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Abstract 
Over the last few decades, real interest rates have trended downward in many countries. The 
most common explanation is that this reflects depressed demand due to demographic, 
technological and other real factors such as income inequality. In this paper we explore the 
claim that these trends may have been amplified by certain features of monetary policy. We 
show that when long-run asset demands by households are C-shaped in relation to real interest 
rates, a feature we motivate through bequest motives, monetary policy has the potential to 
affect steady-state properties even if money is neutral in the long run. In particular, we show 
that if monetary policy reacts aggressively to inflation, this supports a steady state where 
inflation is close to the central bank’s target. However, the same aggressive policy 
simultaneously favours the emergence of, and the convergence to, a second stable and 
determinate steady state where both the real interest rate and inflation are lower and monetary 
policy is constrained by the effective lower bound. We discuss how fiscal policy can be used to 
escape this low-real-rate, low-inflation trap with the potential for a discontinuous response of 
long-run inflation. 

Topics: Monetary policy; Fiscal policy; Economic models; Inflation and prices; Interest rates; Debt 
management 
JEL codes: E2, E43, E44, E5, E52, E62, E63, H3, H6, H63 

Résumé 
Au cours des dernières décennies, les taux d’intérêt réels se sont inscrits en baisse dans de 
nombreux pays. L’explication la plus courante est que ces tendances reflètent la faiblesse de la 
demande, qui s’explique par des facteurs démographiques et technologiques et d’autres 
facteurs réels, tels que les inégalités de revenu. Dans la présente étude, nous examinons 
l’hypothèse selon laquelle ces tendances ont pu être amplifiées par certaines caractéristiques 
de la politique monétaire. Nous montrons que, quand la demande à long terme d’actifs par les 
ménages présente une relation en forme de C par rapport aux taux d’intérêt réels, ce que nous 
expliquons par la volonté des ménages de constituer un héritage, la politique monétaire est 
susceptible d’influer sur les propriétés de l’état stationnaire même si la monnaie est neutre à 
long terme. Plus précisément, notre étude révèle que, si la politique monétaire réagit 
vigoureusement à l’inflation, cela soutient un état stationnaire où l’inflation avoisine la cible de 
la banque centrale. Toutefois, la même politique vigoureuse favorise simultanément 
l’apparition, et la coexistence, d’un deuxième état stationnaire stable et déterminé où le taux 
d’intérêt réel et l’inflation sont tous deux moins élevés et où la politique monétaire est limitée 
par la valeur plancher. Nous expliquons également comment la politique budgétaire peut être 
utilisée pour s’échapper de cette trappe de bas taux d’intérêt réel et de basse inflation qui 
pourrait provoquer une réaction discontinue de l’inflation à long terme. 

Sujets : Politique monétaire; Politique budgétaire; Modèles économiques; Inflation et prix; Taux 
d’intérêt; Gestion de la dette 

Codes JEL : E2, E43, E44, E5, E52, E62, E63, H3, H6, H63 



1 Introduction

In many advanced economies, real interest rates have trended down over the last few

decades and debt levels have increased. At the same time, economic activity has often

run below full employment, as reflected by below-target inflation (see Figure 1). The

most common explanation for these trends is that advanced economies have experienced a

secular fall in demand and that policy decisions to decrease interest rates and to increase

government debt have been important mitigating factors that have helped offset this fall in

demand. The forces cited for inducing such a fall in demand include reduced productivity

growth, the aging of the population, and increased inequality.1 While all these factors may

be relevant, this one-way narrative from exogenous reductions in demand to policy response

has nonetheless been put into question by many. In particular, several market commentators

argue that monetary policy over the period possibly contributed to the long-term downward

trend in real interest rates by decreasing interest rates aggressively in every downturn and

being hesitant to increase them in upturns. This has also been highlighted by policymakers

such as Borio, Disyatat, Juselius, and Rungcharoenkitkul (2017), who provide evidence that

over a long history “persistent shifts in real interest rates coincide with changes in monetary

regimes. ... All this points to an underrated role of monetary policy in determining real

interest over long horizons.”2

The goal of this paper is to help advance the discussion around the potential factors that

have weighed down real interest rates and depressed demand over the last few decades. In

particular, we aim to highlight features that could (or could not) cause aggressive monetary

policy to contribute toward persistently low real interest rates and favour the emergence of

a low-real-rate, low-inflation trap. We will also discuss how expansionary fiscal policy may

1A vast literature examines the sources of the decreasing trend in real interest rates. Borio, Disyatat,
Juselius, and Rungcharoenkitkul (2017) provide an excellent survey of the literature on these issues. Several
hypotheses about these sources have been proposed: demographics (Summers (2014), Eggertsson and
Mehrotra (2014), and Eichengreen (2015)); a productivity slowdown (Gordon (2017)); a global saving glut
and/or lack of safe assets (Bernanke (2005), Caballero, Farhi, and Gourinchas (2008), Gourinchas and
Rey (2016), Gourinchas, Rey, and Sauzet (2020), and Acharya and Dogra (2021)); a decline in desired
investment (Rachel and Smith (2017)); a rise in inequality (Mian, Straub, and Sufi (2020b), Auclert and
Rognlie (2020), Fagereng, Blomhoff Holm, Moll, and Natvik (2019), and Rachel and Smith (2017)).

2Gourinchas and Rey (2016)’s and Gourinchas, Rey, and Sauzet (2020)’s focus on financial cycles,
especially the leveraging cycle that accompanied the boom and bust in the 1930s and 2000s, for explaining
the short-term real interest rate movements is consistent with the role of monetary policy. Their explanation
centres on the relative demand for safe assets in the aftermath of a deleveraging shock. However, the
association between the consumption-to-wealth ratio and subsequent short-term real risk-free interest rates
could also be seen as reflecting the central bank’s reaction function in boom and bust periods. That is,
the abnormally low consumption-to-wealth ratio following financial busts tends to coincide with periods of
aggressive monetary policy easing to support the economy, which in turn gives rise to the association with
low short-term risk-free rates in the subsequent period.
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Figure 1: Long-term interest rates, government debt, and inflation for G7 countries from
1990 to 2019

help the economy exit the trap. Hopefully, clarifying such features will help direct future

empirical work aimed at better understanding the causes of such a decline.

In the determination of real interest rates in the long run, the properties of asset demands

are key. In a standard infinitely lived representative agent model, the long-run asset demand

by households is stark. If the real interest rate is below the households’ subjective discount

rate (adjusted for growth), then households will not want to hold any assets in the long

run. If it is slightly above the subjective discount rate, then households want to hold an

infinite amount. Such a set-up exemplifies an asset demand function that is increasing

in interest rates, albeit in an extreme form. While there are several modifications that

can make such a long-run asset demand function less extreme, most tractable approaches

maintain the property that the long-run asset demand, especially relative to consumption, is

monotonically increasing in interest rates. However, there are many reasons to question our

reliance on models where asset demand is monotonically increasing in real interest rates.

2



As is well known, some income effects associated with interest rates that could reverse this

property. For example, when interest rates fall, households may want to hold more assets —

not fewer — if at least part of their asset holdings are for precautionary motives, retirement

motives or bequest motives. If asset demands are non-monotonic in interest rates, this

opens the door to multiple equilibria and the possibility that policy — monetary or fiscal

— could affect where the economy moves toward in the long run. The simplest example

of such non-monotonicity is when the demand for assets has a C-shaped relationship with

respect to real interest rates.

In this paper we will present an environment where asset demand functions are non-

monotonic in real interest rates. We then use this environment to illustrate the potential

macroeconomic implications of such a feature. In particular, we want to show how monetary

policy can affect long-run outcomes in an environment where asset demands are non-

monotonic even if money is essentially neutral in the long run.3 The precise environment

we build upon, which relies on bequest motives, is chosen for tractability so that our

main results can be shown analytically and through the use of phase diagrams. There are

certainly other environments that could generate C-shaped asset demand functions — but

they are generally less tractable. Since we are not conducting a quantitative analysis and

we aim instead to highlight a set of properties, we favour the choice of this highly tractable

environment.

An important element of our analysis will be to show how a C-shaped asset demand

can interact with a Taylor rule specification of monetary policy when the latter is subject

to an effective lower bound (ELB) constraint. It is the interaction between these two

forces that drives several of our results. From Benhabib, Schmitt-Grohé, and Uribe (2001),

Benhabib, Schmitt-Grohé, and Uribe (2002), and related literature, we know that an ELB

constraint can give rise to multiple equilibria.4 However, most of this literature is not aimed

at explaining changes in real interest rates, as the long-run real interest rate in the ELB

regime is generally the same as the one in the non-ELB regime. Moreover, given that

the equilibrium in the ELB regime in this literature is generally indeterminate, arguments

related to learning put into question its relevance. In contrast, in our set-up, the long-run

equilibrium that arises when monetary policy is constrained by the ELB will be shown to be

3A large literature supports the notion that money is neutral in the long run: see King and Watson
(1997) for a survey. However, an emerging literature questioning such a view. For example, Jordà, Singh,
and Taylor (2020) provide compelling evidence of the non-neutrality of money over long periods; that is,
they show that monetary policy has real effects that last more than a decade.

4Expectations-driven liquidity traps have also been applied to fiscal policy, optimal monetary policy and
open economy issues. See for example, Mertens and Ravn (2014), Bilbiie (2018), Nakata and Schmidt
(2021), Aruoba, Cuba-Borda, and Schorfheide (2018), and Kollmann (2018).
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both stable and determinate.5 We will also show that the real interest rate that emerges

when this constraint is binding is lower than when it is not binding. Therefore, a shift from a

non-ELB-constrained equilibrium toward an ELB-constrained equilibrium is associated with

a fall in real interest rates.6

Our focus in this paper will be mainly on the role of consumers, and especially on

consumers’ saving behaviour and desired wealth accumulation, in supporting or depressing

demand in the long run in response to interest rate changes. Because of this focus on

consumers, much of the analysis will abstract from capital accumulation. This is essentially

equivalent to assuming that capital accumulation is not sensitive to interest rates. In

general, as we will show, if capital accumulation were to increase substantially in response

to a cut in interest rates, then investment spending could potentially offset some of the

depressing effects of demand coming from household behaviour that we highlight in this

paper.7

One of the challenges we face by wanting to focus on long-run implications of asset

market equilibrium to understand the long-run outcomes is that, as mentioned above, asset

demands are almost discontinuous in certain common set-ups. One way to capture richer

saving behaviour is to follow Kumhof, Rancière, and Winant (2015), Mian, Straub, and Sufi

(2020a), Michaillat and Saez (2018), De Nardi (2004), and Straub (2019), among others,

and allow assets to directly affect utility. In this paper we complement this literature by

re-examining when and to what extent bequest motives can rationalize introducing assets

in the utility function, and when this can result in relative asset demands that are not

monotonic in interest rates.8

5The set-up explored in Michaillat and Saez (2018) shares this feature. However, in contrast to their
set-up, our approach generates a co-existence of a stable and determinate steady state at the ELB and one
not at the ELB. This property is central to our results.

6Fernández-Villaverde, Marbet, Nuño, and Rachedi (2021) also consider how monetary policy can affect
the long-run level of real interest rates. Specifically, they show, in a quantitative HANK model with an
ELB constraint, that the interaction between the inflation target and wealth inequality is an important
determinant for the level of real interest rates. However, their approach does not explore how monetary
policy can affect the set of equilibria and their basin of attraction as we do here.

7Our choice of abstracting from capital accumulation can be seen as tilting our results — by design —
to finding conditions where expansionary monetary policy (and/or counter-cyclical monetary policy) could
be contractionary in the long run.

8When discussing how bequest motives may justify including assets in the utility function, it becomes
clear that both the stock of assets and the flow of revenue from assets should enter utility. In the literature
cited above, it is assumed that households get utility only from the stock of assets they bequeath. It does
not matter whether the assets bequeathed have a high or low return. For example, the household gets the
same utility from bequeathing a bond with a 1% real rate of interest or a 10% real rate of interest. In
contrast, from a bequest perspective, these two situations may differ. In particular, we will show that if
households have concave utility over the welfare of their offspring, this can rationalize having flow of return
from assets entering utility, and it is this feature that creates C-shaped asset demands.
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The main results of the paper can be divided into two categories. On the one hand, there

is the issue of under what conditions asset demands could be non-monotonic in real interest

rates, and, on the other hand, there are the implications of having long-run asset demands

with such properties. We believe that the more interesting insights of the paper relate to

the implications of C-shaped relative asset demands, while the results regarding how we

generate this non-monotonic feature are secondary. In an environment where we show how

bequest motives can generate a non-monotonic long-run asset demand, we find that when

monetary policy cuts interest rates aggressively in response to slack in the economy, even a

temporary fall in demand can generate dynamics by which interest rates converge to their

ELB with the economy staying depressed after the initial shock is reversed. This type of

hysteresis arises because the environment exhibits two stable and determinate equilibria.

When inflation dynamics are governed by a Phillips curve, we show the existence of one

high-real-interest-rate equilibrium where inflation is close to the central bank’s target, and

one low-real-interest-rate equilibrium where the nominal interest rate is at the ELB and

inflation is well below target. The equilibrium at the lower bound is stable and determinate

even if the Taylor principle is non-operative. In this environment, a strong anti-inflation

stance by monetary policy is helpful to keep inflation close to target in the high-real-interest-

rate regime; however, we will show that the same policy stance will make it more likely

that, following bad temporary shocks, the economy converges to a stable low-real-rate,

low-inflation trap where nominal interest rates are constrained by the ELB. We will also

show how increases in public debt, even when they are eventually accompanied by increases

in taxes to balance the budget, can be helpful to pull the economy out of a low-real-rate,

low-inflation trap.9 In our set-up, more debt does not depress output demand even if it

can contribute to lower real interest rates. Increased debt does, nonetheless, have the

potential to lead to a discontinuous response in long-run inflation when it manages to help

the economy avoid a low-real-rate equilibrium.

