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Abstract 
How does interconnectedness affect the course of a pandemic? What are the optimal within- 
and between-state containment policies? We embed a spatial SIR model into a multi-sector 
quantitative trade model. We calibrate it to US states and the COVID-19 pandemic and find 
that interconnectedness increases the death toll by 146,200 lives. A local within-state 
containment policy minimizes welfare losses relative to a national policy or to one that 
reduces mobility between states. The optimal policy combines local within- and between-
state restrictions and saves 289,300 lives. This optimal policy induces a peak reduction in 
mobility of 25.97% that saves approximately 23% more lives. Different timing of policies 
across states is key to minimizing losses. States like South Carolina might have imposed 
internal lockdowns too early but travel restrictions too late. 

Topics: Coronavirus disease (COVID-19); Economic models; Regional economic developments 
JEL codes: F1, H0, I1, R1 



1 Introduction

Interconnectedness through trade and mobility across states is a pillar of the constitution
of the United States. The COVID-19 pandemic has challenged this long-standing paradigm.
Some policymakers have advocated for the limitation of mobility of individuals and goods
across states as a way to mitigate the pandemic. Concerns that interconnectedness exacerbates
the diffusion of the virus and dampens the effects of containment policies are rising.

In this paper, we consider interconnectedness for two reasons. First, to understand how
an interconnected economy impacts the propagation of the disease and economic activity
compared with a one-region economy. Second, to study containment policies that restrict the
movement of people and goods across states, such as traveling restrictions or quarantines.
Specifically, we analyze the extra benefit of between-state policies in saving lives and minimizing
welfare losses.

In the last 20 years, the world has faced significant threats, including SARS, MERS, Ebola,
avian influenza and swine flu. The likelihood of pandemics has increased over the past century
due to rising global travel and integration, urbanization, changes in land use, and greater
exploitation of the natural environment. Evidence suggests that the likelihood of pandemics
will continue and intensify in the next decades (Jones et al., 2008; Morse, 1995). The higher
vulnerability is driven not only by increased travel and tourism, but also by the increase
in trade because infections also spread through insects, food and animals moving between
regions.1 Therefore, besides creating policies that mitigate the increased likelihood of future
pandemics, it is also crucial to be ready to implement the right mitigation policies at the
onset of a new pandemic.

Against this background, the main contribution of this paper is to provide a quantitative
multi-region framework with spatial infection diffusion to study the evolution of pandemics
and related economic consequences. The model is calibrated to US states using state-level
data on COVID-19 cases, inter-state trade flows and mobility of people across states through
mobile phone tracking. Through the lens of the model, we analyze a battery of optimal
containment policies imposed at different geographical levels. In particular, we analyze and
compare nation-wide, state-level and between-state policies. Although we apply this model
to analyze the COVID-19 pandemic in the US, this framework is a suitable benchmark to
analyze the evolution and optimal containment policies of other infectious events, such as
future pandemics, or even endemic diseases and bioterrorism-related events.

The economic block of the model features two sectors: a regular consumption good
and a social good sector. Each heterogeneous location produces a differentiated regular

1https://www.cnn.com/2017/04/03/health/pandemic-risk-virus-bacteria
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consumption good that is traded across locations, generating an economic link across locations
and mobility of people that varies with the level of the economic activity. For simplicity, we
introduce mobility in a reduced form that positively relates mobility and economic trade
flows. This assumption is motivated by empirical evidence of a positive relationship between
inter-state trade and mobility. We analyze pre-pandemic US data and find a positive and
strong correlation between mobility flows and trade volume between US states, even after
conditioning for a large set of covariates and state fixed effects.2 Therefore, given this
empirically validated relationship presented in the model, a contraction in consumption in
response to the evolution of the pandemic lowers both economic flows and mobility across
regions. Exogenous restrictions on the movement of people put limits on trade and thus lead to
economic losses. This modeling choice aims to capture several features of the economy. First,
the movement of goods requires the movement of people. Second, tourism, working-related
trips and other similar activities generate simultaneous movement of people and transference
of resources across states. This modeling assumption allows for tractability and it is suitable
to analyze the relationship between disease transmission, people’s mobility and economic
activity, which is the main goal of this paper.

The SIR block builds on Eichenbaum et al. (2020), which assumes that individuals
internalize how their actions impact their own probability of getting infected, leading to
an endogenous change in consumption and labor supply even in the absence of mitigation
policies. We depart from them in three dimensions. First, infection transmission is sector
specific. The probability of getting infected through working and consuming in the social
sector is higher than in the regular good sector. Second, we distinguish between symptomatic
and asymptomatic infected agents. Since asymptomatic agents are not aware of their true
health status, their consumption and working behavior pose a higher threat to the spread of
the virus. Third, we add a spatial component by assuming that agents in one state can be
exposed to infected people in other states. The exposure across states is directly related to
the size of economic flows and people’s mobility between states, which are both determined
endogenously in equilibrium. The greater the economic flows across regions, the greater the
movement of people across states and therefore the higher the probability of the diseases
spreading across states.

This framework allows us to highlight the role of interconnectedness in the spread of
the disease and its impact on economic activity. Specifically, while mobility of goods and
people favors economic activity, it simultaneously contributes to a faster spread of the disease,

2For simplicity, and given the short-term nature of the questions we are after, we assume that agents do
not permanently migrate across states or change sectors. Although we could easily relax this assumption,
doing so would substantially increase computational complexity. Moreover, other frameworks, such as that of
Giannone et al. (2020), are more suitable to analyze these decisions in a mid- to long-term horizon.
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creating a tension between economic and health outcomes. Estimating the spatial diffusion
parameters is key to the quantification results of the experiment. To estimate them, we rely
on data from the diffusion of COVID-19 across states as well as patterns of trade between
states.

We present a set of positive and normative results. On the positive side, we find that the
dynamics of the pandemic measured in terms of health and economic outcomes are more severe
in a model with interconnectedness relative to one with isolated states. Without containment
policies, a connected economy generates 146,200 extra deaths than an economy composed of
isolated states. The peak drop in consumption is 11.4% in the model with connected states
but 8.9% when we consider isolated states. These differences are substantially larger in states
with lower initial infections, lower population and larger trade openness. In terms of welfare,
we find that the welfare loss generated by the pandemic is 0.055 p.p. higher in the economy
with connected states. Another important feature of our model is the behavioral response of
agents who internalize how their actions impact their probability of getting infected. We find
that a model that doesn’t consider this behavioral response overestimates the total death toll
by 130,000, while the consumption peak drop is 10.4 p.p. lower, which shows the importance
of this feature in designing the optimal policy.

On the normative side, we study within-state optimal containment policies that resemble
lockdowns. We differentiate between homogeneous (henceforth, national) and heterogeneous
(henceforth, local) lockdowns across states. We also bring to the table a between-state
mitigation policy that echoes traveling restrictions or quarantines. There are three main
takeaways. First, local lockdown policies mitigate the pandemic more effectively than national
ones. We highlight that the key factor determining the success of optimal local lockdown is
time flexibility. The national lockdown would be imposed too early for small and low infection
states like South Carolina and too late for states with high population and infections such as
New York. Under both national and local optimal policies, lockdowns are almost exclusively
imposed on the social sector. Second, a policy that restricts trade and mobility across states
mitigates welfare losses but it doesn’t reduce significantly the total death toll. This suggests
that given the internal spread of the pandemic, limiting between-state mobility alone cannot
mitigate the pandemic. Third, combining local lockdowns and travel restrictions is the most
effective policy. This policy would save 289,300 lives, which is approximately 31,800 more
lives saved under an optimal local within-state lockdown.

This paper speaks closely to the fast-growing literature of papers on COVID-19 that in
the last few months have contributed to understanding the economic and health trade-off of
COVID-19 and optimal policy responses (e.g. Alvarez et al., 2020; Atkeson, 2020; Atkeson
et al., 2020; Eichenbaum et al., 2020; Faria-e-Castro, 2020; Jones et al., 2020; Glover et al.,
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2020; Guerrieri et al., 2020; Piguillem et al., 2020). A few papers in this literature have, like
ours, analyzed the spatial dimension of the COVID-19 crisis, studying several economic and
policy implications of the spread of the disease Among others, we highlight Antràs et al. 2020,
Argente et al. 2020, Cuñat and Zymek 2020 and Fajgelbaum et al. 2020.

We contribute to the literature above in three ways. First, we develop a quantitative model
of interregional trade and geographic mobility in which agents internalize the impact of their
actions on their probability of getting infected. Second, through the lens of the calibrated
model to US states, we study and compare optimal state-specific versus national containment
policies. Third, we bring to the table the study of a between-state containment policy that
could be interpreted in light of required quarantines and travel restrictions that have been
put in place in recent months by several states.

2 Model

We build a two-sector quantitative trade model to study the role of interconnectedness in
the transmission of a pandemic. Agents internalize how their actions impact their probability
of getting infected and optimally choose consumption and labor supply. On the epidemiological
side, we add an infection diffusion process across space and assume that each production
sector has different infection transmission rates. The assumption that the virus diffusion also
happens through trade and individuals’ movement across states is a way to model trips done
both for leisure and for production reasons, such as work meetings, conferences, and trade
fairs. To validate this assumption, we test for the correlation between mobility and trade
volume across US states. We find a strong positive relationship between trade and mobility
after controlling for multiple variables and state-fixed effects. More details are reported in
section 3.5.

2.1 Economic Environment

Space The economy is defined by L locations indexed by l. Every location produces a
tradable differentiated regular consumption c and a non-tradable social good x. Locations
differ in size, sector-specific productivities and labor force distribution.

Preferences Before the pandemic, all agents across regions are identical and maximize a
similar lifetime utility function:

Ul =
∞∑
t=0

βtu(cl,t, xl,t, nl,t),
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where the flow utility function is assumed to be:

u(cl, xl, nl) = log
( (

φρc1−ρ
l + (1− φ)ρx1−ρ

l

) 1
1−ρ

)
− χ n

1+θ
l

1 + θ
.

β ∈ (0, 1) denotes the discount factor, and cl,t, xl,t, nl,t denote the regular good consumption,
social good consumption and hours worked, respectively. Regular good consumption cl

is defined as a bundle of traded goods from different regions combined through the CES
aggregator:

cl =
 L∑
j=1

αl,j c̃
ε−1
ε

l,j

 ε
ε−1

(1)

where ε > 0 is the elasticity of substitution across products from different origins. c̃l,j denotes
the consumption in region l of regular good produced in region j and αl,j denotes the region
l’s measure of relative taste for the good produced in region j. This introduces economic
linkages across regions. A supply disruption in one region imposes a utility cost elsewhere
due to the lack of perfect sustainability across goods. Moreover, a negative income shock
propagates across space due to lower demand.

