutral, their discount factor ρI approximately equals the average market returns on bank

shares. Thus, we set ρI to 3.5% to approximately produce that value for banks’ market-equity

50See the publication by the Federal Reserve.
51See Appendix C.7 for the derivation.
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returns.

Estimated parameters. We estimate {τ, θ, γ}, the parameters that govern the speed of the

responses of the bank’s balance sheet, using the simulated method of moments. Each parameter

in this subset is directly associated with a different friction that affects the balance sheet adjust-

ment process after a loan-default shock. Thus, these parameters determine the model’s ability to

replicate facts 4 and 5.

We estimate these parameters to match the impulse-response functions of market leverage,

book leverage, and bank liabilities to a returns shock in the data. These impulse responses ren-

der a transparent identification: the sensitivity of loan adjustment costs, γ, governs the cost of

deleveraging through asset sales. Thus, γ affects the speed at which banks can delever by selling

liabilities along the shadow boundary. A higher γ translates into a slower response of liabilities to a

returns shock. In turn, the desire to smooth dividends is governed by θ—see Equation (18). Thus,

θ governs the speed at which leverage falls through the effect of dividends on retained earnings. A

lower value of θ turns the bank’s objective closer to linear and makes the bank deleverage faster by

cutting back dividends and increasing retained earnings. Hence, the response of market leverage is

informative about θ. Finally, recall that τ governs how much of a loan-default shock is recognized

on impact. Therefore, τ directly maps into the response of book leverage, on impact. For that

reason, because τ governs the response only on impact, we only use the first period response of

book leverage as a target to identify τ .

To produce the analogue of the estimated impulse responses to the returns shocks in the

model, we solve and simulate the model. We run the same specification for the impulse responses

of Section (2). Given that the impulse responses of liabilities and market leverage differ pre– and

post-crisis, we estimate values for θ and γ for both periods; we label these values as {θpre, γpre} and

{θpost, γpost}, correspondingly for these estimates. We construct excess returns shocks by first cal-

culating the realized returns on equity between the adjacent quarters and the cross-sectional equity

returns. The bank-specific returns shock is then just the difference between a bank’s individual

realized returns on equity and the cross-sectional average of these returns. The latter absorbs any

potentially time varying aggregate effects on banks’ equity returns, similar to only using a time

fixed-effect specification. Formally, the model is over identified because each impulse response

in the data effectively contains 21 moments, one for each βh in Equation (1). However, model-

generated moments such as these are highly correlated so the effective degree of over-identification

is lower.52

To generate a panel of banks as in the data, we first compute the stationary distribution by

simulating 10,000 banks until the cross-sectional mean and standard deviation of λ and q are

approximately constant. We then take this cross section as the initial condition and simulate 66

quarters that represent the pre-crisis period. With this sample, we run the same pre-crisis cross-

52Each impulse response is well approximated by only two moments, a jump on impact and a persistence.
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sectional regressions on the model-simulated data, as we did with the actual data, to estimate θpre

and γpre. To simulate the post-crisis, we hit the stationary pre-crisis economy with an aggregate

shock and continue simulating for an additional 33 quarters. That is, to estimate the post-crisis

parameters, θpost and γpost, we start banks from their pre-crisis stationary distribution and hit all

banks at once with a 2.5% aggregate loan-default shock in one quarter. We chose a 2.5% default

shock as this number is in line with the accumulated loan-default shocks from 2008 through 2010,

which is consistent with our assumed length of loan-default recognition. Once again, we estimate

the same regression and construct impulse-response functions on the model-simulated data as we

did with the actual bank data. We discuss the values from this estimation and the resulting model

fit in the next subsection.

Estimated values, model fit, and interpretation. To match the initial impulse response of

book leverage, τ needs to be small, about 1%. The impact response of book leverage to the returns

shocks does not change across periods. For this reason, we estimate τ only for the pre-crisis period.

The pre-crisis period estimates of the other parameters are θpre = 2.3 and γpre = 0.01. For this

low adjustment cost value, the effect of γ on the model is negligible in the pre-crisis period in the

sense that the dynamics of the model are almost identical to not having adjustment costs. This is

interesting because it means that delayed accounting—and dividend smoothing—can account for

all of the slow balance sheet adjustments after the shocks.

The post-crisis impulse responses of market leverage and bank liabilities produce values of

θpost = 1.7 and γpost = 4.0. This means that, unlike in the pre-crisis period, the post-crisis period

model estimation requires loan adjustment costs to fit the data. The estimation thus reflects some

of the narratives around the financial crisis: a higher value of γ implies that banks face higher

costs to selling loans. This feature fits the narrative of aggravated fire-sale externalities during

the post-crisis period. In turn, a lower value for θ makes the banks’ objectives closer to being

linear. This means that banks accept larger adjustments to dividend payouts and, therefore, can

rely more on internal equity accumulation as a mechanism to delever. This estimate is in line with

the fact that banks cut dividends during the period.53 We return to these results in Section 3.4,

when we discuss the model’s ability to reproduce the impulse responses again.

To conclude the evaluation of the calibration, Table 3 compares the moments generated by

the model and those obtained from the data: our model fits most data moments well, with the

exception of pre-crisis leverage and (untargeted) dividends. The model fits the charge-off rates

both in the pre- and post-crisis. Average market-equity returns in the model match the data

during the pre-crisis sample but differ for the crisis sample. This is because, in both cases, we

calibrate the parameters to their pre-crisis values. With a value of 9.4, the model overshoots its

6.8 data target for market leverage during the pre-crisis period. As noted above, market leverage

depends on more parameters than just ρ so it is more difficult to closely match market leverage

53See for example, https://www.ft.com/content/7a4aa5bc-0a85-11de-95ed-0000779fd2ac.
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without a computationally intensive joint estimation. The model perfectly fits the untargeted

market leverage moment during the post-crisis period. The model hits the book leverage in the

targeted pre-crisis period but it does not generate the same reduction in the book leverage as in

the data. This is not surprising because our model abstracts from the increase in bank capital

requirements that occurred during the post-crisis period and forced banks to decrease their book

leverage. Finally, our model generates a similar level in the market-to-book-equity ratio during

the pre-crisis (1.53 in the data vs. 1.32 in the model) and a reduction in the market-to-book

equity ratio in the post-crisis (0.90 in the data vs. 1.108 in the model). Thus, our simple model

explains about one-third of the reduction in the market-to-book ratio of banks from the pre- to

the post-crisis period.

The bottom panel of Table 3 shows the cross-sectional average and standard deviations of key

model variables. It also includes the two unobservable state variables of our model: fundamental

leverage λ, and q, the discrepancy between banks’ fundamental value of assets and their corre-

sponding accounting values. The fundamental leverage is 18 in the pre-crisis period and jumps to

22 in response to the 2.5% aggregate default shock. The average value for q is 0.977, implying that

the fundamental values and the accounting values differ by 2.3%. The post-crisis q is slightly lower

compared to the pre-crisis q. The loan growth rate is about 2.4% and the growth rate of equity is

around 1.2%. Our model also produces values of equity (equity price) of 1.91 in the pre-crisis and

1.97 in the post-crisis. The valuation is roughly constant across periods. While bank dividends

fall slightly during the post-crisis period, banks operate with higher leverage (and therefore higher

equity growth).

The distribution of the state variables and market leverage are reported in Figure 10. Panel

(a) shows how the distribution of {λ, q} traces out a shadow boundary. Panel (b) contrasts the

distribution of market leverage with the distribution in the data. Although book leverage has

virtually no dispersion, market leverage captures the substantial variation that is driven entirely

by variations in q.

3.4 Taking Stock: Matching Facts 1 to 5

Fact 1. Market- and book-equity value divergence. The first fact we highlight in the

paper is the divergence between book and market bank-equity values during the financial crisis

of 2008. We now discuss the extent to which variations in Tobin’s Q can be explained with our

model. In our Q-theory, Tobin’s Q can diverge through changes in the price per share, s, and the

discrepancy between the book and fundamental values, captured by q. To that end, we produce

an approximation of the law of motion of q in our model (see Equation 11). We denote by x the

aggregate version of a variable x. The law of motion for aggregate q is approximately

dq

dt
≈ (ι+ α) (1− q) q − σε (1− τq) q.
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Setting dq/dt = 0, we obtain an approximate value of q = 0.977, using our pre-crisis model values

(see Tables 2 and 3). This approximated value is identical to the average simulated value of q

reported in Table 3. With an aggregate loan-default shock ε of 2.5%, which is common to all

banks, the jump in the aggregate q is approximately

Jq = −ε (1− τq)

(1− τεq)
q ≈ −2.4%.

Thus, since the initial q is close to one and τ is close to zero, the jump in q is almost equal to the

size of the aggregate default shock.

We can decompose that jump in Tobin’s Q into the effect that is exclusively attributed to the

jump in q as opposed to a change in banks’ stock price. This approximate response is given by

∆Q due to q ≈ Jq · (λ+ 1) = −45%.

The approximation states that the jump in Tobin’s Q attributed to q is the jump in Jq times the

fundamental leverage. The value of this approximation is rather large. A 2.5% shock in loan losses

gets amplified almost twenty times. Recall that although book and market leverage are around

10, fundamental leverage is about 20, due to the initial accounting differences. Hence, although q

is close to 98% in normal times, implying that banks’ books are an almost accurate description of

their reality, small unrecognized losses become magnified by fundamental leverage, accounting for

a decline of almost 45% in Tobin’s Q.

The quality of this approximation is good and telling of the contribution of delayed accounting

to rationalizing the changes in Tobin’s Q in the data. In the simulations used to construct Table

3, we feed the model with a 2.5% loan-default shock. With this shock, on impact the induced

reduction in the average Tobin’s Q at the moment of the shock is 28%. In the simulations, the

isolated effect of little q on the drop in big Q is 53%, which is close to the analytic approximation

above. The overall effect is offset by an increase in the market value per unit of fundamental

wealth, s, which increases by 25%; recall that the marginal value of s increases with the jump in λ.

Thus, the 28% drop in Q that our model can generate accounts for two-thirds of the change in the

Tobin’s Q during the 2008 financial crisis, which falls by 42%. Our Q-theory explains this large

portion of the decline without changes in aggregate risk premia, any changes in the regulatory

landscape, or any decline in implicit government guarantees.

Fact 2. Predictive power. Our second fact of interest is the predictive power of Tobin’s Q in

terms of book-equity returns and loan charge-off rates even up to two years. Our model captures

this effect because market values capture losses that are unrecognized in the accounting books. We

replicate Figure 3 with data generated by the model (see Figure 13 in the Appendix). This figure

shows that market equity contains predictive power for returns on equity and loan losses over and
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above the information contained in book equity. To see why, recall that without considering the

changes in the price per unit of real equity, upon a default shock, returns fall by approximately

JW . A bank’s charge-off rate per unit of equity is approximately α · (1/q − 1) (λ+ 1) . Since the

jump Jq is correlated with the jump JW , the predictability follows by construction.

Fact 3. Equity buffer. The third fact highlights that banks keep a buffer of book equity away

from the maximal leverage allowed by regulation. Earlier we discussed that liquidation is not

desirable because of liquidation costs. For this reason, banks stay at a shadow boundary, which

guarantees solvency in case of a default shock event. Note that in our model, while the default

event is random, the size of the default shock is not. In our model, average book leverage is 12.4,

almost 2 points below the maximal admissible value, given the regulatory constraint. The model

also predicts that in a recession, the fraction of banks near the regulatory constraint increases.

While our model features little cross-sectional variation in book leverage, it captures some of the

cross-sectional dispersion in market leverage, as can be seen in Figure 11b. All cross-sectional

dispersion in market leverage must come from dispersion in equity valuation and cross-sectional

differences in fundamental value to the accounting value of bank assets. This is because our model

features negligible dispersion in book leverage. Thus, even though we abstract from features in

the data that could generate dispersion in book leverage, for example, different business models,

the accounting mechanism alone generates dispersion in market leverage.

Fact 4. Target leverage and slow adjustments. Banks appear to have a target leverage ratio

but only slowly respond to deviations from it (see the impulse-response estimations described in

Section 2). Figure 12a compares the pre-crisis impulse responses to returns shocks of total liabilities

(left panel) and market leverage (right panel) of the model with the data. The black lines represent

the average estimated response from the data—the shaded area represents their 95% confidence

intervals. The blue lines represent the analogue impulse response in the model. The red line

represents the model responses that correspond to the model without balance sheet adjustment

costs and accounting frictions.

The figure shows that the model generates an initial (mechanical) jump and a slow adjustment

of market leverage as well as a slow adjustment of liabilities, as in the data. Note that in the

pre-crisis period, our Q–theory does not rely on loan adjustment costs to reproduce the data as γ

is near zero. Once we allow for accounting values to differ from fundamental values, i.e., τ < 1,

our model does not require further adjustment costs to generate slow adjustments in the liabilities.

The red lines in Figure 12a also show that a dividend-smoothing motive cannot account for the

impulse-response function of the data without accounting frictions. In fact, without accounting

or balance sheet frictions (red lines), banks immediately reduce assets in response to a negative

wealth shock while leaving leverage unchanged.
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Fact 5. Post-crisis leverage adjustment. Bank leverage adjusted faster during the crisis and

immediate post-crisis period, compared to the pre-crisis period.. Unlike the pre-crisis, adjustments

in leverage were driven by increases in equity. The response of assets, as captured by the response

in liabilities, was slower during this period. To capture these features, our model needs higher

balance- sheet- adjustment costs and a lower dividend-smoothing motive as captured by a higher

estimated value for γ and a lower estimated value for θ, respectively. A higher estimated value for

γ in the post-crisis means that selling assets is costlier. These post-crisis estimates are consistent

with several narratives regarding the aggravation of frictions during the crisis. The reduction in θ

during the crisis/post-crisis period means that the model responds to shocks by increasing retained

earnings (and therefore reducing dividends), which leads to more equity. The estimated lower value

for θ could reflect pressures by regulators to cut dividends during the crisis to bolster banks’ equity

positions. All in all, our Q-theory generates all five facts fairly well.

3.5 Effects of Accounting Rules

In the previous sections, we argued that delayed accounting is key to explaining the five facts

this paper highlights. But why should we care about accounting rules? We argue that a reform

toward more-transparent accounting rules, accounting that leads to faster loss recognition, involves

a trade-off that policy makers should be aware off. Namely, faster accounting involves a trade-off

between the scale of bank losses and the speed of adjustment after these losses.

To highlight that trade-off, we solve the model for different values of α. Recall that a lower

α means that losses are more slowly recognized. Lower values of α have the interpretation of

accounting rules that are less transparent. In the model, a lowering α has effects on the distri-

bution of state variables: on one hand, it lowers the average q and, on the other, it increases the

fundamental leverage, λ. Indeed, lower values of α provide banks with more slack with which

to circumvent regulatory constraints and this manifests in a higher fundamental leverage and a

greater discrepancy between the fundamental value and the book value of loans. Figure 13a re-

ports cross-sectional means of q and λ, as we vary α, keeping other parameters in their pre-crisis

values. The negative relationship between q and λ is evident from the figure. Strikingly, although

the fundamental leverage ratio λ differs for different accounting rules, the average book leverage is

constant in each of these equilibria. According to the model, to a regulator that uses accounting

leverage to gauge the health of the financial system, all of these economies will look the same. Yet,

laxer accounting rules increase the potential equity losses and will produce greater assets sales in

response to those losses. This feature highlights one aspect of the trade-off: laxer accounting rules

can lead to greater potential losses.