Since we follow Mian, Straub, and Sufi (2020a) (MSS) in using bequests to motivate

why households may have a strong demand for assets when interest rates are low, it is

relevant to point out why we arrive at very different results in terms of the effects of both

fiscal and monetary policy. There are two important points of departure. First, our analysis

emphasizes how higher interest rates may incite households to hold fewer assets to satisfy

their bequest motives since the flow of return from assets — not just the stock — is likely

9In a model with risky capital, Acharya and Dogra (2021) also show that an increase in government debt
helps exit the zero lower bound by increasing the natural rate of interest and helps restore full employment.
Similarly, Eggertsson and Mehrotra (2014), in an incomplete market environment with riskless capital, find
that public debt issuance can restore full employment when monetary policy is constrained.
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relevant for determining their desired bequests. It is this feature, along with the absence

of human capital in the bequest motives and the marginal value of wealth decreasing as

interest rates rise, that gives rise to a C-shaped relative demand for assets in our set-up and

drives most of our results regarding monetary policy.10 This feature finds support in the

work by Greenwald, Leombroni, Lustig, and Van Nieuwerburgh (2021), which shows that

“faced with lower returns on financial wealth, households with high levels of financial wealth

must increase savings to afford the consumption that they planned before the decline in

rates.”11 The second point relates to properties of steady state asset holdings. In our set-

up, steady state asset demands are increasing in labour income; that is, in our formulation,

when a household faces a given interest rate, its steady state holdings of financial wealth

are increasing in the household’s labour income (see our Proposition 1 and Lemma 1).

In contrast, in the parameterization favoured by MSS, steady state holdings of financial

assets are decreasing in a household’s human capital — which is the discounted value of

labour income — and therefore the steady state holdings of financial assets are decreasing

in labour income when interest rates are fixed.12 In our set-up, where steady state financial

asset demands are increasing in labour income, debt does not have a depressing effect on

demand at fixed interest rates even if it can decrease long-run real rates when interest rates

are endogenously determined.13 In fact, we show that increased debt can cause real interest

rates to decrease when monetary policy is constrained by the ELB but can also lead to a

10An important dimension in which our set-up differs from that presented in MSS relates to properties
of the steady state Euler conditions that express the demand for assets, holding consumption fixed when
ċt = 0. In the MSS set-up, the steady state demand for total assets, holding consumption fixed, is always
increasing in interest rates, while in our set-up the demand for financial assets is C-shaped due to bequest
motives responding to interest rates.

11Using proprietary data from the Office of the Superintendent of Financial Institutions — the regulatory
agency of financial institutions in Canada — Betermier, Byrne, Fontaine, Ford, Ho, and Mitchell (2021)
show that as interest rates decrease, big Canadian pension funds tend to increase their demand for bonds.

12The property that steady state financial asset holdings are decreasing in labour income in MSS may
give the impression that savers in MSS would decrease their savings when their income rises. That is not
the case. Savers in MSS increase savings when income rises and, in partial equilibrium, do not converge
to a steady state holding. So the properties of the steady state asset holdings in MSS do not map easily
to partial equilibrium behaviour. The properties of the steady state asset holdings only become relevant
for understanding general equilibrium outcomes in MSS.

13This can be seen most simply by focusing on the steady state debt-market equilibrium condition of the
form Ass(y , r) = D(r , Ω), where Ass(y , r) is the steady state net demand function for debt from (saver)
households, y is labour income of (saver) households, r is the real interest rate, D(r) is an amount of debt
offered on the market (either public debt or debt accumulated by non-saver households), and Ω is a debt
shifter with ∂D

∂Ω > 0. We can use this condition to look at the effect of Ω on y at fixed prices and interest
rates, that is, examine whether an exogenous increase in debt has a positive or negative effect on steady

state demand at fixed prices and interest rates. In our set-up, this effect is positive because ∂ALR

∂y > 0. To
get the result that increased debt can depress demand at fixed prices and interest rates, it has to be that
∂ALR

∂y < 0.
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large increase in real interest rates and inflation when a sufficiently large increase in debt

manages to push the economy out of a low-real-rate, low-inflation ELB trap.

The main results of the paper are in Sections 3 and 4. In these sections, we show how

aggressive monetary policy could contribute to trend movements in real interest rates by

facilitating a movement from a high-real-rate stable steady state to a low-real-rate, low-

inflation stable steady state with depressed demand. As noted previously, the main feature

driving the results is a relative asset demand function that is C-shaped in real interest rates.

Section 2 sets the stage for these results by illustrating how such non-monotonic asset

demands can arise. In particular, in Section 2.1, we discuss how bequest motives can justify

including assets in households’ utility payoff and what form this relationship should take.

In Section 2.2, we examine households’ consumption-savings decisions when households’

bequest desires are modelled as suggested in Section 2.1. In Sections 3 and 4, we analyze

the general equilibrium implications of having asset demands that are non-monotonic in real

interest rates. To help clarify the forces at play, we begin by examining how this economy

behaves when prices are fixed and economic activity is fully determined by demand. We

then examine implications of allowing prices to adjust as governed by a Phillips curve. We

compare equilibrium properties resulting from changing the extent to which monetary policy

reacts aggressively to inflation. Throughout, we incorporate the possibility of a lower-bound

constraint on interest rates. In Section 5, we discuss the implications of our model with

respect to the natural rate of interest and offer some general takeaways regarding the main

forces driving our results. Finally, Section 6 offers concluding comments.

2 Setting the Stage: Concave Bequest Motives and Assets in the Utility Func-

tion

In the standard representative agent set-up, saving behaviour is quite extreme. For

example, if the interest rate is only slightly less than a household’s subjective discount

factor, it is optimal for the household to choose negative consumption growth forever with

a complete depletion of their assets. As mentioned in the introduction, one way to make

such features less extreme is to allow assets to directly enter the agent’s utility function.

Such a modification to preferences is often motivated by invoking bequest motives, but in

most cases this link is not made very explicit. Accordingly, in the first part of this section,

we will discuss how and when bequest motives may justify the reduced-form approach of

introducing assets directly into utility. In particular, we will want to highlight that when

bequest motives are used to justify including assets in the utility function, it implies that

interest rates should also be included. This observation will be important in generating asset
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demands that are non-monotonic in interest rates, a feature that is key to the remaining

analysis.

2.1 Asset in the utility function: a reduced form for bequest motives?

When thinking about bequests, a natural starting point is to assume that preferences

are of the form: ∫ ∞
0

e−(δ+ρ)t [log(ct) + δW (Ut)] dt,

where ct is consumption, ρ is the discount rate, δ is the death rate, Ut is the discounted

utility of offspring, and W (·) is a function that expresses how the utility of offspring enters

parents’ preferences. W (·) is an increasing function, likely concave. The utility level

Ut satisfies the functional relationship Ut =
∫∞

0
e−(δ+ρ)t [log(ct) + δW (Ut)]dt. When

W (Ut) = Ut , that is, when parents linearly internalize the utility of offspring, this problem

is very tractable. For example, when the budget constraint is ȧt = atr − ct , then W (Ut) =

Ut = log(at )
ρ+δ

+ r−ρ−δ
(ρ+δ)2 + log(ρ+δ)

ρ+δ
, where at is the households’ holding of an asset which pays

the constant real interest rate r .

So in the case where W (U) = U , one could rewrite the preferences of households as

follows: ∫ ∞
0

e−(δ+ρ)t

[
log(ct) + δ

(
log(at)

ρ + δ
+

r − ρ− δ
(ρ + δ)2

+
log(ρ + δ)

ρ + δ

)]
dt.

That is, the agent’s preferences can be interpreted as if assets — and interest rates

— enter their utility function. So this can be seen as offering a justification for including

assets in the utility functions. Interestingly, when W (·) is linear, we see certain restrictions

appear. Assets and interest rates enter in a separable fashion. Moreover, we observe

that the curvature of the utility associated with assets (at) inherits a similar curvature to

that associated with consumption. In fact, it is well known that when W (·) is linear, the

household’s problem could alternatively be written as if the household only cares about

consumption but with an effective discount factor equal to ρ instead of ρ + δ.

The more interesting case is when W (·) is strictly concave instead of linear. A concave

W (·) function corresponds to a situation where the household cares about the utility of

its offspring, but cares more about guaranteeing that its offspring does not have very low

utility. The difficulty with this case is that it does not generally deliver a simple closed-form

solution for Ut . Nonetheless, the above formulation does give us reason to conjecture that

the household will still act as if both assets and interests rates enter their utility function.

8



For example, suppose that the first generation had a concave W (·) function but believed

that all future generations would have a linear function. In this case, the household’s

problem for the first generation would take the form:∫ ∞
0

e−(δ+ρ)t

[
log(ct) + δW

(
log(at)

ρ + δ
+

r − ρ− δ
(ρ + δ)2

+
log(ρ + δ)

ρ + δ

)]
dt.

In this case, the first generation’s problem would maintain the property that assets

and interest rates enter the utility function, but they would no longer enter in a separable

fashion. In fact, we would have higher interest rates decreasing the marginal value of assets.

In addition, the curvature of the utility with respect to assets would no longer be governed

simply by the curvature of the utility of consumption. It would instead also depend on the

curvature of the W (·) function. To get a sense of what this may look like, it is helpful

to consider a simple parameterization of W (U). Since U may be a negative number, we

need W (·) to be well defined, increasing, and concave over the range (−∞,∞). Assuming

that W (·) is of the CARA form, W (U) = − expγU satisfies these conditions. Then the

household’s preferences in this special case can be written as:

∫ ∞
0

e−(δ+ρ)t
[
log(ct) + δϕ(−a−γ1

t exp−γr )
]

dt γ1 > 0, γ > 0,ϕ > 0. (1)

While the above argument does not give a full road map regarding how best to capture

concave bequest motives, it gives a motivation for adopting a reduced-form approach that

directly allows assets and interest rates to enter the household’s payoff function.14 Moreover,

it gives us insight into the properties that the reduced form should take. Accordingly, in

this paper, we will rely on this reasoning to capture bequest motives by directly assuming

that agents act as if assets and interest rates enter their utility function in the form:∫ ∞
0

e−(δ+ρ)t [log(ct) + δV (at , rt)] dt.

We assume that V (a, r) satisfies the following properties,15 which are all consistent with

14In a more general formulation, one may also want to allow labour income to enter the function V (·).
This could involve the labour income of either the parent or the offspring, or both. We do not pursue this
possibility here, but most of the results of the paper hold if we treat bequest as a superior good by having
higher labour income of the parent increase the marginal value of assets bequeathed. This is relevant
because it can help explain why the rich hold a disproportionate amount of assets.

15Note that for the last condition, if −rVar

Va
is a constant, the condition is satisfied since −Var

Va
would then

be strongly decreasing in r . So this condition is much less demanding than having −rVar

Va
be a constant.
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equation 1.

Assumption 1.

(i) Va ≡
∂V (at , r)

∂at
> 0, (ii) Vaa ≡

∂2V (at , r)

∂2at
< 0,

(iii) lim
a→0

Va = −∞, (iv) Vr ≡
∂V (at , r)

∂r
≥ 0,

(v) Var ≡
∂2V (at , r)

∂at∂r
≤ 0 and (vi)

−Var

Va
is non-increasing in r .

It needs to be emphasized that in our motivation of the function V (at , r), we considered

a set-up where the interest rate paid on the asset at was constant. If we allowed interest

rates to vary over time, bequest motives would likely give rise to a function V (·) that

depends on the whole future path of interest rates. In what follows, we will allow interest

rates to vary over time but we will maintain the assumption that agents’ bequest motives

can be captured by a function V (at , rt) that depends on asset holdings at and only on the

contemporaneous interest rate rt . This simplification, which does not affect the properties

of the steady states, will allow us to illustrate many results using two-dimensional phase

diagrams. However, this comes at the cost of a possibly less complete description of

transitional dynamics. We believe this tradeoff is desirable.

In the introduction, we cited several papers that adopt a reduced-form approach to

bequest motives. However, these papers all assume away the potential effect of interest

rates in affecting how assets enter the household’s bequest payoff. Accordingly, in this paper

we will aim to make clear how properties of asset demands are modified when allowing for

Var < 0 and how this effects general equilibrium properties. The case with Var = 0 is

discussed in Appendix A.

The condition Var < 0 reflects that the marginal value of wealth decreases with interest

rates since wealth and the return on wealth are substitutes when parents have concave

preferences over their offspring’s utility. To put it differently, the marginal value of leaving

an asset a to an offspring is higher when that asset carries a lower interest rate r because

the offspring will derive less consumption form an asset that has a low return. This implies

that when interest rates are high (low), households have incentives to decrease (increase)

their holdings of assets. We will refer to this bequest property as bequest motives with

income flow considerations.

When possible, we will derive implications under Assumption 1. For some of the

more detailed results, we will work with the specific functional form motivated by the

10



above discussion where V (a, r) = ϕ (−a−γ1 exp−γr ), or alternatively written as V (a, r) =

ϕ
(

a1−σ

1−σ exp−γr
)

when σ > 1.16

2.2 Long-run asset demand when bequest motives include income flow consid-

erations

This subsection presents the baseline decision problem for our representative household

with concave bequest motives, which we will later incorporate into general equilibrium

settings. The set-up is deterministic, and households derive utility from consumption and

wealth. As in the previous subsection, a household dies at a rate δ and discounts future

utility at rate ρ. Households maximize the inter-temporal utility function:

∫ ∞
0

e−(ρ+δ)t [log(ct) + δV (at , rt)] dt, (2)

where ct is households’ per capita consumption, and at is households’ per capita financial

wealth. In addition to consumption, households derive utility from a warm-glow bequest

motive that arrives at rate δ and is captured by the function V (at , rt), where Assumption 1

holds. Furthermore, we will denote the negative of the elasticity of Va(·) with respect to

wealth (a) as σ(a, r) ≡ −aVaa

Va
.

The budget constraint of the household is given by:

ȧt = y d
t + rtat − ct , (3)

where y d
t is the household’s disposable labour income and rt is the interest rate at date t.

Optimization problem. Households choose consumption ct and financial assets at to

maximize the inter-temporal utility function (2) subject to the budget constraint (3).

The household’s Euler equation is therefore given by (4), with an associated transver-

sality condition:

16Note that this functional form is less restrictive, for example, than assuming that V (a, r) = ϕ (ar)1−σ

1−σ .

When deriving implications using the functional form V (a, r) = ϕ (−a−γ1 exp−γr ), we would obtain similar

results if we assumed that V (a, r) = ϕ (ar)1−σ

1−σ , but this would not allow a simple treatment of negative real
interest rates.
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ċt

ct
= rt − ρ− δ + δctVa (at , rt) . (4)

From the Euler equation, we can observe that, in addition to the standard substitution

effects, there are income effects of interest rates when bequest motives include income flow

considerations (Var < 0). The first component of the Euler equation, rt − ρ− δ, describes

these standard substitution effects whereby lower interest rates favour more consumption

today relative to future consumption. The second component, δctVa(at , rt), represents

the equivalent to an income effect working through bequest motives featuring income flow

considerations. Specifically, when interest rates are low, households may want to postpone

consumption today to guarantee a minimum level of utility to offspring. If bequest motives

do not include income flow considerations (Var = 0) then, these income effects cease to

exist, and as a result, only the standard substitution effects would be present. As we

will show later, when bequest motives include income flow considerations, accounting for

both the substitution and income channels of interest rates can lead to a non-monotonic

relationship between interest rates and asset demands.

