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Abstract 
We build a model for bond yields based on a small-scale representation of an economy with 
secular declines in inflation, the real rate and output growth. Long-run restrictions identify 
nominal shocks that influence long-run inflation but do not influence the long-run real rate or 
output growth. These nominal shocks have loadings that can change over time. The results 
show that, before the anchoring of inflation around the mid-1990s, nominal shocks lifted the 
output gap and inflation, leading to higher yields and a steeper yield curve via higher short-
rate expectations and term premiums. The short rate peaked after several quarters but only 
after the responses of growth and inflation started to decline. With inflation anchored, 
however, nominal shocks have a short-lived impact on inflation, an insignificant impact on 
output and only a small impact on bond yields via the term premium. 

Topics: Asset Pricing; Interest rates; Monetary policy and uncertainty; Potential output; 
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1 Introduction
What are the economic forces behind the secular decline in bond yields? In the early

1980s, bond yields exhibited cyclical changes around declines in the long-run level of

inflation, �∗C . This level stabilized at around 2 percent during the 1990s. More recently,

bond yields exhibit cyclical changes around declines in the long-run level of the real rate,

A∗C . Cieslak and Povala (2015) and Bauer and Rudebusch (2020) show that it is essential to

disentangle these cyclical and secular variations to understand what drives bond yields.

Intuitively, ignoring the secular variations in �∗C and A
∗
C means that the continued decline

in yields since the early 1980s is largely attributed to a decline in term premiums.

We contribute to a better understanding of the secular decline in bond yields. We

implement the long-run restrictions pioneered by Blanchard and Quah (1989) to identify

the nominal and real shocks in a model of bond yields that has, in the spirit of Bauer

and Rudebusch (2020), both cyclical and secular components. Our approach is distinct

because (i) we connect bond yields to macroeconomic variations, (ii) we let the cyclical

and secular components share the same nominal and real shocks that we identify from

the data and (iii) the shocks have loadings that vary over time. Hence, both the real and

nominal shocks drive both the cyclical variation and the secular decline in bond yields via

their impacts on �∗C and A
∗
C . In the results, when we let the loadings of these shocks vary

over time, we find that nominal shocks play a large role in driving the economy and the

bond yields early in our sample but that these impacts essentially disappear later in our

sample, once inflation is anchored.

To understand these results, which we explain below, it is useful to first see the four

building blocks of our approach. First, we use a small-scale representation of an economy

that is based on the short rate, inflation and output, where each variable is the sum of one

cyclical and one secular component, which are both unobserved.1 The cyclical components

1The presence of secular variations in output is also well-known and has been extensively studied since

Nelson and Plosser (1982). See also the discussion and the references in Cochrane (1988).
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are both correlated and related to each other. The secular components are also correlated.

Similar to Jordà and Taylor 2019, using this representation of an economy connects bond

yields to underlying cyclical and secular macroeconomic changes that are based on a

common set of assumptions.

Second, and in contrast with Jordà and Taylor 2019, we let the cyclical and secular

components share the same macroeconomic shocks. This commonality arises in equilib-

rium models that exhibit delays in adjustments to permanent shocks.2 As in structural

vector autoregression (VAR) analysis, the nature of the shocks follows from the economic

content of identification restrictions. Our identification strategy is close in spirit to the

long-run restrictions pionneered by Blanchard and Quah (1989). We implement the def-

inition that nominal shocks are neutral: these shocks can influence cyclical fluctuations

in output, inflation and interest rates as well as secular fluctuations in inflation but they

leave unchanged the long-run levels of output growth and the real rate.

Third, we let the loadings of the nominal and real shocks on the secular and cyclical

components change over time in a way that is similar to Primiceri (2005) but in a different

context. Time-varying loadings means that the impact of shocks on an economy can

change over time. In addition, having time-varying loadings implies that the volatilities

of the short rate, inflation and output change over time, even if the shocks have constant

variances. Indeed, Stock and Watson (2007) and Wright (2011) emphasize time-varying

loadings in univariate reduced-form models of inflation.