The other aspect of the trade-off is that laxer accounting rules allow for a smoother adjustment

process to those equity losses. To see this, Figure 13b reports how bank loans respond to a

negative-net-worth shock, depending on α. The lower the α, the smaller the decline in bank loans
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in response to a negative wealth shock. Given a 10% negative wealth shock, our baseline calibration

of α = 4% implies a 6% decline in loans after 5 years. Lowering α to 3% reduces the decline to

3.7%, while with a value of α of 5%, loans fall by 7%. The reason for this pattern is that by

delaying losses, banks no longer need to sell additional loans to keep their book leverage constant.

In that sense, delayed accounting acts like an automatic bank-specific countercyclical buffer.

We can transparently represent this trade-off from the model’s equilibrium equations. One

side of the trade-off, the increased effect on risk (equity losses), can be read from how a lower α

leads to a higher λ that increases −JW in Equation 9. The other side of the trade-off, the slower

adjustment of liabilities after a default shock, can be read from how a lower α leads to a smaller

reduction in ι in Equation 17.

The result connects our model with the debate on whether accounting rules should incorporate

market-based information to improve macro-prudential regulation. In this paper, we argued that

market values incorporate information on losses much faster than book values. Thus we can

envision how incorporating market values to accounting would increase α. We also discussed how

delayed accounting can follow from either the backward-looking nature of book values and or

evergreening, which is the continuous rollover of non-performing loans in order to avoid booking

equity losses. The literature has identified another trade-off: On the one hand, marking assets to

market can exacerbate fire-sale dynamics (Laux and Leuz, 2010; Ellul et al., 2011; Shleifer and

Vishny, 2011). If particular market values are driven by risk premia, then regulation should insulate

banks from changes in risk premia that are not germane to the health of the banking industry.

On the other hand, the discretion in accounting rules opens the door to evergreening, which

contributes to the creation of zombie loans, which are drags on economic efficiency (Caballero,

Hoshi and Kashyap (2008); Huizinga and Laeven (2012); Blattner, Farinha and Rebelo (2019)).

While a welfare analysis that quantifies this additional trade-off is beyond the scope of this paper,

we believe that the race between the size and smoothing out of the equity losses we illustrate here

should also be part of that active trade-off.

4 Conclusion

This paper summarizes five empirical facts about the dynamics of bank leverage. We use these

facts to explore the features banking models need to explain the data. Our empirical findings

suggest a theory wherein banks target their market leverage but where adjustments to that target

are gradual. A comparison between pre- and post-crisis responses suggests that, in contrast to

the pre-crisis period, in the post-crisis banks rely more on retained earnings than on asset sales to

readjust market leverage back to target.

This paper presents a heterogeneous bank model that distinguishes book from market values.

In our model, both measures of equity matter for banking decisions. A novel feature is that

banks have the ability to delay the recognition of losses on their books. The model produces an
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endogenous target for leverage- and features adjustment costs to the resale of assets. The model

reproduces the impulse responses that we estimated from the cross-sectional data. Strikingly, the

estimation highlights the exclusive role of delayed loss accounting to explain the data and puts little

weight on standard adjustment costs. We also demonstrate that regulatory reforms designed to

accelerate loss recognition introduce a trade-off between the scale of equity losses and the posterior

adjustment process.

The model highlights the essential frictions that are necessary to reproduce our five empirical

facts. As part of the continuous fine-tuning process of banking models, future work could use our

model as a building block to study these frictions in general equilibrium.
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Figure 1: Book and Market Equity for Bank Holding Companies.
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Notes: These figures show data on book equity, market capitalization, and preferred equity for BHCs. Book equity

and preferred equity data come from the FR Y-9C, and market capitalization data is based on Center for Research

in Security Prices (CRSP) data. All variables are converted to 2012 Q1 dollars, using the seasonally adjusted GDP

deflator. The left-hand panel shows aggregate series, excluding new entrants such as Goldman Sachs and Morgan

Stanley. “Equity” refers to book equity for all BHCs in the sample and “Equity (Public BHCs)” refers to only

publicly traded BHCs that we can match to the CRSP data. We also show preferred equity for all banks and

aggregate market capitalization; i.e., shares outstanding times the share price of the publically traded BHCs in our

sample. The right-hand panel shows the equivalent time series for the four largest BHCs.

Figure 2: Decomposition of Net Charge-offs
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Notes: This figure shows aggregate net charge-offs for different categories (area chart) and aggregate loan-loss

provisions (solid black line). The data source are FR Y-9C reports. Net charge-offs for loans are defined as

charge-offs minus recoveries. We decompose the net charge-offs into loans backed by real estate, commercial and

industrial (C&I) loans, loans to individuals (e.g., such as credit card loans), and all other loans (e.g., interbank

loans, agricultural loans, and loans to foreign governments).



Figure 3: Market equity contains more cash-flow relevant information than book equity
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Notes: These figures show cross-sectional binned scatter plots of log outcomes on the log market-to-book equity ratio for BHCs, in 2006 Q1 and 2009 Q1.

All plots control for the log book equity by residualizing the variables on the log book equity and then adding back the mean of each variable to maintain

centering. Data on market capitalization are obtained from the CRSP, and all other data are from the FR Y-9C. ROE over the past year is defined as book

net income over the last four quarters divided by book equity four quarters ago; ROE over the next year is defined as the one lead of this variable (i.e.,

profits over the next four quarters divided by current book equity). The share of delinquent loans is the ratio of loans 30 days or more past due plus loans in

non-accrual over total loans. The net charge-off rate is the loan charge-offs over the next quarter minus the loan recoveries over the next quarter divided by

the total loans this quarter. In all plots, the Irwin Financial Corporation is dropped from the sample in both time periods because it is an extreme outlier

for 2009 Q1 (a few months before its failure in September 2009).
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Figure 4: Book and Market Leverage of Bank Holding Companies
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Notes: These figures show data on book and market leverage for BHCs. Book data (book equity and liabilities)

come from the FR Y-9C, and market-equity data is from the CRSP data. The left-hand panel shows aggregates from

BHC balance sheets (excluding new entrants such as Goldman Sachs and Morgan Stanley). The right-hand panel

shows data for the four largest BHCs. Book leverage is computed as assets/book equity, and market leverage is

computed as (liabilities + market equity)/market equity. The aggregate leverage ratios are computed as (aggregate

liabilities + aggregate book equity)/aggregate book equity.
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Figure 5: Quantiles of Bank Holding Companies’ Market Leverage
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Notes: This figure shows data on the quantiles of market leverage for BHCs. Book data (liabilities) comes from the

FR Y-9C, and market-equity data is from the CRSP data. Market leverage is computed as (liabilities + market

equity)/market equity. The median market leverage is plotted in maroon and each tenth percentile is plotted in

blue. To improve visibility, the vertical axis uses a log scale.

Figure 6: Regulatory Capital Ratios for Bank Holding Companies
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Notes: These figures show data on regulatory capital ratios for BHCs from the FR Y-9C. The left-hand panel

shows data on the distribution of the tier-1 capital ratio, defined as (tier-1 capital)/(risk-weighted assets), and the

right-hand panel shows data on the distribution of the total capital ratio defined as (total capital / risk weighted

assets). The figures plot the share of banks whose regulatory capital ratio falls below a given level, computed using

the full unweighted sample. The regulatory capital requirements are shown on the graph and described in the text.
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Figure 7: Estimated Impulse Responses
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Notes: These figures show estimated impulse-response functions for BHCs. The figures show the estimated percent impulse response to

a 1% negative returns shock. For example, in Panel b we show that market capitalization decreases by roughly 1% in response to a 1%

negative returns shock. Dashed lines denote the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period

begins in 2007 Q4. Data on market capitalization and returns are obtained from the CRSP, and all other data are from the FR Y-9C.

The panels display the impulse responses of the log market leverage (Panel a), log market capitalization (Panel b), log liabilities (Panel

c), log book equity (Panel d), and the common dividend rate (Panel e). Market leverage is defined as (liabilities/market capitalization).

The logged common dividend rate is defined as log(1 + common dividends/market capitalization).
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Figure 8: Value and Policy Functions for given q’s

(a) Value Function (b) Drift of Leverage

(c) Issuance Rate (d) Dividend Rate

Notes: These figures show the value and policy functions that are generated under the pre-crisis parametrization of the model, across the λ dimension, for three particular values of q.
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Figure 9: Value and Policy Functions for given λ’s

(a) Value Function (b) Drift of Leverage

(c) Issuance Rate (d) Dividend Rate

Notes: These figures show the value and policy functions that are generated under the pre-crisis parametrization of the model, across the q dimension, for three particular values of λ.
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Figure 10: Invariant Distributions

(a) Model Stationary Distribution of Banks Across the q and λ State Space
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Notes: Panel a shows a two-dimensional histogram of the stationary distribution of banks across the (λ, q) space. The grey area shows

the regulatory liquidation region. Panel b compares the distribution of the market leverage generated by the model against the data.
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Figure 11: Model and Data Impulse Responses to a Returns Shock
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(a) Pre-crisis IRFs
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(b) Post-crisis IRFs

Notes: The figure shows the impulse-response functions (IRFs) of market leverage and liabilities to returns shocks. The blue line corresponds to the model-generated IRFs, whereas the

black line is from the empirical section, with the shaded region corresponding to the confidence band for the estimated responses. The shock occurs in quarter 1.
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Figure 12: Counterfactual Exercise

(a) Effect of Delayed Loss Recognition on q and λ
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Notes: The figures show the results from our counterfactual exercise. Each dot in the top figure is a pair of cross-sectional means of

λ and q in the pre-crisis stationary allocation for a given value of α. The gray area represents the regulatory liquidation set. Each of

these stationary allocations is characterized by approximately the same mean book leverage of 12.4. The bottom panel shows the IRF

to a 1% returns shock for aggregate loans for three different values of α.
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Table 1: Aggregate Descriptive Statistics

Real Change Log-Linear
2008 2009 2010 2008 2009 2010

Market

Equity

-54.08% -39.35% -29.03% -61.21% -49.98% -42.86%

(-$705B) (-$513B) (-$378B) (-$945B) (-$790B) (-$694B)

Book

Equity

11.83% 21.70% 25.97% -3.46% -1.50% -4.41%

($94B) ($172B) ($206B) (-$32B) (-$15B) (-$46B)

S&P 500 -42.08% -28.83% -21.20% -25.55% -7.01% 4.63%

Notes: The columns headed with the label “Real Change” show the percentage change from the raw variables.

The columns headed with the label “Log-Linear” show the cyclical deviations from a log-linear trend in percentage

points since 2007 Q3. Market Equity refers to shares outstanding times the share price aggregated across all

publicly traded BHCs. Book equity is the book equity of publicly traded BHCs. All variables are deflated using the

seasonally adjusted GDP deflator and converted to 2012 Q1 dollars. The dollar values are obtained by multiplying

the cumulative percentage point deviation by the real market capitalization and real book equity at the end of

2007 Q3, respectively. The last row shows the percentage change in the returns on the S&P 500 in the first three

columns, while the last three columns show the change relative to a linear log-linear trend.

Table 2: Parametrization

Parameter Description Target

Independently calibrated
rL = 1.01% Loan yield BHC data: interest income / loans

rD = 0.51% Bank debt yield BHC data: interest expense / debt

δ = 7.69% Loan maturity FFIEC 031/041: average maturity of loans and securities

ξ = 0.926 Capital requirement Capital requirement of 8% to be well capitalized

ε = 0.25% Average default shocks Accumulated bank losses

σ = 0.4791 Arrival rate of Poisson process Match loan charge-off rate

α = 4% Recognition rate of books Peak of charge-off rate after financial crisis

ρ = 0.25% Banker’s discount rate CRSP: Mean market leverage

ρI = 3.51% Investor’s discount rate CRSP: Bank equity returns

Jointly calibrated
τ = 1% Initial fraction of loan-loss recognition Initial jump of book leverage IRF

θpre = 2.30 Inverse IES pre-crisis Match market leverage IRF pre-crisis

θpost = 1.71 Inverse IES post-crisis Match market leverage IRF post-crisis

γpre = 0.01 Balance sheet adj. costs pre-crisis Match liabilities IRF pre-crisis

γpost = 3.96 Balance sheet adj. costs post-crisis Match liabilities IRF post-crisis



Table 3: Model and Data Moments

Pre-crisis Post-crisis
Data Model Data Model

Log Market Returns 0.035 0.045 -0.012 0.046
(0.149) (0.015) (0.230) (0.017)

Market Leverage 6.799 9.388 10.025 11.056
(0.598) (0.052) (0.815) (0.070)

Book Leverage 10.619 12.409 9.870 11.967
(0.366) (0.001) (0.502) (0.010)

Market to Book Equity 1.532 1.322 0.897 1.082
(0.469) (0.052) (0.584) (0.076)

Log Common Dividend Rate 0.006 0.033 0.005 0.028
(0.006) (0.000) (0.006) (0.002)

Log Net Charge-Off Rate 0.001 0.001 0.002 0.001
(0.003) (0.002) (0.004) (0.002)

Pre-crisis Post-crisis
λ 18.048 22.029

(2.114) (4.142)
q 0.977 0.966

(0.006) (0.008)
c 0.065 0.055

(0.005) (0.005)
ι 0.024 0.024

(0.002) (0.004)
dW/W 0.012 0.029

(0.033) (0.042)
s(λ, q) 1.914 1.972

(0.119) (0.218)
Notes: The columns labeled “Pre-crisis Data” refer to the period 1990 Q3 to 2007 Q3, whereas “Post-crisis Data”

refers to the period 2007 Q4 to 2015 Q4. The moments from the model are generated from a panel of 10,000 banks

with the same number of quarters as in the respective periods for the data. For the column “Pre-crisis model,” we

calculate the moments using the stationary distribution of banks. We compute the stationary distribution by first

simulating enough quarters so that the means and standard deviations of the state variables (λ, q) are approximately

constant and then we keep the last one as the initial quarter of the simulated sample. For the post-crisis model

moments, banks suffer an aggregate default shock of 2.5% in the first quarter. The first row shows the mean for

each variable. The second row shows standard deviations in parenthesis. For market leverage, book leverage and

market-to-book equity, the mean and standard deviations are computed on the logs, but when reporting the mean

we apply exponentials to show the means in levels.
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A Data Appendix

A.1 Sample Selection

We analyze bank holding companies (BHCs), drawing data from multiple sources. We focus on
top-tier bank holding companies that are headquartered in the 50 US states or in Washington D.C.
In most of our analyses, we analyze data from 2000 Q1 to 2015 Q4. For the analysis of impulse-
response functions, we extend the sample back to 1990 Q3 (this is the first year for which we can
identify whether a BHC is top tier). For book variables, we use data from the FR Y-9C, downloaded
through Wharton Research Data Services (WRDS). We match this to data on market capitalization
and returns, which we obtain from the Center for Research in Securities Prices (CRSP) by using the
PERMCO-RSSD links dataset provided by the New York Fed (https://www.newyorkfed.org/
research/banking_research/datasets.html). For analyses that use solely book data, we use
data for those BHCs that we find in our sample in the FR Y-9C; for analyses that use market data,
we use only the observations that we observe in both FR Y-9C and the CRSP. In one robustness
check, we use information on the dates of and the participants in bank mergers and acquistions;
we obtain data on bank mergers from the Chicago Fed (https://www.chicagofed.org/banking/
financial-institution-reports/merger-data). In an additional robustness check, we drop
all banks that were ever stress tested (CCAR and DFAST). We obtain information from the
Federal Reserve, on whether banks were ever stress tested (The main website is https://www.

federalreserve.gov/supervisionreg/stress-tests-capital-planning.htm, and the specific
data sets can be found at https://www.federalreserve.gov/supervisionreg/ccar.htm and
https://www.federalreserve.gov/supervisionreg/dfa-stress-tests.htm).