Assuming that disposable labour income and interest rates are constant over time, we

can now examine both the conditions under which asset holdings for households converge

to an interior solution and the properties of the resulting long-run asset holdings. We will

denote the steady state of households’ asset holdings by Ass(y d , r). From equations (3)

and (4), we can see that steady state asset holdings and consumption level are implicitly

given by the following two equations:

c = y d + ra, (5)

r = ρ + δ − δcVa (a, r) . (6)

Lemma 1. When r < ρ + δ, households’ asset holdings will converge to the steady state

defined by equations (5) and (6) if and only if ar
c
≤ −aVaa(a,r)

Va(a,r)
≡ σ(a, r) when evaluated at

this steady state.

See Appendix A.1 for the proof.

Since we want to use the steady state defined by equations (5) and (6) to represent the

long-run asset holdings of households, we need preferences to satisfy Lemma 1. A sufficient

condition for ar
c
≤ −aVaa(a,r)

Va(a,r)
is that −aVaa(a,r)

Va(a,r)
> 1. Accordingly, we will generally assume

either that the conditions of Lemma 1 are satisfied or that −aVaa(a,r)
Va(a,r)

> 1.

12



A long-run demand for assets can be obtained by substituting the budget constraint

into equation (6). The following expression implicitly defines the long-run properties of the

resulting asset demand holding labour income constant, which we will denote by ALR(r , y):17

ρ + δ − r

δVa(a, r)
− ra = y d . (7)

Equation (7) restricts how the long-run asset position is influenced by interest rate r

and household labour income y d . An implication of the stability condition in Lemma 1 is

that the long-run asset holding function inferred from equation (7) is increasing in labour

income y d . If we were not imposing the stability condition, equation (7) would imply

that steady state asset demand would be decreasing in labour income.We summarize this

formally in Proposition 1 below. In addition, Proposition 1 indicates that if Var = 0, then

households’ long-run asset demands will be increasing monotonically in real interest rates,

while if Var < 0, they will generally be non-monotonic.

Proposition 1. If Lemma 1 is satisfied and r < ρ+ δ, then the long-run asset holdings of

households ALR(y d , r) are positive and increasing in income. Moreover, if Var = 0, they are

increasing in interest rates, while if Var < 0, they are generally non-monotonic in interest

rates.

See Appendix A.2 for the proof.

The link between the condition Var < 0 and the possibility of non-monotonicity of

asset demand with respect to interest rates, and especially the possibility of a C-shaped

relationship, can be seen most clearly by focusing on equation (6). Equation (6) can be

thought of as implicitly defining a demand for assets holding consumption constant. From

this equation, it is clear that asset holdings will be monotonically increasing in interest

rates holding consumption constant if bequest motives do not incorporate income flow

considerations (Var = 0). In contrast, if bequest motives include income flow considerations

(Var < 0), then the long-run demand for assets relative to consumption can be negatively

related to interest rates. As shown in Corollary 1, under Assumption 1, this relative demand

function is in fact C-shaped with respect to interest rates.

17Under the condition in Lemma 1, this asset demand is both the steady state of the system and the
long run of the system.
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Corollary 1. When V (a, r) satisfies Assumption 1 with Var < 0, the long-run asset demand

relative to consumption, implicitly defined by (6), is C-shaped in the space (a, r).

Since we want to highlight the implications of a non-monotonic relationship between as-

set demands and interest rates, we will continue with the assumption that bequest motives

encompass income flow considerations (Var < 0), which we motivated by allowing house-

holds to have a concave payoff from offspring’s utility. Recall that bequest motives entailing

income flow considerations can lead to a non-monotonic relationship between interest rates

and asset demands since, in addition to the standard substitution effects whereby higher

interest rates favour higher savings, now there is the equivalent to an income effect working

through bequest motives. When interest rates are low, households may want to save more

to guarantee a minimum level of utility to offspring. This income effect channel of interest

rates on savings can also appear in models emphasizing retirement savings or precautionary

savings, but this generally involves a more complicated set-up.

3 General Equilibrium Properties when Bequest Motives include Income Flow

Considerations: the Fixed Price Case

We now embed the household’s problem of Section 2.2 in a general equilibrium setting

where we include both monetary and fiscal elements. In our baseline, we populate this

economy with only a representative consumer whose choice problem is the one presented

in the previous section, with the assumption that the bequest motive captured by V (·)
incorporates income flow considerations and satisfies Assumption 1. When useful, we will

assume that this restricted bequest motive takes the form V (a, r) = ϕ
[

a1−σ
t exp−γr

1−σ

]
, where a

higher value of ϕ represents a greater weight of bequest motives in utility. If ϕ is set to zero,

this corresponds to a standard representative household set-up without a bequest motive.

So when we focus on economies with low values of ϕ, which will be the preponderant case,

this will correspond to economies that are not too far from more standard specifications.

The analysis in this section and the next will have fixed nominal wages (i.e., wt = w),

and accordingly employment lt will be determined by demand. Output is produced using

labour by a set of competitive firms. The production function is given by yt = Alt , where

for simplicity productivity A > 0 is also assumed to be constant. Goods prices pt are

perfectly flexible and therefore competition between firms will ensure that the price of the

output good is equal wt

A
, with real wages equal to A. The households budget constraint is

given by:

14



ct + ȧ = Alt + rtat − Tt ,

where rt is the real interest rate and Tt are lump sum taxes.

The government in this economy spends Gt , issues public debt Bt , and imposes lump

sum income taxes Tt on households. The government must always satisfy the flow budget

constraint:

Tt = Gt + rtBt − Ḃt . (8)

Household net labour market income is given by y d
t = Alt − Tt = yt − Tt , where yt is

equal to aggregate labour income.

3.1 Effects of interest rates and debt accumulation on output in the long run

In this subsection we want to look at the effects of expansionary policy in this represen-

tative agent economy. Our aim is to explore how, under fixed nominal wages, (1) changes

in interest rates affect output in the long run, and (2) an expansionary fiscal policy affects

output in the long run when we include the need to balance the budget. To explore these

two issues, we assume that monetary and fiscal policy are governed by simple targeting

rules. Monetary policy targets an interest rate r̄ < ρ + δ according to:

ṙt = λ1(r̄ − rt) λ1 > 0, (9)

while fiscal policy targets a debt level B̄ > 0 according to:

Ḃ = λ2(B̄ − Bt) λ2 > 0. (10)

We now examine how this economy reacts to changes in either r̄ or B̄ , starting from a

steady state where r̄ and B̄ are equal to r0 and B0. For each of these interventions, either

Tt or Gt will need to adjust over time to satisfy the government budget constraint. We

will assume in this section that taxes Tt do the adjustment, but results are very similar

(see appendix) if government spending Gt does the adjustment. Furthermore, in all the

remaining sections of the paper, we will assume that rt < ρ+δ as to focus on environments
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where the long-run asset demand by households is finite. Recall that in this set-up, economic

activity yt = ct + Gt is entirely demand determined, as wages are held fixed.

An equilibrium for this economy is defined as:

Definition 1. Sequences {ct , at , Bt , Gt , Tt , yt , rt} such that households choose {ct , at} to

maximize the intertemporal utility (2) subject to the budget constraint (3); {Bt , Gt , Tt}
are determined by equation (10) and the government budget constraint (8); interest rates

are governed by (9); and asset markets clear at all times, that is, Bt = at . (The goods

market clearing condition is satisfied by Walras’s law.)

Lemma 2 addresses the stability property of the competitive equilibrium.

Lemma 2. The economy has a unique competitive steady state and this steady state is

saddle path stable if Lemma 1 is satisfied.

See Appendix A.3 for the proof.

Propositions 2 and 3 indicate how the steady state value of y changes in response to

changes in either r̄ or B̄ . The contents of these propositions are implied by the steady state

condition for y , which is implicitly given by:

y − G =
ρ + δ − r̄

δVa(B̄ , r̄)
.

Proposition 2. When Lemma 1 is satisfied, there exists a cutoff real interest rate (smaller

than ρ+ δ), such that if r̄ is below this cutoff, a further decrease in r̄ reduces steady state

output. In contrast, if r̄ is above the cutoff (but still smaller than r̄ < ρ + δ), then a

decrease in r̄ increases steady state output.

See Appendix A.4 for the proof.

We denote this cutoff interest rate by r̄ cutoff . When real interest rates are above r̄ cutoff

(e.g., close to ρ+δ), Proposition 2 indicates that a decrease in interest rates is expansionary.

However, the proposition indicates that the long-run effect of interest rates on output is

non-monotonic. In particular, when interest rates are low (possibly negative), a decrease

in r̄ will depress demand in the long run. This change in sign reflects how the income flow

considerations associated with bequest motives (Var < 0) can affect the long-run asset

demand of households. When bequest motives feature income flow considerations, the
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effect of interest rates on the long-run asset demand of households becomes negative for

sufficiently low interest rates. Hence, households would like to save more and accumulate

assets in response to a fall in interest rates when interest rates are initially low. This reflects

an income effect of interest rates on households’ savings decisions, whereby to guarantee

sufficient utility value of bequest to offspring, households want to save more when interest

rates are low and are decreased.18

We now turn to examining the effect of fiscal policy in the form of increased public debt

accumulation induced by a temporary decrease in taxes followed by a gradual increase in

taxes to balance the budget.

Proposition 3. When Lemma 1 is satisfied, an increase in B̄ leads to an increase in the

steady state output, even though this is associated with an increase in T in the long run

when r̄ > 0.

Figure 2 illustrates the dynamics of consumption following an increase in B̄ . Here we

see that c increases both initially and in the long run. Since y = c + G , the effects on c

shown in the figure are identical to that on y . If G were doing the adjustment, we would

get a similar result even if it is not clear from the figure.

It may at first pass appear unusual that increased debt leads to increased output in the

long run, even though in the long run the increased debt is associated with higher taxes

in order to finance the new debt. The content of Proposition 3 can easily be seen by

considering the long-run asset market equilibrium condition:

ALR(y d , r0) = ALR(y − G − r0B̄ , r0) = B̄ .

From Proposition 1, we know that ∂ALR

∂yd > 0; then it follows directly that for the asset

market to clear in the long run with higher debt, y must be higher despite higher taxes

needed to balance the budget.19 Note that we would get the same qualitative result if we

18This is easier to see when we assume that V (at , rt) = ϕ a1−σ
t

1−σ exp−γrt with σ > 1 and γ > 0, in which

case ∂ALR

∂ r̄ = γB̄σ expγ r̄

δϕ (δ + ρ− r̄ − 1
γ )− a. If ϕ is not too large, then ∂ALR

∂ r̄ > 0 for r̄ close to ρ+ δ but will
be negative for somewhat lower rates.

19In the case of a change in r̄ , the long-run asset market equilibrium condition can be written as
AAL(y −G − r̄B0, r̄) = B0. From this equation it is difficult to see if a change in r̄ is either expansionary or
contractionary in the long run. Proposition 2 indicates that it depends on the initial level of r̄ . An easier case
to understand from the asset market clearing condition is when taxes are held fixed and government spending
adjusts to balance the budget. In this case, the asset market equilibrium condition is AAL(y −T , r̄) = B0,

which implies that ∂y
∂ r̄ > 0 if ∂ALR

∂y d > 0 and ∂ALR

∂r < 0.
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Figure 2: Phase diagram for an unanticipated permanent increase in government debt B̄
to B̄ ′ > B̄

assumed that taxes were fixed and government spending would do the adjustment. In this

case, the long-run asset market equilibrium condition would be given by:

ALR(y d , r0) = ALR(y − T , r0) = B̄ .

In this alternative case, government spending would be lower in the long-run equilibrium,

but we would still need y to increase to clear the asset market with higher debt. Hence,

in this environment (which does not depend on Var < 0), we have that an increase in

government debt is an expansionary force even in the long run when we include budget

balance considerations.

3.1.1 Allowing for interest elastic debt

In the above analysis we assumed that the debt supplied on the market does not respond

to interest rates; that is, debt supply is interest rate inelastic. Here we want to briefly discuss

potential implications of allowing for an elastic debt supply. The key relationship in our

analysis is the steady state Euler equation condition c = ρ+δ−r
δVa(B̄,r)

. When V (·) satisfies

Assumption 1, and debt is interest rate inelastic, Proposition 2 indicates that this condition

implies that c first increases in r for low values of r ; and it reaches a maximum and then
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becomes decreasing in r . It is this non-monotonicity property that drives many of our

results. However, if we were to assume that debt was interest rate elastic as given by

a function B(r), with B ′(r) < 0, then this non-monotonicity may not arise. The new

equilibrium condition would become c = ρ+δ−r
δVa(B(r),r)

, and Assumption 1 would no longer be

sufficient to imply a non-monotonic relationship between consumption and interest rates.

In effect, if the elasticity of debt with respect to interest rates was sufficiently negative, then

consumption could become monotonically decreasing in interest rates even when Var < 0.

The intuition for this is straightforward. The possibility of a positive equilibrium relationship

between consumption and interest rates is due to households wanting to hold more assets

when interest rates are low. However, if debt supply has a greater response than asset

demand to low interest rates, then even at low interest rates we would not have demand

for assets outpacing supply in response to a fall in interest rates.20 However, if the supply

of debt were elastic, but not too elastic, then the non-monotonicity would still hold.

In the remaining sections of the paper we will maintain the assumption that debt is

supplied inelastically. However, it is worth noting that all the results would continue to

hold if we allowed debt to be supplied elastically as long as the elasticity was not strong

enough to overturn the non-monotonicity between consumption and interest implied by the

condition c = ρ+δ−r
δVa(B(r),r)

.

We now turn to examining the behaviour of the economy when monetary policy reacts to

the economic environment instead of following a targeting rule as captured by equation (10).

