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Abstract 
We show that sentiments—self-fulfilling changes in beliefs that are orthogonal to 
fundamentals—can drive persistent aggregate fluctuations under rational expectations in a 
beauty contest game. Such fluctuations can occur even in the absence of exogenous aggregate 
fundamental shocks. Moreover, sentiments alter the volatility and persistence of aggregate 
outcomes in response to fundamental shocks. We provide (i) necessary conditions under which 
sentiments can affect aggregate outcomes in equilibrium and (ii) conditions under which 
sentiments drive persistent fluctuations and when they only affect aggregate outcomes 
contemporaneously. We also show that sentiment equilibria are stable under least-squares 
learning while the fundamental equilibrium is not. 
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1 Introduction

Can a change in sentiments induce persistent macroeconomic fluctuations? Even though this is a very

attractive proposition and has captured the minds of economists at least since Keynes and Pigou,

this idea has been very hard to formalize under rational expectations. We revisit this question.

We explore this question in the context of a beauty contest model that has a unique equilib-

rium under full information. A key feature of the information structure is that agents receive noisy

endogenous signals about the aggregate action in the economy which are potentially confounded

by noises. Agents must parse this information in order to determine their own appropriate action.

This reliance of each agent’s action on the aggregate action can induce complementarities even if the

primitives of the model do not feature any coordination motive. This induced strategic complemen-

tarity allows for persistent fluctuations driven by self-fulfilling changes in beliefs. We refer to these

self-confirming changes in beliefs as sentiments, and aggregate fluctuations driven by these changes

as sentiment-driven fluctuations. These sentiment-driven fluctuations are independent of changes in

fundamentals such as technology, preferences or government policies. In fact, they can even exist in

an economy without any change in these aggregate fundamentals and this is common knowledge.

Importantly, our definition of sentiments is fundamentally different from the way the term “sen-

timents” is used in the fast-growing theoretical and empirical literature which studies expectations-

driven fluctuations.1 This literature has largely modeled sentiments as an exogenous stochastic

process which alters the agents’ first-order beliefs or higher-order beliefs about fundamentals. As a

result, these exogenous changes in sentiments can affect aggregate outcomes. In contrast, sentiment

shocks are not exogenously imposed in our environment. Instead, sentiments are self-fulfilling changes

in beliefs of agents. Thus, whether these changes in beliefs are self-confirming and whether they can

affect aggregate outcomes is disciplined by equilibrium. In this sense, sentiments are endogenous in

our environment. The aforementioned observability of the aggregate action is a necessary condition

for our notion of endogenous sentiments to exist, while it is not crucial for the exogenous sentiments

to play a role. One may wonder, why does this distinction between exogenous and endogenous

sentiments matter? Since sentiments in our setting are endogenous and disciplined by equilibrium,

our setup has very different normative implications regarding how policy can and should respond to

sentiments. Policy cannot affect sentiments if they are governed by an exogenously specified process.

However, in our setting, a fundamental equilibrium always exists when a sentiment equilibrium exists;

this multiplicity of equilibria opens the door for policy intervention which targets certain equilibria

over others.

We show that these endogenous sentiments can drive fluctuations in the economy even absent

any fluctuations in aggregate fundamentals, i.e., sentiment-driven fluctuations can manifest even if

aggregate fundamentals are common knowledge. This is another important distinction relative to

the large literature mentioned above which models sentiments as an exogenous stochastic process.

In these models, agents are unable to perfectly separate the noise or changes in sentiments from the

1See for example Angeletos and La’O (2010, 2013), Lorenzoni (2009), Barsky and Sims (2012), Acharya (2013),
Nimark (2014), Rondina and Walker (2020), Angeletos et al. (2018), Huo and Takayama (2015) among many others.
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changes in aggregate fundamentals. Thus, agents misattribute changes in sentiments to changes in

fundamentals and thus behave as if fundamentals had changed. In our model, this is not the case;

sentiments can drive persistent fluctuations even if the aggregate fundamental is common knowledge.

While our notion of sentiments is the same as in Benhabib et al. (2015), the focus of our paper is

very different. Benhabib et al. (2015) provide an illustration of how sentiments can generate stochas-

tic self-fulfilling rational expectations equilibrium, but they only consider a static environment and

do not study whether sentiments can generate persistent fluctuations. In contrast, we study a general

environment and present necessary conditions under which sentiment equilibria can exist and also

conditions under which sentiments can drive persistent fluctuations, providing a theoretical founda-

tion for a common finding in the empirical literature.2 Next, we lay out in detail the contribution of

this paper relative to the existing literature.

As mentioned above, the first contribution of this paper is to provide necessary conditions under

which sentiment equilibria can exist. In doing so, we provide a practical way to check whether

sentiment-driven fluctuations can arise in equilibrium. Importantly, these conditions are framed in

terms of exogenously specified primitives of the environment and thus allow one to establish whether

sentiment equilibria exist or not without solving the model. To the best of our knowledge, this is the

first such characterization in the literature studying endogenous sentiments.

Next, the paper provides general conditions under which sentiments can have prolonged effects on

aggregate outcomes, and when they can only have short-lived effects. Again, we provide conditions

in terms of the primitives of the model; in particular, the information set of agents, under which

sentiments can drive persistent fluctuations. Importantly, this characterization does not depend

on the private information that agents may possess. Our analysis shows that if agents observe

both (i) the history of realizations of past aggregate actions with a one period lag and (ii) the

history of realizations of past aggregate fundamentals with a one period lag, then sentiments cannot

drive persistent fluctuations. In this case, sentiments can at most affect contemporaneous aggregate

outcomes. More generally, our analysis shows that if agents observe both (i) the history of realizations

of past aggregate actions with a k-period lag and (ii) the history of realizations of past aggregate

fundamentals with a k-period lag, then sentiment-driven fluctuations can be described by a MA(k−1)

process. This result uncovers a key property of standard models with information frictions. A

commonly made assumption in this literature to ensure tractability is to assume that agents observe

past aggregate variables without any noise, either immediately or with a finite lag.3 While this

literature has not focused on endogenous sentiments as a driver of business cycle fluctuations, our

results highlight that this commonly made assumption on the information set of agents greatly

reduces the possibility of persistent sentiment-driven fluctuations to begin with.

We also present a practical way to construct sentiment equilibria in which sentiments can drive

persistent aggregate fluctuations. In Section 4.2, we present some simple economic environments

and show that these models can generate sentiment-driven fluctuations which resemble the identified

2See, for example, Benhabib and Spiegel (2017), Lagerborg et al. (n.d.) among others.
3The standard practice in this literature has been to either (1) assume that agents observe past realizations after

a k-period lag (see, for example, Hellwig (2002)), or (2) use a model solution algorithm which involves truncating the
history of realizations after a finite number of periods (see for example Lorenzoni (2009)).
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response in the empirical literature. We also show that the presence of sentiments can imbue ad-

ditional persistence to fluctuations driven by changes in aggregate fundamentals. In particular, we

show that in an environment where fundamental shocks drive transitory aggregate responses in the

fundamental equilibrium, the same change in aggregate fundamentals can generate a hump-shaped

response in aggregate outcomes in a sentiment equilibrium. This shows that sentiments alter the

economy’s response to aggregate fundamentals because they play the role of endogenous noise shocks,

hampering agents’ ability to infer fundamentals from endogenous signals. Thus, sentiments also serve

as amplification and propagation mechanisms with regard to fundamental shocks. Finally, we also

show that sentiment equilibria are stable under least-squares learning in both the static and dynamic

cases, while the fundamental equilibrium is not.

Related Literature As previously mentioned, our notion of sentiments is closely related to Ben-

habib et al. (2015). However, while they focus on a static environment, our paper focuses on the

dynamic response of the economy to changes in sentiments. Another closely related paper is Chahrour

and Gaballo (2016), where the sentiment is interpreted as the limit of a fundamental equilibrium

where the variance of the fundamental shock goes to zero. Their work is also in the context of a static

setting. Unlike them, we argue that sentiments can drive persistent fluctuations even when aggregate

fundamentals are known to be fixed. In particular, we show that the existence of sentiment-driven

fluctuations does not hinge on the existence of aggregate fundamental shocks in the first place.

In the dispersed information literature, sentiments, confidence, or animal spirits are often mod-

eled as exogenous shocks to agents’ expectations. For example, common noise in signals observed

by agents serves as an exogenous shock to agents’ first-order beliefs about the fundamental, such

as in Angeletos and La’O (2010) and Barsky and Sims (2012), among many others. The sentiment

shock in Angeletos and La’O (2013) instead alters agents’ higher-order beliefs about the fundamen-

tal. Different from previous studies, our sentiments are not imposed onto the model by adding noise

to the information set in an ad hoc way. Rather, they are generated endogenously, i.e., they are

disciplined by the rational expectations equilibrium. However, as previously mentioned, our endoge-

nous sentiments can play a role similar to an exogenous common noise. Hébert and La’O (2020)

study conditions under which rationally inattentive agents would choose signals that would result in

non-fundamental aggregate volatility.4 They study how the properties of agents’ information costs

relate to the properties of equilibria in beauty contest games, and provide the necessary and suffi-

cient conditions that information costs for signal acquisition must satisfy in order to rule out or allow

non-fundamental volatility in equilibrium. In our paper, we take the signals available to agents as

given and provide conditions on the structure of signals under which sentiment equilibria exist.

The sentiment equilibria that we obtain are also closely related to correlated equilibria of Aumann

(1974), as further developed by Maskin and Tirole (1987).5,6 Maskin and Tirole (1987) study an

4The non-fundamental fluctuations in their paper include those driven by exogenous common noises.
5See also Peck and Shell (1991).
6Aumann et al. (1988) provide an excellent overview of the relation between correlated and sunspot equilibria under

asymmetric information with a set of examples in market games that in the limit converge to a competitive equilibrium,
and also illustrate that under asymmetric information there can be correlated equilibria even though the fundamental
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economy with a unique fundamental equilibrium, and correlated equilibria exist only if there are

Giffen goods. In our model, all goods can be normal and demand functions downward sloping.

In a linear Gaussian economy, Bergemann and Morris (2013) and Chahrour and Ulbricht (2017)

characterize the set of correlated equilibria and construct the corresponding information process

(without sentiment shocks) that supports a particular allocation in the set. Our exercise instead

starts from a particular information structure, and explores the set of equilibria that can be supported

by the given primitives.

Since sentiment-driven fluctuations in our paper take the form of self-confirming beliefs about

aggregate outcomes, one could interpret these as sunspots. However, it is important to realize that

the sentiment equilibria that we characterize are not simple sunspot randomizations over multiple

fundamental equilibria, as in many macroeconomic models. There exists a significant literature

showing that sunspot equilibria can occur in models where the fundamental equilibrium is unique.

The seminal paper of Cass and Shell (1983) demonstrates this in a two period model with a unique

fundamental equilibrium by introducing securities traded in the first period, with returns that are

sunspot contingent and can induce wealth effects. Spear (1989) studies an overlapping generations

model with two islands where prices in one island act as sunspots for the other. Peck and Shell (1991)

obtain a similar result by postulating imperfect competition and non-Walrasian trades in the post-

sunspot market that also gives rise to wealth effects. In contrast, Mas-Colell (1992) and Gottardi and

Kajii (1999) explicitly rule out securities with payoffs contingent on sunspot realizations, but trading

is possible due to heterogeneous endowments and preferences in the first period. Thus according

to Gottardi and Kajii (1999), what accounts for the existence of sunspot equilibria is “potential

multiplicity” in future spot markets that results from trades that take place in the first period. It is

clear that these are not the forces generating multiplicity of equilibria in our economy, as agents do

not trade assets and do not make any inter-temporal decisions. Instead, the multiple equilibria in

our model arise due to signal extraction problems in a setting with endogenous information sources.

The specific environments and contexts of these papers are very different, and involve assumptions

that are arguably not suitable from an applied-macroeconomics perspective. In contrast, we show

that a very commonly used environment in the macroeconomics literature also permits the existence

of correlated equilibria, and that in these settings sentiments can account for persistent aggregate

fluctuations.

2 Environment and equilibrium concept

2.1 Best response

We consider a standard beauty contest game such as in Morris and Shin (2002). Our economy

consists of a continuum of agents indexed by i ∈ [0, 1]. Agent i wants to choose an action ai,t every

period which depends on their idiosyncratic fundamental shock zi,t, an aggregate fundamental shock

equilibrium is unique. For an excellent discussion, see also Forges and Peck (1995).
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θt and the economy-wide aggregate action at. Assume that the optimal action by agent i is given by

ai,t = δEi,tθt + γEi,tat + αEi,tzi,t, (1)

where at =
∫
ai,tdi is defined as the aggregate action and Ei,txt denotes the expectation of a random

variable xt conditional on agent i’s information set at date t. The parameters α and δ can take

any value on the real line but we impose that γ < 1. This assumption ensures that the strength of

strategic complementarity is not strong enough to generate multiple equilibria as in Cooper and John

(1988) – our environment features a unique full-information fundamental equilibrium. The processes

for idiosyncratic and aggregate fundamental are given by

zi,t = h(L)ui,t =
∞∑
k=0

hkui,t−k, (2)

θt = g(L)vt =
∞∑
k=0

gkvt−k, (3)

where ui,t and vt are sequences of Gaussian white noise innovations to the idiosyncratic and ag-

gregate fundamental respectively. Even though the idiosyncratic and aggregate fundamentals are

univariate stochastic processes, we allow them to be driven by a vector of innovations. In equation

(2), ui,t is a nu-vector of idiosyncratic shocks to agents’ fundamental and satisfies an adding-up

constraint
∫
i ui,tdi = 0 at each date t. In contrast, vt is a nv-vector and is common across all agents.

Furthermore, we assume that h(L) and g(L) are potentially infinite-order one-sided polynomials in

positive powers of the lag operator L.7 We do not impose any restrictions on h(L) and g(L) except

square-summability which implies that zi,t and θt are linear stationary processes. Bold-face letters

indicate vectors and matrices while non-bold variables indicate scalars.