A.2 Evolution of Main Balance Sheet Variables

To get a sense of how the 2008 crisis affects banks, we report the evolution of key balance sheet
components in Figure 1. This figure shows total assets, liabilities, and loans—not netting out the
allowance for loan losses—or the aggregate banking sector (left-hand panel) and the four largest
BHCs in terms of assets. The banking industry is highly concentrated: The “Big Four” is used in
reference to accounting firms. The largest BHCs account for roughly 50% of aggregate assets. At
the onset of the crisis, the growth of bank assets, loans, and liabilities slow down but never drop as
dramatically as market valuations for bank equity (see below). The amount of outstanding loans,
the largest component of bank assets, stagnate during the crisis and eventually falls. By 2009 Q4,
loans net of the allowance for loan losses fall by $361 billion, a drop of only 6.84%.54 This number
is driven only in part by losses as banks also slow down their issuances of new loans.

A.3 Difference between Market and Book Data

Difference between market and book data. To get a sense about how the crisis affects
banks, we report the changes in select aggregate balance-sheet components and aggregate bank-
equity-return data since the beginning of the Great Recession in 2007 Q3 in Table 4. We do so in
two ways. We first fit a linear trend to the logged real series and we report deviations from that
trend in the first three columns of the table.55 We estimate the trend, using the data through 2007

54The allowance for loan losses is an estimate of likely loan losses for the outstanding loans on the balance sheet.
The next subsection provides more detail on how bank accountants calculate this number.

55We use the seasonally-adjusted GDP deflator to adjust for inflation, and report all values in 2012 Q1 dollars.
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Figure 1: Balance Sheets of BHCs
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Notes: These figures show data on assets, liabilities, loans, and loans net of ALL for BHCs. Data come from the

FR Y-9C. Loans net of ALL refers to loans minus the allowance for loan losses (this subtracts out “probable and

estimable” future losses on the current stock of loans). All variables are converted to 2012 Q1 dollars, using the

seasonally adjusted GDP deflator. The left-hand panel shows aggregate time series, excluding new entrants to the

sample BHC such as Goldman Sachs. The right-hand panel shows the same data for the four largest BHCs. Note

that the spike in the data on Wells Fargo is due to its acquisition of Wachovia. Likewise, JP Morgan acquires Bear

Stearns and WaMu, while Bank of America takes on Merrill Lynch and what was left of CountryWide.

Q3 and report the changes since that trend.56 Second, we report simply the real changes since
2007 Q3 in the last three columns of the table. Each column computes the change until the fourth
quarter of the year indicated by the column. For aggregate bank balance sheet quantities, we
focus our attention on the aggregate series of loans and different measures of equity since these are
the quantities that are at the head of macro-finance models. We also report the changes in bank-
equity-returns data to provide a summary of shareholder losses and, for comparison, we report the
changes in the S&P stock market index.

Bank accounting practices. The discrepancy between book and market equity reflects bank
accounting practices. Banks can delay acknowledging losses on their books (e.g., Laux and Leuz
2010) because they are not required to mark to market the majority of their assets. There are
many incentives to delay book losses. In practice, a key metric for measuring the success of a
bank are its book returns on equity (ROE).57 Given that ROE is a measure of success, manager
compensation is linked to book-value performance. Moreover, shareholders and other stakeholders
may base their valuations on information from book data. Finally, banks are required to meet

56Since market returns and book ROE are flows rather than levels, we detrend by simply subtracting the pre-
crisis average. Also, since flows can be negative, we use log(1 + r) instead of log(r). A concern with log-linear
detrending is that it could be based on an unsustainable boom, yielding an overestimate of the size of the cyclical
deviation. Simply looking at raw changes in this series sidesteps these concerns but only by not dealing with the
trend altogether. We report both estimates for completeness, but we acknowledge that each of these estimates is
imperfect. We also compute (available upon request) estimates from HP-filtered data. The HP-filtered residuals
were typically of substantially smaller magnitude than the residuals estimated with a log-linear trend. The HP-filter
seems to be overfitting the data and treating as a trend what is really just a persistent cyclical component.

57For example, JP Morgan’s 2016 annual report states “the Firm will continue to establish internal ROE targets
for its business segments, against which they will be measured” (on page 83 of the report).
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Table 4: Aggregate Descriptive Statistics

Log-Linear Real Change
2008 2009 2010 2008 2009 2010

Market

Cap.

-61.21% -49.98% -42.86% -54.08% -39.35% -29.03%

(-$945B) (-$790B) (-$694B) (-$705B) (-$513B) (-$378B)

Book

Equity

-3.46% -1.50% -4.41% 11.83% 21.70% 25.97%

(-$32B) (-$15B) (-$46B) ($94B) ($172B) ($206B)

Common

Equity

-28.44% -11.69% -10.42% -17.35% 8.29% 16.64%

(-$275B) (-$120B) (-$114B) (-$145B) ($69B) ($139B)

Loans

Net of

ALL

2.68% -10.41% -14.33% 2.58% -6.84% -7.27%

($141B) (-$571B) (-$819B) ($136B) (-$361B) (-$384B)

S&P 500
-25.55% -7.01% 4.63% -42.08% -28.83% -21.20%

Bank

Market

Return

-57.87% -61.42% -60.23% -54.26% -55.28% -50.78%

(-$755B) (-$801B) (-$785B) (-$708B) (-$721B) (-$662B)

Book

Return

on Equity

-20.30% -27.89% -33.58% -7.84% -6.34% -3.11%

(-$171B) (-$236B) (-$284B) (-$66B) (-$54B) (-$26B)

Notes: Top row shows cyclical deviations in percentage points since 2007 Q3; bottom row shows deviations converted

into raw values. Book equity refers to book equity of publicly traded BHCs. Loans net of ALL refers to loans minus

the allowance for loan losses (this subtracts out “probable and estimable” future losses on the current stock of

loans). All variables are deflated using the seasonally adjusted GDP deflator. Level variables are converted to 2012

Q1 dollars, flow variables are deflated by subtracting inflation. Bank market returns deviations and book returns

on equity are cumulated since the end of 2007 Q3, and dollar values are obtained by multiplying the cumulative

percentage point deviation by real market capitalization and real book equity at the end of 2007 Q3, respectively.
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capital standards that are based on book values.
Banks’ accounting flexibility is studied extensively in the accounting literature (Bushman, 2016

and Acharya and Ryan, 2016 review the literature on this issue, Francis et al., 1996 study the same
issue for non-financial firms). In practice, banks can use two methodologies to record securities
on the books: either amortized historical cost (the security is worth what it cost the bank to
buy it, along with appropriate amortization) or fair value accounting.58 In addition to mispricing
securities, another degree of freedom is the extent to which banks can acknowledge impairments:
banks have the right to delay acknowledging impairments on assets held at historical cost if they
deem those impairments as temporary (i.e., if they believe the asset will return to its previous
price). This gives banks substantial leeway and leads banks to overvalue assets on their books
during the crisis. Huizinga and Laeven (2012) find that banks use discretion to hold real-estate-
related assets at values higher than their market value. (Laux and Leuz, 2010) point to some
notable cases of inflated books that occurr during the crisis: Merrill Lynch record sales of $30.6
billion dollars of collateralized debt obligations (CDOs) for 22 cents on the dollar while the book
value is 65% higher than its sale price. Similarly, Lehman Brothers writes down its portfolio of
commercial mortgage-backed securities (MBS) by only 3%, even when an index of commercial MBS
is falling by 10% in the first quarter of 2008. Laux and Leuz (2010) also document substantial
underestimation of loan losses in comparison to external estimates.

This shows up in our own analysis as well: Figure 2 shows that provisions for loan losses and
net charge-offs only reach their peak in 2009 and 2010, respectively, and remain quite elevated
at least through 2011, well after the recession ends. The decomposition of net charge-offs shows
that these losses are heavily driven by real estate, suggesting they are associated with the housing
crisis.59 In 2011, banks’ books only acknowledge losses that the market had already predicted
when the crisis hit.

Harris et al. (2013) construct an index, based on information available in the given time period,
that predicts future losses substantially better than does the allowance for loan losses.60 This
implies that the allowance for loan losses is not capturing all of the available information to
estimate losses. This may in part be strategic manipulation, but there may also be a required
delay in acknowledging loan losses. Under the “model” that was the regulatory standard during
the crisis, banks are only allowed to provision for loan losses when a loss is “estimable and probable”
(Harris et al., 2013). Thus, even if banks know that many of their loans will eventually suffer losses,
they are not supposed to update their books until the loss is imminent.

58Fair value accounting can be done at three levels: Level 1 accounting uses quoted prices in active markets.
Level 2 uses prices of similar assets as a benchmark to value assets that trade infrequently. Level 3 is based on
models that do not involve market prices (e.g., a discounted cash flow model). Banks are required to use the lowest
level possible for each asset. In practice, most assets are recorded at historical cost. The majority of fair value
measurements are Level 2 (Goh et al. 2015; Laux and Leuz 2010). Recent work shows that the stock market values
fair value assets less if they are measured using a higher level of fair value accounting. This leaves room to misprice
assets on books. Particularly during 2008, Level 2 and Level 3 measures of assets are valued substantially below
one (Goh et al. 2015; Kolev 2009; Song et al. 2010). Laux and Leuz (2010) document sizable reclassifications from
Levels 1 and 2 to Level 3 during this period. They highlight the case of Citigroup, which moves $53 billion into
Level 3 between the fourth quarter of 2007 and the first quarter of 2008 and reclassifies $60 billion in securities as
held-to-maturity, an accounting measure that enables Citi to use historical costs.

59When a bank has a loss that is estimable and probable, it first provisions for loan losses, which shows up as a
PLL. Later, when the loss occurs, the asset is charged off and thus taken off the books, which shows up as charge-
offs, although occasionally the bank can recover the asset. Net charge-offs are charge-offs minus recoveries. We
show a decomposition by category for net charge-offs but not for the PLL because the FR Y-9C does not provide
information on the PLL by loan category.

60The ALL is the stock variable that corresponds to the PLL.
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Information content We test whether book equity captures all available information about
bank cash flows by using cross-sectional regressions of market equity on book equity and several
other profitability measures. We are motivated by the efficient-markets hypothesis that suggests
that market values reflect all available information about future dividends and, by extension,
about banks’ future profits and present net worth: If market equity indeed contains additional
information about bank profitability that is not captured by their book values, then market equity
will be correlated with variables that capture profitability, even after conditioning on book equity.
To help us visualize the additional information content of market values over and above book
values, consider the following cross-sectional regression:

log (Market Equityi) = α + β log (Book Equityi) + f(Xi) + εi,

where f(X) represents the polynomials in our variables of interest and i indexes banks.61 We then
construct the partial residual log (market equity) − α − f(X) and plot this on the vertical axis
of Figure 2. We plot the regressor of interest, X, on the horizontal axis. By construction, the
polynomial f(X) that best fits the outcome variable log (market equity) will also be the polynomial
that best fits the partial residual. Thus, Figure 2 allows us to plot f(X) and assess the goodness
of its fit. We consider a quartic in log ROE over the past year (controlling for the log book equity)
and a quartic in the log ROE over the next year (controlling for the log book equity and a quartic
in the log ROE over the past year) as f(X).62 These graphs confirm that market capitalization,
controlling for book equity, is increasing in both ROE over the past year and ROE over the next
year. Hence, even after controlling for book equity, market capitalization captures the information
content of net income from the past and for the upcoming year. Note that the non-linear regression
specification is important. For example, in the post-crisis period, there is a left tail of banks with
very negative ROEs. In this region, the marginal effect of the ROE on market capitalization is
much smaller.

61Appendix Section A.3 shows the partial R2 for this regression for a range of variables capturing profitability
measures such as loan charge-offs and ROE over various time horizons.

62For improved visibility, we exclude outliers from the graph window by limiting the graph’s horizontal axis to
values within ±3 standard deviations from the mean.
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Notes: These figures show the results from a cross-sectional regression of the log market equity on assorted variables. The top row shows the results from

a regression of the log market capitalization on the log book equity and a quartic in the log ROE over the past year. The bottom row shows the results

from a regression of the log market capitalization on the log book equity, a quartic in the log ROE over the past year, and a quartic in the log ROE for the

next year. The horizontal axis shows the regressor of interest, and the vertical axis shows the outcome minus the effect of the controls (for the top row, the

controls are a constant and the log book equity; for the bottom row, the controls are a constant, the log book equity, and a quartic in the log ROE over

the past year). The left-hand column shows the results for 2006 Q1, the right-hand column shows the results for 2009 Q1. Regressions are run on the cross

section of banks with all variables available, but to improve visibility the horizaontal axis of the graph window is restricted to ±3 standard deviations from

the mean. Data on market capitalization and returns are obtained from the CRSP, and all other data are from the FR Y-9C. The log RoE is defined as

log (1 + ROE). The ROE over the past year is defined as book net income over the last four quarters divided by book equity four quarters ago; The ROE

over the next year is defined as being a one year lead of this variable.
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B Additional Impulse Responses

B.1 Risk Adjustment

For our main impulse-response results, we wish to use risk-adjusted returns rather than raw returns.
More formally, we assume that the market returns of bank i at time t are given by

rit︸︷︷︸
Raw Returns

− rft︸︷︷︸
Risk-Free Rate

= αi + Xt︸︷︷︸
Factors

βi︸︷︷︸
Loadings

+ εi,t︸︷︷︸
Idiosyncratic Component

All returns are logged; e.g., rit refers to log (1 + raw bank returns). We wish to isolate the vari-
ation in the idiosyncratic shocks, εi,t, and we use this variation to estimate the impulse responses.

A natural but naive approach would be to estimate the above model for each bank i, using OLS,
and then to use the estimated residuals, ε̂it, as the regressors in the impulse-response estimation.
The problem here is that it induces bias: ε̂it is a noisy measure of the true regressor εit, which
leads to bias as long as T is finite (the bias will shrink as T grows large because ε̂it will converge
to the true εit).

Fortunately, there is a simple solution: we estimate ε̂it using OLS, and then we use ε̂it as an
instrument for the unadjusted returns. Since our main regressions use contemporaneous returns,
twenty lags, and their interaction with a post-crisis dummy, this means we use as instruments
contemporaneous ε̂it, twenty lags of ε̂it, and their interaction with a post-crisis dummy. Instru-
mental variables do not suffer from the same problem of bias under classical measurement error.
Instead, to get identification under the assumed model for returns, we need our instrument to be
correlated with the “good variation,” εit, and uncorrelated with the “bad variation,” αi + Xtβi.
This is mechanically what we are doing when we run OLS at the bank level, and if the assumed
model for returns is correct, then we have E [η̂it (αi +Xtβi)] = αiE [η̂it] + E [η̂itXt] βi = 0 + 0.
Thus, our instrumental variables strategy will give us a consistent estimator of the true impulse
response, under the assumption that we have the correct model of returns. Since the OLS regres-
sion estimating ε̂it is conducted at the bank level, we cluster our standard errors at the bank level
(clustering at the bank level is already a good idea).