In particular, in the next subsection, we maintain the fixed-price set-up and examine the

implications of a monetary policy that aims to close the output gap. In the subsequent

section, we introduce a Phillips curve and study the implications of monetary policy that

follows a Taylor rule with a coefficient on inflation that is greater than 1 (i.e., satisfies the

20One extension of the model which is similar to allowing for interest elastic debt is to introduce a Lucas
tree (see Appendix B). For example, suppose the Lucas tree produces a flow of fruit f . Then the effective
aggregate supply of assets would become B̄ + f

rt
, which is equivalent to a form of interest elastic aggregate

debt. While this can be easily introduced in our set-up, it implies that the effective asset supply goes to
infinity as the real rate of interest approaches zero. Therefore such a framework would not allow for the
possibility of negative real rates of interest. This feature can be overcome by introducing instead stochastic
Lucas trees that die at rate ω, with the flow of new trees needed to keep the total stock constant being
distributed in lump sum fashion to households. In this case, the equilibrium steady state Euler equation
would take the form c = ρ+δ−r

δVa(B̄+ f
r+ω ,r)

. The shape of this ċt = 0 curve would no longer have a simple

hump shape. Instead it would be S-shaped under Assumption 1 as long as f is not too large; that is, the
ċt = 0 curve would first exhibit a negative slope when r is close to −δ, then become positively sloped
and finally return to being negatively sloped as r approached ρ + δ. The main results of the paper can
be shown to be robust to allowing for such Lucas trees, albeit with the need for some extra qualifications
and the possibility of an extra steady state. If f was sufficiently large, then the ċt = 0 curve could become
monotonically decreasing, in which case the main results of the paper would no longer hold as they require
non-monotonicity.
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Taylor principle) when it is not constrained by an ELB constraint on the policy rate.

3.2 Counter-cyclical monetary policy and the emergence of secular stagnation

In the previous section we examined the effect of changes in r̄ under the assumption

that monetary policy followed the target rule given by equation (10). This allowed us to

ask how a change in the policy interest rate could affect the economy in the long run

when prices are fixed. In this section we want to explore a different question related to

monetary policy. Instead of looking at whether exogenous interest rate changes could

depress demand in the long run, we want to examine whether monetary policy may play a

role in amplifying the effects of exogenous shocks that may depress demand. In order to

keep the presentation tractable, in this section we will assume that V (at , rt) takes on the

functional form motivated in Section 2, that is, V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1.

The type of monetary policy we want to consider is one where monetary authorities aim

to keep y close to the full employment level, denoted by ȳ , by adjusting r according to:

ṙt = θ(yt − ȳ), θ > 0.

We also want to account for the possibility of a potential lower bound on r . We will

denote this lower bound by r ELB , so that if rt = r ELB and yt < ȳ , then ṙt is constrained to

be zero.

The dynamics for this system can be represented by the following pair of dynamic

equations:21

ċt

ct
= rt − ρ− δ + δϕctB̄−σ exp−γrt

ṙt = θ(ct + G − ȳ) if rt > r ELBor ct + G > ȳ , with ṙt = 0 otherwise, (11)

where movements in ct translate into one-to-one movements in yt (since G is fixed).22

Proposition 4. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1, monetary policy is given by

equation (11), and r ELB is not too constraining, there always exists a stable steady state

21Asset market clearing implies that at = B̄.
22In the background, taxes Tt are adjusting over time according to Tt = G + rtB̄.
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with the real interest rate at the ELB and y < ȳ . Moreover, if ϕ is large, this is the unique

stable steady state. If ϕ is sufficiently small, then there exists a second stable steady state

with r > r ELB and y = ȳ .

See Appendix A.6 for the proof.

The properties of this system depend on ϕ, that is, they depend on the importance

of bequests in utility. As summarized in Proposition 4, if r ELB is not too constraining,23

then this system can take on one of two configurations. The two possible configurations

are represented in Figures 3 and 4. If ϕ is sufficiently small — so bequest motives are not

too strong — then this economy will have three steady states: two (saddle path) stable

steady states and one unstable steady state. This is illustrated in Figure 3, where we also

include the equilibrium trajectory. The steady state to the right in the figure, denoted by E1,

corresponds to a case where the economy is at full capacity, yt = ȳ , and the interest rate

is above r ELB . This equilibrium is stable, and we will refer to this as the full-employment

steady state and we will denote the interest rate at this steady state as r̂ . There is another

steady state with yt = ȳ and r > r ELB ; this is denoted as E2, but this steady state is

unstable. Finally, there is a third steady state, which is denoted E3. This steady state

corresponds to what we will call the depressed-economy steady state since yt < ȳ and

r = r ELB . It is a situation in which monetary authorities would like to reduce rt further but

are constrained by the ELB.

In contrast to the case where ϕ is small, when ϕ is sufficiently big, there is only one

steady state as illustrated in Figure 4. In this case, the only steady state is a depressed-

economy steady state with yt < ȳ and r = r ELB . The intuition for why there is only a

depressed-economy steady state when ϕ is sufficiently high is that the resulting demand for

assets is so great relative to supply that activity needs to be depressed to clear the asset

market.

3.2.1 Counter-cyclical monetary policy, hysteresis, and depressed demand under

fixed prices

In order to illustrate how counter-cyclical monetary policy could contribute to depressed

demand, let us start from a situation where ϕ is initially low and there are three steady

states. The economy is initially at the stable full-employment steady state with r = r̂ . Now

consider how the economy will adjust to a change in ϕ. We consider two cases: first a case

23If rELB is sufficiently high, then a third equilibrium configuration may emerge. This case is of limited
interest, so we omit it here to simplify the analysis.
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Figure 3: Equilibrium trajectories when ϕ is small and bequest motives include income flow
considerations

where we have a permanent increase in ϕ, and then a case where the increase is temporary.

A large permanent rise in ϕ corresponds to switching from the situation depicted in

Figure 3 to the one depicted in Figure 4. The induced dynamics are illustrated in Figure 5.

In response to the shock, consumption will jump down from its full-employment compatible

level (point a) onto the saddle path (point b) that converges to the new depressed-economy

steady state (point d). Monetary policy responds to the fall in demand by reducing interest

rates. Initially, this will lead to increased consumption as interest rates decline (between

points b and c). However, over time this increase in consumption will reverse itself before it

manages to reach back to the pre-shock level. The reduction in consumption arises despite

the fall in interest rates because households would want to start saving more when interest

rates become very low. Once consumption reverses from growth to contraction, it gradually

declines (from point c to d). The process ends when rt reaches the ELB, and consumption

is below the level needed to maintain full employment. This is the new steady state since

r cannot decrease further. Instead of reacting to this shock by decreasing interest rates

according to the rule ṙt = θ(yt−ȳ), monetary authorities could have kept rt = r̂ . In this case

consumption would have jumped from point a to point e on the figure and then remained

there. The initial contraction would be larger without the accommodating monetary policy

(comparing point b to point e), but over the longer run, monetary accommodation could
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Figure 4: Equilibrium trajectory following a large permanent increase in ϕ

lead to a greater fall in output (comparing points d and e). In this sense, in reacting to the

shock by decreasing interest rates, monetary policy in this economy could be interpreted

as amplifying over the long run the negative demand effect associated with an increased

desire to save.

The role of counter-cyclical monetary policy in contributing to depressed demand is more

salient when considering a temporary increase in ϕ. In response to a temporary increase in

ϕ, if monetary authorities did not change interest rates, consumption would initially fall and

then gradually return to its full-employment compatible level. In contrast, if the shock is

sufficiently large, and monetary policy acts aggressively (θ sufficiently large), the dynamics

associated with a temporary shock will follow a path similar to that illustrated in Figure 5.

There is an initial decline in consumption, followed by a rebound, and then a gradual decline

to the depressed steady state. When monetary policy reacts strongly enough to excess

capacity, the temporary shock causes the economy to switch from the full-employment

steady state with r = r̂ to a depressed-economy steady state with r = r ELB . In this sense,

monetary policy can be seen as contributing to a depressed steady state outcome, even

though the driving force is a temporary change in ϕ. If monetary policy were to react less

aggressively to the initial shock, the dynamics could instead look as in Figure 6, where the

decline in consumption is only temporary and monetary policy actually manages to create
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Figure 5: Equilibrium trajectory following a temporary increase in ϕ with aggressive mone-
tary policy

a short-term boom.24

4 Allowing for Price Adjustments and Inflation

If the economy ends up in a depressed steady state with r = r ELB , as was shown

to potentially arise in the previous section under a fixed-wage assumption, it becomes

unreasonable to maintain that wages, and therefore prices, would not eventually adjust.

Accordingly, in this section we examine how the economy adjusts when agents have a

bequest motive that features income flow considerations (Var < 0) and inflation dynamics

are governed by a Phillips curve of the form:25

24In the case where the economy ends up at a depressed-economy steady state, because of either a
temporary or a permanent increase in saving behaviour, it is worth noting that increased fiscal spending
can bring the economy back toward full employment. In fact, if fiscal spending is sufficiently large, the
economy can be brought back to full employment while r remains at rELB . In this situation, the economy
is no longer depressed as fiscal deficits have managed to counter the effect of aggressive monetary policy.

25In most New Keynesian models, the Phillips curve is of the form π̇t = κ(yt − ȳ) + κ2πt , where the
presence of κ2 6= 0 gives rise to a non-vertical long-run Phillips curve. In the following, we choose to
adopt a vertical Phillips curve formulation to ensure that our results do not depend on a non-neutrality of
money coming from the Phillips curve. However, all our results can be easily extended to the case with a
non-vertical long-run Phillips curve specification.
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Figure 6: Equilibrium trajectory following a temporary increase in ϕ with less aggressive
monetary policy

π̇t = κ(yt − ȳ), (12)

where πt is the rate of inflation and ȳ = Al̄ is the natural rate of output. This Phillips

curve can be justified by assuming a downward nominal wage rigidity with nominal wages

adjusting according to:26

ẇt

wt
= πe

t + κ′(lt − l̄), κ′ > 0,

where πe
t is the expected inflation rate and (lt − l̄) represents the deviation of employment

from full employment l̄ . If we further assume that expected inflation:

πe
t = πt + Ωπ̇,

then we get the Phillips curve specified by equation (12), where κ = κ′

−AΩ
. The parameter

Ω > 0 corresponds to extrapolative expectations, while Ω < 0 corresponds to adaptive

expectations.

26Note that in our model, wage inflation is equal to price inflation πt .
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With this formulation, when κ > 0, we have a backward-looking Phillips curve and πt

needs to be treated as a state variable. Alternatively, if κ < 0, we have a forward-looking

Phillips curve and πt needs to be treated as a jump variable. We will focus on the case with

κ > 0 in the main text and leave to Appendix C the case with κ < 0. The characterization

of stable steady states is similar in both cases. However, the narrative around inflation is

potentially more compelling in the κ > 0 case as inflation is sluggish and without jumps.

Since we now allow for variable inflation, we now need to distinguish between real and

nominal rates of interest. We will denote the nominal rate by it with the real rate given by

rt = it−πt . We will begin by examining the properties of the system when it is set at the ELB

so as to link up with the end of the previous section and clarify some important properties

that can arise at the ELB. In the following subsection we adopt a Taylor rule specification

for it with an ELB constraint in order to derive more general results. Throughout this

section we will assume that V (at , it−πt) takes the functional form motivated in Section 2,

that is, ϕa1−σ
t

1−σ exp−γ(it−πt ), with σ > 1.

4.1 The dynamics of inflation and activity when i is at the ELB

In the presence of variable inflation, the household’s Euler equation is given by:

ċt

ct
= (iELB − πt − ρ− δ) + δctVa(B̄ , iELB − π)

= (iELB − πt − ρ− δ) + δϕctB̄−σe−γ(iELB−πt ). (13)

This Euler equation and the Phillips curve equation will govern the dynamics of ct and

πt . For ease of presentation, we continue to assume that it is lump sum taxes Tt that adjust

to ensure that the government budget constraint is satisfied when it and πt change, while

real government expenditures and debt stay constant.27 The Phillips curve can therefore

be rewritten as:

π̇t = κ(ct + G − ȳ). (14)

Equations (13) and (14) govern the dynamics of the economy when the interest rate is

27In terms of government finances, we are assuming that real government debt (Bt) is held constant so
that the government’s budget constraint becomes G −Tt + (it −πt)B̄ = 0 (where G and Tt are real levels
of government spending and taxes).
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Figure 7: Equilibrium trajectories when i is unconditionally fixed at the ELB

set at the ELB. In this situation, there are two possible equilibrium configurations depending

on the strength of bequest motives as captured by ϕ. If ϕ is sufficiently large relative to B̄ ,

there is too much asset demand (as opposed to goods demand) and the economy collapses

with a deflation spiral. In this case, the economy would need a greater supply of assets

to avoid the collapse. The other case, which will be our focus, is when ϕ is not too

large. When ϕ is not too large, there exists a steady state with π̇t = 0 and ċt = 0. The

corresponding equilibrium trajectories are depicted in Figure 7, with features summarized in

Proposition 5. With nominal interest rates at the ELB, two steady states arise, where only

one is stable. The stable steady state is the one with the higher level of inflation (which

could nonetheless be negative), and marked as E2 in the figure. The interesting aspect

to note is that this stable inflation steady state arises even if nominal interest rates are

unresponsive to inflation, which implies that the Taylor principle does not hold. The reason

that inflation can be stable with fixed nominal interest rates is related to Proposition 2.

Around this steady state, activity decreases with lower real rates. So when the economy

is operating below capacity and inflation is falling, a further decrease in inflation — which

corresponds to a rise in real interest rates — is not contractionary. Instead, it favours

consumption by decreasing the need for more bequests, and this makes the steady state

stable. When deriving the Taylor principle, this possibility is generally not considered.
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Proposition 5. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and i = iELB , if ϕ is not

too large, there is a unique stable steady state. At this steady state π̇t = 0 even if the

Taylor principle is not satisfied. If ϕ is sufficiently large, the economy will collapse with c

converging to zero and π̇t < 0.

See Appendix A.7 for the proof.

There are two interesting comparisons to make between the analysis in this section and

that of Section 3.2. In this section we see that, even when the interest rate is at the ELB,

the process of price adjustment will favour a return to full employment. The economy will

not remain in a depressed-demand state at the ELB as was possible in Section 3.2. However,

a return to full employment may be long if prices adjust slowly. The second element to

note is that the real interest rate (iELB−πss) that arises at the stable equilibrium is actually

the same real interest rate that was shown to be unstable in Section 3.2 when monetary

policy was conducted to close the output gap and prices were fixed. This is why we denoted

this steady state by E2 to link it with our previous notation. The unstable steady state,

denoted by E1 on Figure 7, involves the same high real interest rate as the stable steady

state in Section 3.2. What this illustrates is that with Var < 0, there are likely to be two

full-employment steady states, but which one is stable depends crucially on the nature of

price adjustment and monetary policy. As we will show in the following section, it turns

out that both a high-real-rate and a low-real-rate steady state can be stable when inflation

dynamics are driven by a Phillips curve and we allow for a rather standard Taylor rule

specification for monetary policy.

