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Abstract 
We estimate sectoral spillovers around the Great Moderation with the help of forecast error 
variance decomposition tables. Obtaining such tables in high dimensions is challenging since 
they are functions of the estimated vector autoregressive coefficients and the residual 
covariance matrix. In a simulation study, we compare various regularization methods for both 
and conduct a comprehensive analysis of their performance. We show that standard estimators 
of large connectedness tables lead to biased results and high estimation uncertainty, which can 
both be mitigated by regularization. To explore possible causes for the Great Moderation, we 
apply a cross-validated estimator on sectoral spillovers of industrial production in the US from 
1972 to 2007. We find that a handful of sectors considerably decreased their outgoing links, 
which hints at a complimentary explanation for the Great Moderation. 
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1 Introduction

With the onset of the Great Moderation, around 1984, key macroeconomic time series

exhibit sharp decreases in growth rate volatility. Whether this shift in fluctuations is due

to a structural change in the economy, improved economic policies, or just good luck has

been extensively studied using a variety of approaches. In particular, for industrial pro-

duction (IP), the literature provides manifold narratives, often using contemporaneous

correlations between sectors to approximate dependencies. Recent advancements further

allow econometricians to describe directional dependencies in the form of forecast error

variance decompositions (FEVDs) (see Diebold and Yılmaz, 2014). Namely, FEVDs mea-

sure how much the variation of one sector can explain the variation of another. They

do so by condensing contemporaneous and lagged dependencies into a single connected-

ness table based on vector autoregressions (VARs). These tables, however, inherit the

VAR’s estimation uncertainty in high dimensions: the estimation error blows up when

the number of variables (N) approaches the number of time observations (T ).

The goal of this paper is to compare regularization methods for estimating large

networks in a time series context. It consists of two parts: an extensive Monte Carlo

(MC) simulation and an application to sectoral spillovers of IP.

Econometricians typically face a high-dimensional setup when estimating FEVDs.

This is going to be the case in our application to IP spillovers. For one thing, networks

must include all relevant variables to have a unified and precise interpretation; i.e., N

is large. For another thing, time variation in the parameters — e.g., a structural break

or rolling windows — reduces the number of observations; i.e., T is often small. With

large N and small T , standard estimation methods produce poor estimates and bad fore-

casts due to overfitting. Regularization methods for regressions and covariance matrices

counteract these adverse effects. Yet, it remains unclear which ones to choose. Thus, we

provide an extensive MC study of regularization techniques combined with FEVDs to

guide researchers in large-dimensional network estimations.

While there are successful applications of FEVDs in high dimensions (e.g., see Demirer

et al., 2017), two questions remain unanswered. First, how does estimation uncertainty

affect the overall results of FEVDs? Second, would an additional regularization of the

innovation covariance matrix improve the results? Our MC simulation results demon-

strate the performance gain of each regularization step regarding the estimation of the

overall FEVD network. While regularization mostly boils down to improving the out-of-

sample fit by trading unbiasedness for a reduction in variance, we show that for the case

of FEVDs, regularization methods also decrease the estimation bias through improved

forecasts. More precisely, regularization of both the coefficients and the covariance matrix

not only reduces the estimation uncertainty of the FEVD but also mitigates a positive

bias in the entries. To the best of our knowledge, this result is novel in the literature
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and highlights the importance of regularization in the context of FEVDs. Perhaps sur-

prisingly, a horse race of regularization methods applied to FEVDs yields similar results

among estimators, with the winner being conditional on the data generating process.

In the application, we investigate changes to the dependency structure of IP across

sectors around the Great Moderation. The central question is whether the large volatility

of the aggregate IP index originated from amplifications of sectoral fluctuations by the

asymmetric network, in the spirit of Acemoglu et al. (2012). That is, we address the gap

in the literature on how structural change in sectoral interconnectedness affects aggregate

index volatility. The directed nature of FEVDs allows us to investigate asymmetric link-

ages that were previously hidden under the rationale of correlations as common exposure

to aggregate shocks. Thus, we motivate this application by the fact that a strong inter-

sectoral network of idiosyncratic shocks is observationally equivalent to the prevalence of

aggregate shocks, if connectedness is ignored.

We apply FEVDs to scrutinize IP spillovers between 88 sectors in the US from 1972 to

2007. The estimation is challenging since the split into pre- and post-Great Moderation

periods reduces the effective sample size. We use cross-validated regularization to tackle

this challenge. The estimates provide time-varying spillover networks that uncover the

corresponding asymmetric dependency structure among sectors. We find that sectors that

were influential initially decreased their outgoing links after 1984, reducing the importance

of spillover effects overall. An analysis of contributions to aggregate variation suggests

that a handful of sectors considerably added to the high volatility pre-Great Moderation,

supporting a narrative of structural change that is complimentary to the story of aggregate

shock volatility.

Our comparative MC study connects to the literature on the regularization of regres-

sions and covariance matrices. Regularizations have become popular not only because

the increasing availability of data makes variable selection more critical but also because

technological advances make the application of high-dimensional estimators increasingly

feasible. For the regression step, we consider shrinkage estimators, such as the ridge re-

gression by Hoerl and Kennard (1970), variable selection methods, such as the LASSO

by Tibshirani (1996), and combinations of the two, such as the adaptive elastic-net by

Zou and Zhang (2009). Whereas these methods mostly find application in cross-sectional

contexts, the time series literature has succeeded in using regularization, for example, in

the general case of VARs in Kascha and Trenkler (2015) and in the setting of FEVDs in

Demirer et al. (2017). For the regularization of covariance matrices, we examine variable

selection methods for the partial correlation matrix, as in the graphical LASSO by Fried-

man et al. (2008), optimal shrinkage estimators, as in Ledoit and Wolf (2004), and sample

covariance thresholding, as in Bickel and Levina (2008), Rothman et al. (2009) and Cai

and Liu (2011). We contribute to this diverse literature by comparing their respective

performances in the context of FEVDs.
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Additionally, our empirical results contribute to the understanding of the changes that

took place during the Great Moderation. By highlighting the transition from a centralized

economy that heavily relies on the productivity of a few sectors to a more diversified

network, we offer a unifying view on opposing explanations of the decline in production

volatility. Namely, Foerster et al. (2011) argues that this phenomenon is explained by

a decline in aggregate shocks; i.e., shocks to multiple sectors at once. This contrasts

with the results of Gabaix (2011), who considers overweight index constituents as a

central driver of aggregate fluctuations. Our empirical results show that the intersectoral

network has changed structurally with the Great Moderation, making some idiosyncratic

shocks less likely to impact the aggregate. In other words, before the Great Moderation,

granular shocks were able to propagate through the network so far that they amplified to

strong aggregate fluctuations. Our description of the dynamics of the network structure

therefore contributes to the debate over the origins of the strong aggregate fluctuations

that occurred before the Great Moderation.

The rest of the paper is organized as follows. In Section 2, we introduce the concepts

of FEVDs and provide an overview of various regularization methods. We assess their

performance with a simulation study in Section 3. Section 4 applies the regularization of

FEVDs to the IP setup to answer the question of sectoral spillovers. Finally, Section 5

concludes.

2 Methodology

This section provides a general overview of FEVDs and introduces suitable regularization

methodologies to mitigate estimation uncertainty in large-dimensional applications.

We start with an N -dimensional stable VAR(1) process,

yt = ν + Ayt−1 + ut, ∀t = 1, ..., T, (1)

where ut has multivariate normal distribution with covariance matrix Σ and ν is a fixed

vector of intercept terms. Following Pesaran and Shin (1998), we obtain the FEVD as

a function of the VAR coefficient matrix A and the innovation covariance matrix Σ.1 A

detailed derivation is presented in Section 2.1.

As in many structurally motivated economic models, we want to include a broad set of

variables. However, considering many variables leads to a curse of dimensionality. Thus,

to estimate high-dimensional FEVDs, we have to estimate the VAR coefficient matrix and

the innovation covariance matrix in (1) in large dimensions. For that purpose, we assess

the performance of various estimation techniques by comparing different regularization

1Note that any VAR(p) translates into a VAR(1), hence, the companion form generalizes to higher-

order lag numbers. For details see Lütkepohl (2005, page 15).
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approaches for large VARs.2 Figure 1 gives an overview of the regularization methods

considered in this paper.

FEV D = f(Â, Σ̂)

VAR coefficient estimation Covariance estimation

Regularize when
impaired by

high dimensionality

1-3 Shrinkage methods
- Ridge regression
- LASSO
- Adaptive elastic-net

4 Economically motivated regularization
of long-run dependencies

1-2 Adaptive thresholding
- Soft thresholding
- LASSO thresholding

3 Ledoit and Wolf shrinkage estimator

4 Graphical LASSO

residuals ût

Â Σ̂

Figure 1: Estimation overview for high-dimensional forecast error variance decompositions (FEVDs).
The estimates Â and Σ̂ are required for the estimation of FEVDs. The lists describe the considered
regularization methods in this paper.

The statistical learning literature contains two types of regularization techniques that

are beneficial for FEVDs: the regularization of coefficients and the regularization of

covariance matrices. Concerning the first, LASSO techniques tend to perform well in

autoregressive setups. Such techniques apply regularization to the coefficient matrix A

but do not imply any regularization for the covariance matrix Σ. The combination of Â

and Σ̂ in the FEVD, however, suggests that poor estimation of the innovation covariance

matrix renders the overall estimate noisy. That is, the estimation of Σ suffers from

the same uncertainty induced by high dimensionality. Hence, we resort to covariance

shrinkage estimators as an alternative to the sample covariance matrix. Our approach,

therefore, is to combine regularization methods for the unknown regression coefficient

and covariance matrix to achieve the best possible estimate of the FEVD with respect to

the estimation error. Section 2.2 describes each of the methods in detail.

