# BENEFITS OF MACRO-PRUDENTIAL POLICY IN LOW INTEREST RATE ENVI-RONMENTS (by Alejandro van der Ghote) DISCUSSION

JOSEF SCHROTH

BANK OF CANADA

18 May 2021



## WHAT IS THE PAPER ABOUT

#### MACROPRUDENTIAL POLICY AND LIQUIDITY TRAPS

- paper develops parsimonious macro-finance model Gertler-Kiyotaki (2010), Brunnermeier-Sannikov (2014)
- banks issue non-contingent bonds, rent out capital to firms
- bank pays out equity only when it exits (exogenous exit rate)
- law of large numbers: as if banks have constant dividend-equity payout ratios
- negative shocks to value of capital deplete bank net worth
  - banks funding-constrained, so households rent out capital
  - but this is less efficient; capital misallocation lowers output!
- households are afraid of this (risk aversion):

interest rate drops a lot when bank net worth drops a little

- ZLB binding: under-utilization on top of misallocation
  - also negative feedback loop

macroprudential limits on bank leverage have two uses

- reduce systemic risk (banks less often funding constrained)
- this lowers households' demand for self-insurance
- natural rate increases, less likely to be negative
- eliminate (or lessen) ZLB problems



#### WHAT IS HOUSEHOLD INCOME?

households are capitalists; they receive income in form of

- interest from non-contingent bonds
- bank dividends
- ▶ capital rents (if bank net worth low enough,  $\eta < \bar{\eta}$ )
- but they cannot have negative net worth (no net borrowing)
- households have no labor income
  - might matter for welfare analysis (wages)
  - might create high consumption volatility
    strong effect on interest rates given CRRA preferences
- could explore adding labor income or some endowment
  - would be nice to see aggregate consumption over cycle
  - natural rate negative for plausible consumption volatility?

#### BANK DIVIDEND POLICY IS EXOGENOUS

- very rigid payout policy: always pay out fraction of net worth
- banks (in aggregate) are not allowed to retain more earnings
- not even when the interest rate is negative
  - this is exactly when generating future profits increases value
- $\blacksquare$  maybe allow banks to retain more earnings when  $\eta < \bar{\eta}$ 
  - $\Rightarrow$  because then profitability is high (and funding cheap)
- right now, model forces banks to return equity (net worth)
  - ▶ in particular, at times when households want it the least
  - households prefer claims to future dividends when risk high
- this might also affect bank risk taking
  - why build up equity...
    - ... if forced to pay it out when pricing kernel tells you not to

#### STOCHASTIC STEADY STATE TOO FRAGILE?

- $\blacksquare$  invariant distribution: most mass below 'well capitalized'  $\bar{\eta}$ 
  - some regulatory bank supervisors may protest
- most of the time:
  - interest rates are either negative or banks disintermediated
- model is not only about tail risk: aggregate productivity is in fact low most of the time!
- this might change if banks allowed to set dividends freely
  - maybe governance regulation would be important in model
- related question: how do you define a financial crisis? and what does model imply for frequency of financial crises?

### SOME MINOR COMMENTS/ OBSERVATIONS

- need definition for transfer  $\tau_t$  from households to banks
  - isn't that mostly dividends, so  $\tau_t < 0$ ?
- macroprudential policy depends only on bank wealth share
  - could also depend on bank lending, aggregate productivity
  - lesson from CCyB implementation: one indicator may not be enough to capture financial cycle
  - maybe wealth share is sufficient statistic in your model, but would be useful to clarify in paper
- definition of 'boom' not very intuitive
  - it's actually when productivity is highest (zero misallocation)
- risk determines interest rate in this economy
  - natural rate inversely related to productivity (unless  $\eta$  high)
  - bank funding cost highest when intermediation most scarce
  - further slows down recoveries

#### CONCLUSION

- ambitious paper, many moving parts work together nicely
- policy makers should take note of the central message
  - macroprudential policy affects natural rate (risk channel)
  - this matters for monetary policy, because of ZLB
  - optimal macroprudential policy:
    ⇒ also makes the job of monetary policy authority easier!!
- two things potentially worthwhile to explore in the model
  - dividend choice
  - implied frequency of financial crises
- I'm really looking forward to the next version of the paper!