2.2 Information structure

Agents have access to both exogenous and endogenous sources of information. The distinction

between exogenous and endogenous sources is whether signals depend on interactions among agents

or not. In other words, the informativeness of endogenous signals is determined in equilibrium. We

model the information as the set of ns ≥ 1 signals xi,t:

xi,t = A(L)at + B(L)νt + C(L)ζi,t, (4)

where νt = [vt,ηt] and ζi,t = [ui,t, ςi,t]. Here ηt is a nη-vector which denotes signal noise common

across all agents, while ςi,t is a nς -vector which denotes signal noise particular to one agent. A(L)

is a ns × 1 vector, while B(L) is a ns × nν matrix (where nν = nv + nη) and C(L) is a ns × nζ
matrix (where nζ = nu + nς). Furthermore, A(L), B(L), and C(L) are square summable, one-sided

polynomials in the lag operator L. In other words, the signals can only depend on past and current

7As is convention, we define the lag operator L as Lxt := xt−1, L−1xt := xt+1 and Lnxt = xt−n.
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changes (not future), not only in aggregate and idiosyncratic fundamentals but also in aggregate and

idiosyncratic noise. Importantly, the signal specification (4) is flexible enough to accommodate both

exogenous and endogenous information. A(L)at captures the dependence of signals on endogenous

equilibrium outcomes; setting A(L) = 0 implies an information set which contains only exogenous

information. In what follows, we refer to νt and ζi,t as primitive shocks in order to distinguish them

from sentiment shocks. In what follows, it will be convenient to label all the signals which have

A(L) = 0 as yi,t. Finally, the information set of agent i can then be represented as

Ii,t = V(yti) ∨ V(xti/ yti),

where V(yti) denotes the smallest sub-space spanned (at date t) by the past and current realizations

of exogenous information yti. The space V(xti/ yti) is defined analogously but for endogenous sources

of information, where xti/ yti denotes the subset of the signals xti for which A(L) 6= 0. Finally,

since we impose rational expectations, all agents have knowledge of the cross-equation restrictions,

implying that agents know that the dynamics of the economy are determined by (1)− (4).

Some economic examples While we do not provide explicit micro-foundations for the best re-

sponse (1), it is easy to do so. In fact, many commonly studied economic settings admit best

responses of this form. For example, Angeletos and La’O (2010) consider a real-business cycle model

where a continuum of firms are subject to dispersed productivity shocks and private information

about the economy’s aggregate conditions. The optimal quantity qi,t of firm i at date t satisfies

qi,t = δEi,tθt + γEitqt + αEi,tzi,t,

where θt denotes the level of aggregate productivity, zi,t denotes the level of firm i’s idiosyncratic

productivity and qt denotes aggregate output. Here, α, γ and δ are functions of deep parameters such

as trade linkages, Frisch elasticity, curvature of the production function, etc. Angeletos and La’O

(2010) allow for both private and public signals, which can be represented in terms of our notation

as

xi,t =

[
0

0

]
︸︷︷︸
A(L)

qt +

[
g(L) 0

1 1

]
︸ ︷︷ ︸

B(L)

[
vt

ηt

]
+

[
h(L) 0

0 0

]
︸ ︷︷ ︸

C(L)

[
ui,t

ςi,t

]
, (5)

where θt = g(L)vt denotes the aggregate fundamental and zi,t = h(L)ui,t denotes the idiosyncratic

fundamental; the first signal is simply x1i,t = θt + zi,t. Since ηt denotes exogenous common noise,

the second signal, x2i,t = vt + ηt, is common across all agents, i.e., it is a noisy signal of the current

innovation to θ. As Angeletos and La’O (2010) discuss, ηt also contributes to aggregate fluctuations.

The signals described above are exogenous; they have A(L) = 0. Now, suppose agents also receive

a noisy private signal about the realization of aggregate output: x3i,t = qt + ςi,t. This third signal is
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an endogenous signal and can be incorporated into our setup as follows:

xi,t =

0

0

1


︸︷︷︸
A(L)

qt +

g(L) 0

1 1

0 0


︸ ︷︷ ︸

B(L)

[
vt

ηt

]
+

h(L) 0

0 0

0 1


︸ ︷︷ ︸

C(L)

[
ui,t

ςi,t

]
. (6)

As another example, consider a variant of the monetary model studied in Woodford (2002). A

continuum of monopolistically competitive firms i ∈ [0, 1] must set their individual prices pi,t in

accordance with fundamentals (nominal aggregate demand θt and idiosyncratic productivity zi,t)

but also close to the average price pt others set

pi,t = δEi,tθt + (1− δ)Ei,tpt + αEi,tzi,t,

where θt denotes nominal demand, which is controlled by the monetary authority (aggregate funda-

mental), and zi,t denotes firm i’s level of idiosyncratic productivity (the idiosyncratic fundamental).

Again, the equation above is a special case of (1) with γ = 1−δ < 1. In the full model, 1−δ measures

the degree of strategic complementarity in pricing and is a function of various deep parameters, such

as the elasticity of substitution between varieties, the curvature of the production function, etc. How

responsive a firm is to idiosyncratic shocks zi,t depends again on deep parameters such as curvature

of the production function but also on policy. Appendix D shows that a policy which subsidizes firms

with low realizations of zi,t and taxes firms with high realizations of zi,t can lower α.

2.3 Equilibria

We focus on linear rational expectations equilibria, which we classify into two classes: fundamental

equilibrium and sentiment equilibrium.

Definition 1 (Fundamental Equilibrium). In a fundamental equilibrium, the aggregate action is

driven purely by changes in aggregate primitive shocks νt = [vt,ηt]

at = ψ(L)νt, (7)

and at is consistent with the agents’ optimal choice

at =

∫ {
δEi,tθt + γEi,tat + αEi,tzi,t

}
di. (8)

In a fundamental equilibrium, aggregate fluctuations are driven solely by changes in primitive

shocks. For example, these shocks can be aggregate TFP or preference shocks. Furthermore, our

definition allows fundamental equilibria to include situations in which agents may not directly observe

the fundamental θt. In fact, this definition is broad enough to include the equilibria studied in the

large literature, where sentiments are modeled as shocks to agents’ beliefs. In such settings, aggregate

noise in signals can also result in aggregate fluctuations. Thus, fundamental equilibria encompass
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the standard full-information equilibrium as well as those in economies with information frictions.

In the latter, the definition is general enough to include equilibria with both exogenous information

and endogenous information.

Definition 2 (Sentiment Equilibrium). Consider any payoff irrelevant white noise process εt ∼
N (0, 1), which is orthogonal to primitive shocks. In a sentiment equilibrium, the aggregate action

responds to both primitive shocks and payoff irrelevant εt:

at = ψ(L)νt + φ(L)εt, (9)

where φ(L) has no roots for |L| < 1. Moreover, at is consistent with the agents’ optimal choice

at = ψ(L)νt + φ(L)εt =

∫ {
δEi,tθt + γEi,tat + αEi,tzi,t

}
di. (10)

The key difference between the two classes is that in addition to fluctuations driven by forces in a

fundamental equilibrium, the sentiment equilibrium allows for aggregate fluctuations to also arise due

to changes in a random variable εt.
8 By construction, εt is orthogonal to changes in fundamentals νt

and exogenous noise ηt. Importantly, εt does not directly enter the best-response (1), implying that it

is not directly payoff relevant and also does not directly appear in the signals (4) as {εt} ⊥ {νt, ζi,t}.
In what follows, we will refer to the random variable φ(L)εt as the sentiment and εt as the senti-

ment shock. Clearly, the dynamic variance-covariance matrix of sentiments is given by φ(L)φ(L−1)

and is determined as part of the equilibrium and thus, sentiments and their properties are endoge-

nous in our environment. In particular, in the fundamental equilibrium, both the variance and

autocorrelation functions are 0, but these are endogenously determined in the sentiment equilibrium.

Finally, notice that the definition of sentiment equilibria restricts attention to a setting where

φ(L) is invertible, i.e., there is no z ∈ C such that |z| < 1 and φ(z) = 0. Appendix A.1 shows that

this is without loss of generality. To see this, notice that if we consider an equilibrium in which

φ(L) is not invertible, then we can always construct another observationally equivalent equilibrium

in which at = ψ(L)νt + φ̃(L)εt, where φ̃(L) is invertible and satisfies φ(L)φ(L−1) = φ̃(L)φ̃(L−1).

This shows that a sentiment equilibrium is unique up to the autocovariance-generating function and

hence we can focus on the invertible case.

How might a sentiment equilibrium come to exist? Since εt does not feature directly in

the best response (1) or in signals (4), the only way in which εt can affect aggregate outcomes is

through the endogenous part of the signal A(L)at. If agents believe that the aggregate action at

is affected by sentiment shocks εt, i.e., at = ψ(L)νt + φ(L)εt, with φ(L) 6= 0, then the endogenous

signals xi,t load on εt. Consequently, each agent’s inference about the aggregate fundamental θt,

idiosyncratic fundamental zi,t and the aggregate action at is affected by the realization of εt. Thus,

sentiments can only affect aggregate fluctuations if agents believe that sentiment shocks εt affect

8Sentiment equilibria lie in the Hilbert space H(ν, ε), while fundamental equilibria lie in the Hilbert space H(ν).
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aggregate outcomes and these beliefs are confirmed in equilibrium. Whether this is the case or not

depends on the specifics of the economic environment, as we discuss next.

2.4 Existence of sentiment equilibria

We now present some necessary conditions under which sentiment equilibria can exist. Since we

are concentrating on linear rational expectations equilibria, in any equilibria the optimal decision of

agent i at date t is given by a linear function of the signals that agent i observes:

ai,t = Π(L)xi,t.

Here, Π(L) is a 1× ns polynomial matrix and denotes the weights that the agent chooses to put on

current and past signals in equilibrium. The following Lemma establishes a necessary condition for

existence of sentiment equilibrium:

Lemma 1. Let Π(L) denote an individual agent’s equilibrium action, i.e., ai,t = Π(L)xi,t. Then in

any sentiment equilibrium with φ(L) 6= 0, the following must be true:

Π(L)A(L) = 1, (11)

Π(L)B(L) = 0. (12)

Proof. See Appendix A.2.

To understand the content of Lemma 1, note that in equilibrium, each agent’s action at date t is

a linear function of the past and current realizations of signals {xi,s}ts=−∞, i.e., ai,t = Π(L)xi,t:

ai,t = Π(L)xi,t = Π(L)
(
A(L)at + B(L)νt + C(L)ζi,t

)
. (13)

Aggregating across all agents and using the perceived law of motion for at = ψ(L)νt + φ(L)εt, the

actual law of motion can be written as

at = Π(L)
(
A(L)ψ(L) + B(L)

)
νt + Π(L)A(L)φ(L)εt.

In equilibrium, the actual and perceived laws of motion must be the same:

at = ψ(L)νt + φ(L)εt = Π(L)
(
A(L)ψ(L) + B(L)

)
νt + Π(L)A(L)φ(L)εt.

For this expression to hold for any realizations of νt and epsilont, the following must be true:

φ(L)
[
1−Π(L)A(L)

]
= 0 and ψ(L)

[
1−Π(L)A(L)

]
= Π(L)B(L).

For a sentiment equilibrium to exist, i.e., φ(L) 6= 0, it must be that Π(L)A(L) = 1. Similarly, for

the equality to hold for any realization of νt, it must be that Π(L)B(L) = 0.

9



It may seem odd that a necessary condition for existence of sentiment equilibria is framed in

terms of the endogenous object Π(L). Even though the explicit properties of the policy rule Π(L)

are determined as part of equilibrium, and depend on the details of the information process and

the economic environment, (11) provides some elementary insights on the existence of sentiment

equilibria. Conditions (11) and (12) effectively impose requirements for the equilibrium process φ(L)

and ψ(L). These conditions essentially boil down to solving a system of nonlinear equations. As we

show in Sections 3 and 4, the practical requirement imposed by these conditions is that the optimal

action ai,t described in (1) responds strongly to changes in aggregate and idiosyncratic fundamentals,

i.e., either α =
∂ai,t
∂zi,t

or δ =
∂ai,t
∂θt

are large enough. Importantly, this is only a necessary condition for

existence of sentiment equilibria; whether sentiment equilibria exist is finally determined by whether

the non-linear set of equations defining φ(L) and ψ(L) admit a solution with φ(L) 6= 0.9

The role of endogenous information in generating sentiment equilibrium The law of

motion φ(L) having multiple solutions implies that multiple equilibria exist. In the environment we

study, a fundamental equilibrium with φ(L) = 0 always exists. What can give rise to additional equi-

libria? An obvious candidate is the strength of the strategic complementarity. However, we restrict

attention to the case with γ < 1, which implies a unique fundamental equilibrium. Nonetheless, as

we show in Section 3.1, endogenous information induces complementarities in actions even when the

primitives of the environment do not feature any strategic complementarities. A large enough α and

δ in the conditions described above ensure that the induced complementarities are strong enough to

generate additional equilibria beyond the fundamental one. These additional equilibria are the senti-

ment equilibria. In the examples that we study in this paper, there is only one additional sentiment

equilibrium, but there could potentially be multiple sentiment equilibria.10

Appendix A.2 further uses the information in Lemma 1 to construct a practical way of checking

whether an economic environment admits sentiment equilibria. The Theorem below formally presents

this additional necessary condition for the existence of sentiment equilibria.

Theorem 1. For a sentiment equilibrium with φ(L) 6= 0 to exist, a necessary condition is

rank
[
A(L) B(L)

]
︸ ︷︷ ︸

ns×(nν+1)

= rank

[
A(L) B(L)

1 0

]
︸ ︷︷ ︸
(ns+1)×(nν+1)

, (14)

where the rank of a matrix X(L) is defined as maxz∈C rank
(
X(z)

)
.

Proof. See Appendix A.2.

9Notice that conditions (11)-(12) imply that each agent’s action (13) can be written as ai,t = at + C(L)ζi,t.
This does not mean that agents do not react to aggregate fundamentals. Condition (12) implies that in any sentiment
equilibrium, agents optimally put weights on their signals such that they track the aggregate action. Since the aggregate
action at = ψ(L)νt + φ(L)εt, it responds to aggregate fundamentals. Consequently, ai,t also responds to aggregate
fundamentals in the same way.