2We address the most prominent examples, but we are aware that there are additional approaches

that are beyond the scope of this paper. L0 penalties in high-dimensional regressions are computationally

infeasible for classical machines: the non-convexity of the L0 penalty creates a combinatorial problem,

which is NP-hard. Notable examples of variable selection are the information criteria AIC/BIC and

the Variational Garotte in Kappen and Gómez (2014). We experimented with the latter approach in

small scale simulations, which turned out to be computationally too expensive and did not yield any

improvement. The covariance matrix estimation literature also deals with the regularization of the

eigenvalues; e.g., in Lam et al. (2016).
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2.1 Generalized Forecast Error Variance Decompositions

Due to the stability assumption, the VAR process in (1) can be written in moving average

(MA) representation

yt = µ+
∞∑
i=0

Φiut−i, (2)

where the MA parameters are defined as Φi = Ai, ∀i ≥ 0 and µ represents the mean

term. Note that the components of ut are generally not orthogonal such that structural

interpretations are economically meaningless. Koop et al. (1996) and Pesaran and Shin

(1998) define the (unscaled) generalized impulse response (IR) function at horizon h to an

impulse ∆j on the jth entry of the reduced form innovation ut. They do so by integrating

out the effect of all of the remaining shocks in the shock vector:

IR(h,∆j, j) = E[yt+h|uj,t = ∆j]− E[yt+h|uj,t = 0]. (3)

Under a Gaussian assumption, we can use

E[ut|uj,t = ∆j] = (σ1j, ..., σNj)σ
−1
jj δj = Σejσ

−1
jj ∆j,

with σij being the ijth entry in Σ and ej as the jth column of the identity matrix.

Substituting this expression in (3), the impulse response function can be rewritten as

IR(h,∆j, j) = ΦhΣejσ
−1
jj ∆j.

It is customary to set ∆j =
√
σjj, which yields the scaled generalized impulse response

functions IR(h,
√
σjj, j). We assemble the scaled IRs in the (N ×N) matrix

Ψg(h) = [ψgij(h)] = [IR(h,
√
σ11, 1), ..., IR(h,

√
σNN , N)] = ΦhΣ diag(Σ)−

1
2 , (4)

where diag(M) denotes a diagonal matrix with diagonal values of any square matrix M .

Analog to standard impulse response analysis, we gain further insights rewriting yt

as a vector-valued impulse response function multiplied by an innovation vector. Let

P = Σ diag(Σ)−
1
2 and define the generalized shock ugt as

ugt := P−1ut ∼ N (0N×1,Ω) ,

where Ω = diag(Σ)
1
2 Σ−1diag(Σ)

1
2 . Then it is possible to express (2) as

yt = µ+
∞∑
i=0

Ψg(i)ugt−i. (5)

5



Henceforth, we can interpret ugt as the innovation vector in the generalized impulse re-

sponse analysis, where a single element receives a unity shock and all others remain at

zero. Implicitly, we are assuming that this is an orthogonal and exogenous shock vector.

However, due to the distribution of ugt with the inverse correlation matrix Ω, this step

results in an approximation error. The approximation error can be linked to the par-

tial correlation matrix of ut, and it is generally bigger when more entries are partially

correlated.3

Note that the h-period forecast error variance of variable i explained by innovations

in variable j is
(
ψgij(h)

)2
. Then, the effect of a generalized impulse of variable j at time

t on the H-step-ahead forecast error variance of variable i is

MSE
[
yi,t+H−1

∣∣{ugt+h = ej}H−1
h=0

]
=

H−1∑
h=0

(
ψgij(h)

)2
. (6)

The H-step-ahead forecast error variance contributions from all variables to i is just its

mean squared error (MSE):

MSE[yi,t+H−1] =

(
H−1∑
h=0

(ΦhΣΦ′h)

)
ii

. (7)

Pesaran and Shin (1998) divide (6) by (7) and get a table showing the contributions

from innovations in variable j to the H-step-ahead forecast error variance of variable

i. Like Diebold and Yılmaz (2014), we denote the H-step-ahead generalized FEVD as

DgH = [dgHij ] with entries

dgHij =
MSE

[
yi,t+H−1

∣∣{ugt+h = ej}H−1
h=0

]
MSE

[
yi,t+H−1

] . (8)

Note that the numerator implicitly shocks single entries of ugt and the denominator shocks

single entries of ut. In other words, the “generalized” FEVD approximates shocks with

ugt and is only accurate if Ω = IN ; i.e., if Σ is diagonal. Optionally, Diebold and Yılmaz

(2014) row-normalize these tables for a cleaner network interpretation. However, row

normalization distorts the entries such that the distribution of the estimation errors gets

more complex. Thus, if not explicitly stated, we do not perform this step.

3For a discussion of Ω see Raveh (1985).
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2.2 Estimating Large Forecast Error Variance Decompositions

2.2.1 Regularizing Vector Autoregressive Coefficients

As in Kascha and Trenkler (2015), we first transform the VAR setup such that our

coefficient matrix A can be estimated in vector form

y = (Z ′ ⊗ IN) β + u, (9)

where y = vec([y1, ..., yT ]), Z0
t−1
′

= (y′t−1, ..., y
′
t−p)

′, Zt−1 = (1, Z0
t−1
′
)′,

Z = [Z0, ..., ZT−1], β = vec(A) and u = vec([u1, ..., uT ]). We set X := (Z ′ ⊗ IN) to

obtain the general regression form. For a general regression, the ordinary least squares

(unpenalized) estimator reads

β̂OLS = argmin
β
||y −Xβ||2.

Here || · ||2 denotes the square of the Frobenius norm. Based on this objective function,

we aim to regularize the coefficient matrix A. On this account, we consider elastic-net

regularization that comprises the extreme cases of LASSO and ridge regression. Addi-

tionally, we introduce a new regularization target that enforces sparsity on the long-run

dependencies.

(Adaptive) elastic-net, LASSO and ridge regression We outline the most general

concept following Zou and Zhang’s (2009) adaptive elastic-net. This penalized estimator

is a compound of the general concepts of the elastic-net and adaptive LASSO. In particu-

lar, it simultaneously shrinks and selects entries in the coefficient matrices and, moreover,

has the oracle property, which ensures optimal large sample performance. A comprising

definition of the adaptive elastic-net estimator class is

β̂AEnet = argmin
β

||y −Xβ||2 + λ

N2p∑
i=1

wi

(
α|βi|+ (1− α)

1

2
β2
i

) , (10)

where wi = |β̂i,ini|−γ is an initial guess with γ > 0 and λ is a tuning parameter that

controls the strength of the elastic-net penalty, and must be chosen by the researcher,

e.g., via cross-validation (CV). Note that the original paper proposed to only use the

weights on the LASSO penalty. However, similar to Demirer et al. (2017), we put the

weight before the shrinkage penalty and use the glmnet routine from Friedman et al.

(2010).4

4The glmnet routine is available for many programming languages. We employ the implementation

in MATLAB by Qian et al. (2013).
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The regression in (10) is an enhanced version of the penalty regression and, thus,

generalizes many other concepts. For example, the elastic-net penalty with α ∈ (0, 1)

combines the LASSO and the ridge estimator and inherits the desirable properties of both;

e.g., it removes the degeneracy of the LASSO estimator caused by extreme correlations

while still performing variable selection. Moreover, in the case of a large N and a small T ,

LASSO selects at mostNT nonzero entries before it saturates. The mixture with the ridge

penalty eradicates this behavior. In a nutshell, the absolute penalty term automatically

selects variables while the quadratic penalty shrinks and stabilizes the solution paths (see

Zou and Zhang, 2009).

Now, choosing wi = 1 gives the naive elastic-net,5 α = 1 the adaptive LASSO,

α = 0 the ridge regression, and α = wi = 1 the classical LASSO from Tibshirani (1996).

In Section 3, we compare the performances of the LASSO, the ridge regression and

the adaptive elastic-net in a simulation of FEVDs. If not stated differently, we use

wi = |β̂i,OLS|−1.

Regularizing long-run effects While most regularization methods assume sparsity

in either the regression coefficients or the covariance matrix, economic setups sometimes

motivate independence between variables at all time horizons. As FEVDs represent the

overall dependency with different response times between variables, the idea of sparsity

may also apply here. In this subsection, we briefly introduce a method that models

sparsity in the long-run dependency.

Recall that we can use a VAR(1) without loss of generality since it represents any

VAR(p) in companion form. Then, the moving average matrices are Φi = Ai. If economic

theory implies that only a few variables affect each other, we ideally also presume sparsity

in the lagged responses. For example, if we assume sparsity in the long-run responses,

then we should regularize all Φk’s. This regularization proves to be difficult since the

power of a matrix is a complex function of the coefficient matrix A.

To overcome this issue, we take the forecast error, i.e., the response to a one-standard-

deviation impulse. The long-run (lagged) response of an impulse is

FE(H) =
H−1∑
h=0

Φh =
H−1∑
h=0

Ah,

limH→∞FE(H) =
∞∑
h=0

Ah = (IN − A)−1, (11)

where the last equation holds due to the stability condition and is the result of the

geometric series. If there is no spillover of one variable to another, we assume that the

5Zou and Zhang (2009) rescale the naive estimator by (1 + (1− α)λ/T ). Similar to Friedman et al.

(2010), we drop this distinction.
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respective entry in FE(∞) = (IN − A)−1 is zero.

It is evident that zeros in the forecast error most likely imply that the respective

forecast error variance — i.e., the element-wise squared version — is also zero. Thus, to

impose sparsity on the spillover network, this matrix is a potential regularization target.

Take (11) and plug it into the model (1):

yt = ν + (IN − FE(∞)−1)yt−1 + ut,

∆yt = yt − yt−1 = ν − FE(∞)−1yt−1 + ut,

yt−1 = FE(∞)ν + FE(∞)(−∆yt) + FE(∞)ut (12)

Estimating (12) as a penalized regression permits us to regularize FE(∞) and with

A = IN−FE(∞)−1 we can back out the autoregressive coefficients. Whereas this version

quite likely performs worse if there is sparsity only in A, it may be better if the FEVD

is sparse itself. Henceforth, we denote the LASSO regularization on this target as the

geometric regularization.

2.2.2 Regularizing the Covariance Matrix

Recall that FEVDs are functions of the coefficient and covariance estimates. In par-

ticular, all forecast errors include the impact-period response; i.e., some decomposition

of the covariance matrix. Even though the generalized variance decomposition is not a

decomposition of the covariance matrix estimate itself, it uses this estimate as an input.