Production Each location produces c and x according to the following CRS technologies:

Cl = Zc
lN

c
l and Xl = Zx

l N
x
l

where N c
l and Nx

l are the labor demands for regular-consumption and social good sectors,
respectively. Labor cannot move across sectors and locations. Zc

l and Zx
l are the sector-location

specific productivities.
Prices are region and sector specific, p̃cl,t and pxl,t, respectively, for sector c and x. Wages

and prices are fully flexible, but restrictions on labor mobility across sectors and regions
induce a wage differential across sectors within region. Specifically, perfect competition implies
wcl,t = Zc

l p̃
c
l,t and wxl,t = Zx

l p
x
l,t.

2.2 SIR with Spatial Diffusion

We augment the canonical SIR model with a spatial diffusion component similar to a
long-standing tradition of spatial SIR models. We also allow for economic decisions to have an
impact on the probability of becoming infected.3 Given the heterogeneity across regions and

3Rowthorn et al. (2009) develop theoretical properties of spatial SIR models. Bolker and Grenfell (1995),
and Rvachev and Longini Jr (1985) apply spatial SIR models to study influenza in the US. See Gatto et al.
(2020) for spatial SIR work applied to COVID-19.
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social contact intensity across sectors, the probability of becoming infected is region-sector
specific. It depends on the region’s characteristics and increases with the intensity of the
economic activity, the number of infected in the region and also the number of infected agents
in other regions, especially those with stronger economic links.

We assume that agents are in one of the following health states: Susceptible, Infected
(Asymptomatic and symptomatic), Recovered and Deceased. In a given region l, the total
number of agents of sector k ∈ {c, x} in these groups are given by Skl,t, Ikl,t, Rk

l,t and Dk
l,t,

respectively. A fraction λ ∈ [0, 1] of infected are asymptomatic while 1− λ are symptomatic.
We define the current number of symptomatic as Akl,t = λIkl,t and the cumulative number of
asymptomatic as Ākl,t that is given by Ākl,t = λ

(
Ikl,t +Rk

l,t

)
.4

Susceptible agents, those who haven’t contracted the disease, may become infected by
interacting with infected people. Infected people, both symptomatic and asymptomatic,
recover at rate πr or die at rate πd, which are assumed to be common across sectors and
regions. We consider as asymptomatic all infected individuals who are not aware that they
are infected and thus behave as susceptible.5 The evolution of the number of individuals in
each health status in a given location l and sector k is given by the following set of equations:6

Skl,t+1 =Skl,t −Hk
l,t

Ikl,t+1 =Ikl,t +Hk
l,t − (πr + πd)Ikl,t

Rk
l,t+1 =Rk

l,t + πrI
k
l,t

Dk
l,t+1 =Dk

l,t + πdI
k
l,t

Popkl,t+1 =Popkl,t −Dk
l,t

The number of newly infected, Hk
l,t = hkl,tS

k
l,t, is given by the number of susceptible in each

4Since the true health status is never revealed for the asymptomatic, they will continue behaving as
susceptible even after recovering. Therefore, to compute aggregate variables, we need to keep track of the
cumulative number of asymptomatic.

5In our framework, it is important to distinguish between individuals who know they are infected and those
who, despite being infected, do not know their true health status, since individuals may behave differently
once they become aware of their infection. Therefore, we consider as asymptomatic infected individuals who
do not know they are infected. We define as symptomatic all individuals who are infected and have symptoms
and all infected who do not have symptoms but know they are infected, for instance, non-symptomatic people
who were randomly tested.

6The total population in a given sector-region declines with the number of the deceased.
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sector times the probability of becoming effect, hkl,t, which is defined as follows:

hkl,t × Popl,t = π1,lc
k,s
l,t

(
λCa

l,t + (1− λ)Ci
l,t

)
Il,t + π2,lx

k,s
l,t

(
λXa

l,t + (1− λ)X i
l,t

)
Il,t

+ π3,ln
k,s
l,t

[(
λNa,k

l,t + (1− λ)N i,k
l,t

)
Ikl,t + 1(k=x)

(
λXa

l,t + (1− λ)X i
l,t

)
Il,t
]

+ π4,l

γl,lIl,t +
∑
j 6=l

(γl,j + γj,l)
C̃l,j,t + C̃j,l,t

C̃l,j + C̃j,l
Ij,t


(2)

where Il,t is the total number of infected in location l at time t that is given by the sum of
infected people working in both sectors, Il,t = Icl,t + Ixl,t.7 Among the infected, the fraction
(1− λ)Il,t have symptoms and the fraction λIl,t are asymptomatic and behave as susceptible.
ck,sl,t , xk,sl,t and nk,sl,t are, respectively, the consumption of regular good, consumption of social
good and the number of hours worked by a currently susceptible agent who lives in location
l at time t and works in sector k. Ci

l,t, X i
l,t are, respectively, the average consumption of

regular good and the average consumption of social good of of infected (symptomatic) agents
in location l at time t. Nk,i

l,t is the average number of hours worked by infected people in
location l and sector k. Ca

l,t, Xa
l,t and Na,k

l,t are the equivalent allocation for asymptomatic
agents. C̃l,j,t is the average consumption in location l of goods produced in location j and
C̃j,l,t is the average consumption in location j of goods produced in location l at time t. C̃l,j
and C̃j,l correspond to the same allocations in the pre-pandemic equilibrium.8

According to equation (2), susceptible people can contract the disease by meeting infected
people while purchasing regular goods, consuming social goods, working or meeting infected
people outside working and consumption activities. Following Eichenbaum et al. (2020), we
assume that the probability of contacting people while purchasing goods is directly related to
the shopping intensity and the number of both infected and susceptible people. π1 and π2

relate to the probability of contracting the disease per encounter during shopping for regular
and social goods, respectively. Asymptomatic and symptomatic contribute differently to the
number of new infected as they have distinct consumption and work behavior.

The likelihood of becoming infected while at work in the regular sector is proportional
to the number of agents and hours worked by infected and susceptible. Agents in the social

7The total number of individuals in location l at time t in each of the health status is given by Bl,t =
Bcl,t + Bxl,t for B ∈ {S, I,R,D,A, Ā, Pop}. The total population in each sector k is given by Popkl,t =
Skl,t + Ikl,t +Rkl,t.

8The average consumption of regular goods in location l at time t of individuals in health status B is
defined as: CBl,t = Bcl,tc

c,B
l,t

+Bxl,tc
x,B
l,t

Bl,t
, for B = {S, I,R,A, Ā}. XB

l,t follows the same reasoning. The average

consumption of regular good is given by Cl,t = (Sl,t+λ(Ikl,t+Rkl,t))CSl,t+(1−λ)Il,tCIl,t+(1−λ)Rl,tCRl,t
Popl,t

. Xl,t, C̃l,j and
C̃j,l are computed in a similar fashion. Given the lack of heterogeneity within health status, Nk,s

l,t = nk,sl,t and
Nk,i
l,t = nk,il,t .
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sector, besides interacting with co-workers, are also exposed to potentially infected clients.
We then assume that the number of infections depends both on hours worked and the number
of social goods consumed by infected agents, as a proxy for the total number of potential
interactions with infected clients. We assume that the probability of becoming infected in the
case of meeting one infected person at work, π3, is the same in both sectors. But as workers
in the social sector meet on average more people, the effective probability of contracting the
virus is higher in sector x.

The last component of equation 2 defines the infection spatial diffusion. As people move,
susceptible people may be exposed to infected ones from different regions. We assume that
the likelihood of meeting an infected person from another region is directly related to the
fraction of the population that moves and the level of economic linkage between the two
regions. We assume that the number of people moving across regions is proportional to the
trade-flows in the period. Specifically, the gross flow of individuals moving between locations
l and j is given by (γl,j + γj,l) C̃l,j,t+C̃j,l,tC̃l,j+C̃j,l

, where C̃l,j + C̃j,l are the pre-pandemic gross trade
flow between these two states. Therefore, γl,j is the average share of the population of the
region j present in the region l before the beginning of the pandemic. Then, we interpret
γl,j + γl,j as the movement of people across regions consistent with the pre-pandemic gross
trade flows. The bilateral γ’s, as explained next, vary across states and are calibrated to
match the movement of people across states before the pandemic. However, the flow of people
varies during the pandemic as it follows the change in trade flows. When the gross flows are
below the pre-pandemic values, the number of people moving across states declines as well.
Symmetrically, the number of people moving across locations is higher than pre-pandemic
values only if gross trade flows exceed the ones before the onset of the pandemic. Therefore,
the expected number of infected people from region j that a susceptible person in region l

may meet is proportional to the gross trade flows and number of infected people in region
j and is given by (γl,j + γj,l) C̃l,j,t+C̃j,l,tC̃l,j+C̃j,l

Ij,t, which decreases as trade flows fall. π4 reflects the
probability of becoming infected conditional on randomly meeting someone infected.

2.3 Optimization

Mobility frictions across locations and sectors and the absence of any insurance mechanism
against the risk of infection make the budget constraint location-sector-health specific. We
assume that the budget constraint of an agent in region l, sector k and health status
b ∈ {s, i, r, a} is:

(1 + τ cl,t)pl,tcl,t + (1 + τxl,t)pxl,tx
b,k
l,t = wkl,tν

bnk,bl,t + T k,bl,t (3)

where (1+τ cl,t)pl,tcl,t denotes the total cost of purchasing aggregate regular good cl,t in location
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l and that is defined as

(1 + τ cl,t)pcl,tcl,t =
L∑
j=1

(1 + τ cl,j,t)p̃j,tc̃l,j,t.

νb determines the effective hours worked for different health states. We set ν = 1 for the
susceptible/asymptomatic and recovered people and ν < 1 for infected (symptomatic) people.
τxl,t is the consumption tax on social good and τ cl,j,t is the tax rate in state l of goods from
region j. T b,kl,t are location-sector specific transfers. We assume that the government runs a
balanced budget every period and rebates the revenues generated in each location-sector to
the workers of the same location-sector. Taxes on foreign goods are rebated for both sectors
in the state.9

Agents face a dynamic problem during the pandemic because their consumption and labor
decisions impact the future probability of becoming infected.10 In cases where they become
infected, the agent faces two consequences. First, they have lower labor productivity, which
translates into less effective hours of work and, therefore, income. Second, they face a positive
probability of death and, therefore, forgone utility.