Fourth, we derive bond prices using a reduced-form stochastic discount factor in the

class introduced by Monfort and Pegoraro (2012). We assume that the nominal and real

2Section 3.4.1 in Gali (2008) discusses the standard New Keynesian model. For instance, permanent

productivity shocks typically influence the potential output and the output gap, as well as the natural real

rate of interest and the real-rate gap. Conversely, structural shocks that are relevant to the business cycle

can also affect economic activity in the long run, a view recently summarized by Blanchard (2018). In the

case of real GDP models, Morley, Nelson, and Zivot (2003) provide evidence against the zero-correlation

assumption for permanent and transitory innovations.
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shocks are sources of risk and that their risk prices are functions of the macro variables.

Bond yields satisfy the no-arbitrage restriction and are functions of secular and cyclical

components. However, we impose the restriction that the expected bond returns are

stationary: they are not functions of secular components. Hence, consistent with the

evidence of Cieslak and Povala (2015) and Bauer and Rudebusch (2020), ourmodel implies

that �∗C and A
∗
C enter into bond yields but not term premiums. This restriction makes the

model parsimonious, improves the accuracy of the parameter estimates and also prevents

the variance of the expected bond returns from diverging with the investment horizon.3

Finally, we follow earlier work and introduce in this representation an exogenous factor

to capture the variations in bond yields that are uncorrelated with the macroeconomic

shocks. We label this factor a “term structure factor” because, by design, it only influences

the term premium and not the expectations component of bond yields. This prevents this

exogenous shock from entering the dynamics of the short rate, output and inflation. In the

results, this term structure factor explains a large share of the variations in bond yields at

the quarterly horizon, but this share declines at longer horizons, which is consistent with

the seminal macro-finance results of Ang and Piazzesi (2003).

Empirically, we find that the impacts of nominal shocks on bond yields are very

different after inflation is anchored in the 1990s. We quantify three reasons for this

change. First, the sensitivity of the secular inflation rate, �∗C , to nominal shocks eventually

disappears in our sample; that is, inflation becomes “anchored.” Second, the large and

persistent impacts of nominal shocks on cyclical variations in output, inflation and the

short rate also become smaller and transitory later in our sample. Third, the response of

the term premium to nominal shocks also becomes much less persistent over time. We

find that these changes essentially operate simultaneously. In the model, these changes

are captured by the time-varying loadings for the real and nominal shocks. However, the

3We also restrict the time-varying loadings such that the volatility of the interest rates converges with

the forecast horizon, while the volatility diverges in existing models of bond prices with secular changes.
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results are not predetermined: how the loadings change is estimated from the data.

The first channel between nominal shocks and bond yields acts on long-term inflation.

As expected, �∗C estimates decline over time, starting in our sample at around 6 percent

and reaching a bottom that is close to 2 percent in the mid-1990s. Nominal shocks explain

around two thirds of this decline. The reason behind �∗C ’s bottoming is that the sensitivity

of long-run inflation to nominal shocks gradually declines and essentially disappears

by the 2000s. We pick two dates to illustrate this change: 1984Q1 and 2007Q1. In 1984,

nominal shocks have a permanent impact on inflation. A one-standard-deviation nominal

shock lifts �∗C by around 0.1 percentage points. To put this number in context, the impact

on actual inflation peaks above 0.3 percentage points. Move forward to 2007 and the

response of �∗C to nominal shocks becomes close to zero and insignificant.

The second channel between nominal shocks and bond yields acts on the cyclical

responses of the economy. Early in our sample, there is a strong cyclical response. A

one-standard-deviation nominal shock lifts inflation but it also lifts the output gap by

0.5 percentage points on impact; the effect peaks at around 0.7 and lasts a few years. In

response, the short rate increases by around 0.45 percentage points, peaks at around 0.7

and the effect lasts a few years. By contrast, the same nominal shock only causes small,

transitory and statistically insignificant responses in 2007. When we decompose the

innovations to the cyclical component of the short rate, date by date, we find that nominal

shocks play a dominant role until the mid-1990s but then become much less important

later on. Overall, these changes are consistent with the theoretical argument in Clarida,

Gali, and Gertler (2000) that the post-1979 policy responses to inflation stabilize output

and inflation. These changes also reflect the empirical results in Cogley and Sargent (2005)

that show that policy activism by the Federal Reserve in that period contributed to a fall

in the level and persistence of inflation.