10In each of the examples we study, there are technically two sentiment equilibria, so the sentiment equilibrium is
unique to a sign. However, both of these have the same variance and autocovariances and thus we focus on the positive
one. This is without loss of generality.
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Condition (14) is a necessary condition for sentiment equilibria to exist, given an economic

environment. Since (14) only depends on exogenous objects A(L) and B(L), which are known once

the signal structure has been specified, Theorem 1 provides a practical way to rule out the existence

of sentiment equilibrium without solving the model. To see why it is necessary for this condition to

be satisfied for a sentiment equilibrium to exist, notice that conditions (11)-(12) can be written as[
A′(L)

B′(L)

]
︸ ︷︷ ︸
(nν+1)×ns

Π′(L)︸ ︷︷ ︸
ns×1

=

[
1

0

]
︸︷︷︸

(nν+1)×1

.

The expression above can be viewed as a linear system of nν + 1 equations in ns unknowns and may

not have any solution. The rank condition (14) is simply a necessary condition for a solution to exist.

Endogenous vs Exogenous Sentiments Since the definition of sentiment equilibria in our paper

and Benhabib et al. (2015) is identical, the distinction between the endogenous sentiments in this

paper and the literature on exogenous sentiments is also the same as the distinction set forth in

Benhabib et al. (2015). We discuss this distinction next. In our environment, whether sentiments can

affect aggregate outcomes or not is determined as part of equilibrium. Risking abuse of terminology,

one could thus claim that our sentiments are endogenous, as whether they can exist and how they can

affect aggregate outcomes are disciplined by equilibrium. In using the term endogenous, we mean that

whenever a sentiment equilibrium exists, there also exists a fundamental equilibrium, and therefore

one can think of sentiments not being imposed from the outset. In contrast, the large literature

following Angeletos and La’O (2013), Barsky and Sims (2012) and others models sentiments as

exogenous shocks to either first-order or higher-order beliefs of agents. There is no sense in which the

definition of equilibrium can disallow these shocks from affecting aggregate outcomes. In fact, given

our broad definition of primitive shocks (which includes noise shocks), these exogenous sentiments

would get classified under our definition of fundamental equilibrium.

Finally, the analysis in this paper raises an important question as to whether one can distinguish

between endogenous sentiment-driven or exogenous sentiments/noise-driven fluctuations. From a

positive perspective, since our sentiment equilibria are correlated equilibria, it follows directly from

the results in Bergemann and Morris (2013) that one can find an exogenous information structure

which can rationalize the strategies as a Bayesian-Nash equilibrium. In this sense, it is possible to

find some specification of exogenous noise shocks/exogenous sentiments which would have identical

aggregate dynamics as a sentiment equilibrium. But the opposite need not be true, since equilibrium

disciplines sentiment-driven fluctuations, but noise shocks are exogenously specified.

Even though it may be difficult to distinguish between exogenous and endogenous sentiments from

a positive point of view, there is a clear distinction from a normative perspective. As aforementioned,

whenever sentiment equilibria exist, there also exists a fundamental equilibrium. In particular, as

we discuss in Section 3.5, modeling sentiments as endogenous opens the door to policy intervention,

where a policy maker can use policy to pick between one of the many sentiment equilibria (if there are

11



multiple sentiment equilibria) and the fundamental equilibrium. This allows the planner to eliminate

sentiment-driven fluctuations altogether. The models with exogenous sentiments typically feature a

unique equilibrium, leaving no such scope for policy intervention.

3 Forces at play

Now that we have defined the environment, we begin by presenting a simple example to uncover which

ingredients are essential in generating sentiment-driven fluctuations and which ingredients are not.

Even though our final goal is to explore the possibility of persistent sentiment-driven fluctuations,

we start with some static examples to build intuition regarding the existence of sentiment equilibria.

These static examples also make it easier to see how the existence results laid out in the previous

section can be used in a practical sense. Furthermore, when we do study the dynamic case in Section

4, we will again make use of these same economic environments. Doing so helps clearly delineate the

features which are required to generate persistent sentiment-driven fluctuations.

3.1 A simple example with no fundamental shocks

We start by presenting a simple example which will nevertheless prove to contain an element of

universality. This example is based on the environment studied in Benhabib et al. (2015). Starting

with this example is instructive, as many readers may not be familiar with the concept of a senti-

ment equilibrium, and thus we start with some static examples before proceeding to our ultimate

goal of studying persistent sentiment-driven fluctuations. While this example features a particular

information structure, the broad idea continues to hold for more general information structures, as

we show in various examples throughout the paper.

We assume that the aggregate fundamental θ is constant at θ = 0 and that this fact is common

knowledge. Further, assume that the idiosyncratic fundamental zi is i.i.d. N(0, σ2z) across agents. In

this case, the best response function (1) simplifies to

ai = γEia+ αEizi, (15)

where a =
∫
aidi denotes the aggregate action. Agent i observes a noisy endogenous signal:

xi = a+ zi.

The signal xi provides agent i with information about the aggregate action a but is contaminated

by the idiosyncratic fundamental zi. The important thing about the signal xi is not the exact form

it takes, but rather the fact that it provides agents with information about the endogenous average

action a. It is straightforward to see that the optimal action of agent i must take the form:

ai = πxi = πa+ πzi, (16)

where the second equality follows from the definition of xi. Importantly, π is determined as part of
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equilibrium. Aggregating the decisions of all agents,

a =

∫
aidi = πa+ π

∫
zidi = πa. (17)

Equation (17) implies that a (1− π) = 0 in equilibrium. Notice that if π 6= 1, then the only

equilibrium is one in which a = 0. This is the unique fundamental equilibrium. But if π = 1, then

(17) is satisfied for any level of a. Of course, π is determined as part of equilibrium and thus, it

remains to show whether in equilibrium π equals 1. In order to determine the equilibrium value of

π, we conjecture that in equilibrium, the aggregate action can be described by

a = φε, ε ∼ N(0, 1), (18)

where φ is also determined as part of equilibrium. As previously defined, we refer to ε as the

sentiment shock, which is independent of idiosyncratic and aggregate fundamentals. Plugging (18)

into the expression for xi yields

xi = φε+ zi. (19)

Equation (19) shows that the signal xi provides agent i information about their idiosyncratic fun-

damental zi but is potentially contaminated by the sentiment shock ε. Importantly, the precision of

this signal depends on φ: with φ = 0, the signal is fully informative about zi; if φ 6= 0, xi is a noisy

signal of zi.

Verifying the Fundamental Equilibrium In a fundamental equilibrium φ = 0, i.e., the aggre-

gate outcome is a = 0 and is unaffected by the sentiment shock ε. With φ = 0, the signal xi in (19)

perfectly informs agent i about the actual realization of her idiosyncratic fundamental, i.e., Eizi = zi

and so Eia = 0. Consequently, using (15) agent i’s optimal action is given by

ai = αEizi = αxi ⇒ a =

∫
aidi = α

∫
zidi = 0.

Also, π = α 6= 1 (except in the knife-edge case) confirming that φ = 0 is indeed an equilibrium.

Can π = 1 in equilibrium? Since we just saw that φ = 0 implies π 6= 1, then if there exist

equilibria with π = 1, it must be with φ 6= 0. In this case, and unlike the fundamental equilibrium,

(19) does not have infinite precision, and the signal does not allow an agent to perfectly infer the

realization of zi:

Eizi =
σ2z

φ2 + σ2z
xi and Eia =

φ2

φ2 + σ2z
xi,
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where σ2z denotes the variance of zi. Using these in (15) and comparing with (16), it follows that:

π =
φ2

φ2 + σ2z
γ +

(
1− φ2

φ2 + σ2z

)
α. (20)

Then, for π = 1, it must be the case that:

|φ| = σz

√
α− 1

1− γ
. (21)

Thus, in addition to the fundamental equilibrium, the endogenous signal also supports an additional

sentiment equilibrium in which sentiments can affect aggregate outcomes a even though it is common

knowledge that the aggregate fundamental θ = 0. Technically, there are two sentiment equilibria.

One in which a = σz
√

α−1
1−γ ε and the other with the sign flipped a = −σz

√
α−1
1−γ ε. Throughout the

rest of the paper, we restrict attention to the positive solution for φ. This is without loss of generality

since both cases result in the same variance of the aggregate outcome.

This example shows that sentiments can provide an amplification mechanism – the unconditional

variance of the aggregate outcome is given by σ2z

(
α−1
1−γ

)
> 0, even though it is common knowledge

that aggregate fundamentals are fixed. Such an equilibrium exists as long as α > 1. In this sense,

endogenous information is necessary but not sufficient for sentiment equilibria to exist.

In this particular example, the optimal action ai must be very responsive to idiosyncratic funda-

mentals (α large enough) for a sentiment equilibrium to exist. However, the fact that α needs to be

large is not a general requirement. In fact, we present another example later in this section where

α = 0 and a sentiment equilibrium exists. As we show, in that example the relevant condition for

existence of sentiment equilibrium is that the best response be very responsive to aggregate funda-

mentals. Either condition ensures that in equilibrium, agents respond strongly to the realization of

the endogenous signal xi.

In order to understand this condition better, it is useful to cast this example in terms of the nomen-

clature of Section 2. Since this example is static, conditions (11) and (12) simplify to A(0)Π(0) = 1

and B(0)Π(0) = 0.11 In this simple example, A(0) = 1 is a scalar and Π(0) = π,12 so condition

(11) simplifies to the requirement π = 1. This requirement is in turn satisfied when α > 1.13 Figure

1 shows graphically why we need α > 1 for a sentiment equilibrium to exist in this case. All the

lines in the figure are of the form ai = πxi for different values of π. In both panels, the blue-dashed

line denotes the equilibrium response of agents in the fundamental equilibrium a = αxi, in which

case φ = 0, while the red-dotted line denotes ai = γxi. Since γ < 1, the red line is flatter than

the black line ai = xi (which is the condition needed for a sentiment equilibrium to exist). The

black line (ai = xi) represents the condition which needs to be satisfied for a sentiment equilibrium

to exist (π = 1). Equation (20) shows that π can be written as a convex combination of α and γ,

11Since agents observe only one signal, ns = 1 and so the dimensionality of A is 1× 1. Since the aggregate shock is
known to be zero at all times, B is a matrix of zeros. Without loss of generality, we can set nν = 1 in this case and so
the dimensionality of B is also 1× 1.

12Since there is only one signal ns = 1, the dimensionality of Π = 1× ns = 1× 1.
13Condition (12) is trivially satisfied in this case as B(0) = 0.
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with the weights depending on |φ|. Clearly, φ = 0 picks the fundamental equilibrium (π = α), while

φ→∞ would set π = γ. The shaded area in the figure denotes the range of π that can be obtained

depending on the value of α. When α > 1 (Figure 1a), the blue line is steeper than the 45-degree

black line, and hence the the black line (π = 1) is part of the shaded area, i.e., one can find a |φ|
between 0 and ∞ for which π = 1, and so the sentiment equilibrium exists. In contrast, when α < 1

(Figure 1b), the blue line which represents the fundamental equilibrium lies below the 45-degree line.

The black line π = 1 then lies outside the shaded region, and hence there is no |φ| ∈ (0,∞) for

which π = 1, and hence the sentiment equilibrium doesn’t exist. Thus, Figure 1 shows that for a

sentiment equilibrium to exist, the individual action must respond strongly enough to the signal xi

in the fundamental equilibrium, i.e., the blue line must be steeper than the 45-degree line.

(a) α > 1 (b) α < 1

Figure 1: Existence of sentiment equilibrium

Strategic complementarity The existence of sentiment equilibria does not require strong strate-

gic complementarities, i.e., γ > 1. In fact, (21) shows that sentiment equilibria can exist even if γ ≤ 0

(no complementarity or strategic substitutability). Endogenous information induces complementar-

ities even when the primitive economy may not feature any. In our environment, agents’ actions ai

are correlated with the aggregate action a as they all observe an endogenous signal which loads on

a. The equilibrium covariance between ai and a is cov(ai, a) = σ2z

(
α−1
1−γ

)
> 0 even if γ ≤ 0. This

induced complementarity is bigger, the larger the value of α, and thus, a large enough α facilitates

existence of additional sentiment equilibrium. This covariance is 0 in the fundamental equilibrium.

3.2 Adding aggregate fundamentals to the mix

The example above showed that sentiments can affect outcomes independently of aggregate funda-

mentals. More generally, not only can sentiments affect aggregate outcomes directly, they can also
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affect how the economy responds to changes in aggregate fundamentals, as the following example

shows. To draw contrast with the previous example, we assume that it is common knowledge to all

agents that the idiosyncratic fundamental zi = 0 for all i. The best response (1) simplifies to

ai = δEiθ + γEia. (22)

We assume that agent i observes the following signals:

x1i = θ + ςi and x2i = a− θ. (23)

The first signal x1i is a private noisy exogenous signal where θ ∼ N(0, 1) is the aggregate fundamental

and ςi ∼ N(0, σ2ς ) is private noise. The second signal x2i is an endogenous signal which loads on

both the aggregate action a and the aggregate fundamental θ. Giving the model a business cycle

interpretation, ai denotes the output decision of firm i, the average action a is simply the aggregate

output, and θ denotes the level of aggregate productivity. Then the endogenous signal x2i = a − θ
reveals the level of aggregate employment to each firm. If we interpret the model as a pricing problem

of firms in a monetary context, ai denotes the price set by firm i, p denotes the aggregate price level,

θ can be interpreted as nominal aggregate demand, and x2i is a signal that reveals the realization of

real output.

Agent i’s optimal decision must take the form ai = π1x
1
i + π2x

2
i . In a fundamental equilibrium,

the aggregate action is driven by the fundamental θ only, i.e., a = ψθ. In this case, x2i = (ψ−1)θ will

perfectly reveal the realization of θ, rendering the other signal x1i worthless. It is then easy to see

that the unique fundamental equilibrium is the same as the full-information equilibrium, in which

a =
δ

1− γ
θ. (24)

However, in addition to this fundamental equilibrium, there also exists a sentiment equilibrium.

In a sentiment equilibrium, a depends on both the fundamental θ and the sentiment shock ε, i.e.,

a = ψθ + φε, where ψ and φ are determined as part of equilibrium. Consequently, the signal x2i can

be rewritten as x2i = (ψ − 1)θ + φε and the average action a can then be written as

a = ψθ + φε =

∫
aidi = [π1 + π2(ψ − 1)] θ + π2φε.

