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Abstract 
Recent discussions on climate change have led to an interest in its potential impact on 
economic phenomena and public policy. In this paper, we focus on one aspect of the climate 
change question by documenting the time-series properties of temperatures across Canada. 
In particular, we examine the evolving dynamics of daily average temperature and diurnal 
temperature range (the difference between the daily maximum and minimum temperatures 
at a given location) for select Canadian cities using data from the past 60 years. While rising 
mean temperature levels in Canada and elsewhere has been well documented, research 
exploring the other elements of temperature dynamics using modern econometric methods 
and rich model specifications are sparse. To fill in this gap, we extend the work of Diebold 
and Rudebusch (2019) and examine the evolution of daily temperature averages, volatility, 
seasonality and duration. This new evidence provides economists exploring issues related to 
climate change with a better understanding of the nature of Canadian temperature dynamics 
and their magnitudes. 

Topics: topics: Climate change; Econometric and statistical methods 
JEL codes: C22, Q54 
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1. Introduction 

Research aimed at better understanding climate change dynamics has been gaining momentum (see, for 

example, Hsiang and Kopp 2018, Carney 2019, Bolton et al. 2020 and Diebold et al. 2020). Despite this 

increasing interest, surprisingly little work has analyzed the dynamics of climate metrics using modern 

time‐series methods. We take up this task by exploring, in a systematic fashion, one margin of the climate 

change issue: The evolution of temperature dynamics across a range of Canadian locations. We do not 

attempt to isolate drivers behind changing temperature dynamics nor do we advance a specific model of 

temperature dynamics or have one in the background. At this relatively early stage of climate change 

economic research, we believe it is sufficient to provide a factual background of changing temperature 

dynamics from which theoretical climate models and climate simulation models can be developed and 

tested.  

As a result, we follow the work reported in Diebold and Rudebusch (2019). Diebold and Rudebusch 

conduct a formal econometric analysis of the evolving dynamics of daily average temperatures and diurnal 

temperature ranges (the difference between the daily maximum and minimum temperatures at a given 

location) for 15 large cities across the United States using data from the 1960 to 2017 sample period. We 

conduct a similar examination for select large Canadian cities but also include two northern and relatively 

less populated areas: Eureka, Nunavut and Yellowknife, Northwest Territories. The latter areas allow us 

to explore whether the results presented in the current paper for more southern and populated Canadian 

cities and those reported in Diebold and Rudebusch are robust to more northern and less populated areas. 

We also extend their work by examining the evolution of the frequency and duration of so‐called extreme 

temperature events. This allows us to shed light on a common narrative in the Canadian media regarding 

increasingly longer “heat waves” as well as provide researchers with empirical findings on an additional 

dimension of temperature dynamics in Canada.  

While the rise of average temperatures has been well documented, our analysis differs from previous 

research along three margins. First, we use modern econometric methods, which allows us to perform 

valid hypothesis testing in the presence of autocorrelated or heteroscedastic regression residual terms. 

We find that “typical” temperature regressions admit such non‐spherical residuals and earlier work did 

not properly account for them in their inferential procedure. As demonstrated in den Haan and Levin 

(1997), this type of omission can lead to gross differences between nominal and empirical test sizes. 

Second, we use richer temperature dynamics specifications, which may help to sharpen our parameter 

estimates. Third, the effects of fixed and time‐varying seasonality, a potentially important element of 
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temperature dynamics, are examined. This analysis should improve our understanding of the dynamics of 

an important aspect of climate change, which, in turn, should help inform weather modelling and, 

eventually, public policy. Indeed, Dietz et al. (2020) emphasize the importance of properly modelling 

climate change dynamics for providing informed recommendations for climate change public policy. 

The remainder of the paper is as follows. The next section describes the temperature data used in this 

study. Section 3 demonstrates our empirical strategy using one city, Toronto, as an example. Section 4 

expands the analysis described in the previous section to our full sample of locations. The penultimate 

section examines the evolution of “extreme” temperature events since 1960. The final section offers 

concluding remarks and directions for future research.  

2. Data 

This paper leverages daily surface air temperature data from the third generation of the Adjusted and 

Homogenized Canadian Climate (AHCC) database. The information collected includes minimal, maximal 

and average daily temperatures measured in Celsius (C). This dataset has many desirable properties, such 

as its spatial and temporal coverage; but more importantly, its data have been adjusted for several types 

of non‐climatic breaks. These include corrections for station relocation, changes in observing practices 

and automation, among others. According to the dataset’s authors, Vincent et al. (2018), the AHCC 

database “provides the best data sets for temperature trends in Canada.” 

We focus the analysis on large metropolitan areas that provide us with broad regional coverage across 

Canada over 1960‒2019.1 Concentrating on these areas allows us to study temperature dynamics with 

near complete data for regions with an important share of both population and economic activity. 

Importantly, the majority of the data was collected at airport weather stations, where temperature could 

differ from that of the cities themselves, an issue to which we will come back later. More specifically, the 

analysis focuses on temperature data from 11 large metropolitan areas, viz., Victoria, Vancouver, 

Edmonton, Calgary, Winnipeg, Toronto, Ottawa, Montreal, Quebec, Moncton and St. John’s. As well, we 

include Eureka, Nunavut and Yellowknife, Northwest Territories, in our sample to examine whether our 

results for more populated Canadian cities and those reported in Diebold and Rudebusch (2019) apply to 

 

1 Missing values are imputed by taking an exponentially weighted average of the same month‐day pairs in the year 
preceding and following the missing observation. 
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more northern and less populated areas.2 Indeed, Eureka lies north of the Arctic Circle (79.9 N latitude 

versus 66.5 N) and had a population of eight according to the most recent data. To provide a sense of 

distance, Eureka is about 3,844 kilometres further north (holding the longitude constant) than the most 

northern U.S. city in Diebold and Rudebusch (viz., Portland, Oregon) and 2,956 kilometres from the most 

northern large Canadian city in our sample, Edmonton, Alberta. 