B.2 Results Without Factor Risk Adjustment

While we favor the risk-adjusted results, we also compute “unadjusted results” for the impulse
responses, which we report here for completeness. The results are qualitatively and quantitatively
similar across these methods. Compared to the risk-adjusted results, however, the unadjusted
results suggest a smaller response of liabilities in the pre-crisis period and, thus, they also suggest
a slower pre-crisis leverage adjustment.
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Figure 3: Estimated Impulse Responses for Stock Variables (No Risk Adjustment)
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Notes: These figures show estimated impulse-response functions for BHCs. The figures show the estimated im-

pulse responses to one–unit negative-returns shocks. Dashed lines denote the 95% confidence interval. Standard

errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and

returns are from the CRSP, and all other data are from the FR Y-9C. The panels display the impulse responses

of log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined

as log(liabilities/market capitalization), so that it represents the difference between the response of the log liabil-

ities and log market capitalization (results using log(liabilities + market capitalization)/market capitalization) are

extremely similar).
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Figure 4: Idiosyncratic Shock Series of Big Four Bank Holding Companies
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Notes: This figure plots the idiosyncratic shocks (for the four largest BHCs) used to estimate the impulse-response

functions. First, we isolate the idiosyncratic component of returns using the factor model, and then we residualize

this on time fixed effects.

B.3 Robustness and Validity of the Identification Strategy

In this section, we conduct various tests to check the validity of our identification strategy and the
robustness of our results.

A narrative approach to corroborate the idiosyncratic shocks To provide corroberating
evidence of the validity of our identification strategy, we first show that the estimated returns
shocks do indeed look like idiosyncratic shocks for the four largest banks (Bank of America, J.P.
Morgan Chase, Wells Fargo, Citigroup). To construct the idiosyncratic shocks, we regress each
bank’s market returns on the Fama-French three-factor returns and regress the residual further
on the time fixed effects. The residuals from this regression represent our idiosyncratic shocks.63

Figure 4 presents our estimates of the idiosyncratic shocks. They indeed look like white noise and
do not seem to be substantially autocorrelated. Note that the time series for Citigroup starts a
little later because Citigroup did not exist until 1998 when Traveler’s merged with Citicorp.

We also provide narrative support for the idiosyncratic nature of our estimated shocks by using
an extensive search of newspaper articles for large idiosyncratic shock value estimates.

63We are controlling for the time fixed effects because they are included in the regression we actually run to get
the impulse-response function.
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Table 5: Narrative Support for Idiosyncratic Shocks

Bank
Name

Year-Qtr Idiosyncratic
shock

Bank-specific events

Bank of America

2000q4 -0.200 Sunbeam (which BofA lended to) posts an $86M loss. BofA said net charge-offs in Q4 will
double. BofA issues warning on $1B uncollectible debt, may miss the December quarter profit
forecast by as much as 27%.

2003q4 -0.218 BofA agrees to pay $47 to buy FIeet Boston Financial ”hefty premium” & ”could dilute earn-
ings.”

2008q3 0.288 BofA to buy Merrill for $50B (Sept 15).
2009q2 0.452 Stress test: BofA needs to address $34B capital shortfall, better than expectation.
2011q4 -0.275 Merrill Lynch agrees to pay $315 million to end a mortgage-securities lawsuit (Dec 7).
2012q4 0.248 BofA considered better buy after increase in house prices that (given its portfolio composition)

particularly benefited BofA.

Citigroup

1999q1 0.319 Citigroup profit falls 53% in 4th period but still topps analysts’ expectations.
1999q3 0.205 Citigroup posts an unexpected increase of 9.3% in net income for second quarter (July 20).
1999q4 0.250 Citigroup’s citibank unit is marketing credit card for the internet to millions.
2000q1 0.226 Citi Intelligent Technology receives investment; dividends increase from $1.05 to $1.20.
2003q4 -0.215 Citi to repay certain funds $16 M plus interest; Citigroup Asset Management faces federal

probe.
2009q1 -0.351 Citigroup has $2B in direct gross exposure to LyondellBasell Industries, which filed for

bankruptcy protection last week. Fitch cuts Citi preferred to junk.
2009q3 0.199 Citi reports profit after gain from Smith Barney. Citigroup’s mortgage mitigation rises by 29%

in second quarter.
2009q4 -0.267 Citi fined in tax crackdown. Abu Dhabi’s sovereign wealth fund is demanding that Citigroup

scraps a deal that would see the fund make a heavy loss on a $7.5 billion investment in the
bank.

2010q2 0.285 Citi reportes quarterly earnings of $4.4B exceeding expectations.

J.P. Morgan Chase

1997q2 -0.182 J.P. Morgan particularly large exposure to 1997 Asian Financial Crisis.
https://www.imf.org/external/pubs/ft/wp/1999/wp99138.pdf

2000q1 0.169 J.P. Morgan told investors on Monday that January and February had topped performance
levels seen in the fourth quarter. Dividends increase from $0.2733 to $0.3200 on March 21.

2000q3 0.357 Chase buying J.P. Morgan.
2001q2 -0.185 J.P. Morgan Chase disclosed this week that their venture capital portfolios had incurred sig-

nificant losses.
2002q3 -0.322 JPMorgan Partners reports $165M operating loss for Q2. J.P. Morgan sees third-quarter

shortfall.
2004q4 -0.198 JPMorgan Chase profit falls 13%.
2008q3 0.234 J.P. Morgan profit falls 53% but tops Wall Street target.
2009q1 0.249 J.P. Morgan net falls sharply but tops Wall Street view. J.P. Morgan to sell Bear Wagner to

Barclays Capital: WSJ.
2012q2 -0.207 J.P. Morgan: London Whales $2 Billion Losses. Two shareholder suits filed against J.P. Mor-

gan.

Wells Fargo

2001q2 -0.161 Wells Fargo discloses that their venture capital portfolios incurred significant losses. Wells
Fargo to take $1.1 billion charge

2008q3 0.338 Wells Fargo’s net dropps 21% as it sets aside $3 billion for loan losses, better than expected.
Earnings decline but beat estimates.

2009q1 -0.315 Wells Fargo posts a surprise $2.55B Q1 loss, later revised to $2.77B. Wells Fargo adds a pretax
$328.4M impairment of perpetual preferred securities to its fourth-quarter loss.

2009q2 0.405 Wells Fargo sees record Q1 profit, projections easily exceed expectations (expects earnings of
$3 billion).
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Table 5 shows that large absolute idiosyncratic shock values are consistent with good or bad
bank-specific events, such as “Wells Fargo sees record Q1 profit, projections easily exceed ex-
pectations,“ or “Citi fined in tax crackdown.” The table shows that large positive or negative
idiosyncratic shocks can be corroborated with specific events that appear bank specific, which
supports the validity of our identification strategy.

Placebo Tests To test the validity of our identification strategy, we conduct placebo tests where
we include ten leads of returns (in addition to the contemporary value and twenty lags, as before).
If the returns really are unanticipated shocks, then the leading values should not affect current
behavior. This is similar to testing for pre-trends. We are testing whether the banks that will
experience higher returns in the future are already acting differently today. Overall, the placebo
tests are encouraging and suggest that our results are not driven by prior differences in the behavior
of banks that experience returns shocks.

Identification robustness We provide a few additional pieces of evidence that corroborate the
validity and robustness of our identification strategy.

First, we verify that our results are robust to excluding the crisis years 2008 and 2009 from
our sample. The idea is to rule out a lot of stories related to specific events during the crisis (e.g.,
the realization that the government might not guarantee that a bank would not fail, or that this
was somehow about exposure to Lehman). The results are shown below (for our main outcomes:
liabilities, market cap, and market leverage). It makes no noticeable difference to the results.

Second, we check whether bank mergers drive the results. To this end, we drop the quarter of
the merger as well as the quarter before and after the merger. The results for our main outcomes:
liabilities, market equity, and market leverage, are provided in Figure 7. Again, it makes no
noticeable difference to the results.

Similarly, we check whether the results are driven by the stress tests performed by banks: these
stress tests were implemented after the onset of the crisis and they encouraged or mandated that
banks raise additional capital. To show that the stress tests do not drive the results, we drop all
banks that ever participated in a stress test (e.g., Bank of America participated in stress tests, and
so we drop Bank of America from our sample in all periods). The results for our main outcomes
are shown in Figure 8. Again, it makes no noticeable difference to the results.

Another potential concern is that the returns shocks, rather than the default shocks, could
be picking up shocks to future investment opportunities. To test this concern, we check the
response of the liquid assets ratio: if negative returns shocks indeed predict lower future investment
opportunities rather than current cash flows, then we would expect banks to respond to these shocks
by moving their portfolios into liquid assets. The results, shown in Figure 9, show no statistically
significant response of liquid assets, pre-crisis, and a small temporary response post-crisis that is
reversed within a few quarters. We take this as evidence against the hypothesis that returns shocks
reflect shocks to investment opportunities.

An alternative, broader version of the liquidity ratio test calculates the liquidity ratio as the
ratio of (Cash + Federal Funds Sold + Securities Purchased Under Agreement to Resell + Securi-
ties)/Total Assets. Figure 10 shows the impulse-response function for this version of the liquidity
ratio. . The impulse-response function has no significant response pre-crisis and a significant but
quantitatively small response post-crisis.

To put the size of the post-crisis response in perspective, the graph is saying that if there is
a 10% negative shock to market returns, then the liquid assets ratio would rise by 0.02 over the

12



Figure 5: Estimated Impulse Responses for Stock Variables (Risk Adjusted, with Placebo)
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Notes: These figures show estimated impulse-response functions for BHCs. The figures show the estimated impulse

response to a one-unit negative-returns shock. Dashed lines denote the 95% confidence interval. Standard errors

are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalizations and returns

are from the CRSP and all other data are from the FR Y-9C. The panels display the impulse responses of the

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined as

log(liabilities/market capitalization), so that it represents the difference between the response of the log liabili-

ties and log market capitalization (results using log(liabilities + market capitalization)/market capitalization) are

extremely similar).
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Figure 6: Estimated Impulse Responses: Dropping 2007 and 2008
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Notes: These figures show estimated impulse-response functions for BHCs, dropping observations from the years

2007 and 2008. The figures show the estimated impulse response to a one-unit negative-returns shock. Dashed lines

denote the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007

Q4. Data on market capitalizations and returns are from the CRSP and all other data are from the FR Y-9C. The

panels display the impulse responses of the log liabilities, log market capitalization, log market leverage, and log

book equity. Market leverage is defined as log(liabilities/market capitalization), so that it represents the difference

between the response of the log liabilities and the log market capitalization.
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Figure 7: Estimated Impulse Responses: Excluding Mergers
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Notes: These figures show estimated impulse-response functions for BHCs, dropping observations from quarters in

which the bank is recorded as taking part in a merger, as well as dropping the quarter before and the quarter after

the merger. The figures show the estimated impulse response to a one-unit negative-returns shock. Dashed lines

denote the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007

Q4. Data on market capitalization and returns are from the CRSP and all other data are from the FR Y-9C. The

panels display the impulse responses of the log liabilities, log market capitalization, log market leverage, and log

book equity. Market leverage is defined as log(liabilities/market capitalization), so that it represents the difference

between the response of the log liabilities and the log market capitalization.
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Figure 8: Estimated Impulse Responses: Excluding Mergers
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Notes: These figures show estimated impulse-response functions for BHCs, dropping observations from quarters in

which the bank is recorded as taking part in a merger, as well as dropping the quarter before and the quarter after

the merger. The figures show the estimated impulse response to a one-unit negative-returns shock. Dashed lines

denote the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007

Q4. Data on market capitalization and returns are from the CRSP and all other data are from the FR Y-9C. The

panels display the impulse responses of the log liabilities, log market capitalization, log market leverage, and log

book equity. Market leverage is defined as log(liabilities/market capitalization), so that it represents the difference

between the response of the log liabilities and the log market capitalization.
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Figure 9: Estimated Impulse Responses of the Liquidity Ratio
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Notes: This figure shows the estimated impulse-response function for BHCs to a 1% negative returns shock. Dashed lines denote

the 95% confidence interval. Standard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on mar-

ket capitalization and returns are from the CRSP and all other data are from the FR Y-9C. The liquid assets ratio is defined as

log((cash + treasury bills) /total assets). Within the regression sample, the average liquid assets ratio is 0.057.

Figure 10: Estimated Impulse Responses of Liquidity Ratios (Alternative Formula)
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Notes: This figure shows estimated impulse-response functions for BHCs. The figure shows the estimated im-

pulse response to a one-unit negative-returns shock. Dashed lines denote the 95% confidence interval. Stan-

dard errors are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization

and returns are from the CRSP and all other data are from the FR Y-9C. The liquid assets ratio is defined as

log((cash + fed funds sold + securities purchased under agreement to resell + securities) /total assets).

17



course of two years. This is off a base of 0.25-0.30, depending on whether we are taking the mean
of the log(1+ratio) or of the raw liquid assets ratio.

B.4 Heterogeneity

We explore heterogeneity in the impulse-response functions by dividing banks into two groups,
based on a variable, and estimating the impulse responses separately for each group. We divide
banks by size (total assets), trading assets ratio (trading assets as a share of total assets), the
risk-weighted assets ratio (risk-weighted assets as a share of total assets), and the mortgage ratio
(real-estate loans as a share of total assets). We use the value of the variable in 2000 Q1 to sort
banks into two groups: above-median and below-median banks. We report the results in this
section. Broadly, we do not find strong evidence of differential responses, but we lack statistical
power to rule out some meaningful differences.

Since bank size is among the most important differences across different banks, we begin by
discussing the results for heterogeneity by size. The results are shown in Figures 11 and 12.
Visually, these impulse responses look remarkably similar to each other. However, the standard
errors are sufficiently large that we cannot rule out meaningful differences in the impulse responses.