Consistency requires that π2 = 1 and π1 − π2 = 0. Appendix B.2 shows that when the sentiment

equilibrium exists, we have14

|φ| =
σς
√
δ + γ − (1 + σ2ς )

1− γ
and ψ =

δ − σ2ς
1− γ

. (25)

In order for the sentiment equilibrium to exist, we need δ > 1 + σ2ς − γ and σς > 0. In other

14As in the previous example, the sentiment equilibrium is unique up to the sign of φ. We concentrate on φ > 0
without loss of generality since the variance is identical in both cases.
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words, the optimal action must be responsive enough to changes in the aggregate fundamental (large

enough δ). This condition is analogous to the requirement that α be large enough for the sentiment

equilibrium to exist in the previous example. Again, it is useful to interpret this requirement for

existence of sentiment equilibria through the lens of Theorem 1. In this example, we have A(0) =[
0 1

]′
,B(0) =

[
1 −1

]′
and Π(0) =

[
π1 π2

]
.15 So condition (11) is the same as π2 = 1 and (12)

is the same as π1−π2 = 0. These conditions ensure that the individual action ai is responsive enough

to changes in the endogenous signal (x2i in this case) and are satisfied as long as δ is large enough.

Comparing the fundamental equilibrium (24) with the sentiment equilibrium (25), the average

action now not only responds to changes in sentiments ε, but at the same time the presence of

sentiments dampens the response of the average action to changes in the aggregate fundamental:
δ−σ2

ς

1−γ < δ
1−γ . While in the fundamental equilibrium, the endogenous signal x2i enabled each agent

to infer θ perfectly, in the sentiment equilibrium, agents can no longer infer the true realization of

θ as the sentiment shock ε acts as endogenous noise. Returning to the interpretation of this exam-

ple as the monetary economy, this would mean that in the fundamental equilibrium, the aggregate

price adjusts to changes in nominal demand θ, keeping real output constant. However, in the senti-

ment equilibrium, agents can no longer infer the level of nominal demand perfectly. Consequently,

individual prices and hence the aggregate price do not change enough, leading to changes in real

output.

3.3 Does a sentiment equilibrium exist given any information structure?

Before proceeding to the analysis of the dynamic case, it is useful to discuss when sentiment equilibria

exist. The two examples above suggested that given a signal structure, it may always be possible to

find conditions under which sentiment equilibria exist. However, Theorem 1 states that this is not

the case. Next, we present some examples to demonstrate the usefulness of Theorem 1 in helping

ascertain whether, given a signal structure, a sentiment equilibrium exists.

Starting with the example in Section 3.1, it is easy to see that condition (14) is satisfied,

rank
[
A(L) B(L)

]
= rank

[
1 0

]
= 1 = rank

[
1 0

1 0

]
= rank

[
A(L) B(L)

1 0

]
,

and that this is consistent with the existence of the sentiment equilibrium. Next, suppose we modify

the signal in the example in Section 3.1 to

xi = a+ zi + η,

where η denotes exogenous public noise. This signal corresponds to A(L) = 1 and B(L) = 1.16

15In this example, agents observe ns = 2 signals. So the dimensionality of A is 2 × 1 and since there is only one
aggregate fundamental nν = 1, the dimension of B is ns × nν = 2 × 1. Finally, since ns = 2, the dimension of
Π = 1× ns = 1× 2.

16Since there is only one signal ns = 1 and there is one source of aggregate noise, nν = 1. So, A is ns × 1 = 1× 1
and B is ns × nν = 1× 1.
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Since rank
[
1 1

]
< rank

[
1 1

1 0

]
, violating (14), no sentiment equilibrium exists. However, if we had

changed the signal structure so that the common noise enters through a second signal,

x1i =zi + a and x2i = a+ η.

In this case, the number of signals is ns = 2 and so the dimensionality of A =
[
1 1

]′
is 2× 1. Also,

since there is one source of aggregate noise (η), we have nν = 1 and the dimensionality of B =
[
0 1

]′
is 2×1. In this case the rank condition (14) is satisfied, implying that sentiment equilibria can exist.

rank
[
A(L) B(L)

]
= rank

[
1 0

1 1

]
= 2 = rank

1 0

1 1

1 1

 = rank

[
A(L) B(L)

1 0

]

In fact, Benhabib et al. (2015) construct a sentiment equilibrium with this signal structure. Thus,

Theorem 1 provides a practical way to check whether a model permits sentiment equilibria.

3.4 Learnability

The above examples show that both sentiment and fundamental equilibria can exist for the same

parameter values in the same economic environment. Is there any reason to select one over the

other? Often, equilibria which are stable under learning are selected over those that are not. Next,

in the context of the two examples above, we show that the sentiment equilibria are stable under

least-squares learning while the fundamental equilibrium is not.

Let’s start with the example in Section 3.1. Recall that in this case, the fundamental equilibrium

featured a = 0 while the sentiment equilibrium featured a = φε, where φ is defined in (21). Suppose

that agents do not know which equilibrium is being played and they perceive that a is given by

a = φ̂ε. Given the perceived response of a, the actual response of a can be written as

a = T
(
φ̂
)
ε where T

(
φ̂
)

= φ̂

[
γφ̂2 + ασ2z

φ̂2 + σ2z

]
.

The equation φ̂ = T
(
φ̂
)

has three zeros or stationary points: one at φ̂ = 0 (the fundamental

equilibrium) and two others at φ̂ = ±φ (as long as α > 1). As is standard, the expectational

stability of the stationary point is determined by the differential equation

dφ̂

dτ
= T

(
φ̂
)
− φ̂.

If the differential equation is asymptotically stable at the stationary point φ̂, then the system is said

to be E-stable (Evans and Honkapohja, 2012). Evans and Honkapohja (2012) further show that E-

stability guarantees that an equilibrium is stable under least-squares learning. Appendix C.1.1 shows
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that T ′(0) − 1 > 0, while T ′(φ) − 1 < 0, implying that by the E-stability principle, the sentiment

equilibrium is stable while the fundamental equilibrium is not. Figure 2a depicts this graphically

by plotting a phase diagram for the differential equation above and shows that the fundamental

equilibrium φ̂ = 0 is not stable under least-squares learning, while the two sentiment equilibria are.

It is easy to see why this might be the case. Suppose agents start with the belief that the

variance of sentiments φ̂2 > 0. Given this belief, agents believe that the aggregate action responds

to sentiment shocks and hence so does the signal xi. Given a large α, agents individually respond

strongly to sentiment shocks. As a result, the actual realization of a also responds strongly, and

this feeds positively into the updated forecast of the variance. Eventually, this process converges to

one of the sentiment equilibria rather than the fundamental equilibrium. The only way agents can

converge to the fundamental equilibrium is if they start with the belief that the variance φ̂ = 0. In

this case, agents believe that the aggregate action is unresponsive to sentiment shocks and thus, so is

the signal xi. Given these beliefs, an agent’s optimal action does not respond to sentiments, causing

the actual aggregate action to also not respond to sentiments. Starting from any non-zero φ̂, agents’

beliefs cannot converge to the fundamental equilibrium as long as α > 1. The condition α > 1

plays two separate although related roles. Recall from the discussion in Section 3.1 that in order

for the sentiment equilibrium to exist, we required that agents respond strongly to the endogenous

signal, i.e., α > 1. It is precisely this strong reaction which also makes the sentiment equilibrium

learnable. For the sentiment equilibrium to be stable under learning, we need the current forecast of

the variance to positively feedback into future forecasts strongly enough, which requires that agents

respond strongly to signals, given their current forecasts of the variance.

(a) no fundamental shock
(b) fundamental and sentiment shock

Figure 2: Stability under learning. In panel (a), the blue curve represents the differential equation
dφ̂
dτ = T (φ̂)− φ̂. In panel (b), the red-dashed curve represents Tψ

(
ψ̂, φ̂

)
− ψ̂ = 0 and the blue curve

represents Tφ
(
ψ̂, φ̂

)
− φ̂ = 0.

The example in Section 3.2 also shares the same properties. Suppose agents perceive the aggregate

action to take the form a = ψ̂θ + φ̂ε. Appendix C.1.2 shows that the actual form of a in terms of ψ̂
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and φ̂ satisfies:

a = Tψ
(
ψ̂, φ̂

)
θ + Tφ

(
ψ̂, φ̂

)
ε,

where the exact expressions of Tψ
(
ψ̂, φ̂

)
and Tφ

(
ψ̂, φ̂

)
are presented in the appendix. The appendix

shows that the system of equations ψ̂ = Tψ
(
ψ̂, φ̂

)
and φ̂ = Tφ

(
ψ̂, φ̂

)
has three roots or stationary

points : the fundamental equilibrium
(
ψ̂, φ̂

)
=
(

δ
1−γ , 0

)
and the two sentiment equilibria

(
ψ̂, φ̂

)
=(

δ−σ2
ς

1−γ ,±
σς
√
δ+γ−(1+σ2

ς )

1−γ

)
.17 The expectational stability of each stationary point is determined by

the matrix differential equation system:

d

dτ

[
ψ̂

φ̂

]
=

Tψ (ψ̂, φ̂)− ψ̂
Tφ
(
ψ̂, φ̂

)
− φ̂

 .
Figure 2b depicts the phase diagram associated with this differential equation system and shows that

any initial condition with φ̂0 6= 0 converges to one of the two sentiment equilibria, implying that

the sentiment equilibria are stable under least-squares learning while the fundamental equilibrium

is not.18 Unless the agents’ starting value for (ψ̂, φ̂) satisfies φ̂ = 0, the system converges to the

sentiment equilibrium. Again, if agents attribute part of the variance of the aggregate outcome to

sentiment shocks, then given a large δ, their actions respond strongly to the endogenous signal which

causes their forecast of the contribution of sentiments to aggregate volatility to converge towards

the sentiment equilibrium. Only if agents initially attribute all the volatility in the aggregate action

to the aggregate fundamental does their forecast of aggregate volatility eventually converge to the

fundamental equilibrium.

This finding highlights a key difference between exogenous sentiments and our notion of endoge-

nous sentiments which has not been previously identified in the literature. Recall that exogenous

sentiments are classified as part of primitive shocks and hence generate fundamental equilibria under

Definition 1: it follows from our findings above that exogenous sentiments generate fundamental

equilibria which are not stable under least-squares learning.

3.5 Normative implications of exogenous and endogenous sentiments

Since sentiment-driven fluctuations are disciplined by equilibrium in our environment, this opens the

door to policy intervention where a policy maker can use policy to pick between one of the many

sentiment equilibria (if there are multiple sentiment equilibria) and the fundamental equilibrium.

Thus, the planner can choose to eliminate sentiment equilibria altogether, if she so desires. To see

this, recall that sentiment equilibria in the examples above existed only if the individual action was

responsive enough to idiosyncratic and aggregate fundamentals, i.e., α and/or δ were large enough.

While we take the best response function (1) as a primitive, as aforementioned, such a best response

function can be derived in many commonly used economic models. Furthermore, in these models, α, δ

17Again, the last two stationary points exist as long as δ is large enough for sentiment equilibria to exist.
18See Appendix C.1.2 for a proof.
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and γ are themselves functions of deep parameters and policy responses. Thus, by affecting the values

of α and δ, policy can eliminate sentiment equilibria altogether. We illustrate this in Appendix D in

the context of a monetary model in which firms have to solve their pricing problem. The appendix

shows that a policy which subsidizes firms who draw a low idiosyncratic productivity zi and taxes

those who draw high idiosyncratic productivity zi lowers the sensitivity of individual pricing decisions

to realizations of zi (lowering α). Such a policy can then prevent sentiment equilibrium from existing

altogether. This is a key distinction from the literature on exogenous sentiments. In these models,

the equilibrium is typically unique and hence policy cannot pick between different equilibria.

4 Beyond static sentiment equilibria

We can now proceed to the main question this paper strives to answer. What are the conditions

under which sentiments can have persistent aggregate effects? In other words, we study equilibria

in which φ(L) =
∑∞

τ=0 φτL
τ , where φτ 6= 0 at least for some τ > 0. While Theorem 1 established

necessary conditions for the existence of sentiment equilibria, it did not guarantee that sentiments

lead to persistent fluctuations in such equilibria. In order for persistent sentiment-driven fluctuations

to arise in equilibrium, additional conditions must be satisfied, as we show next.

4.1 Necessary conditions for persistent sentiments

To proceed, it is useful to define the following assumptions on the information set.

Assumption 1. Past realizations of the aggregate action are observable with a k-period lag, i.e.,

at−k ∈ Ii,t

Assumption 2. The k-period ago realization of primitive shocks can be perfectly inferred from ex-

ogenous information, i.e., V(νt−k) ⊆ V(yti).

If Assumption 1 is satisfied, at date t, each agent i observes the aggregate outcomes up till date

t− k, i.e., each agent knows the sequence at−k. Similarly, Assumption 2 ensures that at any date t,

each agent can perfectly infer the realization of primitive shocks up till date t− k by observing the

set of exogenous signals yi,t.
19 Theorem 2 formally defines the conditions under which sentiments

can have persistent aggregate effects.

Theorem 2. If Assumptions 1 and 2 are satisfied, then in any sentiment equilibria φ(L) =
∑∞

τ=0 φτL
τ ,

it must be the case that φτ = 0 for all τ ≥ k. In other words, a sentiment shock εt at date t cannot

affect outcomes after date t+ k.

Proof. See Appendix A.3.20

19For Assumption 2 to be satisfied, it is not necessary for agents to observe νt−k directly. For example, if the
aggregate fundamental follows an AR(1) process, θt = ρθt−1 + vt, observing past fundamentals {θt−1} allows agents to
infer past shocks {vt−1} perfectly.

20The proof relies on the result from Definition 2 and Appendix A.1 that we can focus on invertible φ(L).
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Theorem 2 states that if agents observe past aggregate actions and fundamentals perfectly with

a finite lag k, the effects of a sentiment shock dies out after a finite number of periods. In particular,

dynamics of the aggregate outcome driven by a sentiment shock can be described by a moving average

process where the maximum lag length is k − 1.