Since the covariance matrix estimate also suffers under high dimensionality, we regular-

ize the covariance matrix to obtain better inputs for the FEVDs. A variety of methods

originated from the literature on the regularization of covariance matrices; we introduce

three of them. We assume that the innovation series ut is known. That is, we assume

that the regularized estimation of the VAR coefficients works reasonably well. Note that

the following overview is formulated in terms of the mean zero random vector u. That

is, before applying any of the following methods, it is advisable to demean the vari-

ables. In our simulation and application, observations of u will be the innovation series

ut corresponding to the regression residuals ût in the first stage.

Adaptive thresholding Thresholding methods are designed for sparse covariance ma-

trices and they mimic the ideas of shrinkage and selection of entries in the sample co-

variance matrix. Assume an N -variate random vector u = (u1, ...,uN)′ with covariance

matrix Σ = [σij]N×N . Furthermore, assume an i.i.d. random sample {u1, ..., uT} from

the distribution of u. The aim is to estimate the covariance matrix Σ with big N and
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small T . Start with the sample covariance matrix

Σ̂ = [σ̂ij]N×N :=
1

T − 1

T∑
t=1

utu
′
t.

Further, define the variance of the sample covariance’s entries as

θij := Var (uiuj) = E
(
(uiuj − σij)2) . (13)

We can now interpret the sparse covariance estimation as a mean vector estimation. That

is, an individual entry can be described as

1

T

T∑
t=1

ui,tuj,t = σij +

√
θij
T
zij, (14)

with zij asymptotically standard normal. On this basis, it is straightforward to create

an individual threshold for each entry of the covariance matrix. Yet, the variability

of an individual entry, θij, needs to be estimated with its sample counterpart θ̂ij =

T−1
∑T

t=1 [ui,tuj,t − σ̂ij]2. Note that we do not subtract the sample mean since ut is

demeaned. Cai and Liu (2011) propose calculating entry-wise thresholds by

λij := λij(δ) = δ

√
θ̂ij logN

T
, (15)

where the regularization parameter δ > 0 can be selected with CV or, as the authors

suggest, be set to 2. The function sλ(z), which we discuss in more detail below, describes

the thresholding rule applied to the entries of the sample covariance. Finally, for a given

sλ(z), the adaptive (entry dependent) threshold estimator

Σ̂AT = [σ̂ATij ]N×N = [sλij(σ̂ij)]N×N (16)

allows for different threshold levels for the entries and incorporates the variability of the

entries.

Note that the researcher can choose the thresholding functions sλ(·) to determine the

type of the penalty. In particular, we consider the adaptive-thresholding rule sλ(σ̂ij) =

σ̂ij(1−|λ/σ̂ij|η)+, with (z)+ = max{z, 0}.6 Unlike before, λ is a function described by (15)

and, thus, is not freely selectable in the adaptive-threshold estimator. Here, δ determines

the degree of the penalization and has to be selected by the econometrician. For a specific

6This rule incorporates soft thresholding for η = 1: sλ(σ̂ij) = sgn(σ̂ij)(|σ̂ij | − λ)+. Cai and Liu

(2011) describe this rule for η ≥ 1. We will relax this condition and include values between zero and one

in later steps.
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class of thresholding functions, the estimator achieves optimal convergence and performs

better than the universal thresholding estimator, which uses the same threshold for all

entries. This class must satisfy some conditions as described in Appendix A.

Cai and Liu (2011) suggest a thresholding rule that applies to all entries in the covari-

ance matrix. In simulations, we experienced zero entries on the diagonal of the threshold

estimates. Since this behavior contradicts the idea of covariances, we treat diagonal values

differently. We describe the details in Appendix B.

Ledoit and Wolf’s (2004) bona-fide shrinkage estimator The estimator of Ledoit

and Wolf (2004) is well-conditioned (inverting it does not amplify estimation errors) and

more accurate than the sample covariance matrix. In particular, the estimator is the

optimal convex linear combination of the sample covariance and the identity. Optimality

is achieved asymptotically with respect to a squared loss function. We consider this

regularization method, since it is easy to compute and bona fide; i.e., it is not affected

by the choice of a regularization term and does not require additional knowledge. The

Ledoit-Wolf shrinkage estimator reads as follows:

Σ̂LW =
b2

d2
mIN +

(
1− b2

d2

)
Σ̂, (17)

with

m = tr(Σ̂)N−1, d2 = ||Σ̂−mIN ||2,

b2 = min

[
T−2

T∑
t=1

||utu′t − Σ̂||2, d2

]
,

where Σ̂ denotes the sample covariance matrix and m is the average of the diagonal values

of the sample covariance matrix. In contrast to Ledoit and Wolf (2004), we use the scaled

sample covariance matrix; i.e., we divide the sum by T − 1 instead of T . This scaling is

negligible for sufficiently large T .

The estimator is a linear shrinkage estimator, which optimally mixes the “all-bias

no-variance” estimator mIN with the “all-variance no-bias” estimator Σ̂. The term b2/d2

automatically assigns more weight to mIN if the variance of the sample’s second order,

measured by b2, is large. Thus, similar to the shrinkage in James and Stein (1992), Σ̂LW

trades off the bias and variance of the estimator to minimize the MSE. Note that the

shrinkage weight δ = b2/d2 can also be chosen with CV.

GLASSO Friedman et al. (2008) propose estimating sparse graphs by penalizing the

inverse covariance matrix. That is, they estimate the inverse covariance with a LASSO

penalty. Let Θ = Σ−1 and optimize

11



Θ̂GLASSO = argmax
Θ≥0

{
log det Θ− tr(Σ̂Θ)− δ ||Θ||1

}
, (18)

over all nonnegative definite matrices Θ, where || · ||1 denotes the L1 norm, i.e., the sum

of the absolute values of the entries. As before, Σ̂ is the sample covariance. The first two

terms describe the multivariate Gaussian likelihood, and the latter is the LASSO penalty,

which selects entries in Θ and sets others to zero. The matrix Θ̂, which minimizes this

objective function, is the respective estimator of the inverse covariance matrix. Since the

approach intends to estimate undirected graphical models, they call this estimation the

graphical LASSO or, in short, GLASSO.

The fact that the penalization is on the inverse covariance makes this approach par-

ticularly appealing in the setup of FEVDs. For example, Barigozzi and Brownlees (2013)

highlight the relation of the inverse covariance (concentration matrix) to partial corre-

lations. In particular, if entry [Σ−1]ij in the inverse covariance is zero, then variables i

and j are conditionally uncorrelated. In economic setups, it is often plausible to assume

sparsity in the partial correlations rather than in the overall correlation structure. In

other words, it is easier to rule out direct than indirect effects.

2.3 Data-Driven Choice of Regularization Parameters λ and δ

Except for the Ledoit-Wolf shrinkage estimator, all of the above estimators require the

choice of regularization parameters.7 In particular, techniques related to the elastic-net

and the graphical LASSO require the choice of λ and the adaptive-thresholding rule

requires the choice of δ. Technically, one can also choose the shrinkage weight in Ledoit-

Wolf, but since the authors complement their estimator with an optimized weight, this

step is optional. To validate the goodness of fit of these parameters, we resort to statistical

learning methods. Specifically, we use CV in our application.

In general terms, model validation procedures such as CV divide the sample into train-

ing and test data.8 Given fixed hyperparameters, these methods estimate the remaining

parameters from the training data and validate their performance on the test data. That

is, the quality of the estimate from the training dataset is assessed by its ability to explain

the test dataset. The model selected after validation is the version that best explains the

test sample. A common practice for small datasets is K-fold CV, which partitions the

7The literature often refers to these parameters as hyperparameters as they must be fixed before

estimating the other parameters.
8The statistical learning literature uses the term “validation set” to denote the hold-out sample in

each CV fold. In econometric applications, however, it is common to denote the subset of the data used

for hyperparameter tuning as the “test data.” We stick to the latter terminology throughout our paper.
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sample into K equally sized test samples.9 For each of these K samples, CV trains the

estimator on the remaining training data and then validates it on the test sample. A loss

function such as the MSE or the negative log-likelihood quantifies performance.

While CV works well for most setups, it is worth highlighting the predicament that

occurs in high dimensions. Since its main idea is dividing the sample into test and training

data, this split decreases the number of observations that are usable for estimation. The

estimator faces a different degree of estimation uncertainty and, thus, CV tends to choose

a stronger penalization term. Consequently, leave-one-out CV is the preferred choice since

it uses T − 1 observations as training data, which is close to the full sample size. On the

other hand, a lower K (e.g., 10) is expected to estimate the prediction error better since it

averages over more-diverse training sets (Hastie et al., 2009, Chapter 7.12). Hence, there

is a trade-off between a good training sample and a reasonable estimate of the prediction

error.

While CV is valid in an i.i.d. setup, it lacks theoretical justification for dependent

data, such as time series regressions. Take for example a two-fold CV, which divides the

sample into two sets. In this case, the observations at the boundaries show up in both

samples due to autoregressive effects. Therefore, an outlier may affect both the dependent

and independent variables. Leaving out observations between the samples circumvents

that issue but leads to a significant loss of observations with random sampling. Thus, it

is common practice to use block sampling, as described by Figure C.11 in Appendix C.

Bergmeir et al. (2018) show that the K-fold version is permissible for a purely autore-

gressive model with uncorrelated innovations. Consequently, we recommend sticking to

K-fold CV with nonrandom sampling.