We summarize the results of these impulse responses as well as those of the other potential
groupings (by trading assets ratio, risk-weighted assets ratio, and mortgage ratio) in Tables 6, 7,
8, and 9 below. For each grouping, we report the cumulative impulse response for the high- and
low-asset groups after 10 quarters and after 20 quarters, and we also report the p-values of a test
of equality between the impulse responses of the two groups. In a table of 64 tests, only one test
rejects the null at the 5% level. As before, we take this to suggest that there is not strong evidence
in favor of sizable heterogeneity, but we caution that the standard errors are too large to rule out
meaningful heterogeneity.
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Figure 11: Impulse Responses for Small Banks
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Notes: These figures show estimated impulse-response functions for BHCs. The figures show the estimated impulse

response to a one-unit negative-returns shock. Dashed lines denote the 95% confidence interval. Standard errors

are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and returns

are from the CRSP and all other data are from the FR Y-9C. The panels display the impulse responses of the

log liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined as

log(liabilities/market capitalization), so that it represents the difference between the response of the log liabilities

and log market capitalization (results using log(liabilities + market capitalization)/market capitalization) are very

similar).
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Figure 12: Impulse Responses for Large Banks
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Notes: These figures show estimated impulse-response functions for BHCs. The figures show the estimated impulse

response to a one-unit negative-returns shock. Dashed lines denote the 95% confidence interval. Standard errors

are clustered by bank. The “post-crisis” period begins in 2007 Q4. Data on market capitalization and returns

are from the CRSP and all other data are from the FR Y-9C. The panels display the impulse responses of the log

liabilities, log market capitalization, log market leverage, and log book equity. Market leverage is defined as the

log(liabilities/market capitalization), so that it represents the difference between the response of the log liabilities

and log market capitalization (results using log(liabilities + market capitalization)/market capitalization) are every

similar).
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Table 6: Heterogeneity in Impulse Responses: Small vs. Large Banks

Response After 10 Quarters Response After 20 Quarters
Small Large p-value on Equality Small Large p-value on Equality

Market

Equity

Pre-
Crisis

-1.13 -1.09 0.75 -1.22 -1.14 0.61

(0.08) (0.07) (0.12) (0.11)

Post-
Crisis

-0.71 -0.76 0.71 -0.58 -0.61 0.84

(0.14) (0.06) (0.14) (0.07)

Liabilities

Pre-
Crisis

-0.42 -0.33 0.39 -0.65 -0.54 0.52

(0.07) (0.07) (0.13) (0.10)

Post-
Crisis

-0.13 -0.15 0.49 -0.23 -0.25 0.67

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.71 0.76 0.59 0.57 0.60 0.87

(0.08) (0.05) (0.11) (0.09)

Post-
Crisis

0.58 0.61 0.81 0.35 0.35 0.95

(0.13) (0.06) (0.11) (0.06)

Book

Equity

Pre-
Crisis

-0.25 -0.31 0.68 -0.29 -0.49 0.44

(0.12) (0.08) (0.23) (0.13)

Post-
Crisis

-0.78 -0.44 0.04 -0.73 -0.50 0.32

(0.15) (0.09) (0.20) (0.12)

Notes: The table compares impulse responses of small vs. large BHCs. BHCs are categorized into the small vs.

large group, based on their total assets in 2000 Q1, relative to the median for all banks in the IRF sample. The first

column shows the cumulative-impulse response after 10 quarters of each variable, pre- and post-crisis, to a one-unit

negative-return shock, for small banks. The second column shows the same results but for large banks. Standard

errors, clustered at the bank level, are in parentheses. The third column shows the p-value of a test of equality

between the impulse response for small vs. large banks. The fourth through sixth columns mirror the first three

columns but examine the cumulative impulse response after 20 quarters.
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Table 7: Heterogeneity in Impulse Responses: Low vs. High Trading Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.10 -1.20 0.60 -1.15 -1.32 0.54

(0.05) (0.19) (0.07) (0.28)

Post-
Crisis

-0.76 -0.57 0.11 -0.60 -0.47 0.33

(0.09) (0.08) (0.10) (0.09)

Liabilities

Pre-
Crisis

-0.36 -0.36 0.99 -0.56 -0.63 0.78

(0.05) (0.14) (0.08) (0.22)

Post-
Crisis

-0.14 -0.15 0.73 -0.24 -0.25 0.91

(0.02) (0.04) (0.03) (0.05)

Market

Leverage

Pre-
Crisis

0.74 0.84 0.35 0.59 0.70 0.50

(0.05) (0.10) (0.07) (0.14)

Post-
Crisis

0.63 0.42 0.08 0.37 0.22 0.25

(0.08) (0.09) (0.08) (0.09)

Book

Equity

Pre-
Crisis

-0.25 -0.42 0.35 -0.28 -0.75 0.17

(0.07) (0.17) (0.13) (0.32)

Post-
Crisis

-0.62 -0.45 0.39 -0.66 -0.54 0.64

(0.10) (0.16) (0.13) (0.20)

Notes: The table compares impulse responses of low vs. high trading asset ratio BHCs. BHCs are categorized into

the low vs. high group, based on their trading assets as a share of total assets in 2000 Q1 relative to the median

for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters of each

variable, pre- and post-crisis, to a one-unit negative-return shock, for low banks. The second column shows the

same results but for high-trading banks. Standard errors, clustered at the bank level, are in parentheses. The third

column shows the p-values of a test of equality between the impulse response for low vs. high-trading banks. The

fourth through sixth columns mirror the first three columns but examine the cumulative impulse response after 20

quarters.
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Table 8: Heterogeneity in Impulse Responses: Low vs. High Risk-Weighted Asset Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.09 -1.15 0.59 -1.10 -1.22 0.43

(0.07) (0.08) (0.11) (0.12)

Post-
Crisis

-0.72 -0.79 0.64 -0.52 -0.66 0.44

(0.12) (0.09) (0.14) (0.11)

Liabilities

Pre-
Crisis

-0.29 -0.41 0.21 -0.47 -0.66 0.20

(0.06) (0.07) (0.10) (0.11)

Post-
Crisis

-0.13 -0.17 0.17 -0.25 -0.25 0.97

(0.03) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.80 0.73 0.47 0.63 0.56 0.59

(0.07) (0.06) (0.09) (0.10)

Post-
Crisis

0.59 0.62 0.82 0.27 0.41 0.31

(0.11) (0.09) (0.11) (0.09)

Book

Equity

Pre-
Crisis

-0.19 -0.35 0.23 -0.24 -0.45 0.40

(0.10) (0.09) (0.16) (0.18)

Post-
Crisis

-0.49 -0.74 0.17 -0.51 -0.81 0.23

(0.09) (0.16) (0.11) (0.23)

Notes: This table compares impulse responses of low vs. high risk-weighted asset ratio BHCs. BHCs are categorized

into the low vs. high group based on their risk-weighted assets as a share of total assets in 2000 Q1, relative to the

median for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters

of each variable, pre- and post-crisis, to a one-unit negative-returns shock, for low risk-weighted banks. The second

column shows the same results but for high risk-weighted banks. Standard errors, clustered at the bank level, are

in parentheses. The third column shows the p-values of a test of equality between the impulse response for low

vs. high risk-weighted banks. The fourth through sixth columns mirror the first three columns but examine the

cumulative impulse response after 20 quarters.
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Table 9: Heterogeneity in Impulse Responses: Low vs. High Mortgage Ratio

Response After 10 Quarters Response After 20 Quarters
Low High p-value on Equality Low High p-value on Equality

Market

Equity

Pre-
Crisis

-1.04 -1.21 0.17 -1.07 -1.27 0.26

(0.05) (0.11) (0.07) (0.17)

Post-
Crisis

-0.75 -0.75 0.98 -0.61 -0.56 0.79

(0.13) (0.08) (0.17) (0.09)

Liabilities

Pre-
Crisis

-0.28 -0.46 0.11 -0.45 -0.73 0.09

(0.05) (0.10) (0.08) (0.15)

Post-
Crisis

-0.17 -0.11 0.09 -0.28 -0.19 0.13

(0.02) (0.02) (0.05) (0.03)

Market

Leverage

Pre-
Crisis

0.76 0.75 0.92 0.62 0.54 0.55

(0.06) (0.07) (0.08) (0.11)

Post-
Crisis

0.59 0.64 0.72 0.34 0.37 0.81

(0.11) (0.09) (0.13) (0.07)

Book

Equity

Pre-
Crisis

-0.20 -0.36 0.32 -0.27 -0.42 0.63

(0.07) (0.15) (0.09) (0.30)

Post-
Crisis

-0.66 -0.56 0.57 -0.70 -0.59 0.65

(0.10) (0.14) (0.13) (0.19)

Notes: The table compares impulse responses of low vs. high mortgage ratio BHCs. BHCs are categorized into the

low vs. high group based on their real-estate loans as a share of total assets in 2000 Q1, relative to the median

for all banks in the IRF sample. The first column shows the cumulative impulse response after 10 quarters of

each variable, pre- and post-crisis, to a one-unit negative-returns shock, for low mortgage-ratio banks. The second

column shows the same results but for high mortgage-ratio banks. Standard errors, clustered at the bank level,

are in parentheses. The third column shows the p-values of a test of equality between the impulse response for low

vs. high mortgage-ratio banks. The fourth through sixth columns mirror the first three columns but examine the

cumulative impulse response after 20 quarters.
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C Model Appendix: Derivations and Proofs

C.1 Derivation of Laws of Motion

Summary table. Table 10 provides a summary table of the drift and jump objects as functions
of the ratios {λ, q}.

Table 10: Drift and Jump Variables in terms of {λ, q}

Formula Interpretation
µW rL (λ+ 1)− rDλ+ (ι− Φ (ι, 1)) (λ+ 1)− c Levered returns
µL ι (λ+ 1) Drift of loans

µL̄
(
ι− α

(
1
q
− 1
))

(λ+ 1) Drift of book loans

µD
(
rDλ−

(
rL + δ

)
(λ+ 1) + (Φ (ι, 1) + δ) (λ+ 1) + c

)
Drift of deposits

µq (ι+ α) (1− q)q Drift of q
µλ

(
ι− µW

)
(λ+ 1) Drift of leverage

µWc −1 Dividend effect on wealth growth
µWι (1− Φι (ι, 1)) (λ+ 1) Issuance effect on wealth growth
µλc (λ+ 1) Dividend effect on leverage growth
µλι (1− (1− Φι (ι, 1)) (λ+ 1))(λ+ 1) Issuance effect on leverage growth
µqι (1− q) q Issuance effect on q growth
JW −ε (λ+ 1) Jump in wealth
JL −ε (λ+ 1) Jump in loans

J L̄ −τε1
q

(λ+ 1) Jump in book loans

JD 0 Jump in deposits

Jq − (ε−τεq)
(1−τεq)q Jump in q

Jλ ε(λ+1)
1−ε(λ+1)

λ Jump in leverage

The rest of the appendix derives the terms of this table and the proofs of the theoretical results.

Notation and definitions. We begin by presenting some definitions and deriving the laws of
motion of the state variables. We use µx and Jx to refer to the drift and jump components,
respectively, of the path of a variable x scaled by the variable for wealth, W .

We define the net investment rate of the bank as

ι ≡ I/L− δ

and express the dividend-to-equity ratio as

c ≡ C/W.

Note that the following identities allow us to recover the original state variables
{
L, L̄,D

}
from

the triplet {λ, q,W}:
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L = (λ+ 1)W (20)

D = λW (21)

L̄ = q−1 (λ+ 1)W. (22)

We present some observations that aid the proof of the proposition.

Observation 1: Homogeneity of Φ in W . We prove the results for a more general class of
adjustment costs,

Φ (I, L) = I +
γ

2

∣∣∣∣ IL − δ
∣∣∣∣κ L.

Recall that in the body of the paper κ = 2. To avoid cluttering the notation, we use Φ (I, L) when
we refer to Φ (I, L, 0) .

We can factor out L and employ the definition of ι to obtain

Φ (I, L) =
(
ι+ δ +

γ

2
|ι|κ
)
L

= Φ (ι, 1)L+ δL.

Thus, we can express the funding cost relative to equity as

Φ (I, L) /W = (Φ (ι, 1) + δ) (λ+ 1) , (23)

which is a function independent of the bank’s size and depends on leverage and the investment
rate.

Observation 2: Homogeneity of the regulatory constraint in W . We want to express
the regulatory capital requirement in terms of the end-of-period choices (λ, q). The regulatory
constraint is

D ≤ ξL̄, (24)

as we noted in the main body of the text. By dividing both sides by bank net worth, we obtain

D

W
≤ ξ

L̄

L

L

W

Using the definitions of λ and q

λ ≤ ξ
1

q
(λ+ 1)

and clearing out λ, we obtain

λ ≤ 1
q
ξ
− 1

. (25)

Note that the constraint is independent of W and only depends on (λ, q) . The solvency constraint
is expressed in terms of leverage

λ ≤ λ̄ ≡ (1− ε)/ε. (26)
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Hence, we summarize the set of states where the bank is not liquidated by

λ = min

{
1

q
ξ
− 1

, λ̄

}
. (27)

Observation 3: Derivations of the laws of motion. With probability σ over interval ∆, the
bank receives deterministic default shock ε < 1. Let

dN =

{
0 with prob 1− σdt
1 with prob σdt

denote a default event process. Recall that dN is a Poisson process.
Now consider a time interval of length ∆. The law of motion for fundamental loans satisfies

Lt+∆ = (1− δ∆)Lt + It∆− εLt (Nt+∆ −Nt) ,

with the interpretation that the first term is the non-maturing fraction of loans, the second rep-
resents loan issuances and the third represents losses in a time interval. Taking ∆→ 0, we obtain
the following law of motion:

dL = (I − δL) dt− εLdN.

We express this law of motion in terms of net worth, replacing (20), to obtain

dL = ι (λ+ 1)Wdt− ε (λ+ 1)WdN. (28)

To ease the notation, we define the growth rate of fundamental loans and the jump relative to net
worth:

µL ≡ ι (λ+ 1) and JL ≡ −ε (λ+ 1) .

Similarly, for deposits we have that

Dt+∆ =
(
1 + rD∆

)
Dt −

(
rL∆ + δ∆

)
Lt + Φ (It, Lt) ∆ + Ct∆

with the interpretation that the first term is the increase in deposits that results from paying
interest with deposits; the second term is the reduction in deposits by the interest and principal
payments on outstanding loans; the third term is the increase in deposits as a result of loan
issuances; and the final term is dividend payments, all paid with deposits. Taking ∆ → 0, we
obtain the following law of motion:

dD =
[
rDD −

(
rL + δ

)
L+ Φ (I, L) + C

]
dt.

We express this law of motion in terms of wealth, by using (21), to obtain

dD =
[
rDλ−

(
rL + δ

)
(λ+ 1) + (Φ (ι, 1) + δ) (λ+ 1) + c

]
Wdt. (29)

We define the growth rate of deposits relative to net worth as

µD ≡ rDλ−
(
rL + δ

)
(λ+ 1) + (Φ (ι, 1) + δ) (λ+ 1) + c.
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Finally, the law of motion for book loans satisfies

L̄t+∆ = (1− δ∆)Lt + It∆− α∆
(
L̄t − Lt

)
− τεLt (Nt+∆ −Nt) ,

with the interpretation that the first term represents how book loans fall as the principal amounts
of the fundamental loans are repaid; the second term increases book loans through newly issued
loans; the third term decreases book loans at the speed of loan-loss recognition α times the gap in
the book versus fundamental loans; and the final term is the fraction of losses recognized in books
upon receiving a default shock. Taking ∆→ 0, we obtain the following law of motion:

dL̄ = (−δL+ I) dt− α
(
L̄− L

)
dt− τεLdN.

We express this law of motion by using Equation (22) in terms of wealth to obtain

dL̄ =

[
ι− α

(
1

q
− 1

)]
(λ+ 1)Wdt− τε1

q
(λ+ 1)WdN. (30)

We define the growth rate of the book loans and the jump relative to net worth accordingly

µL̄ ≡
[
ι− α

(
1

q
− 1

)]
(λ+ 1) and J L̄ ≡ −τε1

q
(λ+ 1) .