A few remarks are in order. First, while this theorem might seem trivial at first glance, it is

by no means obvious that observing information about past realizations will be fully revealing. For

example, Rondina and Walker (2020) show that even in a setting where agents can observe past

realizations of the aggregate variable, they may not be able to infer the true innovations if the

underlying fundamental process is non-invertible. In our case, the allowable response to sentiments

can also be non-invertible in principle. However, Theorem 3 in Appendix A.1 proves that we can

restrict attention to invertible processes without loss of generality. Second, the statement of Theorem

2 holds under very general conditions, as we do not impose any restrictions on the number of

shocks or the number of signals. Importantly, the theorem holds for any private information that

each agent might possess. Finally, even though Assumptions 1-2 imply that agents can observe

past aggregate actions and fundamentals, there is no supposition that they observe idiosyncratic

fundamentals perfectly. In fact, agents can still have persistent forecast errors about their individual

fundamentals. However, Theorem 2 makes clear that these forecast errors about the idiosyncratic

fundamental cannot translate into persistent aggregate fluctuations.

Corollary 1. If Assumptions 1 and 2 hold for k = 1, then in any sentiment equilibria φ(L) = φ(0).

A direct corollary of Theorem 2 is that if at date t, each agent observes the realization of the

aggregate fundamental θt−1 and at−1, then the only sentiment equilibrium is the one in which changes

in sentiments at date t can only affect aggregate outcomes contemporaneously, i.e., ∂at+s/∂εt = 0

for all s > 0. This result is independent of any private information that agents may possess or other

signals that they might observe. Corollary 1 also implies that the static examples in Section 3 can

equally be interpreted in terms of a dynamic environment in which each agent observes (or can infer)

θt−1 and at−1 at date t. The upshot of Theorem 2 and in particular Corollary 1 is that in order

for sentiment-driven fluctuations to display persistence, Assumption 1 and/or Assumption 2 do not

hold for k = 1, i.e., at−1 6∈ Ii,t and/or V(yti) 6⊇ V(νt−1). This powerful characterization provides a

helpful insight to the large literature which studies sentiment-driven equilibria such as Benhabib et

al. (2013, 2015) and Chahrour and Gaballo (2016), among others. While this literature has largely

concentrated on studying i.i.d. fluctuations driven by sentiments, Theorem 2 and Corollary 1 serve as

a guide by uncovering the minimum ingredients required to construct and study equilibria in which

sentiments can drive persistent fluctuations.

These results also provide additional insight about the large literature studying economies with

information frictions. While the models used in this literature are very similar to the setting studied in

this paper, their focus has largely been on fundamental equilibrium. In order to avoid the complexity

of dealing with the problem referred to as forecasting the forecasts of others (Townsend, 1983), this

literature has commonly made the assumption that the realizations of aggregate fundamentals and

aggregate outcomes in the past become common knowledge after a short lag. Theorem 2 shows
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that this assumption on the information set greatly reduces the extent to which sentiments can have

persistent effects.

Finally, notice that Theorem 2 is not about the existence of sentiment equilibrium; the statement

of Theorem 2 is conditional on a sentiment equilibrium existing. This raises the question whether

there exist any equilibria in which sentiments can drive persistent and predictable aggregate fluctu-

ations even if we relax these assumptions. Next, we extend the example studied in Section 3.1 and

show that persistent sentiment-driven fluctuations can emerge when Assumptions 1 and 2 only hold

for k > 1. This example shows that the set of such sentiment equilibria is not empty.

Example: at−1 is not observed at date t. We start with the dynamic counterpart to the

example studied in Section 3.1 where the aggregate fundamental is fixed at θt = 0 for all time and

this is common knowledge. Recall that the best response of agent i at any date t can be written

as ai,t = γEi,tat + αEi,tzi,t, which is identical to equation (15) except that we have appended time-

subscripts. It follows from Theorem 2 that if agents observed at−1 at date t, then any sentiment

equilibrium must take the form at = φεt, where φ is defined in equation (21). Now relax this

assumption and assume that at date t, agents cannot observe the realization of at−1 but can observe

the aggregate outcome with two lags. This can be formalized as each agent i receiving two signals

at each date:

x1i,t = at + zi,t and x2i,t = at−2.

x1i,t is a private signal as in Section 3, except that we have appended time-subscripts. Following

Theorem 2, a sentiment equilibrium in which φ(L) is a MA(1) can exist. In fact, Appendix B.3

shows that there exists a sentiment equilibrium in which the aggregate outcome at any date t is

affected by the contemporaneous sentiment shock εt and lagged sentiment shock εt−1:

at = φ0εt + φ1εt−1.

The expressions describing φ0 and φ1 aren’t particularly insightful and are relegated to Appendix

B.3. This example shows that as long as Theorem 2 does not hold for k = 1, there exist sentiment

equilibria in which sentiments can drive persistent aggregate fluctuations, albeit in a limited fashion.

As was the case in Section 3.1, the sentiment equilibrium exists only if α is large enough.

Extending the example in Section 3.2 by using this strategy is not analytically tractable. While

we can establish the existence of a sentiment equilibrium in which sentiments can generate MA(1)

dynamics by assuming that agents can only observe the aggregate fundamental with a lag of k = 2

periods, we have to resort to numerical methods. From an applied macroeconomics point of view, in

order to match observed dynamics, one would have to compute an equilibrium with large information

lags (large k) to capture the persistence. However, doing so in an analytically tractable way is not

trivial. Technically, there are two ways to solve for equilibria with a large k. First, one could apply

the Kalman filter to perform the filtering. However, a large k also implies a large dimensional state

space and forces one to resort to numerical methods. Using numerical methods greatly reduces our
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ability to characterize all possible sentiment equilibrium (there might be multiple). The lack of

analytical tractability makes it difficult to establish the existence of sentiment equilibrium and to

characterize its properties in these general settings in which the forecast errors abruptly become zero.

Thus, this is not our preferred way forward.

The other possibility is to circumvent the large dimensionality of the state space by using fre-

quency domain filtering methods such as the Wiener filter. However, one has to flip k roots outside

the unit circle, which requires us to construct k orthogonal matrices by hand. For large k this is

infeasible. Thus, we present an alternate strategy which allows one to relax the assumptions in

Theorem 2 and at the same time retain analytical tractability while constructing equilibria with

persistent sentiment-driven fluctuations.

4.2 A practical guide for constructing persistent sentiment-driven fluctuations

When Assumptions 1 and 2 are satisfied, the perfect observation of aggregate variables is only

delayed by a finite number of periods, and this type of truncation forces the forecast errors to

jump discretely to zero after a finite horizon. The fact that the number of periods after which

agents’ forecast error goes to zero is discrete makes it hard to have an analytical handle. A simple

strategy to solve this problem would be to “smooth” out the decay of forecast errors. This can be

accomplished by assuming that agents observe past realizations of aggregate outcomes and aggregate

fundamentals with additional noise. The presence of such noise would prevent agents from perfectly

inferring the exact realizations of the aggregate fundamental. However, such a strategy would lead

to an environment in which agents observe fewer signals than shocks. While this in itself is not a

problem, this does severely restrict analytical tractability in characterizing the equilibrium, since it

involves dynamic signal extraction in a “non-square system” in a setting with endogenous signals

(see Nimark (2017) and Huo and Takayama (2017) for a detailed discussion). Additionally, the

reliance on numerical methods prevents us from characterizing the entire set of sentiment equilibria

and their general properties. Thus, this strategy is also not ideal for our purposes, since we want to

uncover more general conditions under which sentiments can have persistent effects. Thus, we adopt

a different strategy which allows us to “smooth” out the decay of forecast errors while at the same

time retaining analytical tractability.

Smoothing out the decay of forecast errors Suppose a latent stationary variable ξt is described

by ξt = φ(L)et, where φ(L) is invertible. Each period, a signal xt is observed which provides

information about the realizations of the sequence ξt. Assume that the signal takes the form

xt = (L− λ)ξt, λ ∈ (−1, 1). (26)

For |λ| < 1, the signal xt puts little weight on the current realization of ξt and thus the agent is

unable to infer ξt perfectly by observing the sequence of signals xt.21 The signal xt can be broadly

21A higher λ implies a larger weight on the current ξt and increases the informativeness of the signal about ξt.
Actually, when λ is larger than 1, the signal reveals the underlying shock perfectly.
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interpreted as a moving average of the realizations of ξt. Appendix E shows that for k ≥ 0, the

forecast error about ξt−k at date t can be written as

ξt−k − E[ξt−k|xt] = λkφ(λ)(1− λ2)
∞∑
s=0

λset−s.

The forecast error decays gradually at a rate which is proportional to λ and only converges to zero

asymptotically, i.e., the agent only learns about the actual realization of ξt−k asymptotically. Thus,

a signal of the form (26) is a convenient way to model a smooth decay of the forecast error and avoids

forecast errors vanishing with an undesirable discreteness, as in the previous section. Of course, this

is not the most traditional way to model information lags; however, compared to the strategy of

adding observation noise, this alternative signal structure allows us to generate smoothly decaying

forecast errors and also affords analytical tractability.22 Armed with this modeling device, we revisit

the familiar examples from Section 3.

4.2.1 Persistent sentiment-driven fluctuations absent fundamental shocks

Let’s begin with the environment studied in Section 3.1. We maintain the assumption that zi,t is

i.i.d. across time and individuals. At each date t, agents observe a private signal x1i,t = at + zi,t. In

addition, each agent observes another signal which takes the form x2i,t = (L− λ)at, where |λ| < 1.23

As was the case in Section 3.1, the unique fundamental equilibrium of this economy is still given

by at = 0 for all t and is unaffected by the signal x2i,t. However, the additional signal implies that

the conditions in Theorem 2 are satisfied for sentiments to have persistent effects.

Proposition 1. For α > 1, there exists a unique sentiment equilibrium in which the dynamics of

the aggregate outcome can be described by

at = λat−1 + φ
(
1− λ2

)
εt, (27)

where φ is the variance of the aggregate outcome in the static sentiment equilibrium in Section 3.1

and is defined in (21).24

22This strategy shares some similarity with the confounding process in Rondina and Walker (2020). In Rondina
and Walker (2020), the variable ξt itself may follow a non-invertible process. Instead, we introduce the non-invertible
component in the signal which prevents agents from inferring the underlying shock et perfectly after finite time. To
be clear, while the modeling strategy looks superficially similar to Rondina and Walker (2020), they do not study
self-fulfilling sentiment fluctuations or how the presence of sentiments can affect the dynamic response of the economy
to aggregate fundamentals, which we show next.

23In this example, ns = 2. Again, since the aggregate fundamental is known to be fixed at zero for all time, we
can set nν = 1. Then, the dimension of A(L) =

[
1 L− λ

]′
is 2 × 1, and of B(L) =

[
0 0

]′
is 2 × 1. Note that the

rank condition (14) is satisfied in this example: rank
[
A(L) B(L)

]
= rank

[
1 0

L− λ 0

]
= 1 = rank

 1 0
L− λ 0

1 0

 =

rank

[
A(L) B(L)

1 0

]
.

24Notice that again there are two sentiment equilibria, φ > 0 and φ < 0, since (21) only defines φ uniquely up to
the sign. As has been the case throughout the paper, we focus on the equilibrium with φ > 0. This is without loss
of generality, since the variance and autocovariances of a are the same regardless of the sign of φ: both sentiment
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Figure 3: IRF in sentiment equilibrium: For the purpose of this figure, we set σz = 2, α = 1.5.

Proof. See Appendix B.1.

The first thing to notice is that setting λ = 0 implies that agents can observe at−1 perfectly.

In this case, (27) shows that the only sentiment equilibrium is given by at = φεt, which is the

same as the static sentiment equilibria in Section 3.1, thus confirming the claim in Theorem 2. The

static example in Section 3.1 showed that sentiment shocks can amplify the unconditional volatility

of aggregate outcomes. This dynamic extension shows that in addition, sentiment shocks can also

generate persistence. A sentiment shock at date t induces persistent deviations of the aggregate

action at from 0. In fact, the aggregate dynamics of at can be described by an AR(1) process with

persistence λ and (unconditional) variance φ2(1 − λ2)2. Notice that the volatility and persistence

are closely related. Recall that the magnitude of λ is indicative of how informative the signal x2i,t
is about the current realization of at. Equation (27) shows that the more informative the signal is

about current at, the more persistent is the effect of a sentiment shock. At the same time, a higher λ

also reduces the impact effect of a sentiment shock on aggregate outcomes, since agents are relatively

better informed about the true realization of at. Figure 3 plots the impulse response to a sentiment

shock for two different values of λ. As discussed above, the impulse response with a lower (higher)

λ has a larger (smaller) effect on impact but dies down faster (slower). While we concentrate on

λ ∈ (0, 1) in the figure, the characterization continues to be true for λ ∈ (−1, 0) as well. This would

result in an oscillatory impulse response.

This close relation between the persistence and size of the impact effect underscores the fact

that the properties of sentiment-driven fluctuations are disciplined by equilibrium – the example

shows that given an economic environment, a modeler who constructs a sentiment equilibrium with

a particular unconditional volatility may not be allowed to independently choose the persistence. If

instead sentiments were modeled as exogenous shocks, the modeler would have the freedom to choose

both the volatility and persistence of the exogenous shock process.

equilibria feature the same autocovariance-generating function φ(L)φ(L−1).
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4.2.2 Persistent sentiment-driven fluctuations with fundamental shocks

In the context of the static example in Section 3.2, we showed that not only can sentiments drive

aggregate fluctuations, they can also alter the effects aggregate fundamentals have on aggregate

outcomes. In this section we extend the example to a dynamic setting and reaffirm that not only can

sentiment shocks have persistent effects on aggregate outcomes, they can also alter how fundamental

shocks affect aggregate outcomes. In particular, we show that sentiments can alter not just the

impact effect of aggregate fundamentals but also the lagged effects.

Recall that the best response in this case can be written as: ai,t = δEit[θt] + γEit[at]. Agents are

assumed to observe three signals:

x1i,t = θt + ςi,t, x2i,t = at − θt, x3i,t = (L− λ)θt.