For the purposes of the current analysis, we create two statistics for each city: (i) daily average 

temperature or AVG = (MAX + MIN) / 2, where MAX is the maximum temperature during a particular day 

and MIN is the minimum temperature during the same day; and (ii) diurnal temperature range DTR = MAX 

– MIN, which is a natural measure of intraday volatility or variability. According to Diebold and Rudebusch 

(2019), DTR is an intuitive estimator of daily volatility and, as well, a highly efficient statistic for estimating 

underlying quadratic variation from discretely sampled data. 

3. Preliminary Data Analysis 
3.1 Graphs and Trends 

In order to provide an initial sense of the data, we follow Diebold and Rudebusch (2019) and present some 

simple statistics and graphs based on temperature data from one city. In our case, we use Toronto, 

Canada’s most populated city, as our base case. We expand the analysis to the full sample of locations in 

the next section, but a focus on one city helps to lay out our analytical approach.  

In Figure 1, we plot the unconditional distributions of AVG and DTR. As in Diebold and Rudebusch, AVG 

admits a bimodal distribution reflecting the strong seasonality patterns found in Canada. In particular, the 

winter mode is around 2°C, while the summer mode is about 21°C. The DTR distribution, in contrast, is 

unimodal and approximately symmetric, and centred around 7°C with much less dispersion than the AVG 

density. 

Next, we explore the temporal evolution of AVG and DTR by regressing them on a series of deterministic 

variables via ordinary least squares. Modelling processes as complex as average temperatures and diurnal 

temperature range with a simple constant and trend will almost ensure that the residuals will be serially 

 

2 An obvious omission from the list of northern and less populated areas is Whitehorse, Yukon. Unfortunately, 
consistent temperature data for Whitehorse is difficult to obtain, with, in one case, 651 consecutive missing 
observations.  
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correlated, autoregressively heteroscedastic or both. As a result, in this section we merely present the 

modelling approach and defer the important question of statistical significance to section 4.  

Figure 2 presents plots of AVG and DTR along with their fitted trend line from a simple regression of the 

form: 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽 ∙ 𝑇𝑇𝑡𝑡 + 𝑣𝑣𝑡𝑡, (1) 

where 𝑦𝑦𝑡𝑡  is either AVG or DTR, 𝛼𝛼 and 𝛽𝛽 are parameters to be estimated, 𝑇𝑇𝑡𝑡 is a linear time trend, and 𝑣𝑣𝑡𝑡 

is an error term.3  

When 𝑦𝑦𝑡𝑡  is set equal to AVG, 𝛽𝛽 is positive, supporting the result that average temperatures have been 

increasing over time (or an increasing trend line in the left panel of Figure 2). The parameter estimate 

implies that the average temperature in Toronto has increased by about 1.5°C over the past 60 years, 

which is greater than the average increase observed globally over the same period (see Rudebusch 2019). 

As noted in Diebold and Rudebusch, there are two reasons for greater warming of cities: (i) the increasing 

urban heat island effect; and (ii) the fact that average land temperatures generally grow faster than the 

global average, which includes ocean areas that are slower to warm.4  

Setting 𝑦𝑦𝑡𝑡  equal to DTR, the estimated slope term in the above regression is negative. This result indicates 

that the daily range of temperatures in Toronto has been narrowing (represented by a decreasing trend 

line in the right panel of Figure 2). Specifically, DTR has fallen by about 0.3°C over the sample period with 

the MIN rising faster than the MAX and, thereby, narrowing the spread between the two measures.  

Thus far, the picture for temperatures in Toronto is a diurnal asymmetry characterized by increasing 

average temperatures and declining intraday temperature ranges. The latter is owing to nighttime 

temperatures increasing faster than daytime ones.  

 

 

3 We acknowledge that a linear trend is a simple approach to modelling changes over time, but we believe it is a 
reasonable approximation to capture general changes in a variable’s dynamics over a 60‐year horizon. Accordingly, 
we do not attempt to forecast the future path of any of the variables under consideration.  
 
4 To obtain a sense of impact of the urban heat island effect, we tested the equality of trends between the cities of 
Toronto and Burlington. Burlington is located approximately 50 kilometres southeast of Toronto, also next to Lake 
Ontario. Despite Toronto being more than 14 times more populous than Burlington, the null hypothesis of equal 
trends could not be rejected. 
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3.2 Seasonality 

In this subsection, we continue working with temperature data from Toronto to consider another 

important feature of temperature dynamics—seasonality. We examine both fixed and time‐varying 

seasonality and start the analysis with the former. More specifically, the detrended residuals from the 

previous AVG and DTR specifications, 𝑣𝑣�𝑡𝑡, are regressed, respectively, on 12 monthly dummy variables: 

𝑣𝑣�𝑡𝑡 = ∑ 𝛾𝛾𝑖𝑖12
𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡 + 𝑢𝑢𝑡𝑡, (2) 

where 𝐷𝐷𝑖𝑖𝑡𝑡 is equal to one if day 𝑡𝑡 resides in month i, otherwise it is equal to zero; the 𝛾𝛾′𝑠𝑠 are parameters 

to be estimated; and 𝑢𝑢𝑡𝑡 is an error term. The regression results point to the existence of seasonal effects 

for both AVG and DTR and explain about 81 percent of the variation in detrended AVG and 14 percent in 

detrended DTR. Figure 3 plots the fitted and actual values from equation (2) and offers a visual means to 

glean these results. That is, the figure shows a pronounced seasonality pattern in AVG (left panel) and the 

inability of monthly dummy variables to capture a lot of variation in DTR (right panel). 