Observation 4: Growth independence. Next, we present the evolution of net worth, which
evolves according to

dW = dL− dD

=

(rL + δ
)

(λ+ 1)− rDλ︸ ︷︷ ︸
levered returns

+ (ι− (Φ (ι, 1) + δ)) (λ+ 1)︸ ︷︷ ︸
capital loss from adjustment

− c︸︷︷︸
dividend rate

Wdt

= (−ε (λ+ 1))︸ ︷︷ ︸
loss rate

WdN. (31)

where the second line uses the laws of motion in Equations (28) and (29) and those employed
in observation 1. The interpretation of this expression is natural: the terms’ multiplying rates
represent the net interest margin on the bank, which are the banks’ levered returns; the second
term represents the capital gains that are accounted immediately as the bank creates an asset that
can be worth more or less than a liability; the third term is the bank’s dividend rate; and the final
term is the loss rate, which scales with leverage. To aid the calculations, we define the drift of the
growth rate of the bank’s equity as

µW ≡
[
rL (λ+ 1)− rDλ+ (ι− Φ (ι, 1)) (λ+ 1)− c

]
W

and denote the jump component of wealth as

JW ≡ −ε (λ+ 1)W = JLW.

We also note that
µW = µL − µD.
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Observation 5: Law of motion for leverage. Next, we derive the law of motion for leverage
λ, given any choice of ι and c. Employing the formula for the differential of a ratio we get

µλ =

(
µDW − D

W
µWW

)
1

W
(32)

= µD − λµW

= µL − (λ+ 1)µW .

Upon a default shock, the discontinuous jump in leverage is given by

Jλ =
D

(W − ε (λ+ 1)W )
− D

W
=

(
1

1− ε (λ+ 1)
− 1

)
λ.

Therefore, combining the drift and jump portions of the law of motion, we obtain

dλ =
(
ι− µW

)
(λ+ 1) dt+

ε (λ+ 1)

1− ε (λ+ 1)
λdN. (33)

The interpretation of this law of motion is that leverage increases with the issuance rate, falls as
loans mature and falls as the bank earns income on its current portfolio, µW . We thus have

µλ =
(
ι− µW

)
(λ+ 1) .

Naturally, leverage jumps with defaults and more so the more levered the bank is.

Observation 6: Law of motion for q. Next, we produce the law of motion for leverage λ,
given any choice of ι and c. We first describe the continuous portion of the law of motion dqc.
Employing the formula for the ratio

dqc =

(
dLc

L
− dL̄c

L̄

)
qdt.

The first term is
dLc

L
= ι

and the second term is

dL̄c

L̄
=

(
ι− α

(
1
q
− 1
))

(λ+ 1)W

1
q

(λ+ 1)W
= ιq − α (1− q) .

Consequently,
dqc = (ι+ α) (1− q) qdt. (34)

Upon a default shock, the discontinuous jump in leverage is given by

Jq =
L− εL
L̄− τεL

− q =
(1− ε)L

(1− τεq) L̄
− q = − (ε− τεq)

(1− τεq)
q.
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Therefore, combining the continuous and discrete portions of the law of motion, we obtain

dq = (ι+ α) (1− q) qdt−
(
ε− τεq
1− τεq

)
qdt. (35)

Finally, we note the relationship

dqc = µq =
[
µL − µL̄q

] q

(λ+ 1)
dt.

Duffie-Epstein. The value function of the Duffie-Epstein satisfies

Vt = Et

∫ ∞
t

f (Cs, Vs) ds,

where the f is given by

f (C, V ) ≡ ρ

1− θ

[
C1−θ − {1 + (1− ψ)V }

1−θ
1−ψ

{1 + (1− ψ)V }
1−θ
1−ψ−1

]

=
ρ

1− θ
{1 + (1− ψ)V }

[
C1−θ

{1 + (1− ψ)V }
1−θ
1−ψ
− 1

]
.

A useful calculation is the derivative with respect to dividends:

fc (C, V ) = ρ
C−θ

{1 + (1− ψ)V }
1−θ
1−ψ−1

.

We have some limits of interest. First, the risk-aversion limit vanishes:

lim
ψ→0

f (C, V ) =
ρ

1− θ
(1 + V )

[
C1−θ

(1 + V )1−θ − 1

]
.

and
lim
ψ→0

fc (C, V ) = ρC−θ (1 + V )θ .

second, the IES limit goes to 1:

lim
θ→1

ρ

1− θ

[
C1−θ

(1 + V )1−θ − 1

]
= lim

θ→0

ρ

1− θ

[
C1−θ

(1 + V )1−θ − 1

]
− ρV = logC − ρV.

and

lim
θ→1

= fc (C, V ) = ρC−θ (1 + V )θ = ρ
(1 + V )

C
.
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C.2 Proof of Proposition 1

In this appendix, we prove the following detailed version of Proposition 1:

Proposition 2 [Bank’s Problem] Given {λ, q}, V
(
L, L̄,D

)
= (1 + v (λ, q))W − 1, where v is the

solution to the following HJB equation:

0 = max
{c,ι}

f (c, v) + vλµ
λ + vqµ

q︸ ︷︷ ︸
change in financial ratios

+ (1 + v)µW︸ ︷︷ ︸
equity growth

. . . (36)

+ σ
[(

1 + v
(
λ+ Jλ, q + Jq

)) (
1 + JW

)
− (1 + v)

]︸ ︷︷ ︸
default jump in wealth

in (λ, q) /∈ Γ

and v = vo for {λ, q} ∈ Γ. Policy functions can be recovered through the following relationships:
C
(
L, L̄,D

)
= c (λ, q) ·W and I

(
L, L̄,D

)
= (ι (λ, q) + δ) · L. The bank’s market value satisfies

S
(
L, L̄,D

)
≡ s (λ, q) ·W , where s solves

ρIs = c (λ, q) + sλµ
λ + sqµ

q + sµW + σ
[
s
(
λ+ Jλ, q + Jq

) (
1 + JW

)
− s
]
, (37)

and s = 0 for {λ, q} ∈ Γ. Finally, Tobin’s Q is given by

Q (λ, q) = s (λ, q)×
((
q−1 − 1

)
λ+ 1

)−1
. (38)

Formulation. We next prove Proposition 2. The primitive bank value HJB equation is given by

0 = max
{C,I}

f
(
C, V

(
L, L̄,D

))
+
E
[
dV
(
L, L̄,D

)]
dt

(39)

subject to the laws of motion in Equations (28), (29), (30) and the boundary V = Vo when
Equations (24) and (26) are not satisfied. In the objective, the differential form is

E
[
dV
(
L, L̄,D

)]
dt

= VL
(
L, L̄,D

)
µLW + VL̄

(
L, L̄,D

)
µL̄W + VD

(
L, L̄,D

)
µDW

+ σ
[
V
(
(1− ε)L, (1− τε) L̄,D

)
− V

(
L, L̄,D

)]
.

Conjecture. We conjecture a solution to the value function and verify that it satisfies the HJB
equation. The conjecture is

V
(
L, L̄,D

)
=

[1 + (1− ψ) v (λ, q)]W 1−ψ − 1

1− ψ
, (40)

for a suitable candidate v (λ, q). Under this conjecture, we verify that C
(
L, L̄,D

)
= c (λ, q)W

and I = (ι (λ, q) + δ) (λ+ 1)W.

Factorization. We perform some useful calculations on the guess in Equation (40). In particular,
we factorize equity from every term in the HJB equation. Under the conjecture, we have that

(1 + (1− ψ)V ) = [1 + (1− ψ) v]W 1−ψ.
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Therefore,

f (C, V ) = f

(
c (λ, q)W,

[1 + (1− ψ) v (λ, q)]W 1−ψ − 1

1− ψ

)
=

ρ

1− θ
[1 + (1− ψ) v]W 1−ψ

[
c (λ, q)1−θW 1−θ

([1 + (1− ψ) v]W 1−ψ)
1−θ
1−ψ
− 1

]

=
ρ

1− θ
[1 + (1− ψ) v]W 1−ψ

[
c (λ, q)1−θ

([1 + (1− ψ) v])
1−θ
1−ψ
− 1

]
= f (c (λ, q) , v)W 1−ψ. (41)

The change in the value function with respect to loans is

VL = ∂


[
1 + (1− ψ) v

(
D

L−D ,
L
L̄

)]
(L−D)1−ψ

[
vq(1−q)q+vλ(λ+1)

γκ(vλ(λ+1)−(1+v))(λ+1)

] 1
κ−1 − 1

1− ψ

 /∂L
= −vλ

D

(L−D)2W
1−ψ + vq

1

L̄
W 1−ψ + [1 + (1− ψ) v]W−ψ

= −vλ
λW

W 2
W 1−ψ + vq

1
1
q

(λ+ 1)W
W 1−ψ + [1 + (1− ψ) v]W−ψ

=

(
−vλλ+ vq

q

(λ+ 1)
+ [1 + (1− ψ) v]

)
W−ψ. (42)

The change in the value function with respect to deposits is

VD = ∂

[[
1 + (1− ψ) v

(
D

L−D ,
L
L̄

)]
(L−D)1−ψ − 1

1− ψ

]
/∂D

= vλ
1

W
W 1−ψ + vλ

D

(L−D)2W
1−ψ − [1 + (1− ψ) v]W−ψ

= vλ
1

W 2
W 1−ψ + vλ

λW

W 2
W 1−ψ − [1 + (1− ψ) v]W−ψ

= (vλ (1 + λ)− [1 + (1− ψ) v])W−ψ. (43)

The derivative of the value function with respect to L̄ is given by

VL̄ = ∂

[[
1 + (1− ψ) v

(
D

L−D ,
L
L̄

)]
(L−D)1−ψ − 1

1− ψ

]
/∂L̄

= −vq
L

L̄2
W 1−ψ

= −vq
(λ+ 1)W(

1
q

(λ+ 1)W
)2W

1−ψ

= −vq
q2

(λ+ 1)
W−ψ. (44)
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Finally, the jump in the value function even after a default is

JV =
[
V
(
(1− ε)L, (1− τε) L̄,D

)
− V

(
L, L̄,D

)]
which according to our guess can be written as

JV =

[[
1 + (1− ψ) v

(
λ+ Jλ, q + Jq

)] ((
1 + JW

)
W
)1−ψ − 1

1− ψ
− [1 + (1− ψ) v (λ, q)]W 1−ψ − 1

1− ψ

]

=

[[
1 + (1− ψ) v

(
λ+ Jλ, q + Jq

)]
1− ψ

(
1 + JW

)1−ψ − [1 + (1− ψ) v (λ, q)]

1− ψ

]
W 1−ψ

=


[
1 + (1− ψ) v

(
λ

1−ε(λ+1)
,
(

1−ε
1−τεq

)
q
)]

1− ψ
(
1 + JW

)1−ψ − [1 + (1− ψ) v (λ, q)]

1− ψ

W 1−ψ. (45)

Verification. We verify that the conjecture satisfies its HJB equation. With the factorizations
above, Equations (41-45), we have that Equation (39) can be written as

0 = max
{c,ι}

f (c, v)W 1−ψ . . .

+
[
vλ vq (1 + (1− ψ) v)

]
×

 −λ (1 + λ) 0
q

(λ+1)
0 − q2

(λ+1)

1 −1 0

×
 µL

µD

µL̄


︸ ︷︷ ︸

≡µV

W 1−ψ . . .

+σ


[
1 + (1− ψ) v

(
λ

1−ε(λ+1)
,
(

1−ε
1−τεq

))]
1− ψ

(
1 + JW

)1−ψ − [1 + (1− ψ) v (λ, q)]

1− ψ


︸ ︷︷ ︸

≡Jv

W 1−ψ,

where we used the fact that any choice of C and I can be expressed as a choice of c (λ, q)W as there
is a one-to-one map from the {λ, q,W} space to the original space—by a change in coordinates.
Then, we can factor wealth from this HJB equation to express it as

0 = W 1−ψ
[
max
{c,ι}

f (c, v) + µV + JV
]
,

and since the maximization is independent of net worth, this verifies the linearity of the controls.
To verify the conjecture, we need to express the drifts and jumps,

{
µV , JV

}
exclusively in terms

of {λ, q} . To do so, observe that
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µV =

 −λ (1 + λ) 0
q

(λ+1)
0 − q2

(λ+1)

1 −1 0

×
 µL

µD

µL̄


=

 −λ (1 + λ) 0
q

(λ+1)
0 − q2

(λ+1)

1 −1 0

×
 µL

µL − µW
µL̄

 . . .
=

 −λµL + (1 + λ)
(
µL − µW

)
q

(λ+1)
µL − q

(λ+1)
qµL̄

µL −
(
µL − µW

)


=

 µλ

µq

µW

 .
Thus, we have that

µV (λ, q) = vλµ
λ + vqµ

q + (1 + (1− ψ) v)µW ,

where all of the terms are functions of the state variables {λ, q} .
Consequently, the HJB solution to the HJB equation is

0 =

[
max
{c,ι}

f (c, v) + vλµ
λ + vqµ

q + (1 + (1− ψ) v)µW + σJV
]
, (46)

subject to the solvency conditions in Equations (25) and (26), the liquidiation value vo, and the
laws of motion in Equations (33-35). Since the choice is independent of wealth and only depends
on λ and q, this verifies that v̄ is only a function of {λ, q} and is not indexed by W . Thus, we
verify the conjecture that the formula in Equation (40) satisfies the HJB in Equation (36) for v.

Applying the result to the special case with ψ = 0, yields

0 = max
{c,ι}

f (c, v) + vλµ
λ + vqµ

q + (1 + v)µW

+σ

[(
1 + v

(
λ

1− ε (λ+ 1)
,

(
1− ε

1− τεq

)
q

))
(1− ε (λ+ 1))− (1 + v (λ, q))

]
subject to the boundary conditions given by Equations (25) and (26)—taking the value vo and the
laws of motion shown in Equations (33), (35).
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Limits of interest. We now let ψ → 0 to obtain

0 =

 −λ (1 + λ) 0
q

(λ+1)
0 − q2

(λ+1)

1 −1 0

×
 µL

µD

µL̄


=

 −λ (1 + λ) 0
q

(λ+1)
0 − q2

(λ+1)

1 −1 0

×
 µL

µL − µW
µL̄

 . . .
=

 −λµL + (1 + λ)
(
µL − µW

)
q

(λ+1)
µL − q

(λ+1)
qµL̄

µL −
(
µL − µW

)


=

 µλ

µq

µW

 .
Hence, we obtain

0 = max
{c,ι}

ρ

1− θ
(1 + v)

[
c1−θ

(1 + v)1−θ − 1

]
+ vλµ

λ + vqµ
q + (1 + v)µW

+σ

[(
1 + v

(
λ

1− ε (λ+ 1)
,

(
1− ε

1− τεq

)
q

))
(1− ε (λ+ 1))− (1 + v (λ, q))

]
.

Now consider the limite where θ → 1. We recover

ρv = max
{c,ι}

ρ log c+ vλµ
λ + vqµ

q + (1 + v)µW

+σ

[(
1 + v

(
λ

1− ε (λ+ 1)
,

(
1− ε

1− τεq

)
q

))
(1− ε (λ+ 1))− (1 + v (λ, q))

]
.

C.3 Policy Functions

We derive the first-order conditions of this problem.