Susceptible/Asymptomatic People A susceptible person s in location l in sector k chooses
consumption ck,sl and xk,sl and hours worked nk,sl , which solve the following optimization
problem:

Uk,s
l,t = max

{ck,s
l,t
,xk,s
l,t
,nk,s
l,t
}
u(ck,sl,t , x

k,s
l,t , n

k,s
l,t ) + β

[(
1− hkl,t

)
Uk,s
l,t+1 + hkl,tU

k,i
l,t+1

]
s.t. (3) (4)

where, hkl,t, the probability of becoming infected is defined in equation (2). We assume that
susceptible people take as given aggregate variables but understand how their consumption
and working decisions impact their probability of becoming infected. However, they don’t
internalize how their decisions impact the aggregate variables, giving origin to an infection
externality. An asymptomatic person has the same information set as a susceptible person
and therefore, behaves as such, solving the same optimization problem. Therefore, ck,al,t = ck,sl,t ,
xk,al,t = xk,sl,t and nk,al,t = nk,sl,t .

9Rebating foreign taxes solely to sector c underperforms in terms of mitigating welfare losses.
10Although total regular consumption c, social consumption x and total hours worked n are chosen taking

into consideration the dynamic component of the problem, the allocation of the consumption of c across goods
produced in different locations is purely a static problem. Given the consumption aggregator defined in (1), any
agent in region l at time t in sector k and health status b demands from region j: c̃k,bl,j,t =

(
(1+τcl,j,t)p̃j,t

αl,j,t(1+τc
l,t

)pc
l,t

)−ε
ck,bl,t .

The price level for c-sector goods in city l is given by (1 + τ cl,t)pcl,t =
[∑L

j=1 αl,j,t
ε
(

(1 + τ cl,j,t)p̃j,t
)1−ε

] 1
1−ε

.
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Infected (Symptomatic) People We implicitly assume that the cost of death is the foregone
utility of life and that infected people do not lose utility by infecting others. Therefore, infected
people that are symptomatic solve the following problem:

Uk,i
l,t = max

{ck,i
l,t
,xk,i
l,t
,nk,i
l,t
}
u
(
ck,il,t , x

k,i
l,t , n

k,i
l,t

)
+ β

[
(1− πr − πd)Uk,i

l,t+1 + πrU
k,r
l,t+1

]
s.t. (3) (5)

Recovered People Similarly to infected people, the decisions of recovered people are also
static and satisfy the following problem:11

Uk,r
l,t = max

{ck,r
l,t
,xk,r
l,t
,nk,r
l,t
}
u
(
ck,rl,t , x

k,r
l,t , n

k,r
l,t

)
+ βUk,r

l,t+1 s.t. (3)

2.4 Equilibrium Definition

Given the initial labor allocations across sectors and space,
{
Popkl

}k={c,x}

l={1,..,L}
, and a sequence

of taxes and transfers,
{
τ cl,t, τ

x
l,t, T

c
l,t, T

x
l,t

}l={1,..,L}
t={1,..,∞}

, the equilibrium consists of a set of prices,
{p̃cl,t, pxl,t, wcl,t, wxl,t}∞t=1, and allocations, {ck,bl,t , x

k,b
l,t , n

k,b
l,t }∞t=1, for each sector, k ∈ {c, x}, and

region, l ∈ {1, ..., L}, and health status, b ∈ {s, i, a, r}, that solve the agents’ maximization
problems and satisfy the goods and labor markets clearing conditions defined as:

∑
k∈{c,x}

(
Skl,t + λ

(
Ikl,t +Rk

l,t

))
Xk,s
l,t + (1− λ)Ikl,tX

k,i
l,t + (1− λ)Rk

l,tX
k,r
l,t =Xl,t

∑
j∈{1,...,L}

∑
k∈{c,x}

(
Skl,t + λ

(
Ikl,t +Rk

l,t

))
C̃k,s
j,l,t + (1− λ)Ikl,tC̃

l,i
l,j,t + (1− λ)Rk

l,tC̃
l,r
l,j,t =Cl,t

(
Sxl,t + λ

(
Ixl,t +Rx

l,t

))
Nx,s
l,t + (1− λ)Ixl,tνiN

x,i
l,t + (1− λ)Rx

l,tν
rNx,r

l,t =Xl,t/Z
x
l(

Scl,t + λ
(
Icl,t +Rc

l,t

))
N c,s
l,t + (1− λ)Icl,tνiN

c,i
l,t + (1− λ)Rc

l,tν
rN c,r

l,t =Cl,t/Zc
l

3 Taking the Model to the Data

3.1 Parameter Values

We calibrate the model at a weekly frequency and to the characteristics of pre-pandemic
US states. The decision to make a state-specific model is driven by the fact that most

11The solutions to agents’ problem are contained in the Online Appendix.
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containment policies, such as lockdowns and quarantines, are implemented at state level.
In the Online Appendix, section A.2, we describe in detail the full calibration. Here, we

restrict most of our attention to the parameters related to the spatial and SIR components.
Specifically, we set the elasticity of substitution across states, ε, to 5 as estimated by Ramondo
et al. (2016). The relative taste for goods of different states, α’s, are chosen to match the
share of imported goods from each state, using shipments data between-states from the
2012 Commodity Flow Survey. To pin down the movement of people across states before
the pandemic, γ, we use cell phone tracking data from Couture et al. (2020). Among the
smartphones that pinged in a given state on a certain day, this data reports the share of those
devices that pinged in each of the other 50 states at least once during the previous 14 days.
Since we want to calibrate to the pre-pandemic equilibrium, we consider cross-state cell phone
data from January 20, 2020, to February 15, 2020. Specifically, we set γ to the daily average
for that period. As stated in equation (2), the number of people moving in both directions
between state j and l is given by: (γl,j + γj,l) C̃l,j,t+C̃j,l,tC̃l,j+C̃j,l

, where C̃l,j + C̃j,l corresponds to the
pre-pandemic gross trade-flows. Therefore, in the pre-pandemic equilibrium, the movement of
people across states collapses to γl,j + γj,l. So our calibration of γ’s matches the pre-pandemic
gross trade flow between any two states.

Regarding the labor supply, we set χ to 0.001275 and the Frisch elasticity θ to 1 as in
Eichenbaum et al. (2020), which implies that all agents in this economy work 28 per week in
the pre-pandemic steady state. We estimate the state-sector productivities to match wages
from 2019 QCEW. This parameterization implies an average weekly income in the economy
of $58, 000/52. We also set the weekly discount factor β to be 0.9651/52 so that the average
value of a life is 10.7 million dollars in the pre-epidemic steady state, which is consistent with
the economic value of life used by US government agencies in their decisions process.

Regarding the SIR parameters, we set the fraction of asymptomatic, λ, to 0.3, we match
the probability of death to 1% and assume that 18 is the average number of days to recover or
die. Since the model is weekly, we set πd + πr = 7/18 and πd = 7× 0.01/18. These values are
within the range of the estimates reported by the CDC.12 To estimate π1,l, π2,l, π3,l and π4,l in
equation (2), we use a similar approach to that in Eichenbaum et al. (2020). These parameters
are jointly estimated to match different transmission rates across activities. Using data from
the Time Use Survey, we find that 18% and 30% of the time spent on the general community is
used for the purchase of ”goods and services” and ”eating and drinking outside,” respectively.
According to Ferguson et al. (2006), 33% of virus transmission is likely occur in the general
community; thus, we set the average number of infections originated by consumption of c
to 6% (0.33× 0.18) and those originated by the consumption of x to 10% (0.33× 0.3). 17%

12https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
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of infections occur in the workplace with the largest share occurring in the social sector,
as implicitly assumed by the functional form chosen in equation (2). We also match the
state-level basic reproduction number, R0,l, at the beginning of the pandemic estimated
by Fernandez-Villaverde and Jones (2020). Finally, to initialize the model, we take into
consideration the heterogeneity in the evolution of the pandemic across states. Specifically,
we select each state’s initial infection rate, ε0,l, to match the April 1, 2020, death rate for New
York, and the May 1, 2020, death rate for other states, such that Dl,0 = πdεl,0Popl.

To sum up, π1,l, π2,l, π3,l and π4,l are chosen to satisfy

π1,lC
2
l

Hl

= 0.06

π2,lX
2
l

Hl

= 0.1

π3

(
Popcl
Popl

)
(N c

l )
2 +

(
Popxl
Popl

) [
(Nx

l )2 +Nx
l Xl

]
Hl

= 0.17

R0,l =
Hl
Il,0

πd + πr

where

Hl = π1,lX
2
l +π2,lC

2
l +π3,l

((
Popcl
Popl

)
(N c

l )
2 +

(
Popxl
Popl

) [
(Nx

l )2 +Nx
l Xl

])
+π4,l

γl,l +
∑
j 6=l

(γl,j + γj,l)
Ij,0
Il,0


Il,0 = εl,0Popl,0

All allocations and population refer to the pre-pandemic equilibrium. In Appendix, Table
A.1 reports the main parameters of the model that are common across locations. Table A.2
reports for each state key data moments used in the calibration and calibrated parameters
that vary across states, such as the calibrated initial infection rate, εl,0, SIR parameters in
equation (2) and sector-specific productivities. In section 3.3, we perform several robustness
exercises in which we vary key parameters.

3.2 Understanding the Model’s Mechanisms

In this section, we highlight the main mechanisms at play in our model and the role
of interconnectedness.13 Figure 1 shows the large degree of heterogeneity across states in
health and economic outcomes generated by the pandemic. Panels A and B present a map of

13In this section, we assume no policy intervention, τ cl,t = τxl,t = 0 for any l and t.
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Figure 1: Heterogeneous Impact of Pandemic

Panel A: Total Cases Panel B: Total Deaths

Panel C: Hours worked Panel D: Consumption

Figure 1 plots the heterogeneous impact of the pandemic across states. Panel A and Panel B plot the total number of cases and

deaths at the end of pandemic as percentage of initial population, respectively. Panel C and Panel D plot the average drop in

hours worked and consumption in the first two years relative to pre-pandemic steady state.

cumulative infections and deaths as percentages of initial population, respectively. We find
that the most affected states are hit three times more than the least affected ones, with most
affected states concentrated in the Northeast. States with a larger number of cases and deaths
per capita have, on average, higher levels of population, R0, and openness. State openness
refers both to trade and to people’s mobility and it is defined as

(γl,j + γj,l)
c̃l,j,t + c̃j,l,t

incomel
(6)

Panels C and D report the average decline in hours worked and consumption over the first two
years relative to the pre-pandemic equilibrium, respectively. We find that the most affected
states had a decline in labor and consumption around two times larger than the decline in
the least impacted ones.14

States with a larger drop of labor supply and consumption have, on average, higher levels of
population and R0 but lower openness. Finally, we find a positive relationship between health
and economic outcomes. On average, states with larger number of cases also face a large drop
in economic conditions. This analysis emphasizes the large degree of spatial heterogeneity in
the pandemic outcomes and points in the direction of state-specific interventions.