Combined, these channels imply that the response of bond yields to nominal shocks

changes dramatically. Early in our sample, this response leads to a higher level of the
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yield curve and a steeper slope between the short rate and longer-term yields. However,

for the 2- and 10-year bonds, the initial impacts on the expectations components are

around 0.6 and 0.4 percentage points, respectively. The difference between these two

responses is due to the responses of the expectations about future short rates: they

increase the curvatures and cause inversions of the yield curves between 2- and 10-year

maturities. These inversions imply that the short rate will continue to rise but the growth

and inflation rates will decrease. All of these effects of nominal shocks become much

smaller and statistically insignificant later in the sample. Note that the observation that

the expectations component drives the predictive content of a yield curve inversion for

future growth is consistent with the results of Ang, Piazzesi, and Wei (2006). Also, the

lack of inversion in the yield curve after a nominal shock we show later in our sample is

consistent with the suggestion by Haubrich (2006) that the predictive content of a yield

curve inversionhas becomeweaker due to the Federal Reserve’s rising credibility in taming

inflation.

The third channel acts on the term premium. For the 2- and 10-year bonds, the impacts

early in the sample are around 0.1 and 0.2 percentage points initially and peak at close to

0.25 and 0.4, respectively. This further steepens the yield curve but mutes its inversion.

Overall, accounting for the expectations and term premium components, the responses of

bond yields to nominal shocks considerably weaken after the mid-1990s. The initial all-in

impact is almost halved on the 2-year yield, cut by one third on the 10-year yield and is

much less persistent in both cases.

Given that secular inflation, �∗C , has stabilized, the continued decline in bond yields

during the 2000s is attributed to the decline in A∗C , a point made clear by Bauer and

Rudebusch (2020). The A∗C estimate rises from 1993 to 2000, in line with existing estimates

(Laubach and Williams, 2003; Holston, Laubach, and Williams, 2017), but then initiates a

gradual descent, reaching 2 percent around 2008 and 0.5 percent at the end of our sample.

Nominal shocks are irrelevant by design for A∗C . We find that changes to A∗C in the first half

5



or so of our sample are driven by real shocks that are uncorrelated with changes to the

long-run growth rate. However, the changes to A∗C in the second half of the sample appear

largely driven by shocks that are correlated with changes to potential output, suggesting

that technology, capital accumulation and demographics play a larger role during that

period.4

1.1 Literature

The earlier works of Kozicki and Tinsley (2001) and Kozicki and Tinsley (2006) intro-

duce a shifting endpoint to capture secular changes in the short rate and the inflation

dynamics, respectively. We use their definition of a shifting endpoint, which is based

on the Beveridge-Nelson decomposition, to define the secular components in our small-

scale economy. Laubach and Williams (2003) estimate a shifting endpoint for the real

rate, and the evidence is expanded to other advanced economies by Holston, Laubach,

and Williams (2017) as well as Negro, Giannone, Giannoni, and Tambalotti (2019), who

document a common decline across advanced economies. This follows early evidence in

Garcia and Perron (1996) of distinct regimes in the behavior of the US real interest rate.