Figure 4 provides another view of the fixed seasonal patterns in the data. In Figure 4, the 12 estimated 

monthly seasonal parameters from detrended AVG and DTR regressions are plotted in the left and right 

panels, respectively. The seasonal pattern for AVG is as expected: high in the summer months and low in 

the winter period. In particular, estimated seasonality reaches its maximum in July for AVG and its trough 

in January. The variation in seasonality for DTR is much less than that of AVG but also culminates over the 

summer months.5 

Since it is possible that seasonal patterns have also been evolving over the sample period, we explore this 

possibility in the remainder of this subsection. To this end, we augment equation (2) with 12 monthly 

dummy variables interacted with time. That is: 

𝑣𝑣�𝑡𝑡 = ∑ 𝛿𝛿𝑖𝑖12
𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡 + ∑ 𝜆𝜆𝑖𝑖12

𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡𝑇𝑇𝑡𝑡 + 𝑒𝑒𝑡𝑡, (3) 

where 𝛿𝛿 and 𝜆𝜆 are coefficients to be estimated and 𝑒𝑒𝑡𝑡 is an error term. The interaction term, 𝐷𝐷𝑖𝑖𝑡𝑡𝑇𝑇𝑡𝑡, should 

allow us to capture any linearly evolving changes in the monthly seasonal pattern found above. We 

present the results graphically in Figure 5. The figure displays the estimated seasonal parameters for the 

first (1960) and last (2019) years of our sample. Overall, we see that, whereas the broad seasonality 

pattern remains the same, there are changes in the magnitude of some monthly seasonality effects. In 

 

5 Interestingly, the seasonality of DTR in Toronto does not appear to be clearly bimodal, as is the case for most other 
cities in our sample as well as for most locations studied by Diebold and Rudebusch (2019). 
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particular, the estimated seasonal effects on average daily temperatures seem to have declined in 

October and November while, for DTR, seasonality appears to have evolved with decreases in June, 

October and December and increases in March and November.  

3.3 Extreme Temperature Events 

An idea that is often mentioned in the popular media and elsewhere is that “heat waves” have become 

more common events. In this subsection, we explore a more general question of whether the frequency 

and duration of “extreme temperature” events in Toronto has evolved over time and, if so, we estimate 

the extent of the change. To operationalize the idea of “extreme temperature events,” we follow Vincent 

et al. (2018) and define the following five categories: (i) summer days = days with MAX > 25°C; (ii) hot days 

= days with MAX > 30°C; (iii) hot nights = days with MIN > 22°C; (iv) frost days = days with MIN ≤ 0°C; and 

(v) ice days = days with MAX ≤ 0°C. Applicable daily MIN and MAX temperature observations for Toronto 

are then placed into these categories.  

Looking across these categories over the sample period, it is readily apparent that there have been large 

shifts in the frequency of these extreme temperature events. For instance, the decadal average for 

summer and hot days was about 57 and 10 in the 1960s and jumped to average about 72 and 14.5 days 

for the 2010s.  Similar shifts are seen for colder temperatures: The 1960s decadal average for frost and 

ice days was about 121 and 53 days and fell to 104 and 44 days, on average, for the 2010s.  

To obtain more formal evidence of evolution of extreme temperature events, the annual frequency in 

each category is regressed on a constant and linear trend. The estimated coefficient associated with the 

trend terms then provides us with a sense of the degree of change in frequency of extreme temperature 

events. The results are presented in the upper panel of Table 1 and support the casual observations from 

the previous paragraph. In particular, summer and hot days have increased by about 18.5 and 7 days, 

respectively, since 1960, and frost and ice days have dropped by almost 23 and 16 days, respectively.  

Another, perhaps, more interesting dimension of extreme temperatures is the duration of these events 

since it helps to formalize the notion of longer “heat waves.” To begin, a simple examination of decadal 

averages suggests the consecutive hot and summer temperature days are becoming longer. In the 1960s, 

for example, the average duration of summer and hot days was 3 and 1.5 days which, in the 2010s, 

increased to 4.2 and 1.9 days. Again, to provide more formal evidence of changes in the duration of 

extreme temperature events, the annual average durations of each type of temperature event is 

regressed on a constant and a trend. These results can be found in the lower panel of Table 1. The results 
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suggest that since 1960, the durations of summer and hot days have increased by about 1.2 and 0.3 days. 

Moreover, durations of frost and ice days in Toronto have declined by almost 1.7 and 0.8 days.  

To summarize the results from this section, temperature dynamics for Toronto can be characterized by 

rising average temperatures, narrowing intraday temperature ranges, and evolving seasonal effects. As 

well, extreme temperature events (as defined above) have become more frequent and their durations 

longer lasting. In the next section, the analysis is expanded to the full sample, which includes 11 large 

Canadian cities and two northern and less populated areas. 