14We exclude District of Columbia from this calculation since it is a strong outlier. DC has a degree of
openness that is five times larger than the degree of openness in the second-most-open state.
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We now analyze the dynamics of health and economic outcomes and show that intercon-
nectedness plays an important role in shaping the evolution of the pandemic. Figure 2 shows
the number of cumulative cases and deaths as a percentage of the initial population, as well as
the hours worked and consumption per-capita in percentage deviation from the pre-pandemic
equilibrium. We report these outcomes for the “Baseline” economy (solid red line) and an
economy without trade and geographic mobility, denoted by “Isolated Economy” (dashed
blue line).

Figure 2: Health and Economic Outcomes of COVID-19 Crisis
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The top panel reports the results for the evolution of infections at the aggregate level
in column one, and for New York, Ohio and South Carolina in the second, third, fourth
columns, respectively. These three states represent extreme cases of high, medium and low
initial infection level and population size. In row one, we find a 0.6 p.p. difference in the
peak of infection rates between the baseline economy and the isolated one. The plots for the
three states separately show that the largest differences are generated in Ohio and South
Carolina, while there are nearly zero differences between models for New York. Similarly, in
the second row, we show the evolution of deaths over time. The baseline economy produces
approximately 146,200 more deaths than the isolated one.

By analyzing the three graphs on the right, we find that the largest overall death toll
occurs in New York with similar values under both economies. In contrast, we find larger
differences for Ohio and South Carolina, where interconnectedness generates 0.03 and 0.15
p.p. more deaths per-capita, respectively. Overall, interconnectedness impacts relatively more
states with lower R0 and smaller populations, as these states, like South Carolina, import
relatively more infections per-capita. In large states, like New York, the propagation of the
disease within state is very large, so the number of imported cases is much less relevant in
relative terms.

Rows three and four of Figure 2 report the evolution of hours worked and consumption per-
capita in percentage deviation from the pre-pandemic steady state, respectively. Individuals
voluntarily contract consumption and labor supply as the virus spreads to mitigate the
probability of becoming infected. We find that labor supply and consumption drop the most
around the time of the infection peak. The peak drops in labor supply and consumption at the
aggregate level are, respectively, 2.83 p.p. and 2.49 p.p. smaller in the economy where states
are not connected. When we compare the average decline in hours worked and consumption
over the first two years of the pandemic, we find that interconnection exacerbates the drop by
0.64 p.p. and 0.55 p.p., respectively, as reported in Table 1. At the state level, we observe
that New York displays the largest drop in labor supply and consumption, followed by Ohio
and South Carolina. In New York, we find almost no difference between an isolated and
interconnected economy while the largest differences are displayed for South Carolina. In the
connected case, the drop in labor supply and consumption in South Carolina occur earlier
and at a greater extent than in an isolated economy. The endogenous decline in economic
activity induced by the pandemic generates a decline in the degree of openness. The drop in
demand leads to less trade between states and consequently a decline in people’s mobility.
For the US as a whole, openness declines at the peak by almost 10.94% and 3.58% on average
during the first two years of the pandemic. The larger the state and the initial R0 the larger
the endogenous decline in openness. At the peak of the pandemic, openness reduces 22.68%
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in New York.
Table 1, besides reporting some key statistics for the baseline and isolated-states models for

the US as a whole, also reports the same statistics for a model without behavioral responses.
In a model without behavioral response, agents do not adjust labor and consumption when
they observe the infection rate going up.15 The lack of adjustment in labor and consumption
generates significantly more cases and deaths, which suggests that taking into account the
endogenous response to the health outcomes of the pandemic is crucial to analyze optimal
policies. Regarding welfare losses16, reported in the last column of Table 1, we find that the
three models generate substantial welfare losses, mostly driven by lost lives. This is well
illustrated in the non-behavioral economy case, in which, despite the economy remaining
pretty close to the pre-pandemic equilibrium, the overall welfare drops around 51%, driven
by the loss of 1.44 million lives. Although the economy contracts more in the baseline case,
welfare drops by approximately 49%. Welfare losses would be smaller in an isolated economy
because health and economy are less impacted.

3.3 Robustness

In this section, we perform a series of robustness exercises in which we vary some key
parameters of the model. Table 1 reports some key statistics for each of these exercises.

In our baseline economy, the productivity of a symptomatic infected agent drops 30%. We
now analyze the cases where productivity drop 40% (νi = 0.6) and 20% (νi = 0.8). The higher
the productivity loss (lower νi), the smaller the number of cases and deaths and the smaller
the economic downturn. In our model, higher productivity losses resemble forced lockdown for
infected agents, as lower income induces lower hours worked and lower consumption, which
reduces the likelihood of infecting others. Lower productivity also impacts the behavior of
susceptible people. On the one hand, becoming infected is more costly, so susceptible and
asymptomatic drop consumption by more. On the other hand, as the shopping intensity of
infected people is lower, the probability of being infected decreases, so susceptible people
consume more. Overall, we find that consumption decreases by more for higher νi.

15For the non-behavioral economy, we assume that labor and consumption remain fixed at the pre-pandemic
equilibrium for all health status during the entire pandemic.

16Welfare is defined as the average lifetime utility of all agents in the economy. In the pre-pandemic period, it
is given by Upre =

∑l=L
l=1

[
Popcl,preU

c
l,pre + Popxl,preU

x
l,pre

]
. At the time t = 0, when the pandemic hits, welfare

is given by U0 =
∑l=L
l=1

[
Scl,0U

s,c
l,0 + Sxl,0U

s,x
l,0 + λIcl,0U

a,c
l,0 + λIxl,0U

a,x
l,0 + (1− λ)Icl,0U

i,c
l,0 + (1− λ)Ixl,0U

i,x
l,0

]
.
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Table 1: Robustness in the Model without Containment

Cases Deaths Deaths Peak Labor Consumption Openness Welfare
% % mil. weeks % % % %

Baseline 47.39 0.47 1.31 17 -4.06 -4.21 -3.58 -0.49
Isolated 42.11 0.42 1.17 16 -3.42 -3.66 -0.435
Non-behavioral 51.86 0.52 1.44 17 0.00 -0.26 -0.65 -0.512

Infected Productivity
νi = 0.6 45.34 0.45 1.26 17 -3.69 -3.89 -3.41 -0.468
νi = 0.8 49.30 0.49 1.37 16 -4.42 -4.52 -3.73 -0.511

Discount Factor
β = 0.9652 47.82 0.48 1.33 17 -3.60 -3.75 -3.26 -0.492
β = 0.9752 46.86 0.47 1.30 17 -4.67 -4.81 -3.98 -0.486

Mortality rate
πd = 0.5% 49.15 0.25 0.68 17 -2.17 -2.34 -2.08 -0.254
πd = 2% 44.96 0.90 2.49 17 -7.45 -7.65 -6.05 -0.938

Basic Reproduction Number
R̄0 = 2.57 82.76 0.83 2.29 15 -3.93 -4.45 -4.12 -0.852
R̄0 = 2.85 87.92 0.88 2.44 13 -3.53 -4.04 -4.03 -0.901

Share of Asymptomatics
λ = 0.15 46.94 0.47 1.30 17 -3.72 -3.94 -3.36 -0.485
λ = 0.7 48.42 0.48 1.34 17 -4.99 -4.94 -4.23 -0.502

Symptomatic Stay-Home
ζ = ζτ = 0.8 30.31 0.30 0.84 19 -1.59 -1.69 -1.50 -0.307
ζ = ζτ = 0.5 37.58 0.38 1.04 18 -2.53 -2.64 -2.35 -0.383
ζ = 0, ζτ = 0.8 45.10 0.45 1.25 16 -3.98 -4.15 -3.32 -0.467

Table 1 reports the model-implied outcomes for the entire US economy for different parameterizations. Cases and Deaths (%)

correspond to the cumulative number of cases and deaths, respectively, at the end of the pandemic as percentage of the initial

population. Deaths (mil.) reports the the cumulative number of deaths. Cases Peak reports the number of weeks since the

beginning of the pandemic when the economy reached the peak of number of cases. Labor, Consumption and Openness reports

the average percentage decline in the number of hours worked, aggregate consumption and openness, respectively, in the two

years after the onset of the pandemic. Welfare correspond to the percentage difference between welfare induced by the pandemic

and welfare in absence of the pandemic. In the baseline case: νi = 0.7, β = 0.9651/52, πd = 1%, R̄0 = 1.57, λ = 0.3 and

ζ = ζτ = 0. R̄0 corresponds to the population weighted average of state-specific R0.

The household discount factor, β, is crucial to determine the value of life. In the baseline
economy, β = 0.9651/52 is associated with a value of life of 10.7 million. We now consider
β = 0.961/52 and β = 0.971/52, which imply a value of life of 9.4 and 12.6 million, respectively.
Although the results do not vary much with β, a higher discount factor is associated with
lower infections and deaths, but a higher drop in labor, consumption and openness. Overall,
welfare losses induced by the pandemic are slightly lower when the value of life is higher
because the reduction in deaths more than compensates for the worse economic outcomes.

The mortality rate has a non-linear effect in our framework. In the baseline economy
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πd = 1%. We now consider two other cases: πd = 0.5% and πd = 2%. The higher the mortality
rate, the higher the cost of becoming infected. In reaction, individuals reduce hours worked
and consumption and consequently openness. Despite the number of cases dropping because
less economic activity reduces the probability of becoming effect, overall deaths still rise.
Because the number of deaths and economic downturn are exacerbated with higher fatality
rates, welfare losses increase substantially.