Optimal dividend. The first-order condition for dividends is given by

fc (c, v) + vλµ
λ
c + (1 + (1− ψ) v)µWc = 0,

and arranging terms, we obtain

fc (c, v) + vλ (λ+ 1) = (1 + (1− ψ) v) . (47)

In the special case of risk neutrality, we have

ρ
c−θ

(1 + v)−θ
+ vλ (λ+ 1) = (1 + v) ,
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which we can solve to obtain

c = ρ1/θ

[
(1 + (1− ψ) v)

(((1 + (1− ψ) v)− vλ (λ+ 1)))1/θ

]
. (48)

Take the risk-neutral limit, ψ → 0 and we obtain

c = ρ1/θ

[
(1 + v)

(((1 + v)− vλ (λ+ 1)))1/θ

]
.

In the special case of vλ = 0 we obtain

c = ρ1/θ (1 + v)1−1/θ .

In the special case of θ → 1, we have that

c =
ρ(

1− vλ (λ+1)
(1+v)

) . (49)

This solution closely resembles the solution to a portfolio problem where the dividend rate is
exactly the discount rate, ρ. However, in this problem, because leverage is a slow-moving object,
there’s a correction term given by vλ

(λ+1)
(1+v̄)

, which measures the additional advantage of affecting
leverage through the dividend decision. If leverage is too high, such that it reaches beyond the
point of zero, then the dividend rate is distorted downwards.

The elasticity of dividends with respect to leverage in this special case is given by

dc =

vλλ (λ+1)
(1+v)

− (vλ)2

(1+v)
(λ+1)
(1+v)

1− vλ (λ+1)
(1+v)

 cdλ

=


(
vλλ
vλ

(λ+ 1)− vλ
(1+v)

(λ+ 1)
)
vλ

(1 + v)− vλ (λ+ 1)

 cdλ

Optimal issuance. Next, we discuss the first-order condition in issuances, which yields

vλµ
λ
ι + vqµ

q
ι + (1 + (1− ψ) v)µWι = 0.

Using the expressions in Table 10, we obtain

vq (1− q) q + vλ (1− (1− Φι (ι, 1)) (λ+ 1)) (λ+ 1) + (1 + (1− ψ) v) (1− Φι (ι, 1)) (λ+ 1) = 0,

and collecting terms yields

vq (1− q) q + vλ (λ+ 1) + ((1 + (1− ψ) v)− vλ (λ+ 1)) (1− Φι (ι, 1)) (λ+ 1) = 0. (50)

Using the first-order condition yields

(1− Φι (ι, 1)) =
vq (1− q) q + vλ (λ+ 1)

(vλ (λ+ 1)− (1 + (1− ψ) v)) (λ+ 1)
.
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The right-hand side equals

(1− Φι (ι, 1)) = sign (ι)
γ

2
κ (sign (ι) (ι))κ−1

and thus

(sign ((ι)) ι) =

[
sign (ι)

vq (1− q) q + vλ (λ+ 1)
γ
2
κ (vλ (λ+ 1)− (1 + (1− ψ) v)) (λ+ 1)

] 1
κ−1

.

Thus, we have that issuances are given by

ι =


(

vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+(1−ψ)v))(λ+1)

) 1
κ−1

if vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+(1−ψ)v))(λ+1)

> 0

(
− vq(1−q)q+vλ(λ+1)

γ
2
κ(vλ(λ+1)−(1+(1−ψ)v))(λ+1)

) 1
κ−1

if vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+(1−ψ)v))(λ+1)

< 0.

In the limit as ψ → 0, we obtain

ι =


(

vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+v))(λ+1)

) 1
κ−1

if vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+v))(λ+1)

> 0

(
− vq(1−q)q+vλ(λ+1)

γ
2
κ(vλ(λ+1)−(1+v))(λ+1)

) 1
κ−1

if vq(1−q)q+vλ(λ+1)
γ
2
κ(vλ(λ+1)−(1+v))(λ+1)

< 0.

In the special case considered in the paper, κ = 2 and

1− Φι (ι, 1) = γι.

Thus,

ι =
1

γ
·
(

vq (1− q) q + vλ (λ+ 1)

(vλ (λ+ 1)− (1 + v)) (λ+ 1)

)
.
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C.4 Proofs for γ = 0 and τ = 1 limit

Before we proceed to derive the main result, we first derive a some preliminary observations.

No adjustment costs. Without adjustment costs on ι, the bank can reset leverage at will. It
can do so through an issuance intensity ι that controls the drift of λ; it can also do so through the
endogenous jump J̄λ. In particular, the bank can choose a discrete jump in loans, J̄L. Thus, the
process for loans is given by

dL = (ι− δ) (λ+ 1)Wdt+ JLWdN + J̄LWdÑ,

where dÑ is the event of a controlled jump. Likewise, the evolution of deposits satisfies

dD =
(
c− µW

)
(ι− δ) (λ+ 1)Wdt+ JLWdN + J̄LWdÑ.

Next, we can define the controlled jump in leverage which, given J̄L , yields

J̄λ =
D + J̄LW

L+ J̄LW −D − J̄LW
− λ =

(
λ+ J̄L − λ

)
= J̄L.

Shadow boundary. Let Λ be the value of leverage such that a loan–default shock takes leverage
to the regulatory limit:

Λ =
(1− ε) Ξ

1 + εΞ
=

(1− ε) ξ
1− (1− ε) ξ

,

As in the text, we label this leverage the shadow liquidation boundary.

Main result. In this Appendix we prove the following result:

Proposition 3 [Bank’s Problem] Let τ = 1 and γ = 0. Then, leverage λ∗ is constant. For suitable
parameter conditions, λ∗ = Λ. In that case, the equity multiplier is the constant that solves

0 = max
{c,λ}

f (c, v) + (1 + v)
[
rL +

(
rL − rD

)
Λ− c

]
+ σ (1 + v)

((
1 + JW

)
− 1
)
.

Then, for dN = 0 the dividend rate is the constant, c∗, that solves

c∗ = ρ1/θ (1 + v)1−1/θ , (51)

the issuance rate is ι∗ such that µλ = 0.
Furthermore, dÑ = dN and for dN = 1, and λ is reflected back to λ∗ (J̄λ = −Jλ). Finally,

the multiplier v is the constant that solves (36), given the constant values c and λ. The necessary
parameter condition for this dynamics is(

rL − rD
)

σ
∈ [v0, 1 + v] .

Derivation of the main result. For this proof we work directly with the risk-neutral case as
we already showed the effect of risk aversion in the earlier proof. Consider the case where γ = 0
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such that Φ (ι, 1) = ι and τ = 1. In this case, we have that each issued loan increases deposits.
Hence, loan issuances do not affect wealth. The evolution of net worth evolves according to

dW = dL− dD

=

rL +
(
rL − rD

)︸ ︷︷ ︸
levered returns

λ− c︸︷︷︸
dividend rate

Wdt− ε (λ+ 1)︸ ︷︷ ︸
loss rate

WdN, (52)

where the second line uses the laws of motion in Equations (28) and (29) and also uses observation
1. Since there are no adjustment costs, leverage can be immediately adjusted to any level. This is
done using a combination of an issuance intensity ι and an endogenous discrete jump in issuances
that produces a jump in leverage, J̄λ, as we show next.

The jump in wealth upon a default shock is

JW ≡ −ε (λ+ 1) ,

and the drift in wealth is given by levered returns minus dividends:

µW ≡

rL +
(
rL − rD

)︸ ︷︷ ︸
levered returns

λ− c︸︷︷︸
dividend rate

 .
Recall that the regulatory constraint (6) is

1 = ξ (1 + λ) /λ→ λ ≤ ξ

1− ξ
.

In this case, λ is chosen every period and ι is defined to be consistent with the drift in that choice.
Since q = 1, the relevant constraint is the regulatory constraint and no longer the market-based
constraint. Then, the HJB equation in (46) becomes

0 =

[
max
{c,λ}

f (c, v) + vλµλ + (1 + v)µWv + σJV
]
. (53)

Different from Equation (46), we conjecture that, in this case, v̄ is a scalar rather than a function
of λ—or q, which in this case is constant. Under this guess, the jump term upon a default event is

JV = (1 + v)

((
1 + JW

)1−ψ I

[
λ+ Jλ <

1
1
ρ
− 1

]
+ voI

[
λ+ Jλ >

1
1
ρ
− 1

]
− 1

)
,

whereas before

Jλ =
λ

1− ε (λ+ 1)
.

Substituting for the drift µW , vλ = 0, and the jump in wealth JW in (53) we obtain
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0 = max
{c,λ}

f (c, v) + (1 + v)
[
rL +

(
rL − rD

)
λ− c

]
+ σ (1 + v)

((
1 + JW

) [
λ+ Jλ <

1
1
ρ
− 1

]
+ voI

[
λ+ Jλ >

1
1
ρ
− 1

]
− 1

)
.

Let us first solve for consumption. In this case, the first-order condition for consumption is

ρ
c−θ

(1 + v̄)−θ
= (1 + v) .

We rearrange terms to obtain
c = ρ1/θ (1 + v)1−1/θ . (54)

Next, we obtain the solution for leverage. Then, the leverage choice maximizes

max
λ∈[0, ξ

1−ξ ]
(1 + v)

(
rL − rD

)
λ

+ σ (1 + v) (1− ε (λ+ 1)) I
[

λ

1− ε (λ+ 1)
<

ξ

1− ξ

]
+ σ

v0

(1 + v̄)
I
[

λ

1− ε (λ+ 1)
>

ξ

1− ξ

]
.

This is a linear program. The solution thus generically falls into a corner

λ∗ ∈


0 if

(
rL − rD

)
< εσ [1 + v̄]

1
1
ξ
−1

if
(
rL − rD

)
> σU (η)

Λ otherwise.

(55)

Considering the interesting case where λ = Λ, substituting Equation (51) we have that v̄ solves

0 =
ρ

1− θ


(
ρ1/θ (1 + v̄)1−1/θ

)1−θ

(1 + v̄)1−θ − (1 + v̄)


+ (1 + v̄)

[
rL +

(
rL − rD

)
Λ +

(
1 + JW (Λ)

)
− ρ1/θ (1 + v̄)1−1/θ

]
. (56)

This equation verifies that indeed the value function is

ι = µW = rL +
(
rL − rD

)
Λ− ρ1/θ (1 + v̄)1−1/θ . (57)

Finally, J̄λ = −Jλ (Λ) whenever dN = 1.

Log limit. Consider now the limit θ → 1. Therefore, this case produces the usual formula

c∗ = ρ.

40



Thus, the value per unit of wealth is

v̄ = log ρ+

[
rL +

(
rL − rD

)
λ∗ − ρ

]
+ σ (1− ε (λ∗ + 1))

ρ
.
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C.5 Proofs for γ = 0 and τ 6= 1 limit

We begin with a preliminary set of observations.

Endogenous jump in q. As in the previous case, in this version, banks can immediately control
leverage through a combination of an issuance intensity, ι, and a jump in leverage. The novelty is
that with delayed accounting the jump in loans produces a controlled jump in q. We can define
the jump in q given J̄λ as

J̄q
(
q, λ, J̄λ

)
=
L+ J̄LW

L̄+ J̄LW
− q =

(λ+ 1) + J̄L

q−1 (λ+ 1) + J̄L
− q = q

(
(λ+ 1) + J̄λ

(λ+ 1) + qJ̄λ
− 1

)
.

Thus, we can think of the bank as controlling a jump in leverage that produces a corresponding
jump in J̄q.

Liquidation and shadow boundary. With abuse of notation, we now define the following
function that characterizes the liquidation boundary ∂Γ by the function

Γ (q) ≡ min

{
ξ

q − ξ
, λ̄

}
,

and a corresponding “shadow boundary” as given by the following function:

Λ (q) ≡ Γ (q + Jq)− Jλ = min

{
ξ

q−εq
1−τεq − ξ

, λ̄

}
− ελ (λ+ 1)

1− ε (λ+ 1)
.

The graph of the shadow boundary is the set of points were {q, λ} such that, given a default event,
the bank ends at the boundary of the liquidation region. Finally, note that

Γ (q + Jq) = min

{
ξ

q−εq
1−τεq − ξ

, λ̄

}
.

From liquidation to shadow boundary. We want to solve for the position where the bank
ends if it jumps from liquidation to the shadow boundary. We solve for the jump size J̄L that
solves

Λ
(
q + J̄q

)
≡ Γ (q) + J̄L.

Then, considering an initial position {q, λ} in the shadow boundary, the terminal jump is given by

Λ
(
q + Jq + J̄q

(
q + Jq, J̄L

))
= Γ (q + Jq)− Jλ + J̄L.

The critical value of qm below which market liquidation occurs is

ξ

qm − ξ
= λ̄.
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Hence, the critical point is

qm = ξ
1 + λ̄

λ̄
.

Thus, the slope of the liquidation boundary is

Γq (q) =


0 if q < qm

− ξ

(q−ξ)2 if q ≥ qm.

Likewise, the slope of the shadow boundary is

Λq (q) =


0 if 1−ε

1/q−τεq < qm + ξ

− ξ

( 1−ε
1/q−τε−ξ)

2 · 1
(1/q−τε)2 ·

1
q

otherwise.

The observation that the slope of the shadow boundary is negative is key for the proof.

Characteristic curves. Consider any pair {q, λ}. Then, consider two jumps, J̄λ and −J̄λ, such
that leverage remains constant. After the first jump, λ jumps to λ′ = λ+ Jλ. Next, observe that
after these jumps, q remains the same. After the first jump

q + J̄q
(
q, λ, J̄λ

)
= q

(λ+ 1) + J̄λ

(λ+ 1) + qJ̄λ
≡ q′.

Then, after the second jump, we obtain that

q′ + J̄q
(
q′, λ′,−J̄λ

)
= q′

(λ′ + 1)− J̄λ

(λ′ + 1)− q′J̄λ

=

[
q

(λ+ 1) + J̄λ

(λ+ 1) + qJ̄λ

]
·
[(
λ+ J̄λ + 1

)
− q (λ+ 1) + qJ̄λ

(λ+ 1) + qJ̄λ
J̄λ
]

= q.

Consequently, for any {q, λ} , we define a characteristic curve as the set of points,{
q + J̄q

(
q, λ, J̄λ

)
, λ+ J̄λ

}
,

for any J̄λ ∈ [−λ,∞] . A characteristic curve is a set of points for λ and q that are connected
through a controlled jump in leverage. Thus, we can think of a characteristic curve as a function
qc (λ;λo) such that a given parameter, qo, maps a value of leverage to a value of q—with one
particular point given by (λ; qo).

Now consider an infinitesimal increase in leverage, dλ, then we obtain the following limit:

dq

dλ
≡ lim

J̄λ→0

Jq

J̄λ
= lim

J̄λ→0

(
q(λ+1)+qJ̄λ

(λ+1)+qJ̄λ
− q
)

J̄λ
=

q(1−q)J̄λ
(λ+1)+qJ̄λ

J̄λ
=
µqι
µλι

q (1− q)
(λ+ 1)

=
µqι
µλι
.

This is the slope of the characteristic curve at q and λ. The slope is positive and strictly so for
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any q ∈ [0, 1]. Since the curves of the characteristics are positive, but the slope of the shadow
boundaries are negative, each characteristic crosses one point of the shadow boundary for any qo.
Thus, for each q0 ∈ [0, 1] in the shadow boundary, we can associate one characteristic curve. This
definition is important for the main result.