Unlike CV for coefficient estimates, there exists no dominant established version for

covariance estimation. To understand why this is the case, it is worth taking a look at

the loss functions. CV for the coefficient estimates, here β, minimizes the MSE of the

implied residuals. This loss function is straight forward since it is also the minimization

target in the estimation step. However, the validation of the covariance matrix proves to

be more abstract due to the unobservability of the covariance matrix. Cai and Liu (2011)

propose using the sample covariance estimate of the test sample to validate the goodness

of fit. The loss function for the kth test sample is

`k(δ) = ||Σ̂{1:T}\k(δ)− Σ̂k||2,

where the first term of the difference is the training data estimate of Σ with penalization

parameter δ. The second term is the sample covariance of the test data sample. Following

the motivation of this paper, however, this loss function is imprecise since the sample

9See Appendix C for an illustration of the procedure. The special case of leave-one-out CV is obtained

if K equals the sample size, validating the estimator on a single observation.)
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covariance is a bad estimate of the test sample. Thus, we prefer to directly validate the

trained estimate Σ̂{1:T}\k(δ) on the squared observations utu
′
t. Naturally, we want to use

a similar loss function as in the optimization of the estimator. For example, we can use

a likelihood-based loss function similar to the GLASSO approach. Unfortunately, we

experienced numerical issues with this loss function since the likelihood is not always well

defined for the regularized version.

Alternatively, we propose to use a modified version of Cai and Liu (2011). For the

kth test sample, it is calculated as

`k(δ) =
1

Tk

∑
t∈k

||Σ̂{1:T}\k(δ)− utu′t||2,

where Tk denotes the sample size of k. In contrast, this loss function shows the mean of

the distance between the squared observations and the trained estimate.

For computational reasons, econometricians are limited to a relatively small set of

hyperparameters. Namely, there are k estimations for each set of hyperparameters. For

example, a k-fold CV for 100 different values of both λ and α requires 1002k estimations.

While large CVs are achievable with today’s computation power, it is advisable to limit

the grid search to a neighborhood of the presumed minimum loss. Thus, we aim to

produce grid values centering around the minimum MSE. Similar to Kascha and Trenkler

(2015), we increase the candidate hyperparameters linearly on a log scale between data-

driven minimum and maximum values.10

At this point, it is worth mentioning an obvious extension. Since CV selects penalty

terms on predefined sample splits, we can also plug in different regularization techniques

for the estimators. CV then selects the estimator with the best predictive power. We

apply this procedure to our empirical setting in Section 4.

3 Simulation Study

3.1 Data Generating Processes

In the context of FEVDs, we believe that sparsity emerges with increasing dimension

N . However, it remains unclear whether sparsity appears in the VAR coefficients, the

innovation covariance matrix, the FEVD, or in all of them. Thus, we introduce various

data generating processes (DGPs) and hope to address the most relevant issues. Although

this simulation study is limited to VAR(1) models, it also extends to higher lag orders

in companion form. Estimating models with additional lags will, however, aggravate

10Friedman et al. (2010) provide formulas to set the minimum and maximum hyperparameters for

general elastic-nets.
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the high-dimensionality problem. To resemble real-world observational data, the DGPs

include sparse coefficients in the VAR matrix A and innovation covariance Σ.

DGP 1: White noise process (in the observations)

A = 0N×N

Σ = IN

DGP 2: Diagonal VAR coefficient (auto-correlation with no spillovers)

A = 0.5IN

Σ = IN

DGP 3: Diminishing-diagonal VAR coefficient (only approximately sparse)

A is a banded diagonal matrix with entries aij = 0.3|i−j|+1

Σ = IN

DGP 4: Random graph (without ordering)

A is a random sparse matrix. That is, it has entries with probability P (aij 6= 0) = τ .

τ = 1/
√
N denotes the degree of density. Nonzero entries are temporarily set to one.

Then, A is rescaled such that its maximum eigenvalue is 0.5 in modulus.

Σ = SD S ′. Here, S is the long-run dependency spanned by A, i.e., S = (IN −A)−1.

D = diag(1, ..., 2) is an N ×N diagonal matrix with values spaced equally between 1

and 2.

DGP 5: Block-diagonal FEVD (sparse FEVD)

This DGP mimics a network relation for time series with a sparse FEVD. First,

a diagonal block structure with 1/τ equal-sized quadratic blocks is chosen for A.

τ = 1/
√
N denotes the degree of density. Nonzero entries are temporarily set to

one on the diagonal and 0.5 on the off-diagonal. Then, A is rescaled such that its

maximum eigenvalue is 0.5 in modulus.

Σ = SD S ′. Here, S is the long-run dependency spanned by A, i.e., S = (IN −A)−1.

D = diag(1, ..., 2) is an N ×N diagonal matrix with values increasing from 1 to 2.

Note that DGPs 1, 2, and 5 always produce a sparse FEVD and DGPs 3 and 4 do

not. Moreover, all but DGP 4 are deterministic and DGPs 1-3 have the identity as the

covariance matrix. DGP 4 has 25 different random realizations in the simulation. The

methods’ performances are compared for FEVDs with forecast horizon 10.

3.2 Comparison of Different Regularization Methods

This section analyzes the relative performance gain of using regularization methods to

estimate FEVDs. That is, we compare the estimation errors of the various regularized

versions to the OLS plus the sample covariance case. In particular, we run simulations for

the aforementioned DGPs and calculate the Frobenius norm of the regularized versions

versus the case using OLS plus the sample covariance: ||D̂gH
reg − DgH ||/||D̂gH

OLS − DgH ||
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with H = 10. We compare the performance gains over N = {50, 150, 250} and T =

{75, 175, 500}. Since the estimation is a two-step procedure, we split the simulation

into two parts. Note that OLS breaks down for N > T such that we are not able to

calculate any value for these cases.11 First, we regularize A paired with the sample

covariance for Σ. We compare the ridge, LASSO, adaptive elastic-net, and geometric

long-run regularization. The latter uses the LASSO penalty only, such that it performs

variable selection. The penalty parameters λ are chosen such that they minimize the

respective norm λ∗ = argminλ||D̂gH
reg(λ)−DgH ||. Thus, the values show the best possible

performance gain.

DGP1 Ridge LASSO AENET Geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 21.5% 22.5% 22.6% 21.6% 22.7% 22.6% 21.5% 22.6% 22.6% 22.4% 23.1% 22.8%
150 12.3% 13.8% 12.3% 13.8% 12.3% 13.8% 12.6% 13.9%
250 10.8% 10.8% 10.7% 10.9%
DGP2 Ridge LASSO AENET Geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 21.5% 22.5% 22.6% 21.6% 22.7% 22.6% 21.5% 22.6% 22.6% 22.4% 23.1% 22.8%
150 12.3% 13.8% 12.3% 13.8% 12.3% 13.8% 12.6% 13.9%
250 10.8% 10.8% 10.7% 10.9%
DGP3 Ridge LASSO AENET Geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 23.6% 23% 23.9% 23.3% 22.9% 25.0% 23.6% 23.0% 24.5% 29.8% 29.9% 35.4%
150 13.7% 14.5% 13% 14.1% 13.6% 14.2% 17.2% 19.2%
250 11.7% 11.1% 11.2% 15.2%
DGP4 Ridge LASSO AENET Geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 27.9% 34.6% 47.8% 27.6% 35.1% 48.7% 27.3% 34.8% 48.3% 35.7% 51.0% 87.3%
150 13.9% 17.8% 13.7% 17.8% 13.7% 17.8% 16.0% 23.5%
250 12.3% 12.3% 12.2% 14.4%
DGP5 Ridge LASSO AENET Geometric
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 30.7% 39.2% 55.7% 30.5% 39.6% 57.8% 30.3% 39.3% 57.5% 43.3% 62.7% 111.5%
150 16.7% 24.7% 16.4% 24.9% 16.4% 24.8% 24.5% 45.3%
250 12.4% 12.3% 12.3% 15.1%

Table 1: Simulation results for the regularization of A paired with the sample covariance. ||D̂gH
reg −

DgH ||/||D̂gH
OLS − DgH || are shown for different Ns and T s with 500 Monte Carlo repetitions. DGPs 4

and 5 have 25 different random realizations of A and Σ. Ridge denotes the ridge regression and AENET
denotes the adaptive elastic-net.

Table 1 contains the simulation results for the regularization of A for 500 Monte Carlo

repetitions. First, it is evident that regularization results in a large overall efficiency gain.

DPGs 1-3 all show similar gains for all estimators. The best performance gain for all

DGPs and regularization methods is at N = 250. However, for N = 50 and T = 500 we

still observe a remarkable efficiency gain. That is, the best regularized estimators achieve

reductions in the norms to the true values to 10.7−23.9% for DGPs 1-3 and 12.2−55.7%

for DGPs 4-5. Only the geometric regularization method performs worse than OLS plus

the sample covariance for N = 50 and T = 500.

Surprisingly, all traditional regularization methods perform similarly well. There is no

11In general, regularization methods are not limited by N > T .
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clear winner among the estimators since the differences in performance are marginal. If at

all, the performance of the ridge estimator appears better for cases in which T is relatively

large. The variable selection methods LASSO and adaptive elastic-net perform better for

simulations where T is close to N . Further, the comparison of the ridge estimator, the

LASSO and the adaptive elastic-net for specific DGPs reveals that neither is dominant

under particular circumstances. Finally, the geometric regularization performs slightly

worse for all DGPs.

As a second step, we compare regularization methods for Σ. That is, we calculate

the residuals using the adaptive elastic-net estimate and construct the FEVD with the

(regularized) estimate of Σ. The adaptive elastic-net penalty parameter is chosen to

minimize the Frobenius norm of the difference between the estimate matrix Â and the

true parameter matrix A: λ∗ = argminλ||Â(λ) − A||. We use the soft-thresholding rule

for the adaptive-threshold estimator.