In our baseline calibration, we match the state-specific basic reproduction number, R0,l,
estimated by Fernandez-Villaverde and Jones (2020), which implies a population-weighted
average reproduction number, R̄0, of 1.57 and 43% of the population either recovers from
the infection or dies. In Table 1, we report two robustness exercises regarding R0. First,
we increase all the state-specific R0 estimated by Fernandez-Villaverde and Jones (2020) by
1, which implies that R̄0 = 2.57 and that 82.76% of the population gets infected. Second,
we increase R0 by 1 for states below-median R0 and by 0.5 for states above the median.
This case implies R̄0 = 2.85 and a cumulative infection rate of 87.92% of the pre-pandemic
population. A higher basic reproduction number is associated with more infections and
deaths. On the economic side, higher R0 implies larger peak drops in labor, consumption and
openness (not reported) as agents endogenously change behavior in response to large infection
peaks. Simultaneously, R0 speeds up the evolution of the pandemic and the infection peak
tends to occur earlier. Although it generates larger peaks, the recovery is faster and therefore
the average drop in labor, consumption and openness over the first two years of the pandemic
tend to decrease with R0. Nevertheless, welfare losses undoubtedly increase with higher R0.

We now look at the share of asymptomatic among infected agents. In the baseline economy,
we follow the CDC best estimate and assume that 30% of the infections are asymptomatic.
In Table 1 we analyze the two other scenarios considered by CDC: a more optimistic scenario
where the asymptomatic rate is 15% and a more pessimistic case with an asymptomatic
rate of 70%. As expected, health and economic outcomes are worse with a larger number of
asymptomatic among infected individuals. Despite asymptomatic behaving like susceptible
and therefore working and consuming more than infected individuals with symptoms, more
asymptomatic people increase the risk of becoming infected. Therefore, susceptible people
reduce their working hours and consumption by more. Despite these two opposite forces, the
average number of hours worked and consumption tends to drop more with a higher share
of asymptomatic, reflecting that in our model the second force dominates. Welfare losses
increase with the share of asymptomatic.

In the baseline model, we assume that agents do not internalize their actions in the
propagation of the virus. The productivity loss while infected induces fewer working hours
and lower consumption by symptomatic infected than susceptible or asymptomatic, but
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symptomatic infected people are still able to work and consume social goods. We now consider
that symptomatic people may stay home while infected. We assume that those who are
forced or voluntarily stay home, receive the same income as if working but are not able to
consume social goods

(
xih,kl,t = 0

)
. So, the regular good consumption of infecting individuals

that stay home is given by cih,kl,t =
(
wkl,tν

ini,kl,t
)
/pl,t, where ni,kl,t is the number of hours worked

by an infected individual in location l in sector k that does not stay home. Agents who
stay home are still free to allocate their total consumption across the varieties produced in
different states. We also assume that agents staying home can consume regular goods without
passing the virus to others. We consider that the fraction ζ of infected people with symptoms
stay home and therefore do not infect others and the fraction of ζτ of infected do not travel.
Staying home impacts the probability of becoming infected as defined in equation (2). By
considering staying-home behavior, we modify hkl,t in the following manner:

hkl,t × Popl,t = π1,lc
k,s
l,t

(
λCa

l,t + (1− λ)(1− ζ)Ci
l,t

)
Il,t + π2,lx

k,s
l,t

(
λXa

l,t + (1− λ)(1− ζ)X i
l,t

)
Il,t

+ π3,ln
k,s
l,t

[(
λNa,k

l,t + (1− λ)(1− ζ)N i,k
l,t

)
Il,t + 1(k=x)

(
λXa

l,t + (1− λ)(1− ζ)X i
l,t

)
Il,t
]

+ π4,l(1− ζτ )
γl,lIl,t +

∑
j 6=l

(γl,j + γj,l)
C̃l,j,t + C̃j,l,t

C̃l,j + C̃j,l
Ij,t


(7)

Note that ζ = ζτ = 0 corresponds to the baseline model. We now consider the cases where
80% and 50% of the symptomatic infected agents stay home and do not travel, respectively,
ζ = ζτ = 0.8 and ζ = ζτ = 0.5. We also consider the case where agents with symptoms can
work and consume social goods within their state but only 20% of symptomatic travel, ζ = 0
and ζτ = 0.2. Results are reported in Table 1. The ability to detect infected individuals
and ensure that they minimize working and shopping activities has significant implications
for health and economic outcomes. The most optimistic case, where 80% of infected people
could be isolated before infecting anyone, would reduce the total death toll by approximately
470,000 lives. The average drop in consumption labor, consumption and openness would
be mitigated by approximately 3 p.p. Restricting the movement of infected symptomatic
agents across state borders without isolation within state improves outcomes, but the gains
are limited.

3.4 The Geography of Optimal Containment Policies

In this section, we analyze and compare within-state and between-state containment
policies. Since agents are atomistic, they don’t internalize the impact of their behavior on
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the disease transmission. Therefore, the competitive equilibrium is not Pareto Optimal and
there is room for government intervention. The social planner maximizes the social welfare in
the entire country by imposing a set of tax instruments that constrain economic activity and
disease dynamics. The social planner can choose a sequence of consumption tax rates that
can vary across sectors and states. Specifically, for each state l, the social planner can tax
consumption of social goods, τ sl,t, own-state regular good, τ cl,t, and regular goods imported
from each of the other states,

{
τ̃ cl,j,t

}
j 6=l

for T periods.17 The aggregate social welfare, U0,
is defined as a weighted average of the lifetime utility of the different agents in each health
status:18

U0 =
l=L∑
l=1

[
Scl,0U

c,s
l,0 + Sxl,0U

x,s
l,0 + Icl,0U

c,i
l,0 + Ixl,0U

x,i
l,0

]
Uk,s
l,0 and Uk,i

l,0 are the lifetime utility at time 0 (beginning of the pandemic) of susceptible and
infected, respectively, in each state l and sector k. Those are the solution to the optimization
problems (4) and (5) given the sequence of tax rates imposed by the government. We assume
that the social planner observes the true health status of each individual.19

If we consider T = 250, it would imply a choice of 451,500 parameters, which is computa-
tionally very challenging. Therefore, we approximate the optimal time paths by a generalized
logistic function of time:20

τ(t) = κ1
κ2κ3e

κ3(t−κ4)

[1 + eκ3(t−κ4)]1+κ2

κ1 determines the highest level of the mitigation and κ2 its persistence, κ3 controls mitigation
in the earlier periods and κ4 determines the period with the highest mitigation policy.

Below we study and compare different optimal containment policies with different character-
istics. We first consider policies that focus on within-state consumption behavior, denominated
within-state policies. Second, we study a policy that targets trade flows across regions, called
between-state policy. Finally, we look at the optimal policy that combines both within and
between-state policies. We consider both the cases in which policies are equally implemented
everywhere and policies that vary across states. The local policy consists of state-specific
consumption taxes on social and regular consumption good. Regular goods are taxed equally
regardless of their origin. The national policy imposes the same tax rate in all the states, but
it can vary across sectors.21

17After period T , all rates are set to 0.
18Note that at the initial period, there are no deaths or recovered people.
19To solve this Ramsey problem, we guess a sequence of tax rates and solve for the competitive equilibrium.

We then evaluate the social welfare function and iterate on this sequence until we find the optimum set of tax
rates.

20We consider alternative functional forms, but they under performed compared to this one.
21To be more specific, a national policy imposes τsl,t = τsj,t = τst , τ cl,t = τ cj,t = τ ct and τ̃ cl,j,t = τ̃ ct for any states
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Optimal Within-State Containment Policy In this section we analyze the impact
of the optimal local and national within-state policies. These policies only impact the
consumption produced within the state. Specifically, we impose τ cl,l ≥ 0, τxl ≥ 0 and τ cl,j = 0
if l 6= j. Figure 3 shows the tax path and the evolution of health and economic outcomes
under national and local optimal within-state containment policies. Table A.3 in the Online
Appendix reports some key health and economic results associated with these policies as well
for all the other policies discussed in this section.

The top-left panel shows the optimal national tax rates for sectors x and c. The other
three plots of the first row show the local tax rates for New York, Ohio and South Carolina,
respectively. First, we find that taxing c is not optimal under both policies. Second, under
the local policy, the maximum tax rate of the social sector varies across states and positively
related with the severity of the pandemic in each state. States with a higher death toll face
higher tax rates. Third, the timing of the peak of the containment policy also varies across
states and closely follows the evolution of cases across states.

The second and third rows of Figure 3 report the evolution of infections and cumulative
deaths. We find lower infection and death rates under both optimal policies than in the
baseline, but a local policy can save more lives than the national one. Overall, we find that
the local policy would reduce the number of overall deaths by 257,500, while a national
policy would mitigate the death toll by 215,300. The largest improvement in death rates
by imposing local or national policies would come from states with a smaller population
and lower initial reproduction number, R0, as Ohio and South Carolina. In New York, even
though the optimal policy reduces slightly the infection peak, the high initial R0 prevents
policies from significantly reducing the death rate.

Rows four and five report the evolution of labor and consumption, respectively. Both
policies generate a larger drop in hours worked and consumption than in the baseline economy.
At the aggregate level, local policy amplifies the peak drop in hours worked and consumption
by 10.97 p.p. and 6.14 p.p., respectively, relative to the baseline economy with no intervention.
Differences are even higher when we look at average drop during the first two years of the
pandemic. Since these policies do not directly target the movement of people and goods across
states, the level of openness actually increases relative to an economy without containment
policies, as people substitute away from social goods to regular consumption goods. This
effect is quite substantial. For the overall economy, at the peak of the pandemic, openness
is around 4 p.p. higher when local policies are in place. This difference is more salient in
states where the pandemic hits less hard, as Ohio and South Carolina. Local policy amplifies

l and j. Regarding the local policies, the social planner maximizing the aggregate welfare of the country can
choose different tax rates for different states.
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the peak drop in hours worked and consumption by 1.27 p.p. and 1.15 p.p. relative to the
national policies.

Figure 3: Optimal Within-State Containment Policy

Panel A: Spatial Comparison

The differential impact of within-state polices is more pronounced in states like Ohio and
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South Carolina. This is mainly explained by the timing of the different optimal local policies.
As previously mentioned, the maximum tax level is reached at different time across states,
a key margin through which state-specific optimal policies operate. Specifically, local tax
rates on x closely follow the evolution of cases in each state. While cases are low, the tax rate
is low and increases as the number of cases and deaths go up. The maximum value of the
optimal policy occurs when the state reaches its peak. The optimal policy slows down the
course of the pandemic as the infection peak occurs weeks later than it would in a connected
economy without containment policies.

Therefore, a homogeneous policy across states would impose a lockdown too late in
some states and too early in others. This result stresses that a premature lockdown can be
economically very costly with little benefits in reducing the death toll.