4. Full-Sample Data Analysis 

In this section, we continue to follow DR and estimate specifications for both mean and variance dynamics 

that control for trend, time‐varying seasonality and serial correlation. Thus, in contrast to the previous 

section, where trends and seasonality were estimated sequentially, the empirical approach in this section 

starts immediately with the specification that estimates all these effects jointly. The analysis is conducted 

with data from 11 large metropolitan areas, viz., Victoria, Vancouver, Edmonton, Calgary, Winnipeg, 

Toronto, Ottawa, Montreal, Quebec, Moncton and St. John’s, along with two more northern and less 

populated areas, Eureka and Yellowknife.  

As mentioned in section 3, modelling processes as complex as average temperatures and diurnal 

temperature range will almost ensure that the residuals will be serially correlated, autoregressively 

heteroscedastic or both. Therefore, the standard errors of all following regressions are estimated using 

the Newey and West (1987) heteroscedasticity and autocorrelation consistent (HAC) estimator, which 

allows us to conduct valid statistical inference even in the presence of non‐spherical residuals.6 As well, 

given the Monte Carlo results reported in den Haan and Levin (1997), we re‐estimate each regression’s 

statistics using the Andrews (1991) quadratic spectral HAC estimator augmented with the Andrews and 

Monahan (1992) pre‐whitening filter and automatic bandwidth selection procedure to examine the 

robustness of our results.7 

 

6 For all regressions in this analysis, the Newey and West estimator uses a Bartlett kernel and a truncation 
parameter selection approach as recommended in Newey and West (1994). 

7 In addition, every linear trend was also estimated using the non‐parametric Sen’s slope estimator (Sen 1968). 
These results together with those from the QS HAC estimator are not reported in this paper since the conclusions 
are robust to their application. 
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4.1 Conditional Mean Dynamics 

To examine the conditional mean dynamics for the 11 cities and two northern areas, we estimate the 

following specification for each city or area: 

𝑦𝑦𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖11
𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡 + ∑ 𝜆𝜆𝑖𝑖11

𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡𝑇𝑇𝑡𝑡 + 𝜌𝜌𝑦𝑦𝑡𝑡−1 + 𝜀𝜀𝑡𝑡, (4) 

where 𝑦𝑦𝑡𝑡  is either AVG or DTR; 𝛼𝛼,𝛽𝛽, 𝛿𝛿′𝑠𝑠, 𝜆𝜆′𝑠𝑠 and 𝜌𝜌 are parameters to be estimated; and 𝑇𝑇𝑡𝑡 is a linear time 

trend. The dummy variable, 𝐷𝐷𝑖𝑖𝑡𝑡, is defined slightly differently than above owing to the presence of the 

constant term. The variable is a monthly seasonal dummy series where July has been omitted, and which 

equals to one if day 𝑡𝑡 is in month i and zero otherwise. The interaction term, 𝐷𝐷𝑖𝑖𝑡𝑡𝑇𝑇𝑡𝑡, is intended to capture 

any potential time variations in seasonal factors. In effect, the constant and non‐interacted trend terms 

reflect the month of July, and the seasonal dummies and interacted trends reflect marginal effects for the 

11 other months relative to July. Finally, 𝜀𝜀𝑡𝑡 is a disturbance term, and 𝑦𝑦𝑡𝑡  is a lagged dependent variable 

included to provide us with an indication of the degree of autocorrelation in AVG and DTR after controlling 

for the effects of trend and seasonal components. 

The estimation results for AVG for each city are presented in the upper panel of Table 2, while the 

comparable results for Eureka and Yellowknife are displayed in the lower panel. Table 3 reports analogous 

statistics for DTR. For both tables, the first (left‐most) column presents the direction and magnitude of 

the trend movement over the whole sample based on a simple regression on a constant and a trend. The 

statistical significance of this trend is assessed via a Wald test that all trend terms in equation (4) are 

jointly equal to zero, for which the p‐values are reported in column p(nt).8 The reason for this two‐step 

procedure is that while a simple model can provide a reasonable approximation of a variable’s trend over 

such a long period of time, its specification is arguably not rich enough to provide precise estimates 

because of the large amount of noise left. A joint significance test of all trend terms in a richer model is 

thus better suited to determine the significance of an overall trend in the data. The third and fourth 

columns report p‐values for Wald tests corresponding to the null hypotheses of no seasonality p(ns) and 

no time‐varying seasonality p(nts), respectively. The former jointly tests the significance of the seasonal 

dummies, the idea being that if the marginal effects for those months are not different from zero, then 

there is no seasonality in the sense that all months share the same average, represented by the constant. 

Similarly, testing for no time‐varying seasonality involves the joint significance test of the interacted trend 

 

8 A single asterisk indicates statistical significance at, at least, the 5 percent level. 
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terms, where a non‐rejection of the null hypothesis implies that all months share the same linear trend, 

and thus that their relation to each other has remained constant through time. The penultimate column 

shows the coefficient on the lagged dependent variable, and the last column reports the coefficient of 

determination as an indicator of the goodness‐of‐fit of each regression specification. Finally, an estimate 

of the average trend in southern locations is computed using the mean group estimator (MGE) of Pesaran 

and Smith (1995). 

