Monetary Policy when Banks Have Market Power

Rafael Repullo CEMFI, Madrid, Spain

4th Bank of Canada FSRC Macro-Finance Conference 17 May 2021

A Critical Review of the Reversal Rate and the Deposits Channel

Rafael Repullo CEMFI, Madrid, Spain

4th Bank of Canada FSRC Macro-Finance Conference 17 May 2021

Introduction

- Monetary policy when banks have market power
 - \rightarrow Growing area of research
 - \rightarrow Corbae and Levine (2018)
 - \rightarrow Wang, Whited, Wu, and Xiao (2019)
 - \rightarrow Martinez-Miera and Repullo (2020)
- Focus on two papers in which market power plays key role
 - \rightarrow Brunnermeier and Koby (2019)
 - \rightarrow Drechsler, Savov, and Schnabl (2017)

The reversal interest rate

"What is the effective lower bound on monetary policy? We suggest that it is given by the reversal interest rate, the rate at which accommodative monetary policy reverses its effect and becomes contractionary for lending."

Brunnermeier and Koby (2019)

The deposits channel

"We show that when the Fed funds rate rises, banks widen the spreads they charge on deposits, and deposits flow out of the banking system. Since banks rely heavily on deposits for their funding, these outflows induce a contraction in lending."

Drechsler, Savov, and Schnabl (2017)

Why market power?

- In Brunnermeier and Koby (BK)
 - → Monetary policy affects bank profitability
 - \rightarrow Low rates erode equity capital (below reversal rate)
 - \rightarrow Low equity capital leads to lower lending
- In Drechsler, Savov, and Schnabl (DSS)
 - \rightarrow Monetary policy affect deposit spreads
 - \rightarrow High rates widen spreads (more in concentrated markets)
 - \rightarrow Wider spreads lead to lower deposits and lower lending

This presentation

- Provide critical comment on BK and DSS
- Main criticism of BK
 - \rightarrow Key capital constraint is not properly justified
 - \rightarrow Reversal <u>rates</u>, depending on bank characteristics
 - \rightarrow Only relevant (if at all) for high deposit banks
- Main criticism of DSS
 - \rightarrow Novel channel does not follow from theoretical model
 - \rightarrow Novel channel is not implied by empirical results

Part 1

The reversal interest rate

The BK mechanism

- Lower monetary policy rates
 - \rightarrow Reduce bank profitability
 - \rightarrow Reduce equity capital (below reversal rate)
 - \rightarrow Reduce bank lending (if there is a capital constraint)
- Structure of BK's paper
 - \rightarrow Mechanism presented in partial equilibrium model
 - \rightarrow Model embedded in New Keynesian macro model
- This presentation: Focus on partial equilibrium model

Model setup (i)

- Two dates t = 0, 1
- Local monopoly bank that at t = 0 can
 - \rightarrow Raise deposits D
 - \rightarrow Grant (safe) loans L
 - \rightarrow Invest in economy-wide debt securities S
- Initial level of equity capital K

 \rightarrow Balance sheet identity

$$L + S = D + K$$

Model setup (ii)

• Bank faces

 \rightarrow Upward sloping local supply of deposits $D(r_D)$

- \rightarrow Downward sloping local *demand for loans* $L(r_L)$
- Bank takes as given interest rate *r* on debt securities

 \rightarrow Monetary policy rate set by central bank

Bank's objective function

• Bank chooses r_D and r_L to maximize equity value at t = 1

$$V = (1 + r_L)L(r_L) + (1 + r)S - (1 + r_D)D(r_D)$$

• Substituting S = D + K - L from balance sheet identity

$$V = \underbrace{(r_L - r)L(r_L)}_{-} + \underbrace{(r - r_D)D(r_D)}_{-} + (1 + r)K$$

Profits from lending Profits from deposit-taking

Bank's constraints

• Bank maximization problem subject to two "financial frictions"

 \rightarrow Capital constraint

 $\gamma L(r_L) \leq V$

 \rightarrow Liquidity constraint

 $\lambda D(r_D) \leq S$

Additional assumption

- BK assume that initial level of equity K is decreasing in r
 - \rightarrow Revaluation effect due to capital gains on long-term assets
 - \rightarrow Completely ad hoc since bank starts with no such assets
- Moreover it tends to dampen effect of low rates on V
 - \rightarrow In what follows assume that *K* is constant

Comments on liquidity constraint

• According to BK, the liquidity constraint captures "the fact that banks need sufficient funds to avoid run risk."