4.2 Aggressive Taylor rule and the emergence of a low-real-rate, low-inflation

trap

Instead of setting the nominal interest rate unconditionally at the ELB, let us now

consider the more general case where it is determined by a simple Taylor rule of the form:

it = max
{

0, iT + φ(πt − πT )
}

φ > 1, iT = ρ + δ + πT . (15)

The interest rate rule given by equation (15) implies that interest rates are set by

feedback on inflation, which satisfies the Taylor principle when the ELB is not constraining

(we set iELB = 0 for simplicity). In this rule, iT represents a target nominal interest rate

and πT represents a target level for inflation. The parameter φ captures the aggressiveness
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Figure 8: Link between real interest rates and inflation under the Taylor rule

of monetary policy toward trying to keep inflation close to πT . To give more structure, we

will assume that iT = ρ + δ + πT ; that is, the central bank targets a real rate equal to

ρ + δ. Note that a higher value of φ implies that the ELB constraint will become binding

at higher levels of inflation. In particular, the ELB constraint will become binding at the

inflation level πELB ≡ (φ−1)πT−(ρ+δ)
φ

, which is increasing in φ. Moreover, when φ > 1, the

real interest rate (rt = it−πt) is increasing in inflation when π > πELB (the ELB constraint

is not binding). However, when the ELB is binding (π < πELB), the real rate decreases with

inflation. This is illustrated in Figure 8. It can also be seen from the figure that as φ rises,

the range of inflation rates for which the ELB constraint binds increases, but the positive

link between inflation and the real rate when the ELB constraint is not binding becomes

stronger.

The household’s Euler equation is again given by:

ċt

ct
= (it − πt − ρ− δ) + δctVa(B̄ , it − πt) (16)

and the Phillips curve continues to be given by:
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Figure 9: Equilibrium trajectories when monetary policy follows a not too aggressive Taylor
rule: one stable steady state

π̇t = κ(ct + G − ȳ) κ > 0. (17)

Equations (15), (16) and (17) govern the dynamics of it , ct , πt under our Taylor rule

specification for monetary policy. This dynamic system can have three configurations. As

in the previous section, if ϕ is very high relative to B̄ , there is no steady state with stable

inflation. There are more desired savings relative to assets in the system and the economy

will collapse with spiralling deflation. Although this configuration could be of interest,

we will not focus on it here. Instead we will focus on the case where ϕ is not too large

relative to B̄ , which ensures that a stable inflation steady state always exists. In this case,

the economy can have either one stable steady state or two stable steady states. As we

will show, whether there are one or two stable steady states depends on the strength of

monetary policy (as governed by φ). The case with one stable steady state is represented

in Figure 9, while the case with two stable steady states is represented in Figure 10. The

equilibrium dynamic trajectories are also illustrated in these figures.

In Figure 9, E1 is the only stable steady state. E1 is a high-real-interest-rate, high-

inflation steady state, with inflation close to target. There is also a low-inflation steady
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Figure 10: Equilibrium trajectories when monetary policy follows a sufficiently aggressive
Taylor rule: two stable steady states

state in Figure 9, but it is not stable. The nominal interest rate at the unstable steady state

in Figure 9 is in the ELB region since the level of inflation arising from that equilibrium

point is less than πELB ≡ πT (φ−1)−(ρ+δ)
φ

. This type of configuration, where there is an

unstable steady state at the ELB and a stable steady state with i > iELB , echoes what

arises in a standard infinitely lived representative agent environment without our bequest

motives (see Benhabib, Schmitt-Grohé, and Uribe (2001)).28 For comparison, note that

the stable steady state that arose at the ELB in Figure 7 is not present in Figure 9, since

at the level of inflation needed for this steady state to arise, the Taylor rule specifies an

i > iELB . In contrast, in Figure 10 we now have two stable steady states. The high-real-

interest, high-inflation stable steady state, denoted E1, remains, but now we also have one

low-real-rate, low-inflation stable steady state denoted E2. The E2 steady state is in the

ELB region, while the E1 steady state remains in the region where i > iELB and where the

Taylor principle is operative. Proposition 6 expresses this possibility. In this setting, given

the two stable steady states, the system will exhibit hysteresis.29 If inflation starts above

the level π̃ denoted on Figure 10, the system will converge to E1, while if it starts below, it

28Recall that we are assuming a backward-looking Phillips curve in the main body of the text. When
assuming a forward-looking Phillips curve, this equilibrium would exhibit indeterminacy.

29In the case where the parameter κ in the Phillips curve is negative, the same two equilibria are
determinate stable, and the system would jump to one of them instead of exhibiting hysteresis.
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will tend to converge to E2. In this set-up we can consider the effects of shocks, especially

ϕ shocks, as we did in Section 3.2. For example, if the economy were to start at E1, and

there was a large temporary rise in ϕ, the steady state equilibrium E1 could temporarily

disappear — the reason being that there would then be too much demand for assets relative

to supply, which depresses demand. As a result, there would be a contractionary period

with deflation. Once the shock reverses itself, the level of inflation would be starting from

a lower level. If this new inflation level was below π̃, the economy would converge to the

long-run equilibrium at E2 even if it was at equilibrium point E1 before the temporary shock

to ϕ.

Proposition 6. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and monetary policy is given

by equation (15), the equilibrium can exhibit two stable steady states with π̇t = 0: one

high-inflation, high-real-rate steady state with i > iELB , and one low-inflation, low-real-rate

steady state with i = iELB .

See Appendix A.8 for the proof.

In this setting, we can highlight the potential role that aggressive monetary policy —

as captured by high values of φ — has in making the low-inflation equilibrium outcome in

Figure 10 more likely, that is, making it more likely that the economy converges to an ELB

outcome with a low (stable) inflation rate and a low real rate of interest.30 Recall that we

are always assuming that φ > 1, so the Taylor principle is active when not constrained by

the ELB. If monetary policy is not too aggressive in the sense of φ not being much greater

than 1, then the equilibrium configuration will take the form we represented in Figure 9.31

So in this case with monetary policy not too aggressive (but still satisfying the Taylor

principle when above the ELB), the economy can only converge to the E1 equilibrium. This

has the desired outcome of supporting inflation close to target. However, as φ is increased,

this will increase the range of inflation that leads monetary authorities to set i at the ELB.

An increase in φ can therefore be seen as changing the equilibrium configuration from that

depicted in Figure 9 to that depicted in Figure 10. In fact, as φ gets very big, the equilibrium

configuration will move toward that depicted in Figure 11. As can be seen in Figure 11,

30We also examined the effect on equilibrium outcomes of changing the inflation target πT . Details are
available upon request. Among other results, we find that increasing πT favours the status quo; that is,
we find that the basin of attraction of neither the stable ELB equilibrium nor the non-ELB equilibrium
decreases when πT increases. Accordingly, if an economy were caught in a low-inflation, low-real-rate trap,
increasing πT would not help the economy exit this trap.

31For this precise equilibrium configuration, we are assuming that φ > γ(ρ+δ+πT )
γ(ρ+δ+πT )−1

and γ > 1
ρ+δ+πT .
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Figure 11: Equilibrium trajectories when monetary policy follows a very aggressive Taylor
rule: two stable steady states

when monetary policy is very aggressive in reacting to deviations of inflation from target, the

range of inflation rates that support the higher-inflation equilibrium E1 becomes arbitrarily

small. This implies that when such an economy is subjected to shocks, even if it starts at

the high-real-rate, high-inflation equilibrium, it is very likely to end up at the low-inflation

ELB equilibrium. In this sense, a high φ policy of reducing interest rates aggressively in

response to deviation of inflation from target can contribute to the economy ending up

at the ELB with low inflation and a low real rate of interest.32 It is worth emphasizing

that at this equilibrium, inflation is low (possibly negative), but it is nonetheless stable

even if the Taylor principle does not hold (see Cochrane (2017)).33 Proposition 7 confirms

that the existence of the E2 equilibrium depicted in Figure 10 actually depends on φ > 0

being sufficiently large. If φ is not sufficiently large, the configuration depicted in Figure 10

cannot arise.

32In Appendix B, we consider an extension to examine the robustness of the results in the paper to
incorporating effects of asset revaluation when real interest rates fall. We show that as long as the
targeted inflation rate in the Taylor rule is relatively low, the main results of the paper extend without
modification to this richer environment. However, when the targeted inflation rate becomes sufficiently
high, the forces highlighted in the main text are still at play, but more complex equilibrium configurations
can arise.

33A downward spiral in inflation is nonetheless possible in this set-up if inflation gets sufficiently close
to −(ρ+ δ).
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Proposition 7. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and monetary policy is given

by equation (15), the existence of a stable low-real-rate, low-inflation steady state at the

ELB is only possible if φ > 1 is sufficiently large (holding other parameters fixed).

See Appendix A.9 for the proof.

4.2.1 Real factors and the emergence of the low-real-rate, low-inflation trap

In the previous discussion, we emphasized how more aggressive monetary policy can

simultaneously favour the emergence of a low-real-rate equilibrium at the ELB while also

expanding its basin of attraction. We now want to briefly discuss the important role of

real factors in allowing for such an equilibrium outcome. In particular, countries or regions

that may have fallen into a low-inflation trap (such as Japan and Europe) do not appear to

have a substantially more aggressive monetary policy than elsewhere. So monetary policy is

unlikely to be the sole or main driver. Instead, these are countries that are generally viewed

as having real factors that favour savings, and these are the factors that are commonly

thought to contribute to demand being depressed and monetary policy being pushed to the

ELB. In our set-up, real factors that favour savings play a very similar role to monetary

policy in favouring the emergence of the low-real-rate, low-inflation trap. This is most

easily seen by varying ρ.34 As indicated in Proposition 8, for a given monetary policy stance

parameterized by φ, ρ has to be sufficiently low for an equilibrium configuration such as in

Figure 10 to arise. In Figure 12 we depict the effect of a change in ρ on the equilibrium

configuration. As illustrated in the figure, a higher ρ will make the E2 equilibrium that

arises with a low ρ disappear. So if an economy finds itself in a low-real-rate equilibrium

like E2 in the figure, it is both because ρ is sufficiently low and φ is sufficiently high. In this

sense, monetary policy can be viewed as contributing to the emergence of a low-real-rate,

low-inflation trap, but it cannot be seen as the driving factor. Real factors affecting savings

are also key.

Proposition 8. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and monetary policy is given

by equation (15), the existence of a stable low-real-rate, low-inflation trap at the ELB is

only possible if ρ is sufficiently small (holding other parameters fixed).

See Appendix A.10 for the proof.

34We could alternatively enrich the model to consider the effect of growth. The effect of higher growth
would then have a very similar effect to a higher level of ρ.
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Figure 12: Equilibrium trajectories when the discount rate ρ increases to ρ′ > ρ

4.2.2 Exiting the low-real-rate, low-inflation trap using expansionary fiscal policy

When the economy is at the ELB in a low-inflation trap, as represented by the equilibrium

outcome E2 shown in Figures 10 and 11, fiscal policy can be used to raise the rate of inflation

and escape the trap. An increase in debt B̄ corresponds to an upward shift in the ċ = 0

in these figures. This implies that the long-run equilibrium point E2 will move to the right

when B̄ is larger, implying higher inflation. This is expressed in Proposition 9. However, it

must be noted that the effect of changes in B̄ on long-run inflation is discontinuous. As

debt rises, there will come a point where the E2 equilibrium will cease to exist. At that

point, the only stable equilibrium will be E1. Hence, the long-run rate of inflation in such

an economy can change discretely in response to a large fiscal expansion. A sufficiently

large increase in B̄ can create a switch from the long-run equilibrium E2 to the long-run

equilibrium E1. Fiscal policy is therefore pushing the economy out of the low-real-rate, low-

inflation steady state, but that is coming at the cost of a discrete jump in long-run inflation.

Acharya and Dogra (2021), Eggertsson and Mehrotra (2014), and Mian, Straub, and Sufi

(2020a) also find that rising public debt leads to an escape from the ELB, although the

exit is not discrete. Moreover, when this jump in long-run inflation occurs, it also implies

that the real interest rate jumps by an even greater amount since, as the economy emerges

from the ELB constraint, the Taylor principle implies that nominal interest rates increase

more than inflation.
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Proposition 9. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and monetary policy is given by

equation (15), the inflation rate at the ELB stable steady state is increasing in government

debt B. However, when B becomes too large, the equilibrium at the ELB will cease to exist

and long run inflation will exhibit a discontinuous jump.

See Appendix A.11 for the proof.

4.2.3 Equilibrium inflation and real interest rates when monetary policy is not

aggressive

Up to now we have been assuming that monetary policy satisfies the Taylor principle

when it is not constrained by the ELB (i.e., φ > 1). However, there are historical examples

where monetary policy has likely not satisfied the Taylor principle. It is therefore of interest

to explore the equilibrium properties when the Taylor principle is not satisfied, that is, when

the interest rate is given by:

it = max
{

0, ρ + δ + πT + φ(πt − πT )
}

φ < 1, πT > 0. (18)

In this case, as indicated in Proposition 10, generally there exists a unique stable steady

state outcome. This contrasts with the case without bequest motives, where generally

there does not exist a stable steady state. This unique equilibrium always happens with

inflation running above target. This implies that the nominal interest in a steady state is

never constrained by the ELB. Although the nominal interest rate is above the ELB, the

configuration of equilibrium dynamics looks very similar to that described in Figure 7, when

monetary policy was assumed to be unconditionally constrained by the ELB. The reason

for the similarity is that in both cases the Taylor principle is not satisfied. Moreover, as in

Figure 7, it can be verified that the stable steady state corresponds to what we have been

calling our low-real-rate steady state. Finally, it is interesting to note that at this stable

steady state, inflation is higher the closer φ gets to 1, with the additional property that as

φ converges to 1, inflation goes off to infinity.

Proposition 10. When V (at , rt) = ϕa1−σ
t

1−σ exp−γrt with σ > 1 and monetary policy is given

by equation (18), then if ϕ is not too large, there is a unique stable steady state. At this

steady state, inflation is above target, π > πT , and y = ȳ . As φ converges to 1, inflation

converges to infinity.
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See Appendix A.12 for the proof.

4.2.4 Welfare

Our analysis highlighted the possibility of two full-employment stable equilibria when

monetary policy follows a truncated Taylor rule: one low-real-rate, low-inflation equilibrium,

and one high-real-rate, high-inflation equilibrium. In both cases, the economy is at full

employment with consumption being identical. From a welfare point of view, the high-real-

rate, high-inflation equilibrium would nonetheless be preferred by consumers since V (a, r)

will be higher. Households would experience less utility in the lower-real-rate equilibrium

because they feel poorer in terms of the value of bequest they can transmit. However, it is

worth noting that this welfare calculation abstracts from any gains that may be associated

with having the possibility of lower taxes in this equilibrium versus the higher taxes needed

to finance the same spending and debt level in the higher-real-rate equilibrium. While

examining the value of having more fiscal space in the low-inflation, low-real-rate equilibrium

is beyond the scope of this paper, our analysis does open the possibility that the low-real-

rate, low-inflation equilibrium may have desirable welfare properties.