Turning to Table 2, it is readily apparent that the parameter estimates associated with the trend term are 

all positive and statistically significant. For the whole sample, the MGE reports an average warming of 

1.47°C, which is also statistically significant.9 An especially notable result is that the increase in average 

temperature in the more northern climates represented by Eureka and Yellowknife (lower panel) is almost 

twice as large as the average increase of the 11 cities, consistent with previous studies (e.g., IPCC 2018 

and Vincent et al. 2018). Indeed, the point estimate for Eureka indicates that its average temperature has 

been growing at more than three times the global warming rate of about 1°C since 1960 (see Rudebusch 

2019). In other words, our results imply that average temperatures in northern Canadian climates are 

increasing faster than southern regional temperatures and this conclusion is consistent with the evidence 

suggesting the ice sheets are melting much faster than previously anticipated based on data from the 

1990s (see Shepherd et al. 2019). 10 Fixed seasonality in AVG is a common feature across every location 

with all the p(ns)’s being less than 0.01. In contrast, there is less evidence of evolving seasonality with a 

median p‐value for southern cities over 10 percent.  

Table 3 presents evidence supporting the idea, found for Toronto, that the intraday temperature range 

has been narrowing in some cities. Yet, while a majority of cities have seen significant declines in DTR, 

others have experienced important increases, such as Edmonton with a cumulative trend of 1.18 degrees. 

Indeed, Davy et al. (2017) find that changes in DTR trends are not homogeneous across locations and are 

specific to geographical areas. The MGE trend for DTR is about ‐0.1 but is not significant, presumably 

 

9 We checked again for the impact of urban heat island effects by testing the equality of trends between Montreal 
(for which data are recorded at the Trudeau airport) and the Saint‐Hubert airport, which is located on the south 
shore of Montreal, but we could not reject the null hypothesis. This result, together with the one contrasting 
Toronto and Burlington, suggests that urban heat island effects might not be playing a large role when assessing 
long‐run temperature trends. 

10 A simple exercise where temperatures are averaged across Eureka and Yellowknife and the more southern cities 
separately shows that the trends for each of those areas are statistically different at the 5 percent level. 
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because of the relatively large span of results (‐0.69 for Montreal and 1.18 for Edmonton). Consistent with 

the results for AVG, we find statistically significant evidence of fixed seasonality in DTR for all locations. In 

contrast to AVG, however, indications of time‐varying seasonality are discernable at the 5 percent level 

of significance or lower. Notably, Victoria, Calgary, Winnipeg, Toronto, Ottawa, Montreal, St. John’s, 

Eureka, and Yellowknife show statistically significant signs of evolving seasonality.   

4.2 Conditional Variance Dynamics 

As argued earlier, weather data typically exhibit serial correlation and other time‐related forms of 

heteroskedasticity. We thus follow Diebold and Rudebusch and test for the presence of heteroskedasticity 

in our data by modelling the conditional variance of AVG and DTR. Specifically, we estimate the following 

model for each city or area: 

𝜀𝜀𝑡𝑡2 = 𝛼𝛼 + 𝛽𝛽𝑇𝑇𝑡𝑡 + ∑ 𝛿𝛿𝑖𝑖11
𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡 + ∑ 𝜆𝜆𝑖𝑖11

𝑖𝑖=1 𝐷𝐷𝑖𝑖𝑡𝑡𝑇𝑇𝑡𝑡 + 𝜌𝜌𝜀𝜀𝑡𝑡−12 + 𝑣𝑣𝑡𝑡, (5) 

where 𝜀𝜀𝑡𝑡2 is the squared residuals from the AVG or DTR conditional mean equations, and the other 

terms are analogous to those of the conditional mean equation. 

The 𝜀𝜀2’s represent the variance of the data conditional on the trend and seasonality. Because the latter 

are deterministic components, the 𝜀𝜀2’s can be interpreted as capturing the volatility beyond the 

systematic fluctuations induced by the seasons and the linear trend. In contrast to DTR, which captures 

intraday volatility, the conditional variance equations model interday volatility. If the data are 

homoscedastic, the coefficients from the conditional variance equation should be jointly statistically 

indiscernible from zero. Otherwise, it would indicate that the we have heteroskedastic shocks. 

The estimation results for AVG for each city are presented in the upper panel of Table 4, and the 

comparable results for Eureka and Yellowknife are displayed in the lower panel. Table 5 reports analogous 

statistics for DTR. Each column is defined as in Tables 2 and 3. 

Trend estimates for the conditional variances are statistically significant and are generally negative across 

locations for both AVG and DTR. Evidence of declining volatility is particularly strong in the case of average 

temperatures, with a significant MGE of ‐0.09 degrees.  On the other hand, the picture for DTR is less 

clear, with some locations having important positive trends, such as Victoria and Edmonton. In our 

northern locations, however, volatility seems to have declined for both AVG and DTR. Seasonal patterns 

are also found to be highly significant, further supporting the presence of heteroskedasticity. Similar to 

the conditional mean equation, the evidence of trending seasonality is relatively weak. Worth noting is 
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the general significance of the lagged dependent variable, which suggests the existence of ARCH effects. 

We defer the examination of the latter to future research. 

So far, the conditional variance dynamics indicate that average temperature volatility has actually been 

declining over the past 60 years. This is consistent with the estimated decline in intraday volatility across 

most locations captured by the conditional mean results for DTR, and it contrasts with the general 

impression that temperature swings are more frequent. The next two sections provide insights into how 

the conditional variance results can be reconciled with this narrative. 