 \rightarrow Could be related to Basel III liquidity requirements

- However, it plays key (somewhat hidden) role in model
 - \rightarrow Balance sheet identity with binding liquidity constraint

$$L + \lambda D = D + K \rightarrow L = (1 - \lambda)D + K$$

 \rightarrow Low rates reduce deposits which in turn reduce lending \rightarrow This is not BK's narrative of the reversal rate

Comments on capital constraint (i)

- According to BK, the capital constraint captures "economic and regulatory factors"
 - \rightarrow No direct connection with existing capital regulation
 - \rightarrow Basel capital requirements are of the form

 $\gamma L \leq K$

- \rightarrow Current (accounting) value of equity *K*
- \rightarrow Instead of future value of equity V

 $\gamma L \leq V$

Comments on capital constraint (ii)

- Why do BK assume peculiar form of the capital constraint?
 - \rightarrow Because standard constraint cannot generate reversal
 - \rightarrow Just upper bound on lending

 $\gamma L \leq K \rightarrow L \leq K/\gamma$

 \rightarrow Need to bring bank profitability into model

Comments on capital constraint (iii)

- Can "economic factors" justify capital constraint?
 - \rightarrow Standard leverage constraint

 \rightarrow This implies

 $\gamma[(1+r_L)L+(1+r)S] \le V$

 \rightarrow Not BK's capital constraint

What am I going to do?

- Review BK's model of reversal rate
 - \rightarrow Without liquidity constraint
 - \rightarrow With capital constraint of the form $\gamma L \leq V$
- Repullo (2020a) presents alternative model of reversal rate
 - \rightarrow Without liquidity constraint
 - \rightarrow With capital constraint of the form $\gamma L \leq K$
 - \rightarrow But making *K* endogenously provided by shareholders
 - \rightarrow Bank profitability becomes relevant for determining *K*

Bank's problem

• Convenient to work with

 \rightarrow Inverse supply of deposits $r_D(D)$

 \rightarrow Inverse demand for loans $r_L(L)$

• Bank's maximization problem

$$V = \max_{(D,L)} \left\{ [r_L(L) - r]L + [r - r_D(D)]D + (1+r)K \right\}$$

 \rightarrow subject to the capital constraint

$$\gamma L \leq V$$

- If capital constraint $\gamma L \leq V$ is not binding
 - \rightarrow Bank lending obtained by solving max_L {[$r_L(L) - r$]L}
 - \rightarrow First-order condition

$$r_L(L) - r + r'_L(L)L = 0$$

 \rightarrow Differentiating FOC and using SOC gives

$$\frac{dL}{dr} = \frac{1}{2r'_{L}(L) + r''_{L}(L)L} < 0$$

 \rightarrow Lower rates always lead to higher lending: <u>no</u> reversal

Binding capital constraint (i)

• Let us define maximum profits from deposit taking

 $\pi_D(r) = \max_D \left\{ [r - r_D(D)]D \right\}$

 \rightarrow By envelope theorem we have

 $\pi'_D(r) = D > 0$

Binding capital constraint (ii)

• If capital constraint $\gamma L \leq V$ is binding

→ Bank lending is highest solution to equation $\gamma L = [r_L(L) - r]L + \pi_D(r) + (1 + r)K$

Binding capital constraint

Binding capital constraint

Binding capital constraint (ii)

• If capital constraint $\gamma L \leq V$ is binding

→ Bank lending is highest solution to equation $\gamma L = [r_L(L) - r]L + \pi_D(r) + (1 + r)K$

 \rightarrow Differentiating this condition gives

$$\frac{dL}{dr} = \frac{D+K-L}{\gamma - [r_L(L) - r + r'_L(L)L]}$$
$$= \frac{S}{\gamma - [r_L(L) - r + r'_L(L)L]}$$

Binding capital constraint (iii)

• Sign of denominator is positive

$$\gamma - [r_L(L) - r + r'_L(L)L] > 0$$

- If capital requirement $\gamma L \leq V$ is binding
 - \rightarrow Increasing *L* has higher impact on capital requirement γL

 \rightarrow than on profits from lending $[r_L(L) - r]L$

Is there <u>a</u> reversal rate?