Our �∗C and A
∗
C estimates are similar to existing results. Jordà and Taylor (2019) investigate

a small-scale representation of an economy with distinct endpoints for output, inflation

and the real rate but they do not attempt to identify structural shocks. A joint represen-

tation of secular and cyclical components avoids the critique by Coibion, Gorodnichenko,

and Ulate (2018) that many estimates of secular components exhibit transitory responses

to measures of demand-side or monetary policy shocks, which could contaminate the

identification of the shocks.
4Laubach andWilliams (2003) also assume that the secular real rate component A∗ is driven by the long-

run output growth rate and an additional factor that leaves output unaffected. Rachel and Smith (2017)

provide a detailed review of the potential drivers that could be underlying these changes in the long-run

growth rate.
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Van Dĳk, Koopman, van der Wel, and Wright (2014) allow for a shifting endpoint

in a model of bond prices that is used to improve interest rate forecasts. Cieslak and

Povala (2015) provide compelling evidence that controlling for secular changes in expected

inflation rates, based on either a discounted moving average or long-horizon survey

forecasts, provides a more accurate measure of the bond risk premium. Christensen and

Rudebusch (2019) recover A∗C estimates using a dynamic term structure model (DTSM)

for prices of individual inflation-indexed bonds. Joyce, Kaminska, and Lildholdt (2012)

provide an early application to UK real bonds. Bauer and Rudebusch (2020) provide

evidence that variations in the secular real interest rate are responsible for the very high

persistence of interest rates, and these researchers offer a parsimonious DTSM of the yield

curve, using three standard yield factors and one common stochastic trend. Adding to

this work, we explore the macroeconomic determinants of secular changes in bond yields.

Primiceri (2005) and Cogley and Sargent (2005) use a vector auto-regression with time-

varying parameters to study interactions between the US economy and monetary policy.

Primiceri (2005) finds that the systematic responses of the short rate to inflation and

unemployment trend toward more aggressive behavior over time. Cogley and Sargent

(2005) document changes over time in the natural rate of unemployment, a core rate

of inflation, the persistence in inflation and the degree of monetary policy activism.

This work focuses on the periods before and after the Federal Reserve chairmanship of

Paul Volcker. We focus on the responses of bond yields in the period starting with the

chairmanship of Alan Greenspan, when the Federal Reserve maintained its degree of

activism.

The rest of this paper is organized as follows. Section 2 introduces our small-scale

model of a US economywith secular and cyclical components and details our specification

of the bond prices. Section 3 provides details about the data and the estimation method,

which is easy to implement and bypasses the Kalman filter. Section 4 presents the secular

and cyclical componentswe recover, discusses the role of the different shocks and analyzes
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the response of bond yields to these shocks. Section 5 concludes.

2 Model
We develop a small-scale representation of an economy where the short rate, the

inflation rate and output have joint dynamics. Each variable has a stationary and a

non-stationary component, which we label “cyclical” and “secular” in the following,

respectively. One reason for modeling these components together is to recover internally

consistent estimates of the secular changes in the nominal rate, the inflation rate and the

real rate. Another reason is that the results exhibit internally consistent impulse response

functions, avoiding the criticism inCoibion, Gorodnichenko, andUlate (2018) that existing

estimates of secular economic changes exhibit cyclical patterns.5

In the following, we first introduce a restricted version of the model that has constant

loadings. Then, in a second step we introduce the time-varying loadings. Considering

the restricted case first simplifies some of the exposition. It is useful to estimate both cases

to understand the role of the time-varying loadings.

2.1 Notations

We label the short rate 8C , the inflation rate �C and output HC . Each of the macroeconomic

variables has a Beveridge-Nelson decomposition, given by

8C = 8
∗
C + 8̃C (1)

�C = �∗C + �̃C

HC = H
∗
C + H̃C .

Equation 1 is a statistical representation of the observed macro variables in terms of their

unobserved components. These components have no economic content yet. The following

5They find that several existing estimates of potential output exhibit predictable and transitory responses

to demand-side or monetary policy shocks.
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sections construct a system of dynamic equations where the variables with the (∗) symbol

representing the secular components and the variables with the (̃ ) symbol representing

the cyclical components. This joint system provides the economic content and allows

us to identify the unobserved components from the data. One feature of this system is

that the components share the same set of shocks and can be correlated with each other.

This contrasts with the assumption in most existing unobserved components models that

innovations to the secular and cyclical components are uncorrelated.