DGP1 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 21.6% 22.5% 22.6% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
150 12.3% 13.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
250 10.8% 0.0% 0.0% 0.0%
DGP2 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 21.6% 22.5% 22.6% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%
150 12.3% 13.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
250 10.8% 0.0% 0.0% 0.0%
DGP3 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 24.3% 23.1% 27.4% 3.4% 8.5% 19.8% 3.6% 8.5% 19.9% 3.4% 8.5% 19.8%
150 14.4% 14.8% 2.8% 7.7% 2.8% 7.7% 2.8% 7.7%
250 11.5% 4.6% 4.6% 4.6%
DGP4 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 29.2% 38.6% 58.1% 12.5% 27.5% 58% 12.4% 26.5% 59.5% 12.9% 27.5% 58.4%
150 14.2% 20% 3.9% 11.8% 3.9% 11.8% 4% 12.1%
250 13% 5.1% 5.1% 5.2%
DGP5 Sample-Cov Threshold Ledoit-Wolf GLASSO
N\T 75 175 500 75 175 500 75 175 500 75 175 500

50 32.3% 41.5% 61.9% 23.3% 38.4% 61.5% 25.5% 46.9% 84.6% 23.2% 38.1% 62.4%
150 18.1% 28.8% 12.3% 26.4% 14.5% 34.9% 12% 26.3%
250 12.8% 5.7% 6.2% 5.6%

Table 2: Simulation results for the regularization of Σ, paired with the best-performing adaptive elastic-
net estimator. Results are divided by the estimation uncertainty of the OLS estimator with the sample
covariance matrix. ||D̂gH

reg −DgH ||/||D̂gH
OLS −DgH || are shown for different Ns and T s with 500 Monte

Carlo repetitions. DGP 4 has 25 different random realizations of A and Σ.

Table 2 shows simulations with different regularizations. The first estimator is the

sample covariance matrix and sets the benchmark for the performance of the covariance

regularization. Again, we measure the performance of the regularization methods with

the norm of the estimated FEVD to the true values. The most salient result is the 0%

norm for DGPs 1-2. In particular, the FEVDs appear perfectly estimated, since the

data generating covariance matrix is the identity. Hence, the strongest penalization can

find this matrix. For example, shrinkage towards a diagonal matrix as in the Ledoit-
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Wolf estimator approximately estimates the identity. Similarly, the adaptive-threshold

and GLASSO estimators both select diagonal entries in the covariance matrix. Note,

however, that the perfect estimation of the coefficient matrix in the first step is also a

precondition for the efficient regularization of the innovation covariance matrix and, thus,

for the perfect fit of the overall FEVD.

In DGP 3, the elastic-net is not able to perfectly estimate this matrix since it is not

sparse. Thus, the estimation of the overall FEVD is not completely perfect. However, it

appears that sometimes the methods perfectly estimate the covariance matrix, which is

again the identity. The performance is similar for all the regularization methods. Different

performances for the methods are observable for the non-diagonal covariance matrices in

DGPs 4-5. A significantly increased performance is observable for all combinations of N

and T except for N = 50 and T = 500. For this case, the sample covariance performs

reasonably well such that its regularization does not enhance estimation accuracy. Again,

we do not find pronounced differences in the performances between these estimators.

In summary, we find that the regularization of the two estimation steps leads to a

significant performance gain in the estimation of FEVDs. The best-performing estima-

tor in our simulations is the ridge regression combined with the Ledoit-Wolf estimator,

although by a thin margin. Both estimators slightly outperform the others and are also

easy to apply. However, since we already have to find the penalization hyperparameter,

it is advisable to use CV techniques to validate these methods’ performance for specific

data.

3.3 Bias, Variance, and Edge Detection

First, we take a look at the mean of the entries and the norms for regularized and

unregularized FEVDs. For this, we construct time series with DGP 5, N = 100 and

T ∈ [100, 500]. The analysis compares OLS and the adaptive elastic-net, combined with

the sample covariance matrix and the GLASSO estimate, respectively. We select the

hyperparameters based on the best performance (minimization of the Frobenius norm to

the true FEVD). Note that this procedure requires knowledge about the true parame-

ters, such that it is applicable in a simulation exercise but cannot be performed in an

empirical application. The left-hand panel in Figure 2 shows the average mean distance,

N−2
∑N

i=1

∑N
j=1mean(D̂gH

ij −D
gH
ij ), which allows us to interpret the results as the biases

of the FEVD estimates. The right-hand panel of Figure 2 then shows the average variance

N−2
∑N

i=1

∑N
j=1 var(D̂

gH
ij ). Note that this analysis relates to the “bias-variance” trade-

off for estimators as regularization methods generally sacrifice unbiasedness to achieve a

lower variance. If balanced optimally, this step leads to a reduction in prediction errors

overall.

The left-hand panel depicts the magnitude of the bias for small T (approaching N =
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Figure 2: Simulation results for 500 Monte Carlo repetitions of DGP 5 and N = 100. The left-hand panel
shows the average mean difference of the estimates to the true values N−2

∑N
i=1

∑N
j=1mean(D̂gH

ij −D
gH
ij ).

The figure shows the bias of the resulting estimate for the respective curves. The right-hand panel shows
the respective average variance N−2

∑N
i=1

∑N
j=1 var(D̂

gH
ij ). The sample size T is on the x-axis. AENET

denotes the adaptive elastic-net.

100 from the right). We see that on average all estimators are positively biased, with

the non-regularized estimator (blue solid line) profoundly overestimating entries in the

FEVDs. That is, this estimator faces a strong positive bias the closer T is to N . Perhaps

surprisingly, the adaptive elastic-net (red dotted curve) already diminishes the bias for

small T by a margin (almost by a factor of 100 for T = 100). While we would have

expected that regularization methods mostly trade off variance for bias, it appears that for

T < 200 the adaptive elastic-net also performs better with respect to the bias. Similarly,

when using the GLASSO we see a consistent improvement with respect to the bias. For

both cases, the GLASSO estimate improves over its sample covariance counterpart, even

for higher T s.

The right-hand panel plots each estimator’s variance, indicating the precision of the

estimation. The non-regularized version not only faces heavy inaccuracies from the bias

but also has an extremely elevated variance for T < 150. Its variance lessens with increas-

ing T but still underperforms compared to the regularized versions. For all regularization

methods, we see gains in the variance, most likely stemming from the “bias-variance”

trade-off. The combination of coefficient and covariance regularization therefore domi-

nates for all T s. Pairing this finding with the findings of the left-hand panel, there appears

to be no trade-off for T < 200 but an overall improvement in bias and variance. Overall,

it is advisable to combine the regularizations for the coefficient and the covariance ma-

trices as this combination provides the lowest variance and, for most sample sizes, it has

also shown to come with the lowest bias.
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Next, in the context of networks, we explicitly care about the diagnostic ability of the

estimator. That is, we are interested in how well the classification into zero and nonzero

entries performs in the network matrix. For that purpose, we summarize the performance

in terms of the correct detection of zero and nonzero entries in the three panels in Figure

3. A value is considered true positive (TP) in the case of a hit and false positive (FP)

in the case of a false alarm (Type I error). Likewise, a true negative (TN) is given if the

FEVD is correctly estimated to be sparse at a given edge, and there is a false-negative

(FN) when an existing edge is not found (Type II error). First, the probability of correct

classification is summarized by the accuracy metric. Accuracy is defined as the number

of true hits (TP + TN) divided by the number of real positives and real negatives N2,

resulting in accuracy = (TP + TN)/N2. We compare this metric of the estimators for

increasing T . Clearly, a big improvement is unlocked when using the adaptive elastic-net

estimator instead of OLS in small samples. A small but additional gain can be achieved

through the usage of GLASSO instead of the covariance matrix. The differences largely

disappear when T increases.

The receiver operating characteristic (ROC) plots the false-positive rate FPR =

FP/(FP + TN) against the true-positive rate TPR = TP/(TP + FN) while vary-

ing the discrimination threshold of setting values to zero. More precisely, the threshold

varies from the lowest to the highest entry in the FEVD and, thus, sets increasingly more

values to zero. For each threshold, the ROC plots the respective FPR and TPR in a

diagram ranging from 0 to 1. A perfect estimator — i.e., one that correctly classifies all

edges no matter the threshold — would result in a line starting at (x,y)=(0,1) and ending

at (x,y)=(1,1). Conversely, a completely random guess would be shown as a 45◦ diagonal

line. We plot the ROC curve for T = 200 in Panel B of Figure 3. Again, the regularized

estimators clearly improve the performance when it comes to classification.

Finally, the area under the ROC curve summarizes the ROC curves in a single num-

ber in the right-hand panel, with higher values corresponding to better edge detection

capabilities. The values range from 0.5 to 1, where 0.5 is a completely random guess

and 1 is the perfect classification. This metric has the advantage of being able to sum-

marize an estimate in a single number and, thereby, allows us to compare estimators for

different T s. For T = 100, the regularized estimators already display high confidence

in their classification performance. While the gains over the unregularized estimation

mainly originate from the regression stage of the estimation, the results improve even

further after regularizing the covariance matrix.

To sum up, our simulations demonstrate that the regularized estimators perform sig-

nificantly better than their unregularized counterparts. This is evident when comparing

estimation errors as well as when using entry-wise classification metrics. As expected,

performance gains are most nuanced for small T s relative to N . However, our results

indicate that the use of regularization also leads to improvements when estimating large-
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Figure 3: Simulation results for 500 Monte Carlo repetitions of DGP 5 and N = 100. The first panel
shows the accuracy for increasing sample size T on the x-axis. The center panel shows the receiver
operating characteristic (ROC) for T = 200, which has FPR on the x-axis and TPR on the y-axis. The
diagonal thin black line is the equivalent of a random estimate. The right-hand panel shows the area
under the ROC for increasing sample size T . AENET denotes the adaptive elastic-net.

dimensional networks from long datasets and, therefore, we advise researchers to apply

regularization techniques when faced with large-dimensional estimation problems.

4 Empirical Application: Production Volatility Spill-

overs and the Great Moderation

The period known as the Great Moderation, starting in the mid-1980s, is characterized

as a period with reduced fluctuations in many macroeconomic time series, such as real

growth rates, industrial production (IP), and unemployment. For instance, the Federal

Reserve Board’s Index of Industrial Production shows a significant decrease in volatility

after 1984 (see Figure 4). The question whether the Great Moderation happened due to

good luck, better monetary policy, or any other structural change is vital for policy makers

as they need to understand the impact of these factors on macroeconomic volatility.12

Foerster et al. (2011) investigate this shift by decomposing IP into sectoral and common

shocks. With the aggregated IP index summing over many weighted sector-level shocks,

its large volatility is puzzling. The authors search for the roots of this puzzle and conclude

that a decline in the volatility of common shocks induced most of the break in IP’s

volatility.