5 Further Discussion

5.1 Natural rate of interest

While there are different concepts for the natural rate of interest, for our purpose we

define the natural rate of interest as the real rate, denoted r ∗, consistent with a long-run

equilibrium where output is at full capacity. In a standard infinitely lived representative

agent model, this rate can be inferred directly from the household’s Euler equation for

consumption. The main determinants of the natural rate of interest in such a case are the

subjective discount rate of households and the long-run growth rate of the economy. This

natural rate does not depend on fiscal policy. In contrast, in our environment with bequest

motives, the natural rate of interest depends on the amount of debt in the economy, the

level of government spending, and the level of taxes. In particular, the natural rate of

interest is implicitly defined by the following condition if government spending ensures that

the government budget constraint (G + r ∗B̄ − T = 0) is satisfied:35

35Alternatively, it can be thought in this case as being implicitly defined by the asset market clearing
condition ALR (y − T , r∗) = B̄.
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ȳ − T + r ∗B̄ =
ρ + δ − r ∗

δVa(B̄ , r ∗)
, (19)

or alternatively by the following condition if taxes are adjusting to satisfy the government

balance:

ȳ − G =
ρ + δ − r ∗

δVa(B̄ , r ∗)
. (20)

Hence, in the first case, r ∗ becomes a function of the amount of debt in the economy

and the level of taxes, while in the second case it is a function of debt and government

spending. In both cases r ∗ is not a point as in more standard models but is instead a locus.

When Var < 0, the locus is non-monotonic (in the natural interest rate - debt space) as the

long-run asset demand is C-shaped. For each level of debt, there are two values for r ∗.36

Moreover, for the case where V (a, r) takes the functional form ϕa1−σ

1−σ exp−γr with σ > 1,

we can plot the locus of natural rates r ∗ as a function of debt levels and present different

loci for different values of ϕ. This is illustrated in Figure 13. In the figure we see that as

we decrease ϕ, the natural rates of interest tend to equal either something close to ρ + δ

or something close to zero.

5.2 Proposing some general observations

In this last section we want to suggest why our analysis may offer a takeaway that goes

well beyond the particular behavioural model we explored. In particular, the key element

driving our results regarding potential forces favouring secular stagnation is a long-run

demand for assets that is non-monotonic in the real interest rate. When the long-run

demand for assets is C-shaped as represented in Figure 14 — regardless of the reason why

it takes this form — then for a given supply of assets there are two equilibrium points, with

only the higher-real-rate equilibrium likely stable. That is not especially surprising. The

more intriguing observation arises when looking at the same asset demand as a function of

inflation when interest rates are determined endogenously by a constrained Taylor rule of the

form it = max{iELB , iT +φ(πt−πT )} with φ > 1. Such a Taylor rule causes the effective

36We are not the first to show that the natural rate of interest can be a function of debt. Mian, Straub,
and Sufi (2020a) and Acharya and Dogra (2021) find that the natural rate of interest depends on the
amount of debt, but their analysis does not feature the C-shaped aspect of the long-run asset demand. In
our model, r∗ depends on whether interest rates were initially low or high.
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Figure 13: Natural rate of interest as a function of public debt, for different values of
bequest motives ϕ when Var < 0

asset demand to mirror itself over a range of inflation levels, as presented in Figure 15.37

The reason for the mirroring is that inflation and real rates of interest are positively related

for a high level of inflation when i is above the ELB and the Taylor principle is satisfied,

but are negatively related for lower levels of inflation when i = iELB . This potentially gives

rise to four equilibrium points, instead of two, as represented in the figure. However, as

we have shown in the paper with an explicit dynamic structure, only two of these four

equilibrium points are likely stable: the high-real-rate, high-inflation outcome denoted E1

and a low-real-rate, low-inflation outcome denoted E2. In the absence of explicit micro-

foundations, the stability of these two equilibrium points could alternatively be argued less

formally on tâtonnement-type arguments directly from the figure. We emphasize these two

stable steady states as they can potentially open the door for aggressive inflation-targeting

monetary policy to potentially have long-run non-neutral effects through favouring a move

from E2 to E1 in response to shocks.

In the above discussion we continued to focus on a supply of assets that is exogenously

37In Figure 15 we are assuming as previously that iT = ρ+ δ + πT .
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Figure 14: C-shaped long-run asset demand

set by the fiscal authority. We want to finish here by further indicating how the equilibrium

configuration is likely to be modified when asset supply endogenously responds to interest

rates.38 The only assumption we want to make about this asset supply is that it is de-

creasing in the real interest rate. Assuming that monetary policy continues to follow our

constrained Taylor rule, asset demand will continue to mirror itself over the inflation range

when ALR(y s , r). For the supply of assets, even if we assume it is (monotonically) decreas-

ing in real interest rates, it will also become non-monotonic as a function of inflation. The

supply of assets will decrease with higher inflation when i is not constrained by the ELB

but will increase with higher inflation when i is set at the ELB. The resulting demand and

supply of assets are shown in Figure 16. The points of sharp inflection for both the asset

demand locus and the debt supply locus are associated with a level of inflation where i is

exactly equal to the iELB . In this set-up, we can again have a situation with four long-run

equilibrium points as depicted in the figure. However, only two of them are likely to be

stable. The two equilibrium points that are likely stable are again those marked by E1

and E2 in the figure. The one notable new property that arises from this extension, when

compared to the case with a fixed supply of assets, relates to the level of debt between the

points E1 and E2. The point E2 is now not only a lower-real-rate, lower-inflation equilibrium

point relative to E1, it is also a point with a higher debt level. Note, however, that the

higher debt is not a force that would be causing the low-real-rate, low-inflation state of E2,

it would just be adjusting to it.

38See Appendix B for an extension of the model with Lucas trees that is similar to allowing to interest
elastic debt.
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Figure 15: Asset demand as a function of π with fixed supply of assets

6 Conclusion

The idea that monetary policy may have contributed to the secular decline in interest

rates and inflation by depressing demand is a popular theme among many financial market

participants and economic commentators. However, evaluating this type of claim is difficult

without first specifying the mechanisms that could in theory generate such an outcome. In

this paper we explored the extent to which non-monotonic demand for assets, motivated

by bequest motives, could support/rationalize such claims. If households have an asset

demand that is C-shaped with respect to real interest rates, we showed how this can cause

aggressive monetary policy to contribute to a long-term decline in both the real interest

rate and inflation by favouring a switch in long-run equilibrium. In fact, we show how

this environment can generate a low-real-interest-rate, low-inflation trap where the nominal

interest rate is at the ELB. In this trap, inflation is stable and determinate, despite the fact

that monetary policy does not satisfy the Taylor principle. We also discussed how fiscal

policy can be used to exit the low-inflation equilibrium and how such an exit may induce a

discontinuous response in inflation. We leave it to further work to evaluate the empirical

relevance of non-monotonic asset demands and their implications.
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Appendix

A Proofs of Propositions and Lemmas

A.1 Proof of Lemma 1

Let’s start by presenting the household optimization problem.

max
{ct ,at}

∫ ∞
0

e−(ρ+δ)t {log(ct) + δV (at , rt)} dt (A1)

s.t.

ȧt = y d
t + rtat − ct , (A2)

for t ≥ 0 and a0 given. Equation (A2) is the budget constraint.
The current-value Hamiltonian is:

log(ct) + δV (at , rt) + γt

(
y d

t + rtat − ct

)
,

where γt is a co-state variable. Taking the first order conditions with respect to ct and at ,
we obtain the following household’s Euler equation:

ċt = (rt − ρ− δ) ct + δc2
t Va(at , rt). (A3)

The system of ordinary differential equations (ODEs) is given by two equations, (A2)
and (A3). The steady state of asset holdings a > 0 and consumption c > 0 are:

r = ρ + δ − δcVa(a, r),

c = y d + ra.

With the ODEs, we now seek to examine the stability of this steady state. Let’s linearize
the ODEs around the steady state (a, c), where ât ≡ at − a and ĉt ≡ ct − c are deviations
(in levels and not in logs) from the steady state.

˙̂at = r ât − ĉt

˙̂ct =
(
δc2

t Vaa(a, r)
)

ât + (r − ρ− δ + 2δcVa(a, r)) ĉt .
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Let’s put this ODE system in the form of a matrix: ˙̂at

˙̂ct

 =

 r −1

ϕδ
ρ

c2
t Vaa(a, r) ϕδ

ρ
cVa(a, r)


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ât

ĉt

 , (A4)

where the Jocobian J of the ODEs is evaluated at the steady state. The determinant of J
is:

det(J) = rδcVa(a, r) + δc2
t Vaa(a, r).

After some simple algebra, the determinant det(J) becomes:

det(J) = δrcVa(a, r)

(
1 +

c

ra

aVaa(a, r)

Va(a, r)

)
. (A5)

For the steady state to be a saddle point, the determinant must be negative (det(J) < 0)
(that is the eigenvalues (λ̂1, λ̂2) must of opposite signs since det(J) = λ̂1λ̂2). From
equation (A5), since Va(a, r) > 0 the steady state is a saddle point if and only if the
following condition holds:

σ(a, r)c

ra
> 1, (A6)

where σ(a, r) ≡ −aVaa(a,r)
Var (a,r)

is the negative of the elasticity of the marginal utility of wealth.

The higher such elasticity the higher the likelihood for the stability condition (A6) to hold.
Q.E.D.

A.2 Proof of Proposition 1

Let’s recall the implicit definition of the steady state household asset holdings a ≡
ALR(y d , r):

(ρ + δ − r)

δVa(a, r)
− ra = y d .

Taking successively the derivative of both sides of this equation with respect to y d and
r , we have:
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∂a

∂y d
=

1

r
(
σ(a,r)c

ra
− 1
) , (A7)

∂a

∂r
= −

1
δVa

+ a + cVar

Va

r
(
−σ(a,r)c

ra
+ 1
) . (A8)

The stability condition in Lemma 1 implies that ∂a
∂yd > 0, and if Var = 0, then ∂a

∂r
> 0 .

Therefore the long-run financial asset holdings function ALR(r , y d ) is increasing in income
y d and is rising in interest rate r if Var = 0. If Var < 0 (by Assumption 1), then ALR(r , y d )
is non-monotonic in r . Q.E.D.

A.3 Proof of Lemma 2

The steady state asset market clearing condition is given by ALR(y−T , r̄) = B̄ , where r̄
and B̄ > 0 are constant policy targets and T is a fixed lump sum tax. From Proposition 1,
the long-run asset holding ALR(y−T , r̄) is increasing in income y . Since B̄ is constant and
positive, there is a unique y ≡ y SS that clears the asset market. This implies that there is
a unique steady state.

To show that the unique steady state equilibrium is saddle, we consider two cases. In
the first case, we assume that the interest rate is fixed at the target rate r̄ and the dynamics
of government debt are still governed by equation (10). The dynamics of the equilibrium
are characterized by equation (10) and the Euler equation (4), which in a form of a matrix
are given by:

 ˙̂ct

˙̂bt

 =

 δcVa(a, r) δc2Vaa(a, r)

0 −λ2


︸ ︷︷ ︸
J2 Jacobian evaluated at the steady state

 ĉt

b̂t

 , (A9)

where the Jocobian J2 of the ODEs is evaluated at the steady state. The determinant of
J2 is given by det(J2) = −λ2δcVa(a, r) < 0. The determinant is negative (i.e., the two
eigenvalues are opposite signs), and as a result the unique steady state equilibrium is saddle.

Regarding the second case, we assume that public debt is constant. In this case, the
dynamics of the equilibrium are characterized by equation (9) and the Euler equation (4).
Similarly, the determinant is det(J1) = −λ1δcVa(a, r) < 0, implying a saddle stable steady
state.

Q.E.D.
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A.4 Proof of Proposition 2

With the tax rate T doing the adjustment to satisfy the government constraint, the
steady state equilibrium condition for y is given by:

y − G =
(ρ + δ − r̄)

δVa
.

This implies:

∂y

∂ r̄
=

1

δVa

[
−Var

Va
(ρ + δ − r̄)− 1

]
.

Because −Var

Va
is non-increasing in r̄ (from Assumption 1), −Var

Va
(ρ + δ − r̄) goes from

infinity to 0 as r goes from −∞ to ρ+ δ. Hence there exists a unique cutoff of r̄ < ρ+ δ

for which
[
−Var

Va
(ρ + δ − r̄)− 1

]
= 0, with the properties below and above the cutoff as

stated in the proposition. This cutoff interest rate is denoted by r̄ cutoff . This is the end of
the proof.

However, to ease the understanding of the content of Proposition 2, it is helpful to use
a specific functional form such as V = ϕa1−σ

1−σ exp−γr , with σ > 1. Then we have:

∂y

∂ r̄
=

B̄σ expγ r̄

δϕ

(
ρ + δ − r̄ − 1

γ

)
,

where r̄ cutoff ≡ ρ + δ − 1
γ

is the cutoff. If r̄ is below this cutoff, then ∂y
∂ r̄

is positive, and
above the cutoff it is negative.

Q.E.D.

A.5 Proof of Proposition 3

Similarly as in Section A.4, we obtain the derivative of output y with respect to debt
B̄ :

∂y

∂B̄
= −(ρ + δ − r̄)Vaa(B̄ , r̄)

δ(Va)2
.

From Assumption 1 and r̄ < ρ + δ, we have ∂y
∂B̄

> 0, implying that an increase in B̄
increases the steady state output. Q.E.D.

A.6 Proof of Proposition 4

It is helpful to recall the system of the two equations that govern the dynamics of ct

and rt :

ċt

ct
= rt − ρ− δ + δϕctB̄−σ exp−γrt
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ṙt = θ(ct + G − ȳ) if rt > r ELBor ct + G > ȳ , with ṙ = 0 otherwise.

We assume that r ELB is not too constraining, meaning that there exists a sufficiently
small r̃ < ρ + δ − 1/γ such that r ELB < r̃ .

In the steady state, ċt = 0, which implies that ρ+δ−r = δϕcB̄−σe−γr , where r < ρ+δ.
Rearranging this equation, the ċt = 0 curve is given by

c =
(ρ + δ − r)B̄σeγr

δϕ
≡ Hc(r).