We assume that dynamics of the aggregate fundamental θt can be described by θt = g(L)vt, where

vt ∼ N(0, 1) denotes the innovation to aggregate fundamentals at date t.25 The first two signals are

the same as in Section 3.2, with time-subscripts appended. The new signal x3i,t allows an agent to

imperfectly observe the realization of the aggregate fundamental θt.
26

In the fundamental equilibrium, the aggregate action is by definition only driven by the funda-

mental shock, at = ψ(L)vt. Observing the signal x2i,t allows each agent to infer the true past and

current realizations of vt (and hence of θt). This implies that agents have full information in equilib-

rium and agents can ignore the signal x3i,t in equilibrium. Consequently, the fundamental equilibrium

is identical to the full-information equilibrium in which the aggregate action at tracks θt:

aft = ψθt, where ψ =
δ

1− γ
. (28)

Instead of allowing agents to observe past aggregate fundamentals perfectly, adding the signal x3i,t to

agents’ information set relaxes Assumption 2 and permits sentiment equilibria in which the aggregate

action at is affected by not just the current and past realizations of the aggregate fundamental but

also by the current and past sentiment shocks: at = ψ(L)vt + φ(L)εt. Since at also depends on

the sequence εt, observing the signal x2i,t no longer allows agents to infer the current realization

of vt. Instead, they must solve a dynamic signal extraction problem. Importantly, unlike in the

fundamental equilibrium, agents utilize the signal x3i,t in doing so.

Proposition 2. For δ large enough, there exists a unique sentiment equilibrium at = ψ(L)vt+φ(L)εt,

25We assume that g(L) is invertible and normalize g(0) = 1 without loss of generality.
26In this example, there are three signals (ns = 3) and one aggregate fundamental (nν = 1). So the dimension

of A(L) =
[
0 1 0

]′
is 3 × 1 and of B(L) =

[
0 −g(L) (L− λ)g(L)

]′
is also 3 × 1. The rank condition (14) is

rank
[
A(L) B(L)

]
= rank

0 1
1 g(L)
0 (L− λ)g(L)

 = 2 = rank

[
A(L) B(L)

1 0

]
= rank


0 1
1 g(L)
0 (L− λ)g(L)
0 1

.
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where

ψ(L) = ψg(L)−
σ2ς (1− λ2)
(1− γ)g(λ)

1

1− λL
, (29)

φ(L) = ±
(
1− λ2

)
σς
√

(γ + ϕ− 1)g(λ)2 − σ2ς
(1− γ)g(λ)

1

1− λL
, (30)

where ψ is defined in (28).

Proof. See Appendix B.2.

Equation (30) shows that a sentiment shock εt can generate persistent aggregate fluctuations.

In fact, the impulse response of the aggregate action in response to a sentiment shock εt can be

described by an AR(1), which is depicted graphically by the blue solid curve in Figure 4a27:

∂ |at+s|
∂εt

= σς
(
1− λ2

) √γ + δ − 1− σ2ς g(λ)−2

1− γ
λs for s ≥ t.

As in the previous example, there is a close relationship between the persistence and the impact

effect. The greater the persistence λ, the smaller the impact effect σς
(
1− λ2

) √γ+δ−1−σ2
ς g(λ)

−2

1−γ .28

Sentiment shocks also affect aggregate outcomes indirectly, by altering how fundamental shocks affect

aggregate outcomes. To see this, using (29)-(30), we can write the evolution of at as

at − aft = λ
(
at−1 − aft−1

)
+ ω1vt ± ω2εt, where aft = ψθt, (31)

where ω1 = − σ2
ς

1−γ

(
1−λ2

λ

)
and ω2 = σς

(
1− λ2

) √γ+ϕ−1−σ2
ς g(λ)

−2

1−γ . Equation (31) shows that while in

the fundamental equilibrium at tracks ψθt perfectly, in the sentiment equilibrium, this is only true

on average. In fact, the gap between at and aft = ψθ only closes slowly, and this process can be

described by an AR(1). It is important to note that while the figure restricts attention to the case

with 0 < λ < 1, the characterization also holds for −1 < λ < 0. However, the impulse response

would feature oscillations in this case.

A fundamental shock vt or a sentiment shock εt at date t can drive a persistent wedge between

at and aft = ψθt. The blue-solid curve plots the difference between at in the sentiment equilibrium

and aft in response to a positive sentiment shock at date 0. Since
∂aft
∂εt

= 0, the blue line shows that

in a sentiment equilibrium, a sentiment shock can drive a persistent wedge between at and aft . The

red-dashed curve in Figure 4 plots the persistent gap between at in the sentiment equilibrium and in

the fundamental equilibrium following a positive shock to fundamentals at date 0. As can be seen,

at responds less to the fundamental shock in the sentiment equilibrium than in the fundamental

equilibrium (at < aft ). Over time, this gap becomes smaller before it finally vanishes.

27Again, we are focusing on the positive solution in (30), i.e., φ =
(1−λ2)σς

√
(γ+ϕ−1)g(λ)2−σ2

ς

(1−γ)g(λ)
1

1−λL . This is without

loss of generality, since the autocovariance-generating function φ(L)φ(L−1) is identical in both cases.
28Setting λ = 0 implies that agents can observe θt−1 perfectly. Then Theorem 2 states that the only sentiment

equilibrium can be the static one described in Section 3.2. Setting λ = 0 in equations (29)-(30) confirms this.
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The red dashed curve in figure 4a depicts the impulse response of at in response to an aggregate

shock in the sentiment equilibrium. The red-dashed curve exhibits a hump-shaped response to an

aggregate fundamental shock. This is in contrast to the dynamics of aft . Since aft tracks θt, which

is AR(1) in this figure, the largest effect on aft is on impact, and then it monotonically declines.

In contrast, in the sentiment equilibrium, since agents are unable to infer the true realization of

θ at date 0 when the shock hits, they attribute a part of the observed fluctuations in the signals

to sentiments, causing each of them to react less to the fundamental shock. This opens up a gap

between the response of at in the fundamental equilibrium and in the sentiment equilibrium. Over

time, agents learn that it was in fact a positive fundamental shock that hit at date 0 and consequently

react more, endowing the impulse response with a hump-shape. As the agents learn over time, the

difference between at and aft vanishes.

0 5 10 15 20 25

0

0.5

1

1.5

2

(a) IRFs in the sentiment equilibrium
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Figure 4: Properties of the sentiment equilibrium: For the purpose of generating this figure,
we further assume that θt follows an AR(1) process: θt = ρθt−1 + vt. We set ρ = 0.9, λ = 0.6, σ = 2,
δ = 1.5, and γ = 0.5.

Hump-shaped impulse responses The hump-shaped response is an empirical regularity empha-

sized in the DSGE literature (e.g., Christiano et al. (2005), Smets and Wouters (2007)) in the context

of many macroeconomic data series. Typically, these models generate a hump-shaped response by

introducing ad hoc features such as habit formation or adjustment costs. Another potential way to

generate hump-shaped responses is to model the presence of dispersed information. Since higher-

order expectations are more anchored by the prior, they can explain the presence of additional inertia

in an economy’s response to shocks (e.g., Woodford (2002) and Angeletos and Huo (2021)).

This paper presents another logically distinct way which could explain the presence of additional

inertia. The example above shows that sentiment equilibria can allow one to generate hump-shaped

dynamics without any assumption of adjustment costs or even exogenously imposed information

constraints or dispersed information. In our model environment, the information is complete in the

fundamental equilibrium and so there is no more dispersed information after agents observe aggregate

outcomes. However, in the sentiment equilibrium, the presence of the sentiment shock prevents agents

from inferring the true realization of the fundamental, making information incomplete. Agents then
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have to infer the shocks and others’ actions. Thus, sentiment shocks act as an endogenous source

of noise which can generate additional inertia. This source of noise is absent by definition in the

fundamental equilibrium.

Learnability The static examples in Section 3 showed that sentiment equilibria are stable under

least-squares learning, while the fundamental equilibrium is not. Are the sentiment equilibria also

stable under least-squares learning in the dynamic case? Appendix C.2 shows that this is in fact

the case when we extend our analysis in Section 3.4 to our dynamic examples in Sections 4.2.1 and

4.2.2. For the example in Section 4.2.1, since the actual sentiment equilibrium features at = (1−λ2)φ
1−λL ,

we assume that agents perceive that the aggregate action is described by the AR(1) in equilibrium

but do not know the parameters: the perceived law of motion is at = ω1

1+ω1ω
−1
2 L

εt where the agents

are learning about ω1 and ω2. Appendix C.2.1 shows that in this context, the sentiment equilibrium

again satisfies the property of E-stability. Similarly, for the example in Section 4.2.2, following

the structure of the actual equilibrium in (29)-(30), we assume that ψ̂(L) = δ
1−γ g(L) + a

1−bL and

φ̂(L) = c
1−dL where the agents are learning about a, b, c and d. Again, Appendix C.2.2 shows that

the sentiment equilibrium is E-stable.

5 Conclusion

Within the class of the commonly used beauty contest games, we provide a characterization of

necessary conditions for the existence of sentiment equilibria and when sentiments can drive persistent

aggregate fluctuations. Through some illustrative examples, we show that sentiment equilibria are

stable under least-squares learning, while the fundamental equilibrium is not. We also show that

sentiments can also induce additional inertia in the response of aggregate variables to fundamental

shocks (hump-shaped response). This characterization serves as a guide for a growing literature in

the field of macroeconomics that is trying to theoretically and quantitatively evaluate the importance

of sentiments or correlated equilibria in understanding aggregate fluctuations.

While we focus on static beauty contest games in this paper,29 the same notion of sentiment

equilibrium can be extended to environments in which agents’ decisions are dynamic (they depend

on the expectations of fundamentals and aggregate outcomes in the future), as in Allen et al. (2006),

Nimark (2017) and Angeletos and Huo (2021). Another interesting direction for future research is to

explore the properties of the sentiment equilibrium when agents acquire information endogenously

(Benhabib et al., 2016). We believe these are potentially fruitful paths to explore going forward.
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Appendix

A Proofs

A.1 Restricting attention to equilibria with invertible φ(L)

Theorem 3. If at = ψ(L)νt + φ(L)εt is a sentiment equilibrium, then at = ψ(L)νt + φ̃(L)εt is also a sentiment

equilibrium if

φ(L)φ(L−1) = φ̃(L)φ̃(L−1).

Furthermore, there exists a sentiment equilibrium φ̃(L) which is invertible.

Proof. Assume that there exists a sentiment equilibrium where at is given by

at = ψ(L)νt + φ(L)εt.

The signal process can be represented by

xi,t = A(L)φ(L)εt + (A(L)ψ(L) + B(L))νt + C(L)ζi,t ≡M(L)

 εtνt
ζi,t

 .
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Suppose φ̃(L) satisfies

φ̃(L)φ̃(L−1) = φ(L)φ(L−1).

Define x̃i,t and M̃(L) as

x̃i,t = A(L)φ̃(L)εt + (A(L)ψ(L) + B(L))νt + C(L)ζi,t ≡ M̃(L)

 εtνt
ζi,t

 .
It is easy to see that

M(L)M′(L−1)

=A(L)φ(L)φ(L−1)A′(L−1) + (A(L)ψ(L) + B(L))(A(L−1)ψ(L−1) + B(L−1))′ + C(L)C′(L−1)

=M̃(L)M̃′(L−1).

This equality implies that the fundamental representation of M(L) and M̃(L) is the same. Denoting the fundamental

representation of M(L) as B(L), we have

M(L)M′(L−1) = M̃(L)M̃′(L−1) = B(L)B′(L−1),

where B(L) is invertible.

Under the perceived law of motion of at = φ(L)εt, consider the following stochastic variable

fi,t = δθt + γat + αzi,t = γ(φ(L)εt +ψ(L)νt) + δh(L)vt + αg(L)ui,t ≡ F(L)

 εtνt
ζi,t

 ,
and the best response requires that ai,t = E[fi,t|xti]. By the Kolomogrov-Weiner projection formula, the forecast is

given by

E[fi,t|xti] =
[
F(L)M′(L−1)B′(L−1)

]
+

B(L)−1xi,t ≡ Π(L)xi,t,

where Π(L) is the corresponding equilibrium policy rule. Since φ(L) and ψ(L) is a sentiment equilibrium by assumption,

it follows that

Π(L)A(L) = 1, and Π(L)B(L) = 0.

Now we verify that φ̃(L) and ψ(L) is also a sentiment equilibrium with policy rule Π(L). Under the perceived law of

motion at = φ̃(L)εt +ψ(L)νt, define f̃i,t as

f̃i,t = δθt + γat + αzi,t = γ(φ̃(L)εt +ψ(L)νt) + δh(L)vt + αg(L)ui,t ≡ F̃(L)

 εtνt
ζi,t

 .
The individual optimal response is

ai,t = E[f̃i,t|x̃ti] =
[
F̃(L)M̃′(L−1)B′(L−1)

]
+

B(L)−1x̃i,t.

By construction, F̃(L)M̃′(L−1) = F(L)M′(L−1), it follows that E[f̃i,t|x̃ti] = Π(L)x̃i,t. Therefore, at = φ̃(L)εt+ψ(L)νt

is also an equilibrium. By the Wold representation theorem, there always exists φ̃(L) such that φ̃(L) is invertible,

which completes the proof.

To illustrate the key idea in this proof, consider the following example. Agent i wants to forecast at by observing

the following signal every period:

xi,t = at + ui,t, ui,t ∼ N(0, 1).
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Supposing agents believe that at = εt with εt ∼ N(0, 1), then the optimal forecast of at is simply

Ei,t[at] =
1

2
xi,t,

as at and ui,t have the same variance. Supposing instead that agent i believes that at = φ(L)εt = L−λ
1−λL εt with

λ ∈ (−1, 1), i.e., at follows a non-invertible process. Note that φ(L)φ(L−1) = 1, which is the same as the autocovariance

generating function of at = εt. Even though at now follows a different process, the optimal forecast about at actually

is the same as before

Ei,t[at] =
1

2
xi,t.

Moreover, based on the historical time series generated by at = εt and at = L−λ
1−λL εt, an econometrician would not be

able to tell the dynamics apart in the two cases.