We are interested in understanding the source of the decline in the volatility of ag-

gregate IP. Gabaix (2011) proposes that a small number of constituents with large index

weights can explain aggregate shocks, an idea that Foerster et al. (2011) refutes. In our

view, to analyze the influence of a particular industry on the aggregate, one needs to

12For an early discussion of the potential drivers of the Great Moderation see Bernanke (2004).
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consider not only sectoral weights but also directional dependencies. In particular, we

want to know whether a handful of large sectors lowered their links to other sectors and

thus reduced common shock volatility and pairwise correlation. Acemoglu et al. (2012)

establish this possibility based on input-output linkages and show that the diversification

argument does not apply in the presence of strong network structures. Carvalho (2014)

empirically investigates some implications of the production network in more detail and

finds that pair-wise correlations between two sectors are bigger for stronger input-output

links.

For insights into sectoral inter-connections, we obtain estimates of the directional

dependencies. In contrast to a fast-expanding literature on production networks that

exploits input-output tables as network proxies (for a review see Carvalho and Tahbaz-

Salehi (2019)), our methodology directly sheds light on the network implied by sectoral

IP correlations. An advantage of this approach is the ability to capture not only the

supply-demand relationships of economic sectors but also alternative channels of trans-

mission. For example, production volatility can also propagate between two sectors with-

out an input-output relation if they compete for the same resources, if their outputs are

substitutes or complements, or if technological innovations are transferable. Thus, by

estimating FEVD tables, our application adds to the understanding of sectoral spillovers.

We examine pre-and post-1984 periods in detail to give a comparison of how spillovers

have changed. Our findings provide novel empirical evidence in relation to the arguments

of Foerster et al. (2011), Gabaix (2011) and Acemoglu et al. (2012) and offer a unifying

view on their otherwise opposing narratives. We conjecture that sizeable spillovers from

a handful of sectors initially increased the variance of aggregate shocks. With the Great

Moderation, the structure of the spillover network changed such that sectoral shocks are

less likely to amplify into aggregate volatility. Hence, our findings raise an alternative

explanation where structural change largely contributed to the Great Moderation.

4.1 Data

As in Foerster et al. (2011), we use sectoral data on IP throughout the period 1972-2008.

This data spans up to N = 138 sectors, which corresponds to the six-digit classification

of the North American Industry Classification System (NAICS). The sectoral indices are

available on a monthly basis. Since the pre- and post-Great Moderation periods have

different sample sizes, they face distinct degrees of estimation uncertainty. Hence, we

split the whole sample into three equally sized subsamples of T = 144 months. The

subsamples span from 03/1972 to 02/1984, from 03/1984 to 02/1996, and from 03/1996

to 02/2008. In our analysis, the boundary between the first and second samples marks

the onset of the Great Moderation. For simplicity, we label these samples as 1972-1983,

1984-1995, and 1996-2007, respectively.
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Let IPi,t denote the value of IP of sector i at date t. We take monthly growth

rates and annualize the respective percentage points, gi,t = 1200× ln(IPi,t/IPi,t−1). The

aggregate level of IP growth is the weighted average over the sectors, gt =
∑N

i=1 wi,tgi,t,

with given weights wi,t. Figure 4 plots the growth rate of IP on an aggregate level. The

first subsample, from 1972 to 1983, coincides with the pre-Great Moderation period and

the other two subsamples are post-Great Moderation. It is evident that the average

monthly volatility of aggregate IP diminished with the Great Moderation and stayed

fairly constant thereafter.
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Figure 4: Annualized growth rates of monthly aggregate industrial production (IP) in percentage points.
σ denotes the sample volatility in the respective subperiod.

4.2 Estimation

We interpret the spillover constituent in the data as a VAR(1) model. We infer the

connectedness in our model from the auto-correlation dynamics of gi,t in the monthly

data. The higher frequency allows setting the forecast horizon to three months, which

corresponds to the (undirected) covariance matrix of the quarterly data. This connection

between monthly and quarterly frequencies gives insights into the contagion within a

quarter. In particular, Foerster et al.’s (2011) average pairwise correlations and aggregate

shocks may be better understood if we break up quarterly volatilities into three serially
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correlated monthly volatilities. Hence, the central regression specification is as follows:

yt = µ+ Ayt−1 + ut, ∀t = 1, ..., T,

yt = [g1,t, ..., gN,t]
′,

ut ∼ N (0,Σ).

We are aware of the shortcomings of this plain econometric specification. The frameworks

proposed in Foerster et al. (2011) are tailored to test hypotheses about the common

factors. However, our framework aims to see correlations through the lens of inter-

sectoral spillovers as opposed to understanding correlations as common factors. While

we agree with the original authors’ approach to common variation, we deliberately set

up our specification in sharp contrast in order to augment previous narratives, with the

ultimate goal of providing a better understanding of the Great Moderation.

We regularize A and Σ with the techniques mentioned in the previous sections. Since

the simulations did not point towards a consistent winner throughout all settings, we

validate all regularization methods on the data. Namely, we run a 12-fold CV to select

the best-performing estimator.13 This step also includes the selection of α and λ in the

adaptive elastic-net and the hyperparameters λ, δ and η for the covariance estimation.

Then, we calculate the FEVDs with the forecast horizon H = 3. Recall that we consider

the generalized version of FEVDs, i.e., the shocks are technically not idiosyncratic and

can be correlated. Innovations that propagate via the auto-regressive matrix A not only

increase correlations between the sectors but also show directional effects that define the

asymmetry of the FEVD.

We row-normalize DgH in (8) to show the percentage contribution to the variance.

The row-normalized matrix is denoted as D̃gH with entries d̃gHij . Additionally, we present

key figures related to the network literature. In particular, we use the same measures

as Diebold and Yılmaz (2014): in-, out-, and average connectedness. These measures

are defined as the row sum, column sum, and the average row sum without the diagonal

entries, respectively. To facilitate intuition, we slightly deviate from the original authors’

terminology and henceforth use the terms in- and out-connectedness for what they call

from- and to-connectedness.

Ci←·
(
D̃gH

)
=
∑
j 6=i

d̃gHij , (in-connectedness to i)

C·←j
(
D̃gH

)
=
∑
i 6=j

d̃gHij , (out-connectedness from j)

C
(
D̃gH

)
=

1

N

∑
i

∑
j 6=i

d̃gHij . (average connectedness)

13In contrast to the statistical conventions, we use 12 folds to eliminate potential seasonalities.
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The first two measures are sector-specific measures. The latter sums up the overall

explanatory power of connectedness, which gives us an idea of how much variation is

explained, on average, by spillovers and not directly by shocks. Note that we are mainly

interested in the distribution of the outgoing spillovers of the sectors measured by the

out-connectedness. Precisely, if a handful of large sectors had a high out-connectedness,

the volatility of those sectors’ IPs would not average out in the aggregate IP index.

First, we validate the performance of each method on the dataset. We use the three-

digit sectoral disaggregation with 88 sectors. Figures 5 and 6 show the MSEs for the

regularization of A and Σ, respectively. As in the preceding simulations, we compare

different methods for the estimation of the coefficient matrix A and the covariance matrix

Σ. For the estimation of A we apply the adaptive elastic-net and compare the minimal

MSE for different values of α. Recall that α = 1 is the adaptive LASSO and α = 0 is the

(adaptive) ridge estimator. λ is chosen from 100 values spaced logarithmically between

10−5 and 105. The grid for α includes {0, 10−5, ..., 10−0.3, 0.66, 0.75, 0.9, 1} with 20 values

spaced logarithmically between 10−5 and 10−0.3.
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Figure 5: 12-fold CV results for the tuning parameter α in the adaptive elastic-net. The scale shows the
percentage improvement over the OLS case, e.g., 33% refers to a forecast error being only a third that
of the OLS estimate. The blue solid curves show the minimal MSE with ÂOLS as the initial estimate in
the weights of the individual penalties for different αs, following the approach of Demirer et al. (2017).
The red dotted curves show the same for ÂENET as an initial guess (selected by 12-fold CV, α = 0.5,
and wi = 1), the black dashed lines correspond to the original (non-adaptive) elastic-net as in Zou and
Hastie (2005).

Figure 5 shows the values of α on the x-axis and the minimized MSE (with respect

to λ) on the y-axis. The dashed black lines represent simple elastic-net estimators,

while the solid blue and dotted red lines are adaptive estimators with different initial

guesses for the weight wi = |β̂i,ini|−1. Two results are evident here. First, the adaptive

elastic-net estimator with elastic-net initialisation consistently offers an improvement

over both the OLS-initialized adaptive elastic-net estimator and the plain elastic-net

estimator for all values of α ∈ (0, 1). Second, as argued in Zou and Zhang (2009), the

initialization of the adaptive elastic-net with plain elastic-net estimates already performs

variable selection, such that the small alphas that focus on shrinkage are optimal with
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this estimator. Consequently, CV suggests an estimator with a penalty close to ridge,

and with the elastic-net estimate as an initial guess, resulting in α = 0 for all periods.

In the second step, the CV for the covariance estimators includes the adaptive-

thresholding estimator, the GLASSO estimator, the bona-fide Ledoit-Wolf estimator,

and the Ledoit-Wolf estimator with a manually selected shrinkage weight. The latter is

a heuristic extension of the Ledoit-Wolf estimator with manual selections of b2 and d2.

Figure 6 shows their performance with different penalization and shrinkage parameters

on the abscissa.
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Figure 6: The 12-fold CV results for the tuning parameter of different covariance regularization methods.
Values of the tuning parameters are on the x-axis and the MSEs are shown on the y-axis. The two
thresholding estimators tune δ in (15), the GLASSO tunes λ in (18) and the manual Ledoit-Wolf tunes
the otherwise automatic shrinkage parameter δ. The x-axis is normalized for each regularization method
such that the convexity of all of the MSE curves is visible.