Similarly, the ṙt = 0 curve is

c = ȳ − G ≡ Hr (r),

which is a horizontal line in the space r and c with an intercept ȳ − G > 0.
A steady state equilibrium is found when the two curves intersect, that is, when:

ȳ − G =
(ρ + δ − r)B̄σeγr

δϕ
. (A10)

To show the existence of a steady state, we start by discussing the properties of the
ċt = 0 curve Hc(r). The derivative H ′c(r) is given by:

H ′c(r) =
B̄σeγr

δϕ
(γ(ρ + δ − r)− 1) .

This implies that at r = ρ + δ − 1
γ
≡ r opt , the function Hc(r) attains its optimum.

If r < ρ + δ − 1/γ (r > ρ + δ − 1/γ), H ′c(r) > 0 (H ′c(r) < 0). Similarly, basic algebra
shows that Hc(r) is concave (convex) when r > ρ+ δ− 2/γ (r < ρ+ δ− 2/γ). Moreover,
Hc(ρ + δ) = 0, limr→−∞ Hc(r) = 0.

A necessary condition for the existence of a solution to equation (A10) when r > r ELB

is that the maximum consumption Hc(r opt) must be at least equal to ȳ − G , that is,

Hc(r opt) ≥ ȳ − G . This condition is given by ϕ ≤ eγ(ρ+δ)−1B̄σ

(ȳ−G)δγ
.

If ϕ is sufficiently small and r > r ELB , then there are two steady state equilibria since
the function Hc(r) is strictly increasing on the left of r opt and strictly decreasing on the
right of r opt . These two equilibria are denoted E1 and E2 respectively as follows:

1. High-real-interest-rate equilibrium E1: r > r opt = ρ + δ − 1
γ

and c = ȳ − G

2. Low-real-interest-rate equilibrium E2: r < r opt = ρ + δ − 1
γ

and c = ȳ − G

If ϕ is sufficiently large, there are no steady states with r > r ELB , and the only steady
state is when r = r ELB and c < ȳ − G . This is the depressed demand at the ELB steady
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state and we denote it E3. In addition, since we assume that r ELB is not too constraining,
the steady state E3 always exists for any finite ϕ > 0.

Stability analysis. We now examine the stability of the three equilibria. We start with
steady states given by E1 and E2. Following the steps in Section A.3, we have the following
two-dimensional dynamic system:

 ˙̂ct

˙̂rt

 =

 ρ + δ − r c (1− γ(ρ + δ − r))

θ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

r̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The
determinant det(J) = −θc (1− γ(ρ + δ − r)). If r > ρ+δ− 1

γ
, then det(J) < 0, implying

that the steady state E1 is saddle stable. If r < r opt , then det(J) > 0, meaning that the
steady state E2 is unstable.

We now turn to the stability analysis of the steady state E3. Given that at E3, r = r ELB

and c < ȳ − G , we have that ṙt = 0. As a result, the system is one-dimensional in ct .
Therefore, we need only to evaluate the stability for E3 when the ċ = 0 curve (Hc(r)) is
evaluated at r = r ELB . Since ct is a jump variable, we need the ċ = 0 curve to be increasing
in r , which is the case (i.e., H ′c(r ELB) > 0). Hence, the steady state E3 is stable.

Q.E.D.

A.7 Proof of Proposition 5

Equations (13) and (14) govern the dynamics of the economy when the interest rate
is set at the ELB:

ċt

ct
= (iELB − πt − ρ− δ) + δϕctB̄−σe−γ(iELB−πt ),

π̇t = κ(ct + G − ȳ), with κ > 0.

In the steady state ċt = 0, implying that ρ + δ + π − iELB = δϕcB̄−σe−γ(iELB−π).
Rearranging this equation, the ċt = 0 curve is given by

c =
(ρ + δ + π − iELB)B̄σeγ(iELB−π)

δϕ
≡ Hc(π).

Taking the derivative of Hc(π), we obtain the following properties. First, at π = iELB −
(ρ+δ)+1/γ ≡ πopt , the function Hc(π) attains its optimal. Second, if π < πopt (π > πopt),
then the function Hc(π) is increasing (decreasing) in π. Third, if π < iELB − (ρ+ δ) + 2/γ

51



(π > iELB − (ρ + δ) + 2/γ), then the function Hc(π) is concave (convex) in π. Finally,
Hc(iELB − ρ− δ) = 0 and limπ→∞ Hc = 0.

Similarly, the π̇t = 0 curve is

c = ȳ − G ≡ Hr (π),

which is a horizontal line in the space π and c with an intercept ȳ − G > 0.
A steady state equilibrium exists when the two Hc and Hπ intersect, that is, when

ȳ − G =
(ρ + δ + π − iELB)B̄σeγ(iELB−π)

δϕ
≡ Hc(π). (A11)

A necessary condition for equation (A11) to hold is that Hc(πopt) > ȳ − G , which

implies that ϕ < B̄σeγ(ρ+δ)−1

(ȳ−G)δγ
.

If ϕ < B̄σeγ(ρ+δ)−1

(ȳ−G)δγ
(i.e., small), there exist two steady state equilibria since Hc is strictly

increasing at the left πopt and strictly decreasing at the right of πopt . The two steady states
are characterized as follows:

1. Equilibrium E1 with π < iELB − (ρ + δ) + 1/γ and c = ȳ − G . It is interesting to
note that this steady state is identical to the equilibrium with a high real interest rate
iELB − π > ρ+ δ− 1/γ seen in Proposition 4 and in section A.6. It is for this reason
that we also denote E1 the present equilibrium.

2. Equilibrium E2 with π > iELB−(ρ+δ)+1/γ and c = ȳ−G . In the same fashion, this
equilibrium corresponds to a low real interest rate steady state iELB−π < ρ+δ−1/γ
seen in Section A.6.

Stability analysis. We now examine the stability of the steady states given by E1 and
E2. Following the steps as in section A.6 we have the following two-dimensional dynamic
system:

 ˙̂ct

˙̂πt

 =

 π + ρ + δ − iELB c
(
−1 + γ(π + ρ + δ − iELB)

)
κ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

π̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The
determinant det(J) = −κc

(
−1 + γ(π + ρ + δ − iELB)

)
. If π > iELB − (ρ+ δ) + 1/γ, then

det(J) < 0, implying that the steady state E2 is saddle stable. If π < iELB − (ρ+ δ) + 1/γ,
then det(J) > 0, meaning that the steady state E1 is unstable.

If ϕ > B̄σeγ(ρ+δ)−1

(ȳ−G)δγ
(i.e., sufficiently large), then π̇t < 0. Consumption c converges to

zero at π = iELB − (ρ + δ) since H ′c(iELB − (ρ + δ)) > 0.
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Q.E.D.

A.8 Proof of Proposition 6

Equations (15), (16) and (17) govern the dynamics of it , ct , πt under our Taylor rule
specification for monetary policy:

it = max
{

0, iT + φ(πt − πT )
}

φ > 1, iT = ρ + δ + πT .

Like in section A.7, we assume that ϕ is sufficiently small, which is a necessary condition
for the existence of a steady state equilibrium.

Let’s first consider the condition under which the ELB is binding, that is, when iT +

φ(πt−πT ) < iELB . Rearranging this inequality shows that when πt <
iELB−iT +φπT

φ
, the ELB

constraint is binding. We denote this threshold by πELB ≡ iELB−iT +φπT

φ
. This constraint is

defined for a given interest rate target iT . If we use the definition iT = ρ + δ + πT , then
this condition becomes:

πt <
iELB − (ρ + δ) + (φ− 1)πT

φ
≡ πELB .

As can be seen, this inflation threshold πELB is increasing in φ, implying that the range
of π for which the ELB constraint binds increases with φ.

For the proof the present proposition, it is helpful to consider two cases: the case where
the ELB constraint is binding and the other when it is not binding.

Case 1: π < πELB and i = iELB . This case is similar to the proof of Proposition 5 in
section A.7. Recall that in this case at πotp = iELB − (ρ + δ) + 1/γ the consumption at
ċt = 0 (Hc(π)) attains its maximum consumption. Hence, for an equilibrium to exist in this
case, πopt < πELB . After some simple algebra, two conditions emerge for an equilibrium to
exist:

φ >
γ(ρ + δ − iELB)

γ(ρ + δ − iELB)− 1
and γ >

1

ρ + δ − iELB
.

Since πopt < πELB , Hc(πELB) decreases as πELB rises (e.g., as φ increases) given that
H ′c(π) < 0 when π > πopt .

For intermediate values of φ > γ(ρ+δ−iELB )
γ(ρ+δ−iELB )−1

, there are two steady states, but only

equilibrium E2, is characterized by a low real rate (iELB − π < ρ + δ − 1/γ)), and low
inflation is stable (see section A.7).

Case 2: π > πELB and i > iELB . The steps of the proof are similar to those in Sec-
tion A.7. The steady state consumption function is given by:
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H̃c(π) =
(ρ + δ − (φ− 1)π + φπT − iT )B̄σeγ(iT +(φ−1)π−φπT )

δϕ
.

Plugging the definition of iT into the above equation implies that:

H̃c(π) =
(1− φ)(π − πT )B̄σeγ(ρ+δ+(φ−1)(π−πT ))

δϕ
,

where π < πT since φ > 1 for consumption to be positive (c > 0).
If π < π̃opt (π > π̃opt), then H̃ ′c(π) > 0 (H̃ ′c(π) < 0), where:

π̃opt =
ρ + δ + φπT − iT − 1/γ

φ− 1
= πT +

1

γ(1− φ)
.

Note that π̃opt is increasing in φ. We also need to ensure that π̃opt > πELB , which is
satisfied when:

πT >
φ + γ(φ− 1)(iELB − (ρ + δ))

γ(φ− 1)
.

There exist two steady states: one with π < π̃opt and the other with π > π̃opt . The
latter has a high real interest rate (relative to the ELB case) where i − π > ρ + δ − 1/γ,
and we denoted such steady state by E1. To see this, let us consider the following:

(i − π)−
(
ρ + δ − 1

γ

)
> 0

ρ + δ + (φ− 1)(π − πT )−
(
ρ + δ − 1

γ

)
> 0

π > πT +
1

(1− φ)γ
.

As a result, i − π > ρ + δ − 1/γ if and only if π > πT + 1
(1−φ)γ

= π̃opt . This high real
rate is also higher than the real interest rate in the ELB region.

The stability analysis of these two steady states is given by:

 ˙̂ct

˙̂πt

 =

 −(φ− 1)(π − πT ) (φ− 1)c
[
1− γ(−(φ− 1)(π − πT ))

]
κ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

π̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The
determinant det(J) = −κ(φ−1)c

[
1− γ(−(φ− 1)(π − πT ))

]
. If π > π̃opt , then det(J) <

0, implying that the steady state E1 is saddle stable. If π < π̃opt , then det(J) > 0, meaning
that the first steady state is unstable.
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Combining Case 1 and Case 2 shows that there are two stable steady states: the low-
real-rate, low-inflation steady state (denoted by E2) and the high-real-rate, high-inflation
steady state (denoted by E1).

Q.E.D.

A.9 Proof of Proposition 7

The proof is related to the proof of Proposition 6 in Section A.8. Like in Section A.8,
for a solution at the ELB to exist we need the condition πopt < πELB to hold. This is met
when:

φ >
γ(ρ + δ − iELB)

γ(ρ + δ − iELB)− 1
and γ >

1

ρ + δ − iELB
.

Moreover, for a solution to exist in the decreasing portion of Hc(π), we need to have:

Hc(πELB) ≤ ȳ − G .

Recall that πELB = iELB−(ρ+δ)+(φ−1)πT

φ
≡ F (φ) and that πELB is increasing in φ (i.e.,

F ′ > 0). Note also that H ′c(π) < 0 for π > πopt . As a result, taking the inverse of the
function Hc , we obtain:

πELB ≡ F (φ) ≥ H−1
c (ȳ − G ),

and since F is increasing in φ, we get:

φ ≥ F−1(H−1
c (ȳ − G )).

This implies that, holding other parameters fixed, an equilibrium E2 (low-real-rate, low-
inflation steady state) exists if φ is above a cutoff. The equilibrium E2 is also stable (see
Section A.7). Q.E.D.

A.10 Proof of Proposition 8

This proof is also similar to the ones of Propositions 6 and 7:

c =
(ρ + δ + π − iELB)B̄σeγ(iELB−π)

δϕ
≡ Hc(π; ρ).

For given parameters, Hc(π; ρ) ≡ F̃ (ρ) is also increasing in ρ for any inflation rate π. At
the low-real-rate, low-inflation equilibrium E2, the function Hc(π; ρ) is decreasing in π (that
is, π > πopt).

We start by assuming that πELB takes iT as a given constant (that is, the definition of

iT = ρ + δ + πT is not taken into account), implying that πELB = iELB−iT +φπT

φ
.

For an equilibrium E2 to exist in the decreasing part of Hc , the following relationship
must hold:
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H(πELB ; ρ) ≡ F̃ (ρ) ≤ ȳ − G .

This implies that:

ρ ≤ F̃−1(ȳ − G ).

As a result, for sufficiently low ρ, (i.e., ρ below a cutoff), the low-real-rate, low-inflation
steady state (E2) exists. The steady state equilibrium E2 is also stable (see Section A.7).

When we take into account the definition of iT = ρ + δ + πT , we obtain that πELB =
iELB−(ρ+δ)+(φ−1)πT

φ
is decreasing in ρ. That is, a decrease in ρ leads to an increase in

πELB , which in turn leads Hc(πELB) to fall. This reinforces the result that a low-real-rate,
low-inflation equilibrium exists only for sufficiently small ρ.

Q.E.D.

A.11 Proof of Proposition 9

Based on the proof in Section A.8, the stable ELB equilibrium is such that πopt < π <
πELB and:

(ρ + δ − iELB)B̄σeγ(iE LB−π)

δϕ
= ȳ − G .

This implies that:

∂π

∂B̄
=

σ(ρ + δ + π − iELB)

B̄ [γ(ρ + δ + π − iELB)− 1]
.

Since π > πopt = 1/γ + iELB − (ρ + δ) in this equilibrium, ∂π
∂B̄

> 0. As a result,

(low)inflation at the stable ELB equilibrium is increasing in B̄ .
Note also that Hc(π) increases with B̄ for any inflation rate π and that πELB is inde-

pendent of B̄ .
Let’s find a cutoff above which the ELB equilibrium ceases to exist, which arises when

Hc(πELB) > ȳ − G . Rearranging this inequality leads to:

B̄ >
δϕ(ȳ − G )

(ρ + δ + πELB − iELB)eγ(iELB−πELB )
≡ B̄cutoff .