A.2 Proof of Lemma 1 and Theorem 1

Let Π(L) denote individual agent’s policy rule. The individual action is ai,t = Π(L)xi,t, and it follows that the average

action is

at =

∫
i

ai,tdi = Π(L)A(L)at + Π(L)B(L)νt,

since the idiosyncratic shocks average out to zero. In a sentiment equilibrium, the aggregate action is driven by both

sentiment shocks and primitive shocks, at = φ(L)εt +ψ(L)νt. The aggregation result above can be written as

φ(L)εt +ψ(L)νt = Π(L)A(L)φ(L)εt + Π(L)A(L)ψ(L)νt + Π(L)B(L)νt. (32)

Condition (32) must be satisfied for any realizations of (εt,νt):

φ(L)(1−Π(L)A(L)) = 0 and ψ(L) = Π(L)A(L)ψ(L) + Π(L)B(L).

With φ(L) 6= 0, it has to be the case that Π(L)A(L) = 1, and Π(L)B(L) = 0. Therefore, in a sentiment equilibrium,

it is necessary that [
A′(L)

B′(L)

]
Π′(L) =

[
1

0

]

. To allow a solution for Π(L), it is necessary that

rank

[
A′(L)

B′(L)

]
= rank

[
A′(L) 1

B′(L) 0

]
,

where the rank of a polynomial matrix X(L) is defined as maxz∈C rank
(
X(z)

)
. The rank condition in Theorem 1

follows by transposing the condition above.

A.3 Proof of Theorem 2

Consider an impulse response of the signals to an εt shock, where ε0 = 1, and εt = 0 for t 6= 0. In φ(L) =
∑∞
t=0 φtL

t,

φt denotes the response of a at time t. To show that φ(L) is at most an MA(k) process, it is sufficient to show that

the impulse response of at is zero from period k onwards.

By Theorem 3 in Appendix A.1, we only need to consider the case where φ(L) is invertible. If Assumption 1 and

2 are satisfied, E[νt−τ | yti ] = νt−τ and agents also observe at−τ = ψ(L)νt−τ + φ(L)εt−τ for τ ≥ k. As a result, agents

observe φ(L)εt−τ perfectly for τ ≥ k. Because φ(L) is invertible, past sentiment shocks {εt−τ}∞τ=k can be inferred

perfectly.

Recall that the signal process is given by

xi,t = A(L)at + B(L)νt + C(L)ζi,t.
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In the impulse response experiment, only ε0 = 1, εt = 0 at all other dates. Effectively, agents observe

xi,t = A(L)φtε0,

where φt = 0 for t < 0. With t ≥ k, after subtracting the part A(L)φtε0 which agents observe perfectly, the signals

are all zero. It follows that the optimal forecasts for all other shocks have to be zero, Ei,tζi,t−τ = 0, Ei,tνt−τ = 0, and

Ei,tεt−τ = 0 for t ≥ k and τ ≥ 0. Therefore, the impulse response with t ≥ k is given by

at = φt =

∫ {
αEi,t[h(L)ui,t] + δEi,t[g(L)vt] + γEi,t[φ(L)εt]

}
di = γφtε0.

Given that γ < 1 and ε0 = 1, it has to be that φt = 0 for t ≥ k. It follows that φ(L) =
∑k−1
τ=0 L

τφτL
τ .

B Solving for equilibrium in Sections 4.2.1, 4.2.2 and 3.2 and the

example in Section 4

B.1 Proof of results in Section 4.2.1

In a linear rational expectations equilibrium with only sentiment shock, the aggregate outcome can be written as

at = φ(L)εt. Each agents’ signals can be expressed as[
x1
i,t

x2
i,t

]
=

[
φ(L) σz

(L− λ)φ(L) 0

][
εt
zi,t
σz

]
⇔ xi,t = M (L) ei,t.

Note that the determinant of M(L) is

det[M(L)] = σz(L− λ)φ(L),

and there is one root inside the unit circle, 0 and λ. According to Wold’s theorem, this mapping has an observationally

equivalent invertible representation, which is given by

xi,t = M (L) WB (L;λ)︸ ︷︷ ︸
M̃(L)

B
(
L−1;λ

)′
W′ei,t︸ ︷︷ ︸

ẽi,t

,

where B (L;λ) is a Blaschke matrix which flips the root from λ to λ−1 and W is a orthonormal matrix:

B (L;λ) =

[
L−1−λ
1−λL−1 0

0 1

]
and W =

 σz√
σ2
z+φ(λ)2

φ(λ)√
σ2
z+φ(λ)2

− φ(λ)√
σ2
z+φ(λ)2

σz√
σ2
z+φ(λ)2

 .
Rozanov (1967) shows how one can create the W matrix.30 Briefly, the W matrix can be constructed by recursively

using the Gram-Schmidt process. The first column of W is constructed by finding a vector {w11, w21}′ of magnitude

1 such that w11φ(λ) + σzw21 = 0. The second column of W can be constructed by finding a vector orthogonal to the

first column of W and then normalizing it to have unit norm. Next, using the Kolmogrov-Weiner projection formulas:∫
Ei,tatdi = φ(L) +

(
1− λ2

)
σ2
zφ(λ)

(1− λL) (σ2
z + φ(λ)2)

and

∫
Ei,tzi,tdi = at −

∫
Ei,tatdi.

Equilibrium must satisfy at = α
∫
Ei,tzi,t + γ

∫
Ei,tat. As a result, it must be the case that

φ(L) =

(
1− λ2

)
σ2
zφ(λ)(α− γ)

(1− γ)(1− λL) [σ2
z + φ(λ)2]

⇒ φ(λ)

[
1− σ2

z(α− γ)

(1− γ) [σ2
z + φ(λ)2]

]
= 0. (33)

30See also Hansen and Sargent (1991) and Kasa (2000) for an example of how to construct W.
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The second equation implies that either φ(λ) = 0, in which case φ(L) also equals 0 (the fundamental equilibrium), or

φ(λ) = ±σz
√

α−1
1−γ . Plugging in the second expression for φ(λ) into φ(L) yields φ(L) = σz(1− λ2)

√
α−1
1−γ

1
1−λL .

B.2 Proof of results in section 4.2.2 and 3.2

In a linear sentiment equilibrium, the aggregate outcome can be written as at = φ(L)εt +ψ(L)vt. Each agent’s signals

can be expressed as x
1
i,t

x2
i,t

x3
i,t

 =

σς g(L) 0

0 ψ(L)− g(L) φ(L)

0 (L− λ)g(L) 0



ςi,t
σς

vt

εt

 ⇔ xi,t = M (L) ei,t.

Note that the determinant of M(L) is

det[M(L)] = σς(L− λ)φ(L)g(L),

and there is one root inside the unit circle, λ. According to Wold’s theorem, this mapping has an observationally

equivalent invertible representation, which is given by:

xi,t = M (L) WB (L;λ)︸ ︷︷ ︸
M̃(L)

B
(
L−1;λ

)′
W′ei,t︸ ︷︷ ︸

ẽi,t

.

Similar to the case in subsection 4.2.1, the W matrix can be constructed by recursively using the Gram-Schmidt process.

The first column of W is constructed by finding a vector {w11, w21, w31}′ of magnitude 1 such that w21gλ + σςw11 = 0

and w21

(
ψλ − gλ

)
+ w31φλ = 0 where ψλ = ψ(λ), gλ = g(λ) and φλ = φ(λ). The second column of W can be

constructed by finding a vector orthogonal to the first column of W and then normalizing it to have unit norm. The

third column can be constructed such that it is orthogonal to the first two columns and then normalizing it to have

unit norm. Next, using the Kolomogrov-Weiner projection formulas:∫
i

Ei,tθtdi =

[
g(L)−

(
1− λ2

)
σ2
ςφ

2
λgλ

κ(λ)

1

1− λL

]
vt −

(
1− λ2

)
(gλ − ψλ)σ2

ς gλφλ

κ(λ)

1

1− λLεt,∫
i

Ei,tatdi =

[
φ(L)−

(
1− λ2

)
(gλ − ψλ)σ2

ς gλφλ

κ(λ)

1

1− λL

]
εt +

[
ψ(L)−

(
1− λ2

)
σ2
ς gλφ

2
λ

κ(λ)

1

1− λL

]
vt,

where

κ(λ) = −2σ2
ς gλψλ + g2

λ

(
φ2
λ + σ2

ς

)
+ σ2

ς

(
ψ2
λ + φ2

λ

)
.

Equilibrium requires that at = δ
∫
i
Ei,t[θt]di+

∫
i
Ei,t[at]di, which leads to

φ(L) =

(
1− λ2

)
σ2
ς (γ + δ)gλφλ(ψλ − gλ)

(1− γ)κ(λ)

1

1− λL,

ψ(L) =
δ

1− γ g(L)−
(
1− λ2

)
σ2
ς (γ + δ)gλφ

2
λ

(1− γ)κ(λ)

1

1− λL.

Solving for φλ and ψλ by evaluating φ(L) and ψ(L) at L = λ yields the sentiment equilibrium:

φλ = ±
σς
√

(γ + δ − 1)g2
λ − σ2

ς

(1− γ)gλ
and ψλ =

δg2
λ − σ2

ς

(1− γ)gλ
,

and the solution to the fundamental equilibrium

φλ = 0 and ψλ =
δgλ

1− γ .

Substituting φλ and ψλ in to φ(L) and ψ(L) yields the results in the main text. Note that for the sentiment equilibrium

to exist, we need (γ + δ − 1)g2
λ > σ2

ς . This requires that δ be large enough.
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Deriving the expressions in Section 3.2 Next, we can derive the expressions in the static example in

Section 3.2. To do so, all we need to do is specialize the example above to the case in which θt is i.i.d., i.e., g(L) = 1

and λ = 0. With λ = 0, agents can observe θt−1 through the signal x3
i,t. Then, using Theorem 2, we know that the only

sentiment equilibrium is static. Specializing the expressions, we have the fundamental equilibrium in which ψ = δ
1−γ

and φ = 0, i.e., aft = δ
1−γ . Similarly, the sentiment equilibrium features ψ = ±σς

√
γ+δ−(1+σ2

ς )

1−γ and ψ = ψλ =
δ−σ2

ς

1−γ .

These expressions are the same as in the main text in Section 3.2.

B.3 Deriving sentiment equilibrium when agents do not observe past aggregate

actions

This section derives the equilibrium for the example in Section 4. The environment is the same as in Section 3.1, but

we additionally assume that the idiosyncratic fundamental zi,t is given by an AR(1): zi,t = ρzi,t−1 + ui,t. At date t,

each agent receives a noisy private signal xi,t, which can be written as xi,t = at + ui,t and also the realization of the

aggregate outcome from two periods ago, at−2 = L2φ(L)εt. An educated guess for the equilibrium dynamics of the

aggregate action is φ(L) = φ0 + φ1L. Given this guess, the problem can be transformed into a static problem with the

relevant information encoded in the following modified signals:

w1
i,t = φ0εt−1 + ui,t−1 and w2

i,t = (φ0εt + φ1εt−1) + ui,t.

The covariance matrix of wi,t = [w1
i,t, w

2
i,t]
′ can be written as Ω =

[
φ2

0 + σ2
u ψ0ψ1

ψ0ψ1 (φ2
0 + φ2

1) + σ2
u.

]
. Then, using the

Kalman filter, the sentiment equilibrium satisfies:

φ0 = ±σu

√
(α− 1)±

√
(α− 1)2 − 4α2ρ2

1− γ and φ1 = φ0
(α− 1)±

√
(α− 1)2 − 4α2ρ2

2αρ
.

Again, as in Section 3.1, the sentiment equilibrium exists as long as α is large enough.

C Stability of sentiment equilibria under learning

C.1 Static sentiment equilibria

In this appendix, we show that the sentiment equilibria in sections 3.1 and 3.2 are stable under learning, while the

corresponding fundamental equilibria are not.

C.1.1 Stability of sentiment equilibrium in Section 3.1

We start with the example in Section 3.1. Recall that the fundamental equilibrium in this case was a = 0, while the

sentiment equilibrium was a = φε. Suppose agents do not know which equilibrium is being played and perceive that a

is given by a = φ̂εt.
31 Given the perception that a = φ̂ε, agent i believes that the signal xi is given by xi = φ̂ε + zi.

Consequently, their expected value of zi and a is given by Ẽizi =
σ2
z

φ̂2+σ2
z

and Ẽia = φ̂2

φ̂2+σ2
z

, where Ẽi implies that the

expectation is with respect to the perceived law of motion, which may be different from the actual law of motion. Then

each agent’s optional action can be written as

ai =
γφ̂2 + ασ2

z

φ̂2 + σ2
z

xi.

Averaging across all agents yields

ai =
γφ̂2 + ασ2

z

φ̂2 + σ2
z

φ̂ε.

31Notice that this nests the fundamental equilibrium φ̂ = 0 as well as the sentiment equilibrium.
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Then we can specify the T-map (Evans and Honkapohja, 2012) as T (φ̂) = φ̂
γφ̂2+ασ2

z

φ̂2+σ2
z

. Then it can easily be seen that

the equation

φ̂ = T (φ̂)

has three solutions: φ̂ = 0 (the fundamental equilibrium) and φ̂ = |φ|, where φ is defined in (21) (the sentiment

equilibrium). To check for expectational stability, we start by linearizing the differential equation d
dτ
φ̂ = T (φ̂) − φ̂

around each of the stationary points. This yields the linearized ODE:

d

dτ
φ̂ =

(
T ′(φ̂)− 1

)
φ̂.

Next, notice that

T ′
(
φ̂
)
− 1 =

γφ̂2 + ασ2
z

φ̂2 + σ2
z

+ 2 (1− α)
γφ̂2σ2

z(
φ̂2 + σ2

z

)2 − 1.

Evaluating at φ̂ = 0 yields T ′ (0)− 1 = α− 1 > 0, which implies that the fundamental equilibrium is not stable under

learning. In contrast, evaluating at φ = σz
√

α−1
1−γ yields

T ′
(
σz

√
α− 1

1− γ

)
− 1 = −2γ (1− γ)

(
α− 1

α− γ

)2

< 0,

since α > 1 and γ < 1. Thus, the sentiment equilibrium is stable under learning.