CV selects the adaptive-threshold estimator for all periods. This estimation procedure

thresholds the values entrywise and appears to slightly outperform the others in the first

period and distinctively outperform them in the two subsequent periods. The manual

Ledoit-Wolf estimator comes second in the first period but falls back behind the GLASSO

estimator later on. Our results from the simulation section provide a potential explanation

for this ranking. With the respective estimators performing well for different DGPs in

our simulation study, we see this shift in ranking as a sign that the pre-Great Moderation

period may have a denser covariance matrix, which is in line with the findings of Foerster

et al. (2011). In particular, the GLASSO approach sets the partial correlations between

the two series to zero, which might be too restrictive for this subsample.

4.3 Results

Table 3 shows some selected statistics of the different estimations. Two results are ev-

ident in this table. First, the non-regularized version has a significantly higher average

connectedness and stays remarkably constant over the periods. That is, it does not detect

any change with the onset of the Great Moderation. In contrast, all of the regularized
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1972-1983 1984-1995 1996-2007

C(DgH) df C(DgH) df C(DgH) df

Three-digit non-regularized 83.3% 82.3% 81.2%
(88 sectors) regularized (CV) 47.6% 10.3% 27.9% 10.4% 34.1% 10.7%

Four-digit non-regularized 92.6% 92.4% 92.0%
(117 sectors) regularized (CV) 44.2% 7.8% 34.2% 5.0% 26.7% 6.3%

Six-digit non-regularized 98.5% 98.5% 98.3%
(138 sectors) regularized (CV) 42.9% 6.4% 27.5% 4.7% 30.3% 5.6%

Table 3: Summary of the estimation results for different levels of sectoral disaggregation. The columns
labeled C(DgH) show the estimated average connectedness. The columns labeled df show the density
level of the autoregression coefficient matrix A, corresponding to the used degrees of freedom as a
percentage of N2.

versions capture the difference between the pre- and post-Great Moderation periods.

Second, the average results of the regularized versions are robust over different levels of

disaggregation. The non-regularized estimators, however, have higher average connect-

edness when we increase the dimensions. This observation clearly emphasizes the need

of regularization in this context and exemplifies the bias that can occur in FEVDs (see

Section 3).

Eventually, we want to emphasize the decreased usage of the degrees of freedom of

the regularized estimators in Table 3. For robustness, we also report the results for

lower levels of sectoral aggregation. As expected, the fractional degrees of freedom in the

regularized coefficient estimates Âreg decrease with higher dimensions since the estimation

has to deal with more estimation uncertainty and larger networks are likely more sparse.

However, with the estimated coefficient matrices being reasonably populated and the

network connectedness staying fairly unchanged across the specifications, we conclude

that the three-digit aggregation level offers a reasonable balance between granular insights

and keeping high dimensionality at bay. In the analysis, we observe average spillovers of

47.6%, 27.9%, and 34.1% for the three periods, respectively.

To give a holistic view of the network, we summarize the estimated row-normalized

connectedness tables in Figure 7. The figure shows the tables as network graphs, in

which the force-directed graph drawing algorithm arranges the nodes. That is, two nodes

appear closer in the graph if they have stronger connections to each other. The size

of the node relates to the respective average weight w̄i,t∗ of the sector in the IP index.

The colors illustrate the out-connectedness. Finally, we label the sector with the highest

out-connectedness.

From eye-balling, it is evident that the network significantly changed after 1984.

Whereas the pre-Great Moderation period shows a closely connected graph with a hand-

ful of powerful nodes in the center, the two consecutive periods have more widespread

graphs with less concentration. Clearly, this also shows in the average connectedness
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Figure 7: Connectedness networks for the respective periods. The size of the node relates to the respective
weight of the sector in the IP index. The colors depict the out-connectedness. For the sake of the
visualization, we cap the color scale at 1. The sectors with the highest out-connectedness are labeled.

C(DgH). This result alone can easily be consolidated with the explanations in Foerster

et al. (2011). Adding to this, we now investigate the asymmetric part of the spillover

tables by looking at sectoral in- and out-connectedness. As mentioned earlier, a plausible

explanation for the high volatility in the aggregate index is that a handful of sectors

spilled a lot of volatility before the Great Moderation and decreased contributions after-

wards. As a first observation from Figure 7, large values for out-connectedness became

less frequent and sectors with smaller weights (smaller nodes) took more-central positions

in the networks after 1984.

Although more spillovers do not necessarily result in higher aggregate volatility, the

root may be in the concentration of outgoing spillovers. In that regard, out-connectedness

measures how much a single sector’s volatility explains the volatility of all other sectors.

If a handful of sectors have very high levels of out-connectedness, then their volatility

determines, to a large extent, the volatility of other sectors. Consequently, the volatility

of the aggregate IP index is also indirectly affected by innovations to those sectors and

their shocks do not average out.

Figure 8 displays the counter-cumulative density functions (CCDFs) of the out-con-

nectedness measure for the three sample periods. Notably, the distribution in the pre-

Great Moderation period from 1972 to 1983 expands much further to the right than in

subsequent periods. The shift of the curve to the right alone can be explained by the

larger correlations. However, the pronounced right tail for this period is an indication

of a heightened network concentration, supporting the hypothesis of network-induced

under-diversification of the aggregate IP index. Roughly 10% of the sectors have an out-

connectedness higher than 1, meaning that each explains more than 100% of the volatility
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of the other sectors in total. Therefore, their shock volatilities would show up more than

twofold in an aggregate index with equal weights. The fat tail mostly disappears after

the Great Moderation, i.e., the subsequent periods have a more-diversified production

network. Lastly, we observe that the left tail of the CCDF also experienced a shift of the

out-connectedness with a smaller magnitude, which reflects a reduction in connectedness

overall.14
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Figure 8: Estimated counter-cumulative density functions (CCDFs) of the out-connectedness of the 88
three-digit-level sectors.

Figure 9 tracks the dynamics of the out-connectedness for individual sectors. Each dot

in the plot corresponds to a sector, with the position along the y- and x-axes according to

their out-connectedness before and after the Great Moderation, respectively. The size of

the dot relates to the size of the sector in the IP index. The colors relate to the changes

in each sector’s out-connectedness. Sectors above the 45◦ line have decreased their effect

on other sectors and vice versa. The shift in distribution is immediately evident as most

sectors appear in the top left of the graph. However, this graph clearly shows a strong

decrease in a couple of sectors (colored in dark blue), whereas the out-connectedness

stayed relatively constant for other sectors (red and yellow). Remarkably, it also seems

that some sectors increased in out-connectedness. This finding supports the hypothesis

of structural change as a contributor to the Great Moderation.

In addition to sectoral out-connectedness, the distribution of in-connectedness may

have played a critical role in the structural change that emerged during the Great Mod-

14Supporting histograms of the in- and out-connectedness measures (Figures D.13 and D.14) are

available in Appendix D. Here, the 10% strongest sectors by pre-Great Moderation out-connectedness

have mostly reduced their values to around 0.5 in the last period. Comparing only the first and last

periods, the distributions are similar except for the heavy right tail.
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Figure 9: Out-connectedness scatter plot of the 88 three-digit-level sectors pre- versus post-Great Mod-
eration. Values on the y- and x-axes show the out-connectedness for pre- and post-Great Moderation
periods, respectively. The size of the markers correspond to the size of the sectors. The colors show how
far away the sectors are from the diagonal line, i.e., how much their out-connectedness changed relative
to the pre-Great Moderation period. The four sectors with the largest decreases in out-connectedness
are labeled.

eration. However, we find its role in amplifying volatility to be ambiguous because of

two channels. First, big values of in-connectedness imply higher dependencies of other

sectors such that a small sector’s volatility may additionally emerge in sectors with big-

ger weights. That is, if we see a handful of sectors with large weights having very strong

in-connectedness, the spillovers might skew the weighting scheme of the aggregate in-

dex. Second, higher values of in-connectedness are generally related to a higher degree

of diversification, which in return would wash out the intrinsic volatility contribution.

Paired with an infelicitous distribution of weights — e.g., sectors with big weights might

have received more spillovers after 1984 — this could lead to more diversification overall.

This latter hypothesis is in line with the argument of Gabaix (2011) that a small num-

ber of constituents with large index weights can explain aggregate shocks. We analyze

both conjectures in Appendix D in Figure D.12 but do not find support for any of the

aforementioned.

Next, we want to understand how the full network structure affected aggregate index

volatility and how individual sectors contributed to the aggregate. Take the aggregate

index representation from before: gt =
∑N

i=1 wi,tgi,t; the IP index variance is σ2
p = w̄′Σw̄,

where w̄ is a vector of average weights in the respective period and Σ is the covariance

matrix of the index constituents. Now, we leverage the higher frequency of our estimation,

which ultimately allows us to have directed estimates of variance spillovers. The sum

of the monthly inter-temporal spillovers then determines the lower-frequency estimate.

Thus, we use the sum of the three-month covariance of observations to innovations IRV =∑2
h=0 ΦhΣ =

∑2
h=0 cov(yt, ut−h), where Φh = Ah as in (2). We denote this term as the

innovation response variance (IRV) and define the vector v·→IP as the decomposition of
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the aggregate IP index variance into sectoral contributions:

v·→IP = w̄′IRV diag(w̄), and vagg := 1′v·→IP , (19)

This representation is particularly appealing, as, for example, entry i, j in the IRV matrix

shows how much variation in variable i follows from variations of innovations to j. Note

that in our framework, the IRV is a full description of the variance in yt as ut−h is

the only source of variation and comprises both sector-level and aggregate innovations.

Thus, v·→IP accounts for the variance, the weight of the sector, and the magnitude of

the spillovers to other sectors. Note that the vector v·→IP shows the dissection of the

quarterly data by allowing directional reactions to occur at monthly frequencies. Further,

we decompose this representation in

v·→IP = w̄′diag (IRV ) diag(w̄)︸ ︷︷ ︸
intrinsic component

+ w̄′ [IRV − diag (IRV )] diag(w̄)︸ ︷︷ ︸
extrinsic component

. (20)

This decomposition into intrinsic and extrinsic components allows us to understand the

channels through which the sectors contributed to the variance of the index, thus, pro-

viding additional insight into the drivers of the Great Moderation, as discussed in the

following.