4.3 Frequency and Duration of Extreme Temperatures 

The decline in temperature volatility estimated in the previous sections may appear counterintuitive given 

the numerous warnings of increasing extreme weather events over time. However, it is important to 

determine whether temperature change is assessed relative to a reference climate or an evolving climate. 

Indeed, results from the conditional variance analysis merely indicate that around the trending, constantly 

evolving, temperature distribution volatility has decreased. Yet, climate change is typically defined from 

the point of view of a reference climate, usually the one prevailing over the 1850‒1900 period (Vincent 

et al. 2018). In that sense, extreme events may have increased despite the fall in volatility.  

Figure 6 illustrates this using a stylized climate distribution changing over time. Clearly, an increase in 

average temperatures, as the one documented above, implies a decrease in the likelihood of cold events 

and an increase in that of hot events. On the other hand, a fall in volatility implies declines in the likelihood 

of both cold and hot temperatures. For cold events, the result is unequivocal: a decline in frequency. Hot 

events, however, may become more or less likely depending on which one of the mean effect or variance 

effect dominates. To shed light on this issue, we expand the analysis in subsection 3.3 and examine 

whether the frequency and duration of extreme temperature events has changed over the sample period. 

We use the same extreme temperature definitions as the subsection. To reiterate, we follow Vincent et 

al. (2018) and define the following five categories: (i) summer days = days with MAX > 25°C; (ii) hot days 

= days with MAX > 30°C; (iii) hot nights = days with MIN > 22°C; (iv) frost days = days with MIN ≤ 0°C; and 

(v) ice days = days with MAX ≤ 0°C. Applicable daily MIN and MAX temperature observations for each 

location are then placed into these categories. 

Table 6 displays the trend parameter estimates of specifications that regress the annual frequency of 

different types of extreme temperature events on a constant and a linear trend for each location under 

consideration. Looking across the table, we see some general patterns. Temperatures consistent with 



12 
 

summer days are becoming more frequent events with an MGE increase of 11 days since 1960. The effect 

is especially notable in Toronto, Ottawa and Montreal. The frequency of hot days is also rising with 

statistically significant increases ranging from more than 1 day in Victoria to about 7 days in Toronto. 

Consistent with the idea of global warming, the frequency of frost and ice days is estimated to be 

declining. The location‐specific effects are, on the whole, statistically significant with an MGE decrease of 

15 days for frost days, and 11 days for ice days. The 18‐day decline in frost days in Eureka stands out as 

its location is more than 1,000 kilometres north of the Arctic Circle.   

Estimates of changing extreme temperature duration are presented in Table 7. The estimates are based 

on equations regressing the annual average durations of each type of temperature event on a constant 

and a trend. The statistically significant summer trend estimates suggest that the average duration has 

increased by about 0.4 days. There is no evidence, however, of changes in the duration of hot days. On 

the other hand, the average duration of frost and ice spells appears to have fallen on average across 

locations. Interestingly, durations in the northern areas do not seem to have changed over the estimation 

sample, despite some changes in frequency. 

One pattern that emerges from the extreme events analysis is that the typical change in cold events seems 

to be greater, in absolute value, than that of warm events. The reduction in the frequency of cold events 

is more widespread across the country than the increase in the frequency of warm events, and the 

absolute magnitude is larger. The change in average duration is also more important for cold events, 

especially for ice days.  

This feature provides a first possible explanation as to why the conditional variances might be declining 

despite the frequent references to higher weather volatility. Two effects seem to be at play in Canada: 

extreme cold temperatures have weakened, in terms of both frequency and duration, while extreme 

warm events have become more common and persistent. However, the evidence suggests that the latter 

effect might be of lesser importance than the former.11 If this is the case, then one could observe a rise in 

extreme warm events together with an overall fall in (average) volatility across all seasons. This would be 

consistent with the fact that warming has particularly affected winters in Canada (Bush et al. 2019). 

 

11 This is also supported by an examination of the distribution of AVG over time. The probability of observing a 
summer or a hot day has increased by less, in absolute value, than the decline in the probability of observing a frost 
or ice day. The fall in the 5th percentile of the distribution is also more important than the increase in the 95th 
percentile. 
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5. Concluding Remarks 

Climate change is a multidimensional problem. In this paper, we examine a small subset of the problem 

by studying the evolution of temperature dynamics in Canada along a number of different margins. Our 

contribution to the climate literature is to bring modern econometric methods and richer temperature 

dynamics specifications to this issue. We find evidence to confirm the well‐known result that average 

temperatures have been increasing over time, and that the daily average temperature in more northern 

areas such as Eureka has been increasing at much faster rates than the Canadian city or global average. 

As well, the estimation results indicate changes in the frequency and duration of extreme temperature 

events. Finally, we document the presence of important changes in fixed and time‐varying seasonality not 

examined in earlier research.   

In addition to documenting interesting temperature dynamics for Canadian locations, we believe we have 

estimated statistics to help develop theoretical models of climate change as well as condition climate 

simulation models that are used for public policy advice. For instance, when providing policy advice, these 

models will need to account for or incorporate the result of changing seasonal temperature patterns. As 

well, the modelling of temperature distributions in climate models could be enriched by the addition of 

more complex patterns in the evolution of their higher moments. 