• By our previous results we have

$$\frac{dL}{dr} = \frac{S}{\gamma - [r_L(L) - r + r'_L(L)L]} > 0 \quad \Leftrightarrow \quad S > 0$$

• Lower rates lead to lower lending (a reversal rate) if and only if

 \rightarrow Bank is net investor in debt securities

- Hence, there is no single reversal rate
 - \rightarrow Reversal rate depends on bank characteristics
 - \rightarrow Reversal rate does not exist if bank is net borrower in securities market (S < 0)

An alternative model

• Identical to previous model except for

 \rightarrow Form of capital constraint $\gamma L \leq K$

- \rightarrow Corresponds to Basel regulation
- Endogenous equity capital K
 - \rightarrow Bank shareholders require return $r + \rho$
 - \rightarrow Excess cost of capital $\rho > 0$

Why endogenous capital?

• Key intuition of BK's model

 \rightarrow Bank profitability matters for lending

- If shareholders do not get adequate return for their investment
 - \rightarrow They may not want to contribute capital to bank
 - \rightarrow Or shift it to alternative uses
 - \rightarrow With a capital constraint this would reduce lending
- Question: Can this argument be properly formalized?

 \rightarrow Repullo (2020a)

Main results of alternative model

- Low deposit banks
 - \rightarrow Lower rates increase the net value of the bank
 - \rightarrow Profitability constraint will never be binding
 - \rightarrow No reversal rate
- High deposit banks
 - \rightarrow Profitability constraint may become binding
 - \rightarrow For a sufficiently negative policy rate
 - \rightarrow But then banks could start paying negative deposit rates
 - \rightarrow No reversal rate either

Final remark

• Results in line with "Life below Zero"

"Using annual balance-sheet data, we show that while overall bank lending increases after the setting of negative policy rates, the lending of high-deposit banks increases less than the lending of low-deposit banks."

Heider, Saidi, and Schepens (2019)

 \rightarrow No reversal but heterogeneous effects on lending

Part 2

The deposits channel

A most radical claim

"We show that **when the Fed funds rate rises**, banks widen the spreads they charge on deposits, and **deposits flow out of the banking system**. Since banks rely heavily on deposits for their funding, these outflows **induce a contraction in lending**. Our estimates imply that **the deposits channel can account for the <u>entire</u> transmission of monetary policy** through bank balance sheets."

Drechsler, Savov, and Schnabl (2017)

Is there a deposits channel?

- Repullo (2020b) argues that DSS claim
 - \rightarrow Does not follow from theoretical model
 - \rightarrow Does not follow from empirical results
- This presentation: Focus on theoretical model

Model setup

- Representative household with utility function that depends on
 - \rightarrow Final wealth and liquidity services
 - \rightarrow Liquidity services derived from cash and deposits
 - \rightarrow Deposits are composite good produced by set of *n* banks
- Household can invest in cash, deposits, and bonds
 - \rightarrow Cash pay zero interest rate
 - \rightarrow Deposits pay equilibrium deposit rate chosen by banks
 - \rightarrow Bonds pay monetary policy rate *r*

Households' utility function (i)

• CES utility function over final wealth W and liquidity services L

$$U(W,L) = \left(W^{\frac{\rho-1}{\rho}} + (\lambda L)^{\frac{\rho-1}{\rho}}\right)^{\frac{\rho}{\rho-1}}$$

 \rightarrow where $0 < \rho < 1$: wealth and liquidity are complements

• Liquidity is a CES function of cash M and deposits D

$$L(M,D) = \left(M^{\frac{\varepsilon-1}{\varepsilon}} + D^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