Table 4 contains the decomposition of the aggregate variance into multiple compo-

nents. First, we confirm that the aggregate variance, vagg, implied by our estimates

matches the magnitude of the data variance, vIP . Furthermore, the decomposition of the

aggregate variance into an intrinsic component, vIC , and an extrinsic component, vEC ,

shows a decrease in both components with the onset of the Great Moderation. Interest-

ingly, we see a sharper drop in the extrinsic component from 61 to 3.9. This finding is

generally in line with the findings of Foerster et al. (2011). An additional decomposition

of the extrinsic component into a symmetric, vSy, and an asymmetric portion, vAsy, al-

lows us to shed light on the credibility of the network story as opposed to the narrative

of aggregate shocks. Although the symmetric portion seems to be the dominant force

of the extrinsic component, we still see a non-negligible decrease in the asymmetric por-

tion. Perhaps surprisingly, the asymmetric shares, vAsy/vagg and vAsy/vEC , drop more

considerably than the symmetric counterpart after 1984. We see this as support of the

structural change in the network contributing to the Great Moderation.

Lastly, we care about single-sector contributions via the IRV in (19). To do so, Figure

10 tracks the sectors’ variance contributions over the three periods. We place the sectors

with the highest contributions at the bottom and vice versa. In brackets, we show the

percentage of the sectors’ contributions via the extrinsic channel as defined in (20). A

higher value relates to more systemic relevance in the aggregate index.

First, we note that the sector labeled Motor Vehicles is estimated to be the biggest
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1972-1983 1984-1995 1996-2007

Aggregate variance vagg = w̄′IRV w̄ 81.1 14.1 19.9
Data variance vIP = var(w̄′yqt ) 94.6 14 14.6

Intrinsic component vIC = w̄′diag(IRV )w̄ 20.2 10.1 11.8
Extrinsic component vEC = vagg − vIC 61 3.9 8.1

of which symmetric vSy = w̄′(IRV s − diag(IRV s))w 44.4 3.5 5.4
of which asymmetric vAsy = vEC − vSy 16.5 0.5 2.7

Extrinsic share vEC/vagg 0.75 0.28 0.4
Asymmetric share vAsy/vagg 0.2 0.03 0.14
Asymmetric/extrinsic vAsy/vEC 0.27 0.12 0.34

Table 4: Decomposition of variance contributions by channel. Aggregate variance is an estimate of
the variance of the aggregate IP index via impulse response variances. The intrinsic component con-
sists of all sectors’ direct contributions to the index variance. The extrinsic component comprises all
effects on the index variance through the channel of inter-sector linkages. We then further decompose
the extrinsic component into a symmetric channel, which is common in IRV and IRV ′. The exact
formula used to calculate the symmetric portion of IRV is IRV s = sign[sign(IRV ) + sign(IRV ′)] �
min{abs(IRV ), abs(IRV ′)}, where � denotes the Hadamard product. Thus, off-diagonal entries are set
to zero if the directional effects differ in sign; they are set to the value closer to zero if the directional
effects have the same sign.
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Figure 10: Bump chart of sectoral contributions to the variance of the aggregate IP index. Contributions
are calculated as in (19). Data includes IP indices for 88 three-digit-level sectors. The top contributors
per period are labeled. Values in brackets correspond to the extrinsic component of the contribution.
For example, the value of the Motor Vehicles sector in the first period states that 63% of this sector’s
contribution is due to spillovers (extrinsic) to other sectors and 37% is from its intrinsic component.

contributor to the IP index variance before the Great Moderation. After 1984, we see

nearly all contributions fade, with Motor Vehicles still having the biggest effect but a much

lower extrinsic component. Perhaps surprisingly, Coal Mining is ranked fourth before the

Great Moderation. With its variation primarily influenced by the sector labeled Oil and

Gas Extraction (number not in the graph), the Coal Mining sector serves as an amplifier
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of oil shocks. However, with an extrinsic component of only −22%, the effect of the

Coal Mining sector on the aggregate is partially diluted. A major change in sectoral

contribution can be seen in Iron and Steel Products, a sector that almost exclusively

contributes to the IP index through spillovers (70%), thereby increasing common variation

across sectors. This sector’s contribution dropped drastically with the Great Moderation.

Similarly, Foerster et al. (2011) report that metal-related industries, in particular, are best

explained by a factor structure, indicating that innovations in Iron and Steel Products

could manifest in aggregate variation.

Throughout the application, some findings appeared puzzling at first; e.g., the large

decrease in the effect of lumber-related sectors and Dairy Products to other sectors in

Figure 9, and the strong but diluted effect of the Coal Mining sector on the aggregate

index in Figure 10. In particular, the latter exhibited an unusually high variance before

the Great Moderation. A possible hypothesis relating these three puzzles may be the

prevalence of price and quantity controls in the period from 1972 to 1983. For exam-

ple, in line with the comprehension of the Arrow-Debreu model, we conjecture that the

suppressed IP variance in the Oil and Gas Extraction sector surfaced in other sectors,

and particularly in Coal Mining. Hence, we believe that sizeable demand fluctuations for

energy-related commodities could have had a great impact on the coal sector, which had

a large effect on the aggregate index. In January 1981, an executive order mitigated this

impact by re-allowing the market to freely adjust oil prices. In line with this explanation,

from the second sample period onward, we additionally observe that sectors which pre-

viously faced price and quantity controls such as Dairy Products and Wood Preservation

also lowered their out-connectedness in Figure 9. The coincidence of these developments

warrants further research on the relationship between market interventions and the Great

Moderation.

In summary, the results provide insights into the changes observable during the Great

Moderation. Foerster et al. (2011) emphasize that the decrease in aggregate variance

is not due to some sectors but instead is rooted in the change of aggregate shocks; i.e.,

shocks to multiple sectors at once. However, our analysis of the propagation of sector-

specific shocks within a three-month period highlights that a handful of sectors may have

largely contributed to the change in quarterly aggregate shocks. These sectors had strong

spillover effects on other sectors such that they increased the variance of the aggregate

index. In contrast to Gabaix (2011), not only is the index weight a pivotal characteristic

for a sector to influence aggregate variance but also critical are the spillover effects it

has on other constituents. Our results therefore offer a unifying perspective to the op-

posing explanations in Gabaix (2011) and Foerster et al. (2011), where the prevalence of

aggregate shocks has fallen due to a decrease in decisive intersectoral spillovers.
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5 Conclusions

In this paper, we investigate the estimation of high-dimensional vector autoregressive

models. In a simulation study, we compare different regularization methods for the

coefficient and the covariance matrix. We evaluate their performance in the estimation

of forecast error variance decompositions and we find that the regularization of both

matrices leads to better estimation. Since there is no single best estimator among all

of the simulations, we suggest validating the estimators through cross-validation. In an

application to US industrial production, we are able to uncover changes in the structure

of the inter-sectoral spillover network around the Great Moderation. Specifically, we aim

to answer the question whether a handful of sectors were responsible for the decrease in

aggregate variance. We find that a couple of sectors had a particularly high outgoing

spillover before the Great Moderation and their importance was unmatched thereafter.
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Online Appendix

A Conditions for the thresholding rule

(i) |sλ(z)| ≤ c|y| ∀ z, y satisfying |z − y| ≤ λ and some c > 0

(i)∗ |sλ(z)| ≤ |z| (shrinkage)

(ii) sλ(z) = 0 for |z| ≤ λ (thresholding)

(iii) |sλ(z)− z| ≤ λ ∀ z ∈ R (limits of shrinkage)

Cai and Liu (2011) conduct analyses for the class satisfying (i),(ii),(iii) but state that it

is also possible to adapt this to (i)*. The hard-thresholding rule is ruled out by (i), but

other thresholding functions, such as the soft-thresholding sλ(z) = sgn(z)(|z| − λ)+ and

the adaptive LASSO rule sλ(z) = z(1− |λ/z|η)+ with η ≥ 1, are included.

B Shrinking diagonal values in the Adaptive-Threshold

Estimator

We experienced throughout the paper that some hyperparameters choose a shrinkage,

which sets the diagonal values of the covariance matrix to zero. To counteract this

phenomenon, we treat these values differently. Similar to the Ledoit-Wolf estimator, we

do not shrink diagonal values σ̂ii towards zero but towards the no-variance estimator

m = tr(Σ̂)N−1. More specifically, we shrink diagonal values with the following rule:

sλ(σ̂ii) = σ̂ii(1− |λ/z|η)+ +m ·max{|λ/z|η, 1}, ∀i.

The term max{|λ/z|η, 1} ranges between zero and one and has the opposite weight of

(1− |λ/z|η)+. Thus, this rule chooses a linear combination from the no-bias full-variance

estimator, σ̂ii, and the no-variance full-bias estimator, m. In the simulations, as well as

in the CV, this treatment outperformed shrinkage towards zero.
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C Illustration of Cross-Validation Procedure

Fold 1 Test

Fold 2 Test

Fold 3 Test

Fold 4 Test

Fold 5 Test

Fold 6 Test

Fold 7 Test

Fold 8 Test

Fold 9 Test

Fold 10 Test

Partition data into 10 equally sized folds

Figure C.11: Illustration of 10-fold CV. First we split the sample into 10 folds of equal length. Then we
use 9 folds for training and validate the trained model’s performance on the hold-out test fold.
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Figure D.12: Scatterplots of the in-connectedness of the 88 three-digit-level sectors against the sectoral
weights in the aggregate IP index. The in-connectedness relates to incoming spillovers from other sectors.
We plot the regression line per sample.
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Figure D.13: Histogram of the in-connectedness of the 88 three-digit level sectors. The 50% of the sectors
with the biggest weights are highlighted in red. The in-connectedness relates to incoming spillovers from
other sectors. We follow the strongest sector by weight before the Great Moderation by labeling it
throughout the samples.
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Figure D.14: Histogram of the out-connectedness of the 88 three-digit-level sectors. The 50% of the
sectors with the biggest weights are highlighted in red. The out-connectedness relates to incoming
spillovers from other sectors.
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Figure D.15: Bump chart of sectoral contributions to the aggregate variance of the IP index without
spillovers. Contributions are calculated as in (19). Data includes IP indices for 88 three-digit-level
sectors. The top three contributors per period are labeled.
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