Looking ahead, we plan on conducting a statistical analysis exploring whether precipitation patterns have 

also been evolving over time. In addition, we intend on measuring the impact of weather‐related events, 

such as extreme temperatures and heavy precipitation, on economic activity. 
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Appendix A – Figures 

Figure 1: Unconditional distributions of AVG and DTR for Toronto 

 

 

Figure 2: Temperature trends for Toronto 
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Figure 3: Temperature seasonality for Toronto 

  
 

Figure 4: Seasonal factors for Toronto 

  
 

Figure 5: Evolving seasonal factors for Toronto 
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Figure 6: Stylized climate distribution 

 

Source: Jahn (2015) 
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Figure 7: Selected locations 
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Appendix B – Tables 

 

Table 1: Trends in extreme temperatures for Toronto 

Summer days Hot days Hot nights Frost days Ice days 

Trends in the number of days     

18.48 7.06 2.20 -22.32 -15.98 
Trends in the average duration     

1.21 0.32 -0.13 -1.65 -0.82 
 

 

Table 2: AVG, conditional mean dynamics 
Location Province ∆trend p(nt) p(ns) p(nts) p R2 

South         

 Victoria BC 1.40* 0.00 0.00 0.00 0.70* 0.88 
Vancouver BC 1.36* 0.00 0.00 0.09 0.76* 0.91 
Calgary AB 1.16* 0.05 0.00 0.08 0.79* 0.87 
Edmonton AB 1.16* 0.04 0.00 0.04 0.79* 0.91 
Winnipeg MB 1.52* 0.02 0.00 0.11 0.76* 0.92 
Toronto ON 1.51* 0.00 0.00 0.84 0.72* 0.91 
Ottawa ON 1.89* 0.00 0.00 0.67 0.71* 0.91 
Montreal QC 2.11* 0.00 0.00 0.41 0.70* 0.91 
Quebec QC 1.27* 0.00 0.00 0.39 0.68* 0.91 
Moncton NB 1.56* 0.00 0.00 0.36 0.63* 0.88 
St John’s NL 1.20* 0.00 0.00 0.19 0.61* 0.85 

MGE  1.47 0.00     

North        

Yellowknife NT 2.78* 0.00 0.00 0.05 0.81* 0.95 
Eureka NU 2.98* 0.00 0.00 0.13 0.85* 0.97 

Note: 
All results are based on daily data, 1960‒2019. 
Column 3 reports the estimated trend movement over the 60-year sample in degrees Celsius. 
p(nt) is the robust p-value for a Wald test of no trend. p(ns) is the robust p-value for a Wald test of 
no seasonality. p(nts) is the robust p-value for Wald a test of no trend in seasonality. p is the 
estimated autoregressive coefficient. 
R2 is the adjusted coefficient of determination. 
Asterisks denote significance at the 5 percent level. 
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Table 3: DTR, conditional mean dynamics 
Location Prov ∆trend p(nt) p(ns) p(nts) p R2 
South         

Victoria BC -0.46* 0.00 0.00 0.00 0.42* 0.42 
Vancouver BC -0.67* 0.00 0.00 0.15 0.35* 0.29 
Calgary AB -0.30* 0.01 0.00 0.01 0.28* 0.13 
Edmonton AB 1.18* 0.00 0.00 0.13 0.35* 0.21 
Winnipeg MB -0.20* 0.01 0.00 0.02 0.27* 0.20 
Toronto ON -0.30* 0.00 0.00 0.05 0.22* 0.18 
Ottawa ON -0.15* 0.00 0.00 0.00 0.23* 0.15 
Montreal QC -0.69* 0.00 0.00 0.00 0.24* 0.15 
Quebec QC 0.13 0.22 0.00 0.22 0.28* 0.18 
Moncton NB -0.19 0.17 0.00 0.19 0.25* 0.14 
St John’s NL 0.24* 0.00 0.00 0.01 0.27* 0.17 

MGE  -0.13 0.41     

North        

Yellowknife NT -0.35* 0.01 0.00 0.05 0.23* 0.28 
Eureka NU -0.09* 0.00 0.00 0.00 0.27* 0.16 

Note: 
All results are based on daily data, 1960‒2019. 
Column 3 reports the estimated trend movement over the 60‐year sample in degrees Celsius. p(nt) is 
the robust p‐value for a Wald test of no trend. p(ns) is the robust p‐value for a Wald test of no 
seasonality. p(nts) is the robust p‐value for Wald a test of no trend in seasonality. p is the estimated 
autoregressive coefficient. 
R2 is the adjusted coefficient of determination. 
Asterisks denote significance at the 5 percent level. 

 

 

Table 4: AVG, conditional variance dynamics 
Location Province ∆trend p(nt) p(ns) p(nts) p R2 
South        
    Victoria BC 0.08* 0.00 0.00 0.00 0.14* 0.04 

Vancouver BC -0.12* 0.00 0.00 0.06 0.09* 0.05 
Calgary AB -0.24* 0.03 0.00 0.11 0.10* 0.10 
Edmonton AB 0.04 0.19 0.00 0.14 0.08* 0.10 
Winnipeg MB -0.17 0.33 0.00 0.45 0.01 0.08 
Toronto ON -0.15* 0.00 0.00 0.15 0.03* 0.05 
Ottawa ON -0.21* 0.00 0.00 0.27 0.01 0.08 
Montreal QC -0.15* 0.00 0.00 0.04 0.00 0.09 
Quebec QC -0.06* 0.00 0.00 0.00 0.01 0.11 
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Moncton NB -0.04 0.06 0.00 0.04 0.03* 0.10 
St John’s NL 0.02* 0.05 0.00 0.03 0.05* 0.03 

MGE  -0.09 0.00     

North        
Yellowknife NT -0.15* 0.02 0.00 0.01 0.01 0.10 
Eureka NU -0.16* 0.00 0.00 0.00 0.13* 0.11 

Note: 
All results are based on daily data, 1960‒2019. 
Column 3 reports the estimated trend movement over the 60‐year sample in degrees Celsius. p(nt) is 
the robust p‐value for a Wald test of no trend. p(ns) is the robust p‐value for a Wald test of no 
seasonality. p(nts) is the robust p‐value for Wald a test of no trend in seasonality. p is the estimated 
autoregressive coefficient. 
R2 is the adjusted coefficient of determination. 
Asterisks denote significance at the 5 percent level. 