2.2 Conditional Means

Stack the observed variables 8C , �C and HC in the vector "C . This section specifies the joint

conditional mean dynamics:

"C ≡


8C

�C

HC


= �C−1["C] + Σ�C , (2)

with shocks �C ∼ #(0, �). In the first step, we specify the joint conditional mean of the

secular components. In the second step, we specify the joint conditional mean of the

cyclical components.

Secular Components Define the expected growth rate 6∗C ≡ �C[H∗C+1 − H∗C ] and stack the

variables 8∗C , �
∗
C and 6

∗
C in the vector "̄C , for which we assume the following dynamics:

"̄C ≡


8∗C

�∗C

6∗C


=


8∗
C−1

�∗
C−1

6∗
C−1


+


�′
8∗

�′�∗

�′6∗


�C = "̄C−1 + Σ̄�C . (3)
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FollowingLaubach andWilliams (2003) among others, we take that the growth of potential

output ΔH∗ is integrated of order 1:

ΔH∗C = 6∗C−1 + �′H∗�C . (4)

This nests the case where the level of potential output H∗C is integrated of order 1 if 6∗C is

constant. Equation 3 means that each element of "̄C matches the definition of a shifting

endpoint in the sense of Kozicki and Tinsley (2001). That is, for any element G∗C of "̄C , we

have that

G∗C = lim
ℎ→∞

�C[GC+ℎ], (5)

and that 6∗C is the shifting endpoint for output growth. Also, because we model these

variables together, we can recover internally consistent estimates of 8∗C , �
∗
C and A

∗
C = 8

∗
C − �∗C

(which is the secular component of the real rate).6

Cyclical Components We stack the cyclical components 8̃C , �̃C and H̃C in the vector "̃C ,

which we assume has standard stationary VAR dynamics, which are given by

"̃C ≡


8̃C

�̃C

H̃C


= Φ(!)


8̃C

�̃C

H̃C


+


�′
8̃

�′�̃

�′
H̃


�C = Φ(!)"̃C + Σ̃�C , (6)

where Φ(·) is a polynomial function, ! is the lag operator and the unconditional mean is

zero: �
[
"̃C

]
= 0. The shocks �C ∼ #(0, �) are the same as in Equation 3.

For comparability, we embed the cross-equation restrictions used by Laubach and

6Following Laubach and Williams (2003) again, we impose that the norms of the vectors �H∗ and �6∗

be proportional �6 ≡


�6∗

 /

�H∗

. We use the value �6 = 0.053 from Holston, Laubach, and Williams

(2017). Laubach and Williams (2003) calibrate �6 to the median unbiased estimator (Stock and Watson,

1998) to avoid the “pile-up” problem discussed in Stock (1994) and help pin down the potential output H∗C
and potential growth 6∗C .
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Williams (2003). First, the reduced-form specification for inflation is given by

�C−1
[
�̃C

]
= 11�̃C−1 + 12�̃C−2,4 + 1H H̃C−1, (7)

where �̃C−2,4 is the inflation rate computed between C−2 and C−4. Equation 7 ties inflation

to the lags in both the inflation rate and the output gap. Second, the reduced-form

specification of the output gap is given by

�C−1
[
H̃C

]
= 01 H̃C−1 + 02 H̃C−2 +

0A

2

2∑
9=1

ÃC−9 , (8)

where ÃC is the cyclical component of the real rate ÃC = AC − A∗C , which can be computed

by using ÃC = 8̃C − �C [�̃C+1]. Hence, Equation 8 ties the output gap to lags in the output

gap and also to the monetary stance ÃC . Third, we add to the framework of Laubach and

Williams (2003) a reduced-form forward-looking specification of the short-rate gap, in the

spirit of the Taylor rule (Clarida, Galí, and Gertler, 1998), given by

�C−1
[
8̃C
]
= ���C−1 [�̃C] + �H�C−1

[
H̃C

]
+ )I

(
8̃C−1 − ���̃C−1 − �H H̃C−1

)
, (9)

where the last term captures the inertia in the monetary policy (Rudebusch, 2006). Equa-

tions 7-9 imply that "̃C follows the +�'(5) dynamics with the coefficients given in the

appendix. This special case has the same number of parameters as an unrestricted VAR(1)

specification, which is a natural comparison that we also estimate below. In the results,

our baseline model is based on the cross-equation restrictions of Laubach and Williams