Therefore, when B̄ > B̄cutoff , the ELB equilibrium ceases to exist. If B̄ < B̄cutoff ,
limB̄→B̄cutoff (π) = πELB . At B̄cutoff , there is a discontinuity and the stable ELB equilib-
rium disappears.

Q.E.D.
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A.12 Proof of Proposition 10

We assume that ϕ is small. Equations (18), (16) and (17) govern the dynamics of
it , ct , πt with the Taylor rule not satisfying the Taylor principle. Such a Taylor rule is given
by:

it = max
{

0, ρ + δ + πT + φ(πt − πT )
}

φ < 1, iT = ρ + δ + πT , πT > 0.

Consider the case where it > iELB = 0. The steady state consumption (ċt = 0) is given
by:

c = H̃c(π) =
(ρ + δ − (φ− 1)π + φπT − iT )B̄σeγ(iT +(φ−1)π−φπT )

δϕ
.

Plugging the definition of iT into the above equation implies that:

H̃c(π) =
(1− φ)(π − πT )B̄σeγ(iT +(φ−1)π−φπT )

δϕ
.

For consumption to be positive, we must have π > πT since φ < 1.39 H ′c ≥ 0 if and only
if (1−φ)[1−γ(ρ+δ+(1−φ)π−iT +φπT )] ≥ 0, that is, if (1−φ)[1−γ(−(φ−1)(π−πT ))] >
0. Rearranging this equation with φ < 1, we obtain that when:

π <
1

1− φ
[
1/γ − (ρ + δ) + iT − φπT

]
= πT +

1

γ(1− φ)
≡ π̃opt ,

the steady state consumption increases in π (H̃ ′c > 0). If π > π̃opt , then H̃ ′c < 0. The
optimum consumption is achieved at π̃opt .

The steady state equilibrium is found when H̃c(π) = ȳ − G . There are two equilibria
when i > iELB , π̃opt > πELB and H̃c(πELB) < ȳ − G . These two equilibria are:

1. The equilibrium with π < π̃opt and c = ȳ − G .

2. The equilibrium with π > π̃opt and c = ȳ − G . We denote this E2.

The second equilibrium with π > π̃opt corresponds to the low-real-rate equilibrium where
i − π < ρ + δ − 1/γ. To show this, we have (with φ < 1):

(i − π)−
(
ρ + δ − 1

γ

)
< 0

ρ + δ + (φ− 1)(π − πT )−
(
ρ + δ − 1

γ

)
< 0

π > πT +
1

(1− φ)γ
= π̃opt .

39It can also be shown that if π < πT , r > ρ+ δ, which is impossible.
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Hence the low real interest rate corresponds to the case when π > πopt and φ < 1 and it
is denoted E2.

The stability analysis of these two steady states is given by:

 ˙̂ct

˙̂πt

 =

 −(φ− 1)(π − πT ) (φ− 1)c
[
1− γ(−(φ− 1)(π − πT ))

]
κ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

π̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The
determinant det(J) = −κ(φ−1)c

[
1− γ(−(φ− 1)(π − πT ))

]
. If π < π̃opt , then det(J) >

0, implying that the steady state with π < π̃opt is unstable. If π > π̃opt , then det(J) < 0,
meaning that the low-real-rate steady state denoted E2 is stable.

Note that the unique stable steady state is such that π > πT + 1
γ(1−φ)

> πT since

φ < 1. As φ converges to 1, πT + 1
γ(1−φ)

converges to infinity and consequently π goes to
infinity.

Therefore, there is a unique stable steady state when φ < 1, and such steady state is
characterized by π > πT and y = ȳ , and as φ converges to 1, π converges to infinity.

Q.E.D.

B Extending the Model to Include Productive Assets: Lucas Trees

In this appendix we introduce an outside asset to our set-up, where the price of the
asset adjusts to changes in interest rates, making the effective supply of assets endogenous.
We want to use this extension to examine the robustness of the results in the paper to
incorporating effects of asset revaluation when real interest rates fall. As we will discuss,
as long as the targeted inflation rate in the Taylor rule is relatively low, the main results
of the paper extend without modification to this richer environment. However, when the
inflation rate targeted becomes sufficiently high, the forces highlighted in the main text are
still at play, but more complex equilibrium configurations can arise.

To introduce a second asset to our set-up, suppose there is a mass one of Lucas trees
that produce a flow f (fruit) of goods. If these trees lasted forever, and the real rate of
interest were fixed at r , their value would be f

r
. However, in order to allow for a risk

premium and negative real rates, assume that trees die at flow rate ω and that dead trees
are continuously replaced with new trees redistributed in lump sum fashion to households.
This ensures that the total mass of trees remains constant. In equilibrium, the price of a
Lucas tree will adjust so that households always want to hold one unit of Lucas trees. The
consumption Euler equation will accordingly become:

ċt

ct
= rt − ρ− δ + δctVa(B̄ + ztf , rt),

where zt is the price of a Lucas tree and it satisfies the standard asset pricing equation:
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żt

zt
=

f

zt
− (rt + ω).

The goods market equilibrium condition can now be expressed as yt + f = ct +G , where
yt are goods produced by labour and yt + f is the aggregate output. In this environment,
yt can again be viewed as being demand determined by the Euler equation. In steady state,
condition ċt = 0 therefore implies that:

c =
ρ− δ − r

δVa(B̄ + f
r+ω

, r)
.

Assumption 1 is no longer sufficient to guarantee that the ċt = 0 curve is hump shaped
in r . In fact, in the presence of Lucas trees, the ċt = 0 curve will not be hump shaped
in r as before, because it will have a negative slope for r close to ρ + δ and will have
a negative slope for r close to −ω. Nonetheless, the ċt = 0 curve will still tend to be
non-monotonic in r if Var is sufficiently negative. To illustrate when this will happen, let
us return to assuming that V (a, r) is of the form ϕa1−σ exp−γr

1−σ . In this case, if γ > 1
ρ+δ+ω

and f is not too large, then the ċt = 0 curve will take the S-shaped as given in Figure B1.
If f is very large or if γ is small (γ < 1

ρ+δ+ω
), then the ċt = 0 curve will likely be negatively

sloped throughout. Obviously, if ċt = 0 becomes monotonic declining, the novel results
highlighted in the text would no longer hold. Hence, we will assume in the remainder that
the ċt = 0 curve is as in Figure B1. In this figure we have superimposed the long-run goods
market equilibrium condition c = ȳ + f − G . The important element to note in this figure
is that there are now potentially three real interest rates compatible with full-capacity use.
The two previous equilibria denoted E1 and E2 remain, but now a third equilibrium can
arise. This third equilibrium, denoted E4, has an associated real interest rate, denoted r4.40

This equilibrium arises with both very low real interest and high asset demands on the part
of households. In the absence of Lucas trees, at r4 there would be an excess demand for
assets. However, with the Lucas trees, the high demand for assets at r4 is satisfied by the
large valuation of Lucas trees.

Assuming ċt = 0 is as in Figure B1, we can then move on to combine the Euler equation
with a Phillips curve and a Taylor rule to look at the joint determination of c and π as
we did before. There are now two cases to consider. The easy case is when r4 is small
relative to the inflation target πT in the Taylor rule, that is, when r4 < −πT . In such a
case, all the main results from Section 4 carry over. In particular, if monetary policy is
not very aggressive, then there can be only one stable steady state equilibrium, and that
corresponds to the high-real-rate equilibrium E1. As monetary policy gets more aggressive,
the equivalent of equilibrium E2 will appear as a stable steady state, and as monetary policy
becomes gradually more aggressive, the basin of attraction of this E2 equilibrium will expand
while that of E1 will become arbitrarily small. In this sense, the analysis in the main text is
robust to including Lucas trees as long as r4 and πT are sufficiently small.

40Note that r4 may well be negative.
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Figure B1: Equilibrium trajectories in the presence of Lucas trees when Var is sufficiently
negative and f is not too large

Now if r4 > −πT , then the equilibrium configuration can get more complex than that
presented in the main text. For example, it can take the form as given in Figure B2.41 In
this case, it is possible to have three stable steady states with different levels of inflation
and different real rates. The high-real-rate equilibrium corresponding to E1 remains. As
before, an ELB equilibrium with a low real rate will also be present when monetary policy
is sufficiently aggressive. But now we get the possibility of a third equilibrium; this one
implements the real rate r4 and is not in the ELB region. This equilibrium has a low real
rate — even lower than that of the E2 equilibrium — even though the nominal interest rate
is positive. So the price of Lucas trees at the E4 equilibrium, which is given by z = f

ω+i−π
in steady state, will be higher in the E4 equilibrium than in both the E2 and E1 equilibria.
With such a configuration, if the economy were to start in the E1 equilibrium and be subject
to a set of demand shocks, it could go first from E1 to E4, with a drop in inflation and a
rise in asset prices. This would be followed later by a move from E4 to E2 with a further
drop in inflation, but now it would be associated with a fall in asset prices. The last switch
could appear as if the fall in asset prices were depressing demand and leading to a fall in
inflation; however, a better interpretation would be that the lower inflation at E2 versus E4

is causing higher real rates and thereby depressing asset prices.

41The more complex configuration presented in Figure B2 also requires — in addition to r4 > −πT —

that monetary policy be sufficiently aggressive. In particular, it requires that φ > πT +ρ+δ
πT−ω .
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Figure B2: Equilibrium trajectories in the presence of Lucas trees when the inflation target
is sufficiently high: three stable steady states

C Accounting For a Forward-Looking Phillips Curve

So far, our analysis has focused on a backward-looking Phillips curve. In this appendix,
we consider a forward-looking Phillips curve in our set-up and discuss its implications. The
Phillips curve is specified as:

π̇t = κ(yt − ȳ).

With this specification, when κ < 0, we have a forward-looking Phillips curve and πt

needs to be treated as a jump variable and this is the focus of this appendix. In contrast, if
κ > 0, we have a backward-looking Phillips curve and πt is treated as a state variable as in
the main text. The characterization of steady states is similar in both situations. However,
the stability of these steady states differ. The low-real-rate, low-inflation steady state E1

and the high-real-rate, high-inflation steady state E2 that were saddle in the presence of a
backward-looking Phillips cure are now a source when the Phillips curve is forward-looking.
In other words, when κ < 0, the two equilibria are determinate stable and the system would
jump to one of them instead of exhibiting hysteresis as in the backward-looking Phillips
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curve case.
To show this, first note that because πt is a jump variable when the Phillips curve

is forward-looking, stability requires that the steady states to be a source.42 A system
that is a source implies a determinate equilibrium. This means that the only non-explosive
equilibrium trajectory is to jump to the steady state and remain there; if the economy
jumps elsewhere, inflation or demand would become infinite. To examine the implications
for κ < 0, it is enough to focus the discussion around Figures 9 and 10 (as well as the
proofs of Proposition 6). We consider two cases: the binding ELB and non-binding ELB
constraint.

Case 1: binding ELB; π < πELB and i = iELB . The dynamics of ct and πt are governed
by the Phillips curve and the Euler equation. Recall that there are two potential steady
states: the first one is when c = ȳ −G and π < iELB − (ρ+ δ) + 1/γ while the second one
is when c = ȳ −G and π > iELB − (ρ+ δ) + 1/γ which corresponds to the E2 steady state.
From the proof of Proposition 6 in Section A.8, the two-dimensional dynamical system in
a matrix form is given by:

 ˙̂ct

˙̂πt

 =

 π + ρ + δ − iELB c
(
−1 + γ(π + ρ + δ − iELB)

)
κ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

π̂t

 ,

where x̂t ≡ xt − x means the deviation of a variable xt from its steady state x . The
trace tr(J) = π + ρ + δ − iELB > 0 since π > −ρ − δ. The determinant det(J) =
−κc

(
−1 + γ(π + ρ + δ − iELB)

)
. If π > iELB − (ρ+ δ) + 1/γ, then det(J) > 0, implying

that the low-real-rate, low-inflation steady state E2 is a source. If π < iELB− (ρ+δ) + 1/γ,
then det(J) < 0, meaning that the first steady state is saddle. Note that the existence
of E2 depends on the aggressiveness of monetary policy. When monetary policy is not too
aggressive (but with φ > 1), as depicted in Figure 9, and inflation is less than πELB , only
the first steady state with π < iELB − (ρ + δ) + 1/γ exists. In such a situation, this single
steady state is saddle.

Case 2: non-binding ELB; π > πELB and i > iELB . Similarly, there are also two
potential steady states in this case: the first is with π < πT + 1

γ(1−φ)
and c = ȳ − G and

the second one is π > πT + 1
γ(1−φ)

and c = ȳ − G which equals to the steady state E1. In
the same fashion, the two-dimensional system governing the dynamics of ct and πt is:

42Mathematically, a steady state is a source when the determinant and the trace of the Jacobian J
evaluated at the steady state are both positive.
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 ˙̂ct

˙̂πt

 =

 −(φ− 1)(π − πT ) (φ− 1)c
[
1 + γ(φ− 1)(π − πT )

]
κ 0


︸ ︷︷ ︸

J Jacobian evaluated at the steady state

 ĉt

π̂t

 .

The trace tr(J) = −(φ − 1)(π − πT ) and tr(J) > 0 since π < πT and φ > 1. The
determinant det(J) = −κ(φ − 1)c

[
1 + γ(φ− 1)(π − πT )

]
. If π > πT + 1

γ(1−φ)
, then

det(J) > 0, implying that the steady state E1 is a source since tr(J) > 0. If π < πT + 1
γ(1−φ)

,

then det(J) < 0, meaning that the first steady state is saddle and this equilibrium would
exhibit an indeterminacy. The existence of the first steady state with π < πT + 1

γ(1−φ)

depends also on the aggressiveness of monetary policy (φ). When monetary policy is not
too aggressive but with φ > 1 as depicted in Figure 9, only the high-real-rate, high-inflation
steady state E1 exists and it is determinate stable.

The takeaways from these two cases can be summarized as follows: First, when monetary
policy is not too aggressive (but with φ > 1) as depicted in Figure 9, there are two steady
states. Only the high-real-rate, high-inflation steady state E1 is a source and is therefore
determinate stable. There is also the low-inflation steady state in the ELB region which
is saddle and exhibits indeterminacy. Second, when monetary policy is aggressive (with
φ > 1), as displayed in Figure 10, both the low-real-rate, low-inflation steady state E2 and
the high-real-rare, high-inflation steady state E1 are a source and determinate stable. The
system would jump to one of the steady states instead of exhibiting hysteresis as observed
with a backward-looking Phillips curve.
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