Main result. We prove the following result:

Proposition 4 [Bank’s Problem] Let τ 6= 1 and γ = 0. Then, for any q, given suitable parameter
conditions, leverage is set to the shadow boundary λ = Λ (q). Then, the equity multiplier v is a
function of q that solves

0 =

[
max
{c}

f (c, v) + vqµ
q + (1 + v)µW + σ

((
1 + v

(
q + Jq + J̄q

)) [
1 + JW

]
− (1 + v (q))

)]
,

subject to

Λq (q) =
µλ

µq

For dN = 0 the (constant) dividend rate, c∗, is given by

c∗ = ρ1/θ (1 + v (q))(
1 + v (q)− vq (1+λ)

Λq(q)

) , (58)

and the issuance rate ι∗ (q) is such that given for {c∗ (q) , λ (q)}

Λq (q) =
µλ

µq
. (59)

Thus,

ι (q) = µW (q)
1

1−R (q)
− α 1

1−R (q)−1 ,

where

R (q) = Λq (q)
q (1− q)

(1 + Λ (q))
< 0

Hence, for dN = 0, the state {λ, q} moves continuously along the shadow boundary. Furthermore,
dÑ = dN . When dN = 1, q jumps by Jq + J̄q

(
q, J̄λ

)
where

J̄q
(
q, J̄λ

)
≡ q

(
(λ+ 1) + J̄λ

(λ+ 1) + qJ̄λ
− 1

)
and λ jumps by Jλ + J̄λ where J̄λ solves

Λ
(
q + Jq + J̄q

(
q + Jq, J̄λ

))
= Γ (q + Jq)− Jλ + J̄λ.

The necessary parameter condition for these dynamics are(
rL − rD

)
σ

∈ [U (η) , 1 + v (q)] for any q.
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Derivation of the main result. To derive the main result, we proceed through a sequence of
observations. The proof follows similar steps as the proof with immediate accounting but now
considers the changes in q. We lever on the method of characteristics for the proof. Let the value
function be given by some v (λ, q), as derived earlier, for the general case with convex adjustment
costs:

0 = max
{c,λ}

f (c, v) + vλµ
λ + vqµ

q + (1 + v)µW + σJv (60)

where the jump in the value after the shock is given by

JV =
[
1 + v

(
λ+ Jλ, q + Jq

)
(1− ε (λ+ 1))− (1 + v (λ, q))

]
I
[
λ+ Jλ ≤ Γ (q + Jq)

]
+ (vo − (1 + v (λ, q))) I

[
λ

1− ε (λ+ 1)
>

1
1
ρ
− 1

]
,

subject to the boundary conditions given by Equations (25) and (26), the laws of motion in
Equations (33), (35), and the definitions of the exogenous jumps Jq and Jλ.

Conjecture: Constant value along characteristics. Next we guess and verify that v (λ, q)
is constant along the characteristic curve where (q, λ) also belongs. That is,

v (λ, q) = v
(
λ+ J̄λ, q + J̄q

(
q, λ, J̄λ

))
for any J̄λ.

Under this conjecture, the value will equal v (λ, q) = v (Λ (qo) , qo) , where qo is the parameter of
the characteristic curve of {q, λ}. Under this guess, taking total differentials with respect to λ, we
obtain that

vλ − vq
dq

dλ
= vλ + vq

q (1− q)
λ+ 1

= vλ + vq
µqι
µλι

= 0.

This expression is the PDE representation of the condition that the value function is linear along
the characteristic function. Thus, we obtain a relationship between the derivatives of the original
value function

vλ = −vq
µqι
µλι
. (61)

Verification: Constant value along characteristics. Consider the optimal choice of λ. Un-
der our guess, we have that the value does not change along the characteristic curve of {q, λ}.
Hence, leverage can be chosen without considering the change in the marginal value of equity
v̄ (λ, q) in (60). Thus, leverage solves

max
λ∈[0, ξ

1−ξ ]
(1 + v)

(
rL − rD

)
λ

+ σ (1− ε (λ+ 1)) I
[
λ+ Jλ ≤ Γ

(
q + Jq

(
q, λ, Jλ

))]
+ σvoI

[
λ

1− ε (λ+ 1)
>

1
1
ρ
− 1

]
.
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This again is clearly a linear program. The solution is

λ ∈


0 if

(
rL − rD

)
< σε (1 + v (q, λ))

Γ (q) if
(
rL − rD

)
> σvo

Λ (q) otherwise.

(62)

In the paper, we consider only interesting cases where leverage is neither zero nor at the liquidation
boundary, rather, we consider cases where leverage is set to the shadow boundary. Then, clearly
when dN = 1, after any shock, λ must return to the shadow boundary

Λ
(
q + Jq + J̄q

(
q + Jq, J̄λ

))
= Γ (q + Jq)− Jλ + J̄λ.

In this case, we verify that leverage remains in the shadow boundary. Thus, for any {λ, q} outside
of the shadow boundary, the state variables jump to a point in the shadow boundary. Hence, under
this guess, we obtain that v̄ is constant along a characteristic curve and is equal to the value at
the shadow boundary.

Whenever there is no shock, it must be the case that

µqΛq (q) = µλ, (63)

which guarantees that leverage and q remain at the shadow boundary.

Auxiliary value function. For any q, we can define a function q to its value at the point in
the shadow boundary corresponding to q:

ṽ (q) = v (Λ (q) , q) .

Therefore, if we differentiate this expression with respect to q, then we obtain

ṽq (q) = (vλΛq + vq) . (64)

Multiplying both sides by µq,and using that Equation (63) must hold along the optimal path, we
obtain that

ṽq (q)µq = (vλΛq + vq)µ
q = vλµ

λ + vqµ
q.

Then, substituting v for ṽ in (60), using the above result and the optimal policies for
{
J̄λ, J̄q

}
, we

obtain an auxiliary HJB representation:

0 = max
{c}

f (c, ṽ) + ṽq (q)µq + (1 + ṽ)
(
rL +

(
rL − rD

)
Λ (q)− c− σ

)
+σ
(
1 + ṽ

(
q + J̄q

(
q,Λ (q) , J̄λ (Λ (q))

)
+ Jq

))
(1− ε (λ+ 1)) ,

subject to
µqΛq (q) = µλ.

Substituting the constraint, we have that
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0 = max
{c}

f (c, ṽ) + ṽq
µλ

Λq

+ (1 + ṽ)
(
rL +

(
rL − rD

)
Λ (q)− c− σ

)
+σ
(
1 + ṽ

(
q + J̄q

(
q,Λ (q) , J̄λ (Λ (q))

)
+ Jq

))
(1− ε (λ+ 1)) .

Optimal dividend. We take the first-order condition with respect to dividends and obtain

fc (c, ṽ) =

(
1 + ṽ − ṽq

µλc
Λq

)
,

and therefore

c∗ = ρ1/θ (1 + ṽ (q))(
1 + ṽ (q)− ṽq (q) µλc

Λq

)−1/θ
.

Solution to the value function. In this case, using the expression for c∗, we obtain that v (q)
solves the equation

0 = f

ρ1/θ (1 + ṽ (q))(
1 + ṽ (q) + ṽq (q) 1+Λ(q)

Λq

)−1/θ
, ṽ (q)


+ (1 + ṽ)

rL +
(
rL − rD

)
Λ (q)− ρ1/θ (1 + ṽ (q))(

1 + ṽ (q) + ṽq (q) µλc
Λq

)−1/θ
− c


+ σ

(
1 + ṽ

(
q + J̄q (λ) + Jq

))
(1− ε (λ+ 1)) .

With this value, we obtain

c (q) =
(1 + ṽ (q))(

1 + ṽ (q) + ṽq (q) 1+Λ(q)
Λq

)−1/θ

and a drift in wealth of

µW (q) = rL +
(
rL − rD

)
Λ (q)− ρ1/θ (1 + ṽ (q))1−1/θ .

Finally, we obtain ι (q) from the following condition:

Λq (q) =

(
ι (q)− µW (q)

)
(λ+ 1)

(ι (q) + α) (1− q) q
.

We can obtain an interpretation for this formula by using an expression for the ratio of the slope
of the shadow boundary and the direction of the change of the vector {q, λ} along an infinitesimal
issuance ι:

R (q) =
Λq (q)

µλι /µ
q
ι
< 0.
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With the aid of this expression, the rule for issuances is given by

ι (q) = µW (q)
1

1−R (q)
− α 1

1−R (q)−1 .

Since the ratio of slopes R (q) is negative,the issuances are increasing in the returns on equity. This
is because as equity increases, leverage falls so issuances can remain high to keep leverage at the
shadow boundary. In turn, the second term states that the faster the accounting of past losses,
the more the issuances must be cut back.

C.6 Approximate Jump in Q after an Aggregate Shock

Approximation to the law of motion for aggregate q. To obtain an approximation to
the aggregate behavior of q and to analyze the impact of an aggregate shock, we approximate the
law of motion of aggregate loans and book loans around unconditional means for λ and q. The
approximation is exact for a representative bank. We denote by λ̄, that ῑ and c̄ are the population
averages of λ and q, and we consider that every bank has approximately the same issuance rate
ι and the same leverage λ. Then, the law of motion of the aggregate volume of loans, L, will be
given by

dL
L

= ῑ− χ,

where χ = σε is the the unconditional expectation of bank defaults per instant of time. Then, let
q denote the aggregate version of q.

In the law of motion for book loans, the law of motion would be approximately

dL̄c

L̄
=

(
ῑ− α

(
1
q
− 1
)) (

λ̄+ 1
)
W − τχ

(
λ̄+ 1

)
W

1
q

(
λ̄+ 1

)
W

= ῑq − α (1− q)− τχq.

By the differential of the ratios, we have that

dq =

(
dL
L
− dL̄c

L̄

)
q ≈ (ι+ α) (1− q) q − χ (1− τq) q.

In a stationary equilibrium, E [dq], hence

(ι+ α) (1− q) ≈ χ (1− τq)

and thus
(ι+ α− χ) ≈ (ι+ α− τχ) q.

As a result

E [q] ≈ q =
(ι+ α− χ)

(ι+ α− τχ)
< 1.

Now consider an aggregate shock ε. We obtain aggregate jump

Jq = −ε (1− τq)

(1− τεq)
q.
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The jump in

Jλ =
ε (λ+ 1)

1− ε (λ+ 1)
.

Now consider the aggregate Tobin’s Q, call it Q. We have that

Q = s (q, λ)
λ

q (1 + λ)− λ
.

Therefore, the jump in Q is given by

dQ = s
(
q + Jq, λ+ Jλ

) λ+ Jλ

(q + Jq) (1 + λ+ Jλ)− λ+ Jλ
− s (q, λ)

λ

q (1 + λ)− λ

C.7 Calibration of α

We derive the fraction of losses that are recognized in the books after T quarters as a default shock
of size ε. To this end, consider a sequence of default shocks such that dN0 = 1 and dNt>0 = 0.
Normalize L0 = 1 and set L̄0 = 1/q0. Then,

Lt = 1− ε t > 0

dL̄t = −α
(
L̄t − Lt

)
dt t > 0,

with L̄0 = 1/q0 − τε. Fundamental loans immediately drop from the initial value 1 to the after-
default value 1− ε. Book loans, on the other hand, only fall by τε, on impact, and recognize the
remaining fraction (1− τ)ε at a rate governed by α and the gap in book and fundamental loans.
We can guess and verify that

L̄t = (1− ε) +

[(
1

q0

− 1

)
+ (1− τ) ε

]
e−αt

We define the fraction of the loss generated by this single default shock that is recognized by
time t as the fall in book loans over the size of the loss

ft ≡
1/q0 − L̄t

ε

Substituting in the formula for L̄t and the parameters in the calibration and starting from
q0 = 0.977, as in the pre-crisis mean value of q, and using a default shock of ε = 2.5%, like the
aggregate shock we use in the estimation of {γ, θ} for the post-crisis period, yields that after 10
quarters the fraction of losses recognized is 64.68%.

C.8 Replication of Fact 2

To demonstrate that the model delivers Fact 2, we take a straightforward approach and replicate
Figure 3, using simulated data from the model. We construct the variables in exactly the same
way as in the original figure; we do not construct a panel relating the loan delinquency rate to the
market-to-book ratio because we do not have the concept of “delinquent” loans in the model. We
construct the quarters such that 2007 Q3 is the last pre-crisis quarter and, thus, 2007 Q4 is the
start of the post-crisis period.
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Figure 13 shows the results. Astute readers will note that the magnitudes are somewhat
different from the original figure. However, the model-generated figure matches the qualitative
results of the original. Thus, the model delivers the following fact: Tobin’s Q predicts future cash
flows in the cross section and market values capture information that book values do not.
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Figure 13: Model Replication: Market equity contains more cash-flow-relevant information than
book equity does
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Notes: These figures show cross-sectional binned scatter plots of log outcomes on the log market-to-book-equity

ratio for 2006 Q1 and 2009 Q1. All plots control for the log book equity by residualizing the variables on the log

book equity, and then adding back the mean of each variable to maintain centering. Data are generated from 10,000

simulated banks and by using the model at estimated parameters. The ROE over the past year is defined as the

book net income over the last four quarters divided by the book equity four quarters ago; the ROE over the next

year is defined as the one lead of this variable (i.e., profits over the next four quarters divided by current book

equity). The net charge-off rate is the loan charge-offs over the next quarter minus the loan recoveries over the next

quarter divided by the total loans this quarter.
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D Model Appendix: Numerical Solution

We solve the model by using the finite-differences method with an upwind scheme for the choice
of forward or backward differences. Specifically, we compute the numerical derivatives of the value
function v(λ, q) by using finite differences and we use the first-order conditions to solve for policies
(c, ι), and iterate on the HJB equation. A detailed description of this algorithm for a general class
of models known as mean-field games can be found in Achdou et al. (2020).

Our model, which belongs to this class, is simpler to solve because we keep prices constant;
however, it presents an added complication in that the size of the jump depends on the endogenous
state variables. In particular, starting from a point (λ, q), upon receiving a Poisson shock the bank

jumps to
(
λ+ Jλ, q + Jq

)
=
(
λ+ ε(λ+1)

1−ε(λ+1)
, q − ε (1−τq)

(1−τεq)q
)

. To avoid having to interpolate the value

function, when constructing the grid we take advantage of the fact that the size of the default shock
ε is constant.

We build a non-uniform grid iteratively; starting from an initial grid point (λ0, q0), with
λ0 ≈ 0 and q0 = 1, we pick the following points in the grid by using the recursion (λn, qn) =(
λn−1 + Jλn−1 , qn−1 + Jqn−1

)
. This way, upon receiving the default shock the bank always jumps

to a point that belongs to the grid. We depart from this grid construction scheme in two regions:

1. When λ is large, the size of the jump is also large, so the grid may become too coarse. We
add points to the grid wherever we have λn − λn−1 above a certain threshold, by setting
λ0 = (λn + λn−1)/2 and adding points to the grid, following the previous recursion;

2. When λ is close to but below ξ/ (1− ξ), or when q < ξ
(
1 + λh

)
/λh for some high value λh,

the stationary distribution features are close to zero mass and the value-function features
show less curvature. In these two regions of the state space we use a uniform grid and
interpolate

(
λ+ Jλ, q + Jq

)
using the closest point.

To compute the stationary distribution, we simulate the model for enough periods such that the
mean and standard deviations of λ and q are approximately constant. Finally, to aggregate the
variables to a quarterly frequency, we set time steps dt = 1/90 and, for every 90 time steps, we
use the last value for stocks and the mean for flows.
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