C.1.2 Stability of sentiment equilibrium in Section 3.2

Recall that in Section 3.2, the fundamental equilibrium took the form a = δ
1−γ θ, while the sentiment equilibrium took

the form a =
δ−σ2

ς

1−γ θ±
σς
√
γ+δ−(1+σ2

ς )

1−γ ε. Suppose again that agents do not know which equilibrium is being played and

perceive that the process defining a is given by a = ψ̂θ + φ̂ε. Given this perceived process defining a, the signals that

each agent observes can be written as

x1
i = θ + ςi and x2

i = (ψ̂ − 1)θ + φ̂ε.

Agents use these signals to filter the actual realization of θ and of a. Following the steps in Appendix B.2 (setting

g(L) = 1 and λ = 0), one can derive the actual law of motion of a as

a = Tψ(ψ̂, φ̂)θ + Tφ(ψ̂, φ̂)ε,

where

Tψ
(
ψ̂, φ̂

)
= − σ2

ς (γ + δ) φ̂2

σ2
ς

(
ψ̂ − 1

)2

+ φ̂2 (1 + σ2
ς )

+ γψ̂ + δ,

Tφ
(
ψ̂, φ̂

)
= φ̂

σ2
ς

(
γψ̂ + δ

)(
ψ̂ − 1

)
+ γ

(
1 + σ2

ς

)
φ̂2

σ2
ς

(
ψ̂ − 1

)2

+ φ̂2 (1 + σ2
ς )

.

Again, it is easy to see that the system of equations ψ̂ = Tψ(ψ̂, φ̂) and φ̂ = Tψ(ψ̂, φ̂) has three roots. The first of

these is at
(
ψ̂, φ̂

)
=
(

δ
1−γ , 0

)
, which is the fundamental equilibrium. The other two roots are given by

(
ψ̂, φ̂

)
=(

δ−σ2
ς

1−γ ,±
σς
√
γ+δ−(1+σ2

ς )

1−γ

)
, which are the sentiment equilibria. The last two roots exist when δ is large enough.

Again, to test the E-stability properties of the fundamental and sentiment equilibria, one must evaluate the

eigenvalues of the Jacobian of [
Tψ(ψ̂, φ̂)− ψ̂
Tφ(ψ̂, φ̂)− φ̂

]
.
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The Jacobian evaluated at the fundamental equilibrium is

J fundamental =

[
γ − 1 0

0 1−γ
δ+γ−1

]
,

which clearly has one negative eigenvalue γ − 1 < 0 and one positive 1−γ
δ+γ−1

> 0, Thus, the fundamental equilibrium

is not stable under learning. Agents would not converge to the sentiment equilibrium unless they start from an initial

point with φ̂ = 0 in the neighborhood around
(

δ
1−γ , 0

)
. Next, evaluating the Jacobian at the sentiment equilibrium

yields

Jsentiment =

 −2
(

1−γ
γ+δ

) (
1 + σ2

ς

)
−σς

(
1−γ
γ+δ

)
γ+δ−2(1+σ2

ς )√
γ+δ−(1+σ2

ς )

−2
(

1−γ
γ+δ

)
σς
√
γ + δ − (1 + σ2

ς ) γ − 1 + 2
(

1−γ
γ+δ

)
σ2
ς

 .
The eigenvalues of this matrix are γ − 1 and − 2(1−γ)

γ+δ
, which are both negative as long as δ is large enough for the

sentiment equilibrium to exist and γ < 1. Thus, the sentiment equilibrium is stable under learning.

C.2 Learning the equilibria in which sentiments have persistent effects

C.2.1 Stability of sentiment equilibria in Section 4.2.1

Recall that in Section 4.2.1, the fundamental equilibrium was the same as in the static case at = 0, and the sentiment

equilibrium had at = λat−1 + φ(1 − λ2)εt = φ(1−λ2)
1−λL εt. We start by assuming that agents’ perceived law of motion is

given by

at = φ̂(L) =
ω1

1 + ω1ω
−1
2 L

εt,

where the agents learn about ω1 and ω2. Here ω1 controls the standard deviation of at while ω2 affects the persistence.

Given the perceived law of motion, the signals that each agent observes can be represented as[
x1
i,t

x2
i,t

]
=

[
φ̂(L) σ

(L− λ)φ̂(L) 0

][
εt
zi,t
σ

]
.

Then, following the same steps as in Appendix B.1, we can derive the actual law of motion of at as:

at = ω1ω2

{
γ

1

ω2 − ω1L
−
(
λ2 − 1

)
σ2(α− γ) (ω2 − ω1λ)

ω2
1ω

2
2 + σ2 (ω2 − ω1λ)2

1

1− λL

}
εt.

The T-map here can be expressed as

[
ω1

ω2

]
=

 ω1

(
γ − ω2(λ2−1)σ2(α−γ)(ω2−ω1λ)

ω2
1d

2+σ2(ω2−ω1λ)2

)
ω1ω2

{
γ ω1

ω2
2
− (λ2−1)σ2(α−γ)(ω2−ω1λ)

ω2
1ω

2
2+σ2(ω2−ω1λ)2

λ

}
 ,

where given (ω1, ω2), the first equation is a mapping into the new ω1 and the second is the mapping into the new ω2.

The three roots of this system correspond to the fundamental and sentiment equilibria. Next, evaluating the Jacobian

of T (ω1, ω2)− (ω1, ω2) at the sentiment equilibrium yields

J =

λ
2[α(3γ−2)+(γ−6)γ+4]−(2−α)(1−2γ)−γ

(λ2−1)(α−γ)
− 1 − (γ−1)λ(α+γ−2)

(λ2−1)(α−γ)

(γ−1)λ(2λ2−1)(α+γ−2)

(λ2−1)(α−γ)

λ2(α+γ(3−2γ)−2)+γ(γ−α)

(λ2−1)(α−γ)
− 1

 ,
which has eigenvalues γ − 1,− 2(α−1)(1−γ)

α−γ , both of which are negative as long as γ < 1 and α > 1, the second of which

is needed for the sentiment equilibrium to exist.
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C.2.2 Stability of sentiment equilibria in Section 4.2.2

In the context of the example in section 4.2.2, we conduct the stability analysis under the assumption that θt follows

an AR(1), i.e., g(L) = 1
1−ρL . Recall that the sentiment equilibrium takes the form

ψ(L) =
δ

1− γ
1

1− ρL −
σ2
ς (1− λ2)(1− ρλ)

1− γ
1

1− λL,

φ(L) = ±σς

(
1− λ2

)
(1− ρλ)

√
(γ + ϕ− 1) (1− ρλ)−2 − σ2

ς

1− γ
1

1− λL.

Agents now do not know which equilibrium is being played and entertain the perceived laws of motions,

φ̂(L) =
a

1− b
a
L

and ψ̂(L) =
δ

1− γ
1

1− ρL +
c

1− d
c
L
,

where the agents must learn about a, b, c, d. Then, following the steps in Appendix B.2, we can write the T-map as

Tφ
(
φ̂(L)

)
= γ

a2

a− bL + Ω (λ)−1 a
(
λ2 − 1

)
σ2
ς (γ + δ)

[
1− γ − δ

(1− λρ) (1− γ)
− c2

c− dλ

]
1

1− λL,

and

Tψ
(
ψ̂(L)

)
=

δ

1− γ
1

1− ρL +

(
λ2 − 1

)
(δ + γ)σ2

ς

(a− bλ) Ω (λ)
a3 1

1− λL + γ
c2

c− dL,

where

Ω (λ) = (1− λρ)

(
a− bλ
a

){
σ2
ς

a4

(a− bλ)2 + σ2
ς

[
δ

(1− γ) (1− λρ)
+

c2

c− dλ

]2
}

+ (1− λρ)

(
a− bλ
a

){
1

(1− λρ)2

[
a4

(a− bλ)2 + σ2
ς

]
− 2σ2

ς

1− λρ

[
δ

(1− γ) (1− λρ)
+

c2

c− dλ

]}
.

Given the forms, φ̂(L) = a

1− b
a
L

and ψ̂(L) = δ
1−γ

1
1−ρL + c

1− d
c
L

, we can simplify the T-maps as follows:


a

b

c

d

 =


γa+ Ω (λ)−1 a

(
λ2 − 1

)
σ2
ς (γ + δ)

[
1−γ−δ

(1−λρ)(1−γ)
− c2

c−dλ

]
γb+ Ω (λ)−1 a

(
λ2 − 1

)
σ2
ς (γ + δ)

[
1−γ−δ

(1−λρ)(1−γ)
− c2

c−dλ

]
λ

γc+ δ
1−γ +

(λ2−1)(δ+γ)σ2
ς

(a−bλ)Ω(λ)
a3

γd+ δ
1−γ ρ+

(λ2−1)(δ+γ)σ2
ς

(a−bλ)Ω(λ)
a3λ

 .

Finally, the eigenvalues of the Jacobian of T (a, b, c, d)− (a, b, c, d) evaluated at the sentiment equilibrium are γ− 1, γ−
1, γ−1 and − 2(1−γ)

γ+δ
. All are negative as long as the sentiment equilibria exist and γ < 1. Thus, even in the case where

sentiments can drive persistent fluctuations, the sentiment equilibria are stable under learning.

D Policy can be used to prevent sentiment equilibria

Consider a standard monetary economy in which the representative household’s utility function can be written as

lnCt −Nt. The date t budget constraint of the household can be written as

PtCt = PtwtNt,

where Pt denotes the aggregate price, wt denotes the real wage, Ct denotes consumption of the final good and Nt

denotes hours worked. The optimal choice of hours can be written as

wt = Ct = Yt,
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where we have used the fact that goods market clearing implies Ct = Yt, where Yt denotes aggregate output. The

monetary authority controls nominal expenditures Qt = PtYt, which we describe by some exogenous stationary process

Qt = g(L)vt. This is the equivalent of the aggregate fundamental in terms of the nomenclature of the paper.

There is a unit mass of monopolistically competitive firms, each of whom produces a single variety i ∈ [0, 1]. The

final good is simply a CES aggregate of all varieties: Yt =

[∫ 1

0
Y
υ−1
υ
di

i,t

] υ
υ−1

, where υ > 1 denotes the elasticity of

substitution between varieties. Consequently, the demand curve facing firm i is simply

Yi,t =

(
Pi,t
Pt

)−υ
Yt,

where Yi,t denotes demand for variety i. Each firm also uses a decreasing returns-to-scale production function which

utilizes labor to produce output: Yi,t = Zi,tL
µ
i,t, where µ < 1 controls the curvature of the production function. The

random variable Zi,t denotes idiosyncratic productivity (idiosyncratic fundamental in the nomenclature of the paper)

and Ni,t denotes labor demand by firm i. Each firm sets price at any date t by solving the following profit maximization

problem:

max
Pi,t

Ei,t
{(Pi,t

Pt

)
Yi,t − (1− τi,t)wtNi,t

}
,

subject to

Yi,t = Zi,tL
µ
i,t and Yi,t =

(
Pi,t
Pt

)−υ
Yt,

where (1 − τi,t) is a firm specific payroll subsidy. Also, notice that we have not taken a stand on what the firm’s

information set is. The optimal choice of Pi,t must satisfy

Ei,t

{(
Pi,t
Pt

)1−υ

+
υ

µ (1− υ)
(1− τi,t)

(
Qt

PtZi,t

) 1
µ
(
Pi,t
Pt

)− υ
µ

}
Yt = 0. (34)

Next, assume that the payroll subsidy takes the form

1− τi,t = (1− τ) eτqqt−τzzi,t ,

where τ denotes the level of the subsidy in steady state. τq denotes how responsive the subsidy is to changes in nominal

expenditure relative to steady state, qt = lnQt− lnQ, where Q denotes steady state nominal expenditure. τq > 0(< 0)

implies that all firms get a higher (lower) subsidy when nominal expenditures are high. Similarly, τz controls how

responsive the subsidy is to realizations of Zi,t relative to the average Z = 1. In particular, τz > 0 implies that firms

that draw a low productivity Zi,t < 1 get a larger subsidy, while a policy with τz < 0 subsidizes firms with high

productivity realizations.

Log-linearizing (34) around the deterministic steady state yields

pi,t =
(1− µ) (1 + υ)

(1− υ)µ+ υ︸ ︷︷ ︸
γ

Ei,tpt +

(
τqµ+ 1

(1− υ)µ+ υ

)
︸ ︷︷ ︸

δ

Ei,tqt +

(
− τzµ+ 1

(1− υ)µ+ υ

)
︸ ︷︷ ︸

α

Ei,tzi,t,

where pi,t = lnPi,t − lnP and pt = lnPt − lnP . Notice that this looks identical to the best response function

considered in the paper with γ = (1−µ)(1+υ)
(1−υ)µ+υ

, δ =
τqµ+1

(1−υ)µ+υ
and α = − τzµ+1

(1−υ)µ+υ
. Further notice that by choosing the

policy parameters τq and τz, the policymaker can affect the values of δ and α respectively. In particular,

dα

dτz
= − µ

µ+ υ(1− µ)
< 0.

Thus, a higher τz makes the effective response to changes in idiosyncratic productivity smaller. As discussed in the

paper, α needs to be large in order for a sentiment equilibrium to exist. Thus, by appropriately adjusting τz, the planner

can choose to eliminate the sentiment equilibrium. Similarly, by affecting τq, the planner can make the effective δ small

enough so that the sentiment equilibrium does not exist.

42



E Smoothing out forecast errors

The signal is xt = (L− λ)φ(L)et. The fundamental representation of this stochastic process is

xt = φ(L)(1− λL)
L− λ
1− λLet ≡ φ(L)(1− λL)wt.

The forecast about Lkφ(L)et is

Et[Lkφ(L)et] = Et
[
Lkφ(L)φ(L−1)(L−1 − λ)

1

φ(L−1)(1− λL−1)

]
+

1

φ(L)(1− λL)
(L− λ)φ(L)et

= Et
[
Lkφ(L)

1− λL
L− λ

]
+

L− λ
(1− λL)

et

= Et
[
Lkφ(L)

1− λL
L− λ − λ

kφ(λ)
1− λ2

L− λ

]
L− λ

(1− λL)
et

= Lkφ(L)et − λkφ(λ)
1− λ2

1− λLet.

It follows that the forecast error is then given by λkφ(λ) 1−λ2

1−λLet.
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