 

Table 5: DTR, conditional variance dynamics 
Location Province ∆trend p(nt) p(ns) p(nts) p R2 

South  
      

    Victoria BC 0.47* 0.00 0.00 0.00 0.03* 0.04 
Vancouver BC -0.21* 0.00 0.00 0.00 0.07* 0.02 
Calgary AB -0.05* 0.04 0.00 0.07 0.04* 0.02 
Edmonton AB 0.47* 0.00 0.00 0.17 0.07* 0.02 
Winnipeg MB -0.04 0.44 0.00 0.65 0.03* 0.02 
Toronto ON -0.13* 0.02 0.00 0.30 0.04* 0.02 
Ottawa ON -0.48* 0.00 0.00 0.18 0.05* 0.02 
Montreal QC -0.20* 0.00 0.00 0.01 0.05* 0.02 
Quebec QC 0.09* 0.00 0.00 0.00 0.05* 0.03 
Moncton NB -0.36* 0.00 0.00 0.65 0.02* 0.02 
St John’s NL 0.05 0.70 0.00 0.90 0.01* 0.02 

MGE  -0.04 0.70     

North        

Yellowknife NT -0.15* 0.01 0.00 0.00 0.05* 0.05 
Eureka NU -0.11* 0.02 0.00 0.01 0.05* 0.05 

Note: 
All results are based on daily data, 1960‒2019. 
Column 3 reports the estimated trend movement over the 60‐year sample in degrees Celsius. p(nt) is 
the robust p‐value for a Wald test of no trend. p(ns) is the robust p‐value for a Wald test of no 
seasonality. p(nts) is the robust p‐value for Wald a test of no trend in seasonality. p is the estimated 
autoregressive coefficient. 
R2 is the adjusted coefficient of determination. 
Asterisks denote significance at the 5 percent level. 
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Table 6: Trends in the number of days of extreme temperatures 
Location Province Summer 

days Hot days Hot 
nights 

Frost 
days Ice days 

South       
    Victoria BC 9.88* 1.34* NA -23.67* -1.65 

Vancouver BC 6.05* -0.33 0.07 -20.85* -3.20 
Calgary AB 0.83 -0.10 NA -7.42 -10.37 
Edmonton AB 7.65 0.13 NA 9.16 -12.46* 
Winnipeg MB 8.21 -1.31 0.11 -7.39 -11.99* 
Toronto ON 18.48* 7.06* 2.20 -22.32* -15.98* 
Ottawa ON 19.99* 5.94* 0.99* -14.01* -18.30* 
Montreal QC 20.34* 5.73* 2.90* -20.57* -16.54* 
Quebec QC 10.62* 0.53 0.11 -15.47* -15.71* 
Moncton NB 16.41* 4.54* 0.07 -18.24* -12.99* 
St John’s NL 8.49* -0.07 NA -17.20* -8.27 

MGE  11.40* 2.07* 0.92* -15.14* -10.76* 
North       

Yellowknife NT 6.14* 0.05 NA -5.60 -10.00* 
Eureka NU NA NA NA -18.26* -8.78 

 

 

 

Table 7: Trends in the average duration of extreme temperatures 
Location Prov Summer 

days Hot days Hot 
nights 

Frost 
days Ice days 

South       
    Victoria BC 0.46* 0.43 NA -1.38* -0.86 

Vancouver BC 0.10 -0.31 0.07 -0.32 -1.42 
Calgary AB 0.00 -0.09 NA 0.20 -0.44 
Edmonton AB 0.10 0.21 NA -0.89 -1.02 
Winnipeg MB 0.51 0.00 0.11 -0.82 -1.52 
Toronto ON 1.21* 0.32 -0.13 -1.65 -0.82* 
Ottawa ON 0.42 0.00 0.68* 0.19 -1.62* 
Montreal QC 0.49 -0.06 0.49 -1.98* -1.11* 
Quebec QC 0.55* -0.13 0.11 0.33 -0.68 
Moncton NB 0.50* 0.51 0.07 -0.40 -0.31 
St John’s NL 0.40* -0.07 NA -2.31* -0.44* 

MGE  0.43* 0.10 0.20* -0.87* -0.92* 
North       

Yellowknife NT 0.33 0.08 NA -2.34 1.14 
Eureka NU NA NA NA 11.58 6.18 
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Table 8: Temperature indices 
Conditions Indices Definition 
Warm Summer days Days with tmax > 25°C 

 Hot days Days with tmax > 30°C 
 Hot nights Days with tmin > 22°C 

Cold Frost days Days with tmin ≤ 0°C 
 Ice days Days with tmax ≤ 0°C 
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