Optimal Between-State Containment Policy We now study the optimal containment
policy that restricts the movement of goods and people across states. This policy consists
of taxing goods from other states, which translates into lower trade flows, lower mobility
of individuals and lower spatial infection diffusion. The blue line in Figure 4 reports the
evolution of health and economic outcomes under this between-state tax alone. Specifically,
we impose τ cl,l = τxl = 0 and τ cl,j ≥ 0 if l 6= j. The red line reports the baseline economy
and the yellow line the outcomes under the optimal local within-state tax policy previously
analyzed.22

The middle graph of the first row plots the optimal between-state containment policy. The
social planner finds optimal to tax foreign goods but at a much lower rate than social goods
under the within-state policy. As the optimal local tax on service goods closely follows the
infection cases at state level, this local between-state policy does the same. The right graph
displays an optimal policy that takes into account a local and a between state (or foreign tax)
instrument, a case that we will discuss later.

As reported in row three, the optimal between-state tax rate alone induces a higher death
toll than the local within-state policy. A between-state tax alone reduces the overall death
toll as percentage of initial population by about 0.4 p.p., while the local within-state policy
reduces it by 0.45 p.p. This policy brings relatively larger gains to South Carolina, the most
affected state by interconnectedness among these three. This occurs because between-state tax
directly impacts the degree of openness of the state, as this tax reduces foreign demand, trade-
flows and consequently movement of people and infection diffusion across space. Specifically,
it induces an extra reduction in cross-state mobility of 50.51 p.p. at the peak and 34.88
p.p. on average during the first two years of pandemic compared with an economy without

22The green line reports the optimal policy combining local within- and between-state containment rules.
This policy is discussed later.
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containment policies. Not surprisingly, this policy generates a larger decrease in mobility
compared with the baseline case in states that import relatively more infected cases, such as
South Carolina.

Figure 4: Optimal Between-State and Overall Policy
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This optimal between-state policy generates fewer economic losses per life saved as hours
worked and consumption decline substantially less than under the within-state policy. However,
this policy alone does not have the capacity to save as many lives as other policies. This
policy targets movement of goods and people across regions, but disease spreads within states
even if borders are completely closed. Although reduction in trade flows attenuates infection
diffusion internally, a policy that does not consider the social good sector faces limitations in
the number of deaths that it can avoid. When analyzing the health dynamics of the policy,
we find that the optimal overall policy would reduce infection peak by 1.48 p.p. compared
with the baseline with gains happening across states.

Optimal Within- & Between-State Containment Policy We now analyze the case
where the social planner can jointly choose the optimal combination of local within- and local
between-states consumption tax rates. The optimal tax paths for New York are reported in the
third graph of the first row of Figure 4. We find that all tax rates follow very similar patterns.
When analyzing the health dynamics of the policy, we find that the optimal overall policy
would reduce infection peak by 1.48 p.p. compared with the baseline with gains happening
across states. Similarly, the death toll would decrease by 289,300 lives compared with the
baseline and 31,800 lives compared with the local within-state policy. These saved lives are
followed by a stronger economic drop. The optimal policy would lead to a peak drop in hours
worked and consumption of 28.67% and 25.80%, respectively. Over the first two years of
the pandemic, the optimal policy would amplify the drop in hours worked and consumption
relative to an economy with no intervention in 14.77 and 12.59 p.p., respectively. Mobility
and trade flows would drop approximately 25.97% at the peak and 15.70% on average over
the first two years of the pandemic.

These results suggest that despite some substitutability between within- and between-state
policies, they mainly tackle different issues. While between-state policies can attenuate the
pandemic by limiting the number of cases imported, it alone is not able to substantially
mitigate the pandemic. Once cases are already within the state, only within-state policies
can be effective.

In appendix, Table A.3 summarizes the main outcomes of the different policies analyzed.
The same table also reports the policy implications when we consider the case in which
symptomatic people are forced or voluntarily stay home while infected. Specifically, we
analyze the optimal policies when 80% of the infected stay home and do not infect others,
ζ = ζτ = 0.8. In absolute terms, optimal policies under this scenario have different impacts
given that the severity of the pandemic are significantly different when no mitigation policies
are in place. However, on the health side, optimal policies contribute similarly in relative
terms. The combination of local within- and local between-states tax rates reduces cases and
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deaths by approximately by 23% in both cases. However, to achieve the same proportion of
saved lives, optimal policies requires a relative larger drop in economic activity when infected
agents stay home relative to the scenario where no containment policies are in place.

Welfare Comparisons Table 2 reports the welfare losses attributable to the pandemic
comparing different models and mitigation policies. Regarding within-state policies, we find
that the optimal national within-state containment policy would ameliorate welfare losses by
0.071 p.p. while the optimal local level one would improve it by 0.086 p.p.. These results
highlight that a policy that resembles a state-specific lockdown works better than a national
lockdown. The key dimension through which this happens is time flexibility. We, then,
report the welfare effect of a between-state tax on consumption that is either homogeneously
(nationally) or heterogeneously (locally) applied across states. The welfare improvement
is more modest, approximately 0.039 and 0.044 p.p., for both national and local policies,
respectively, showing that the best between-state optimal policy alone would not have the
same welfare effects as a local within-state consumption tax. Moreover, a national within-state
lockdown is better than a simple local between-state policy. Finally, when the planner is
allowed choose the optimal combination of within and between-state policy instruments,
welfare gains increase relative to the optimal within-state policy. We find that this policy
applied at national and local levels would mitigate the welfare losses by 0.094 p.p. and 0.119
p.p., respectively. We conclude that the optimal policy is a combination of local within-state
and between-state policies.

When we analyze the case where symptomatic agents do not consume social goods and do
not travel, we find similar results. Once again, in absolute terms, policies are less effective
under this scenario. Overall, policies are equally effective in relative terms. A policy that
combines local within-state and between-state policies mitigates welfare losses in approximately
25% under both economies.

Table 2: Welfare Impact of the Pandemic

Model No Policy Optimal Policy
Within-state Between-state Overall

National Local National Local National Local
Baseline -0.49% -0.419% -0.404% -0.451% -0.446% -0.396% -0.371%
Stay-Home -0.383% -0.333% -0.317% -0.355% -0.35% -0.311% -0.29%

26



3.5 Trade Flows and Mobility: Empirical Validation

Our model relies on the assumption that trade and mobility between states are positively
correlated. To empirically assess this relationship, we perform a regression analysis where we
regress bilateral trade volumes on mobility flows. Our analysis is performed using data prior
to the pandemic. Specifically, we run the following regression:

Tradel,j = β0 + β1(γl,j + γj,l) + β2Xl + θl + θj + ul,j (8)

The dependent variable Tradel,j corresponds either to bilateral trade flows or to trade shares
between states l and j. Trade data is from shipments data between-states from the 2017
Commodity Flow Survey. The measure of mobility used in the regression analysis is the same
used in the model calibration and explained in detail in section 3.1. γ’s match the LEX index
developed in Couture et al. (2020) using data from PlaceIQ. This index quantifies the share of
cellphones present in a given state that have been in other states during the prior two weeks.
We interpret this index as measuring the movement of people across different states. LEX
index dev. corresponds to a standardization of the LEX index.

Table 3: Trade Volume and Mobility

(1) (2) (3) (4) (5) (6) (7) (8)
Trade Volumes Trade Shares

LEX Index dev. 0.0563*** 0.0563*** 0.281*** 0.287***
(4.41) (4.49) (10.20) (10.28)

LEX Index 0.0565*** 0.0558*** 0.135*** 0.138***
(6.21) (6.52) (6.79) (7.00)

N 2256 2256 2256 2256 2256 2256 2256 2256
R2 0.395 0.410 0.483 0.495 0.673 0.320 0.717 0.369
Controls Yes Yes Yes Yes Yes Yes Yes Yes
Origin FE No No Yes Yes No No Yes Yes
Destination FE No No Yes Yes No No Yes Yes

Table 3 reports the results of a regression where the volume of trade between any two pair of states is the dependent variable.
The last four specifications contain control variables such as population in the origin and destination state, wages in service and
consumption sector in the origin and destination state, and productivity in the origin and destination state. All the variables
are standardized between 0 and 1.

Table 3 reports the results for different specifications. We find that the correlation between
LEX index and trade volumes ranges between 0.0563 and 0.0641 and is statistically significant
at 99% confidence. The coefficients are very robust to the inclusion of state characteristics’
controls as well as origin and destination fixed effects. The same happens when we run the
correlations with LEX index standardized in deviation from the mean where the correlation
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Figure 5: Share of Trade and Mobility (LEX Index)
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Note: The graph above reports the estimated coefficients of a quantile regression where the the share of trade volume between

any two pair of states is the dependent variable and the quantile of LEX index are the independent variables. We also control

for variables such as population in the origin and destination state, wages in service and consumption sector in the origin and

destination state, and productivity in the origin and destination state. All the variables are standardized between 0 and 1.

ranges between 0.0557 and 0.0565, and it is statistically significant at 99% in all cases. The
same relationship holds when we use Trade Shares instead of trade volumes.

Moreover, to test whether the relationship between trade volumes and mobility index
between states is monotone, we reproduce the same correlation for all the deciles of the LEX
index. Figure 5 reports the estimated coefficients for each decile of the LEX index and trade
volumes. As we can see from the figure, the relationship is monotonically increasing. This
suggests that the positive correlation is not driven by a specific part of the distribution of the
LEX index.

4 Conclusions

We highlight how interconnectedness amplifies the severity of pandemics. We find that if
the US was constituted of isolated states, there would be approximately 146,200 fewer deaths
and the peak of consumption drop would be attenuated by approximately 2.5 p.p. Therefore,
we stress that the optimal containment policy must take into account interconnectedness
and consider policies that temporarily limit the movement of people and goods across US
states. We find that the optimal policy combines within and between-states restrictions and
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it saves approximately 289,300 lives. Our results also show that state-level policies rather
than national ones are more effective in reducing the death toll with lower economic costs.
Our quantitative framework constitutes a benchmark that can be adapted and extended to
analyze future infectious events. A promising application of this framework consists of the
study of the optimal traveling restriction policies among countries in mitigating the spread of
pandemics. Finally, understanding whether pandemics have consequences on globalization by
reducing trade and movement of people for long periods of time is a long-term goal of this
research agenda.
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A Online Appendix

A.1 Optimization Problems

This section describes and solves the optimization problems faced by the agents of this
economy.