 \rightarrow where $\varepsilon > 1$: cash and deposits are substitutes

Households' utility function (ii)

• Deposits are a composite good provided by *n* banks

$$D = \left(\frac{1}{n} \sum_{i=1}^{n} (nD_i)^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$

 \rightarrow where $\eta > 1$: deposits of different banks are substitutes

Simplifying assumptions

• Assume that $\varepsilon = 2$, so the liquidity function simplifies to

$$L(M,D) = \left(M^{1/2} + D^{1/2}\right)^2$$

• Assume that deposits *D* are provided by monopoly bank: n = 1

Demands for cash and deposits

• Let *X* denote opportunity cost of liquidity held by household

$$X = Mr + Ds$$

• What is the best way to allocate *X* between *M* and *D*?

$$\max_{M,D} \left(M^{1/2} + D^{1/2} \right)^2 \text{ subject to } Mr + Ds = X$$

• Solution

$$L(M,D) = \mu X$$

 \rightarrow where μ is the Lagrange multiplier given by

$$\mu = \frac{1}{r} + \frac{1}{s}$$

Households' maximization problem

• Substituting

$$W = W_0(1+r) - X$$
 and $L = \mu X$

into the household's utility function implies following problem

$$\max_{X} \left(\left(W_{0}(1+r) - X \right)^{\frac{\rho-1}{\rho}} + \left(\lambda \mu X \right)^{\frac{\rho-1}{\rho}} \right)^{\frac{\rho}{\rho-1}}$$

 \rightarrow Supply of deposits of monopoly bank

$$D(s) = \frac{X}{\mu s^2} = \frac{W_0(1+r)}{\mu s^2 [1 + (\lambda \mu)^{1-\rho}]}$$

Bank's maximization problem

- Assuming that bank earns the bond return r in its investments
 - \rightarrow and given that the cost deposits is $r_D = r s$
 - \rightarrow bank profits are given by

$$\pi(s) = [r - (r - s)]D(s) = sD(s) = \frac{W_0(1 + r)}{\mu s[1 + (\lambda \mu)^{1 - \rho}]}$$

• Monopoly bank chooses deposit spread

 $s^* = \arg\max_s \pi(s)$

 \rightarrow Equilibrium amount of deposits

 $D^* = D(s^*)$

Counterexample on DSS claim

• DSS claim that an increase in r leads to a reduction in D^*

$$\frac{dD^*}{dr} = \frac{\partial D^*}{\partial r} + \frac{\partial D^*}{\partial s} \frac{\partial s^*}{\partial r} < 0$$

 \rightarrow Deposits flow out of the banking system

• The following figure shows that this is not always the case \rightarrow Numerical example for $\lambda = 4$ and $\rho = 0, 0.1$, and 0.2

U-shaped relationship in monopoly

Why downward-sloping region?

- When market rates are close to zero
 - \rightarrow All rates converge to the zero interest on cash
 - \rightarrow Liquid assets (cash and deposits) are better than bonds
 - \rightarrow Very high proportion of wealth is invested in liquidity
- As interest rates go up households gradually move into bonds
 → Region for which deposits are decreasing in market rates

Why upward-sloping region?

- Consider simpler model without cash
- Household's final wealth

$$W = W_0(1+r) - Ds$$

- Effect on supply of deposits of increase in r decomposed into
 - \rightarrow Negative substitution effect due to increase in spread *s*
 - \rightarrow Positive income effect due to higher return to initial wealth
 - \rightarrow Positive income effect dominates

Moving away from limit monopoly case

- DSS empirical results are about
 - \rightarrow Effect of changes in Fed funds rate on deposits
 - \rightarrow In local markets with different degrees of market power
- What happens when *n* banks compete by setting spreads s_i ?
 - \rightarrow Nash equilibrium can be solved numerically
 - \rightarrow Same results as in the monopoly model