We start by discussing the consumption of regular goods from different regions. As widely
known, the allocation of consumption across different varieties for a given level of expenditure
is a static problem. An individual in location l, allocates the aggregate consumption of regular
good, cl, according to the following problem:

u(cl) = max
{cj,l}j={1,...,L}

 L∑
j=1

αl,j c̃
ε−1
ε

l,j

 ε
ε−1

s.t.
L∑
j=1

(1 + τ cl,j)p̃j c̃l,j = pcl cl

There first order conditions are:

c
1

1−ε
l αl,j c̃

− 1
ε

l,j = λ(1 + τ cl,j)p̃j

After some algebra and defining the aggregate regular good price index after taxes in location
l as,

(1 + τ cl )pcl =
 L∑
j=1

αl,j
ε
(
(1 + τ cl,j)p̃j

)1−ε
 1

1−ε

,

we obtain that an agent in location l consumes from location j:

c̃l,j =
(

(1 + τ cl,j)p̃j
αl,j(1 + τ cl )pcl

)−ε
cl

We are now left to solve for the aggregate consumption of regular and social good and hours
worked for individuals of different health status, location and sectors across time.

Susceptible People A susceptible person s in location l in sector k ∈ {c, x} at time t

chooses consumption ck,sl,t and xk,sl,t and number of hours worked nk,sl,t that solves the following
optimization problem:

Uk,s
l,t = max

{ck,sl,t ,xk,sl,t ,nk,sl,t }
u
(
ck,sl,t , x

k,s
l,t , n

k,s
l,t

)
+ β

[(
1− hkl,t

)
Uk,s
l,t+1 + hkl,tU

k,i
l,t+1,

]
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s.t. (1 + τ cl )pcl,tc
k,s
l,t + (1 + τxl )pxl,tx

k,s
l,t = wkl,tn

k,s
l,t + T k,sl,t

where hkl,t, the probability of becoming infected is defined in equation (2). We assume
that susceptible people take aggregate variables as given, but they understand how their
consumption and working decisions impact their own probability of becoming infected.
However, they don’t internalize how their decisions impact the aggregate variables, giving
origin to infection externality.
The first-order conditions are:

u1
(
ck,sl,t , x

k,s
l,t , n

k,s
l,t

)
) = λk,sl,t (1 + τ cl )pcl,t + β

(
Uk,s
l,t+1 − U

k,i
l,t+1

)
π1
(
λCa

l,t + (1− λ)Ci
l,t

)
Il,t/Popl,t

u2
(
ck,sl,t , x

k,s
l,t , n

k,s
l,t

)
) = λk,sl,t (1 + τ cl )pxl,t + β

(
Uk,s
l,t+1 − U

k,i
l,t+1

)
)π2

(
λXa

l,t + (1− λ)X i
l,t

)
Il,t/Popl,t

χ
(
nsl,t
)θ

= λk,sl,t w
k
l,t−β

(
Uk,s
l,t+1 − U

k,i
l,t+1

)
π3


(
λNa,k

l,t + (1− λ)N i,k
l,t

)
Ikl,t + 1(k=x)

(
λXa

l,t + (1− λ)X i
l,t

)
Il,t

Popl,t



χ
(
nsl,t
)θ

= λk,sl,t w
k
l,t − β

(
Uk,s
l,t+1 − U

k,i
l,t+1

)
π3


(
λNa,k

l,t + (1− λ)N i,k
l,t

)
Ikl,t + 1(k=x)

(
λXa

l,t + (1− λ)X i
l,t

)
Il,t

Popl,t


where λk,sl,t is the Lagrangian multiplier associated with the budget constraint. As expected,
the shadow price of each good is not only the market price but also the impact of one
extra unit of consumption/leisure on the probability of becoming infected. This change
in probability weights the forgone future utility of becoming infected, which is given by
β(Uk,s

l,t+1 − U
k,i
l,t+1). This forward-looking component is the crucial element that makes the

problem of the susceptible dynamic even in the absence of any asset.

Infected People Infected people solves the following problem:

Uk,i
l,t = max

{ck,il,t ,xk,il,t ,nk,il,t }
u
(
ck,il,t , x

k,i
l,t , n

k,i
l,t

)
+ β

[
(1− πr − πd)Uk,i

l,t+1 + πrU
k,r
l,t+1

]

s.t. (1 + τ cl )pcl,tc
k,i
l,t + (1 + τxl )pxl,tx

k,i
l,t = wkl,tν

ink,il,t + T k,il,t

Similarly to Eichenbaum et al. (2020), we implicitly assume that the cost of death is the
foregone utility of life and that infected people don’t take into consideration that they may
infect other people. Therefore, the infected people’s problem becomes static with the following
first-order conditions:

u1
(
ck,il,t , x

k,i
l,t , n

k,i
l,t

)
= λk,il,t (1 + τ cl )pcl,t

u2
(
ck,il,t , x

k,i
l,t , n

k,i
l,t

)
= λk,il,t (1 + τxl )pxl,t
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χ
(
nil,t
)θ

= λk,il,t ν
iwkl,t

Recovered People Similarly to infected people, the decisions of the recovered people are
also static and satisfy the following problem:

Uk,r
l,t = max

{ck,rl,t ,xk,rl,t ,nk,rl,t }
u
(
ck,rl,t , x

k,r
l,t , n

k,r
l,t

)
+ βUk,r

l,t+1

s.t. (1 + τ cl )pcl,tc
k,r
l,t + (1 + τxl )pxl,tx

k,r
l,t = wkl,tn

k,r
l,t + T k,rl,t

where the first-order conditions resemble the ones from the infected people.

A.2 Parameters Values

Space We calibrate the model to US states. The decision to make a state-specific model
is driven by the fact that several policies are implemented by state-level government rather
than other units of geographies. We normalized the population in Alabama, the smallest
state, to 1.

Preferences Regarding the labor supply, we set χ to 0.001275 and the Frisch elasticity
θ to 1 as in Eichenbaum et al. (2020). We set the weekly discount factor β to be 0.9651/52.
This discount factor implies a value of a life of 10.7 million dollars in the pre-epidemic steady
state, which is consistent with the economic value of life used by US government agencies in
their decisions process.

We consider that social consumption goods are the sum of healthcare expenditures,
entertainment, food outside the house, education, apparel, personal services and personal
care products and services, following a definition similar to that in Kaplan et al. (2020), and
the rest fall into the category of regular consumption goods. We pin down φ by matching
the share of expenditure in regular consumption goods from the 2018 Consumer Expenditure
Survey.

Regarding the economic linkages across states, we set the elasticity of substitution across
states, ε, to 5 as estimated by Ramondo et al. (2016). Following the trade literature, we
parametrize αj,l as a log-linear function of bilateral distance between states αj,l = α0dist

α1

for j 6= l and set αl,l = 1. This functional form implies a gravity equation on bilateral trade
flows:

logEj,l = (ε− 1)α1 log(distj,l) + δj + δl + ηj,l,

where Ej,l is the expenditure of state l on state j’s goods and δj and δl are the origin and
destination fixed effects. Using between-states shipments data from the 2012 Commodity
Flow Survey, we estimate (ε− 1)α1 to be −1.31. α0 is then chosen to match the expenditure
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share of tradable goods in each state coming from the other states.

Production We estimate the productivity by sector in each state, Zc
l and Zx

l , by matching
the model implied wages in the pre-pandemic equilibrium with wage data from 2019 Quarterly
Census of Employment and Wages. Symptomatic Infected people during the pandemic face a
productivity loss of 30%, so νi = 0.7.

Table A.1: Parameter Values
Parameter Interpretation Internal Value

Space
N Number of Locations N 49

Preferences
θ Frisch elasticity N 1
χ Labor Disutility N 0.001275
φ Share consumption good c Y 0.735
β Discount factor Y 0.9651/52

ρ Elast. substitution between c and s N 0.5
αi,j Share of c from other states Y
ε Elast. substitution between c from diff. states N 5

Technology
zs Productivity in s Y see Table A.2
zc Productivity in c Y see Table A.2
νi Symptomatic Productivity Adjustment Y 0.7

SIR
πr Probability of recovery N 7×0.99/18
πd Probability of dying N 7×0.01/18
λ Asymptomatic Share N 0.3
π1,l Infection Probability by X Y see Table A.2
π2,l Infection Probability by C Y see Table A.2
π3,l Infection Probability by Working Y see Table A.2
π4,l Infection Probability by General contact Y see Table A.2

Note: This table reports the parameters’ values used in the calibration stating whether they are internal or
externally calibrated. The model is calibrated at a weekly frequency.

SIR Following the CDC best estimated, we set the fraction of asymptomatic, λ, to 0.3.
We assume a 1% death rate, which, taking into account that our model is weekly, implies
πd to be 0.00389, which is the equivalent of 7×0.01/18, where 18 is the average number of
days that it takes to recover or die. Hence, the probability of recovery if infected is set to
7×0.99/18. πd and πr are within the range of the estimates reported by the CDC.

To estimate π1,l, π2,l, π3,l and π4,l in equation (2), we use a similar approach as in Eichen-
baum et al. (2020). These parameters are jointly estimated to match different transmission
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rates across activities.
Using the data from the Time Use Survey and the definition of ”time-use in general

community activities” of Eichenbaum et al. (2020), we find that 18% and 30% of the time
spent on general community are used for the purchase of ”goods and services” and ”eating
and drinking outside the home,” respectively. Since according to Ferguson et al. (2006), 33%
of virus transmission is likely to occur in the general community, we set the average number
of infections originated by the consumption of regular good c to 6% (0.33× 0.18) and those
originated by the consumption of social good x to 10% (0.33× 0.3).

We also follow Eichenbaum et al. (2020) and assume that 17% of infections occur in the
work place. The functional form assumed in 2 generates higher transmission rates while
working in the social sector than in the regular good sector.

Finally, most of the transmissions occur at home or by randomly meeting people in
activities not related to consumption or working. We depart from the literature in arguing
that the likelihood of getting infected depends not only on the number of infected people
in the region but also on the likelihood of contact with an infected person from another
state. Traveling for leisure, regular commuting and the performance of professional duties,
such as meeting with clients, attending conferences or simply transporting goods, generate
a large flow of people across regions. To calibrate how likely we are to meet a person from
the home-state versus a different state, we use data from Couture et al. (2020). This data
set uses cell phone data to measure the movement across regions. Specifically, among the
smartphones that pinged in a given state in a certain day, the data report the share of those
devices that pinged in each of the other 50 state at least once during the previous 14 days.
Since we want to calibrate to the pre-pandemic equilibrium, we consider cross-state cell-phone
data from January 20, 2020, to February 15, 2020. Specifically, we set γ to the daily average
for that period. As stated in equation (2), the number of people moving in both directions
between state j and l is given by: (γl,j + γj,l) C̃l,j,t+C̃j,l,tC̃l,j+C̃j,l

, where C̃l,j + C̃j,l corresponds to the
pre-pandemic gross trade-flows. Therefore, in the pre-pandemic equilibrium, the movement
of people across states collapses to γl,j + γj,l. As a result, our calibration of γ’s matches the
pre-pandemic gross trade flow between any two states.

We also match the state-level basic reproduction number, R0,l, at the beginning of the
pandemic estimated by Fernandez-Villaverde and Jones (2020).23 Finally, to initialize the
model, we take into consideration the heterogeneity in the evolution of the pandemic across
states. To this end, we select each state’s initial infection rate, ε0,l, to match the April 1, 2020,
death rate for New York and the May 1, 2020, death rate for other states in the data, such

23Fernandez-Villaverde and Jones (2020) does not report R0,l for Montana and Wyoming, so those two
states are excluded from our analysis.
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Table A.2: Key Data Moments and Steady-State Values

Data Model
State Pop Labor γl,l R0 Deaths ε0 π1 π2 π3 π4 Zx Zc Openness

(106) share X (%) (%) (10−7) (10−7) (10−5) (%)
AL 3.53 0.45 0.98 1.35 0.01 0.14 8.50 1.68 2.51 0.33 19.58 22.50 0.16
AK 0.49 0.52 0.99 1.10 0.00 0.00 4.93 1.94 1.57 0.22 20.42 23.18 0.04
AZ 6.59 0.49 0.98 1.24 0.00 0.13 1.72 0.88 1.07 0.31 38.45 32.03 0.25
AR 1.90 0.46 0.97 1.13 0.00 0.06 7.96 2.08 2.18 0.26 18.17 18.37 0.12
CA 38.68 0.46 0.99 1.35 0.01 0.15 1.52 0.20 1.11 0.35 45.30 75.85 0.11
CO 5.04 0.46 0.98 1.60 0.02 0.31 5.50 0.71 2.22 0.40 25.85 39.56 0.09
CT 3.45 0.50 0.97 2.18 0.07 0.85 11.36 1.83 3.39 0.52 19.35 33.58 0.25
DE 0.74 0.50 0.94 1.53 0.01 0.11 11.27 2.85 2.78 0.23 16.29 19.09 0.37
DC 0.71 0.55 0.88 1.82 0.03 0.94 1.40 1.05 1.07 0.21 46.57 28.16 1.81
FL 20.17 0.53 0.99 1.39 0.01 0.16 0.90 0.77 0.78 0.36 52.64 41.57 0.09
GA 8.75 0.45 0.98 1.62 0.01 0.20 5.31 0.78 2.28 0.41 27.53 35.51 0.20
HI 0.98 0.58 0.98 1.06 0.00 0.00 1.05 3.07 0.66 0.22 38.66 21.93 0.06
ID 1.21 0.47 0.97 1.38 0.00 0.05 8.61 3.23 2.47 0.30 18.92 16.42 0.23
IL 11.08 0.46 0.98 1.80 0.02 0.37 5.46 0.71 2.40 0.47 28.03 42.27 0.16
IN 5.35 0.45 0.97 1.70 0.02 0.33 7.85 1.74 2.75 0.42 22.81 24.44 0.22
IA 1.87 0.45 0.97 1.38 0.01 0.16 13.31 2.27 3.09 0.31 15.80 19.42 0.15
KS 1.92 0.45 0.97 1.51 0.01 0.13 17.05 2.40 3.68 0.35 14.85 20.44 0.15
KY 2.67 0.46 0.96 1.52 0.01 0.11 7.87 2.15 2.55 0.35 21.16 20.46 0.17
LA 3.52 0.50 0.98 1.96 0.05 0.77 8.17 2.62 2.77 0.47 21.75 25.28 0.14
ME 0.80 0.56 0.96 1.32 0.01 0.00 3.02 5.33 1.27 0.25 26.30 15.13 0.16
MD 5.73 0.51 0.97 1.79 0.02 0.29 3.28 1.18 1.70 0.45 32.30 31.85 0.46
MA 6.86 0.52 0.97 1.99 0.05 0.79 2.33 0.59 1.50 0.51 39.51 51.74 0.28
MI 8.16 0.47 0.98 2.01 0.05 0.64 6.11 1.21 2.62 0.52 27.36 34.03 0.09
MN 4.20 0.48 0.98 1.47 0.01 0.19 4.48 0.81 1.89 0.37 26.88 35.89 0.10
MS 1.40 0.49 0.97 1.49 0.01 0.06 8.65 4.53 2.50 0.32 18.89 14.83 0.13
MO 4.57 0.49 0.97 1.53 0.01 0.15 4.69 1.45 1.92 0.38 26.03 26.94 0.16
NE 1.19 0.45 0.97 1.26 0.00 0.01 12.20 2.69 2.85 0.28 15.88 17.20 0.08
NV 2.80 0.59 0.95 1.49 0.01 0.21 0.86 2.23 0.71 0.30 50.22 23.67 0.86
NH 1.01 0.53 0.94 1.79 0.01 0.00 4.47 2.34 1.88 0.33 26.43 21.78 0.78
NJ 8.88 0.48 0.97 2.20 0.09 1.04 6.48 0.93 2.77 0.55 27.22 39.69 0.62
NM 1.41 0.53 0.96 1.50 0.01 0.18 4.48 2.83 1.73 0.28 24.38 19.33 0.28
NY 18.09 0.52 0.98 2.26 0.01 0.54 2.02 0.36 1.50 0.59 45.33 70.31 0.35
NC 7.66 0.47 0.98 1.34 0.00 0.09 4.80 0.95 1.89 0.34 25.26 30.86 0.18
ND 0.38 0.46 0.96 1.26 0.01 0.09 16.63 3.35 3.18 0.21 13.26 15.58 0.21
OH 9.49 0.48 0.98 1.45 0.01 0.22 4.16 1.02 1.81 0.37 27.64 31.53 0.12
OK 2.68 0.47 0.98 1.40 0.01 0.13 7.85 1.93 2.40 0.33 20.02 22.38 0.17
OR 3.32 0.48 0.98 1.18 0.00 0.08 3.33 1.01 1.45 0.29 27.68 27.57 0.39
PA 10.84 0.50 0.98 1.81 0.02 0.33 2.90 1.14 1.63 0.46 34.89 34.73 0.25
RI 1.06 0.56 0.95 1.86 0.01 0.00 6.55 6.19 2.21 0.37 21.32 16.73 0.63
SC 4.03 0.47 0.97 1.22 0.01 0.14 5.22 1.35 1.85 0.30 22.94 22.82 0.29
SD 0.43 0.51 0.95 1.66 0.00 0.00 11.97 10.92 2.96 0.28 16.24 11.53 0.09
TN 5.09 0.47 0.97 1.15 0.00 0.11 2.50 0.87 1.28 0.29 32.29 27.63 0.15
TX 25.86 0.45 0.99 1.28 0.00 0.08 4.09 0.41 1.76 0.33 27.55 51.27 0.07
UT 2.86 0.44 0.98 0.85 0.00 0.05 4.28 0.78 1.46 0.21 22.35 24.81 0.16
VT 0.22 0.57 0.90 1.88 0.02 0.00 6.91 11.37 2.24 0.12 20.54 11.42 0.44
VA 7.45 0.47 0.97 1.74 0.01 0.11 5.97 0.73 2.40 0.44 25.72 38.40 0.28
WA 6.73 0.46 0.99 1.47 0.01 0.29 3.12 0.53 1.65 0.38 33.20 44.97 0.20
WV 1.02 0.55 0.95 1.61 0.00 0.00 4.60 4.14 1.76 0.30 24.09 15.97 0.22
WI 4.28 0.45 0.98 1.48 0.01 0.14 7.59 1.49 2.53 0.37 21.87 25.26 0.18

Pop stands for population residing in an urban area (MSA) in 2019. Labor Share X stands for the share of employment in the

social good sector. γl,l is the daily average of the share of cell phones in state l that did not ping in a different state in the

previous 14 days. Data from Couture et al. (2020) from January 20, 2020, to February 15, 2020. Basic reproduction number,

R0,l, are the basic reproduction numbers at the beginning of the pandemic estimated by Fernandez-Villaverde and Jones (2020).

Deaths is the COVID-19 related death rate at April 1, 2020, for New York and May 1, 2020, for all the other states. ε0 is the

model-implied initial infection rate. π1, π2, π3 and π4 are defined in equation (2). Zx and Zc are the estimated productivity

measures for state x and c, respectively. Openness stands for the degree of openness in the pre-pandemic equilibrium as defined

in equation (6).
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that Dl,0 = πdεl,0Popl.
To sum up, π1,l, π2,l, π3,l and π4,l are chosen to satisfy

π1,lC
2
l

Hl

= 0.06

π2,lX
2
l

Hl

= 0.1

π3

(
Popcl
Popl

)
(N c

l )
2 +

(
Popxl
Popl

) [
(Nx

l )2 +Nx
l Xl

]
Hl

= 0.17

R0,l =
Hl
Il,0

πd + πr

where

Hl = π1,lX
2
l +π2,lC

2
l +π3,l

((
Popcl
Popl

)
(N c

l )
2 +

(
Popxl
Popl

) [
(Nx

l )2 +Nx
l Xl

])
+π4,l

γl,l +
∑
j 6=l

(γl,j + γj,l)
Ij,0
Il,0


Il,0 = εl,0Popl,0

All allocations and population refer to the pre-pandemic equilibrium. Parameters are summa-
rized in Table A.1, and state-level parameters and moments can be found in Table A.2.
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A.3 Pandemic and State Characteristics

Figure A.1: Correlations between Deaths and State Characteristics
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Panel B: Isolated States
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This figure reports the correlation between the model implied deaths as result of COVID-19 and some key state characteristics.
Openness is defined in equation (6). We exclude DC from the plot regarding Openness, but we report the correlations with and
without DC.
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Figure A.2: Correlations between Consumption Drop and State Characteristics

Panel A: Connected States
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Panel B: Isolated States
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This figure reports the correlation between the average decline in aggregate consumption over the first two years of the pandemic
and some key state characteristics. Openness is defined in equation (6). We exclude DC from the plot regarding Openness, but
we report the correlations with and without DC.

A.4 Policies Results
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