U-shaped relationship in oligopoly

51

U-shaped relationship in oligopoly

Alternative model

- Heterogeneous households
 - \rightarrow Same level of wealth
 - \rightarrow Different preferences for liquidity
- Households can invest in cash, deposits, and bonds
 - \rightarrow Cash pay zero interest rate
 - \rightarrow Deposits pay equilibrium deposit rate chosen by banks
 - \rightarrow Bonds pay monetary policy rate *r*
- Compute Cournot equilibrium for market with *n* banks

Properties of equilibrium

• Deposits are increasing in the number of banks *n*

 \rightarrow Higher competition leads to higher deposits

• Deposits are increasing in the market rate *r*

 \rightarrow Contrary to the claim in DSS

• Cross derivative (of deposits with respect to n and r) is positive

 \rightarrow As in empirical results in DSS

Final comment

• DSS look at effect of monetary policy on bank lending through the lens of deposit taking

"Deposits are a special source of funding for banks, one that is not perfectly substitutable with wholesale funding."

• But if focus is on bank lending market power (and risk-taking) in lending should have a prominent role

 \rightarrow Need models that encompass both sides of balance sheet

Summary and conclusion

Summing up

- Critical review of BK model
 - \rightarrow Reversal rate may not exist
 - \rightarrow If it does depends on bank characteristics
- Critical review of DSS model
 - \rightarrow Deposits may be increasing in the policy rate
 - \rightarrow Look for lending channel of monetary policy

Concluding remarks

- Results illustrate power of simple micro-io models of banking
- Approach could be extended to other relevant issues

 \rightarrow The effect of introducing CBDCs

- But these models are essentially partial equilibrium
 - \rightarrow General equilibrium effects cannot be captured
 - \rightarrow Building block for better macro-finance models

Main references

• Brunnermeier, M., and Y. Koby (2019), "The Reversal Interest Rate."

• Corbae, D., and R. Levine (2018), "Competition, Stability, and Efficiency in Financial Markets," Jackson Hole.

• Drechsler, I., A. Savov, and P. Schnabl (2017), "The Deposits Channel of Monetary Policy," *Quarterly Journal of Economics*.

• Heider, F., F. Saidi, and G. Schepens (2019), "Life below Zero: Bank Lending under Negative Policy Rates," *Review of Financial Studies*.

• Martinez-Miera, D., and R. Repullo (2020), "Interest Rates, Market Power, and Financial Stability."

• Repullo, R. (2020a), "The Reversal Interest Rate: A Critical Review."

• Repullo, R. (2020a), "The Deposits Channel of Monetary Policy: A Critical Review."

• Wang, Y., T. Whited, Y. Wu, and K. Xiao (2019), "Bank Market Power and Monetary Policy Transmission: Evidence from a Structural Estimation."

Appendix

DSS empirical results

Empirical model

• Key panel regression in DSS

 $\Delta D_{it} = \alpha_i + \gamma (\Delta r_t \times HHI_i) + \text{ Controls} + \varepsilon_{it}$

- $\rightarrow \Delta D_{ii}$: Annual log change in deposits of branch *i*
- $\rightarrow \Delta r_t$: Change in Fed funds rate target
- $\rightarrow HHI_i$: Herfindahl index of county where branch *i* is located

Interpretation of results

• DSS interpretation

"Following an increase in the Fed funds rate, bank branches in more concentrated counties experience **larger outflows** relative to branches in less concentrated counties."

Interpretation of results

• DSS interpretation

"Following an increase in the Fed funds rate, bank branches in more concentrated counties experience **larger outflows** relative to branches in less concentrated counties."

• Alternative interpretation

"Following an increase in the Fed funds rate, bank branches in more concentrated counties experience **smaller inflows** relative to branches in less concentrated counties."

DSS unwarranted conclusion

• DSS use panel results to conclude

"When the Fed funds rises, banks widen the spreads they charge on deposits, and **deposits flow out of the banking system**."

 But the fact that γ is negative and statistically significant in panel regression does <u>not</u> imply that increases in the Fed funds rate lead to reductions in the aggregate amount of deposits

 \rightarrow It's a result on **relative not overall** changes in deposits