(2003). Section 4.5 compares the results obtained using a VAR(1) for "̃C and shows that the

baseline cross-equation restrictions play an important role in obtaining realistic estimates

of the potential output and the output gap.
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2.3 Identifying Nominal Shocks

The conditional mean specification in Section 2.2 implies the following restrictions on the

matrix Σ in Equation 2:

Σ ≡


�′
8̃

�′�̃

�′
H̃


+


�′
8∗

�′�∗

�′H∗


= Σ̃ + Σ∗, (10)

and, as in a standard structural VAR analysis, additional identification assumptions about

Σ are needed to recover the shocks, �C , from the data. The traditional approach starts

from the covariance matrix, Ω, of the reduced-form innovations DC = Σ�C , which can be

recovered directly from the data. Since it must be that Ω = ΣΣ′, we need an additional

#(# − 1)/2 restrictions as well as sign and ordering assumptions to identify the shocks

(N is the size of matrix Σ). For instance, in the context of standard structural VARs, the

“recursive” identification strategy relies on pinning down the signs and orders of the

shocks and imposing #(# − 1)/2 exclusion restrictions on the Σmatrix.7

Nominal and real shocks The distinct feature of the approach we leverage to identify

the nominal shocks is that the same shocks, �C , drive the secular and cyclical components

of the macro variables. We use the standard definition of a nominal shock. This is a

shock that may influence cyclical fluctuations in the output, inflation and interest rates

but leaves unchanged the output growth and the real rate in the long run. This definition

corresponds to the idea in structural models that a nominal shock does not influence the

steady-state output and real rate that would prevail under flexible prices (i.e., the natural

output and the natural real rate).8 Nominal shocks may capture monetary policy shocks

as well as other shocks that affect the supply of inside money via banks or the financial

system (Friedman and Schwartz, 1963; Brunnermeier and Sannikov, 2016), and we do not

take a stand on what sources are more important.

7Kilian and Lütkepohl (2017) discuss identification in structural VAR models.
8See, e.g., Gali (2008) for a textbook discussion.
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Based on this definition of the nominal shock, we introduce the following restrictions

on the variance parameters:

4′1�A∗ = 0 4′1�6∗ = 0 4′2�6∗ = 0, (11)

where 4 9 is a vector of zeros but with element 9 equal to 1 and �A∗ = �8∗ − ��∗ . While

we defer a formal discussion until Section 3.2, for now, we state that these restrictions

are enough to identify Σ. The first two restrictions mean that (i) the nominal shock is

ordered first and (ii) it is uncorrelated with the unexpected changes in A∗C and 6∗C . These

two restrictions implement the definition of a nominal shock.

The last restriction deals with the second and third shocks, both which can drive

changes to the secular and cyclical components of output and the real rate. Hence, we

label them as real shocks. However, we do not attempt to distinguish between these two

shocks. Instead, the last restriction simply says that the second shock is uncorrelated with

the unexpected changes in 6∗C . This is one of the possible orthogonalizations and has no

economic content. For instance, it is not meaningful in an economic sense to distinguish

between the impulse response functions with respect to these two shocks.

This identification of the nominal shock is close in spirit to the long-run restrictions

of the demand and supply shocks introduced by Blanchard and Quah (1989). Their

identification strategy pins down a “demand” shock that has no long-run impact on

unemployment and output as well as a “supply” shock that can have a long-run impact

on output (see Dungey et al. (2015) for a recent analysis of long-run restrictions).

Caveats Blanchard and Quah (1989) analyze plausible circumstances in which the in-

terpretation in terms of demand and supply shocks is valid; however, they also discuss

important caveats, which areworth repeating here. But note that, despite these caveats, we

believe that our approach provides a useful perspective on the changing role of nominal

and real shocks in the bond market.
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One caveat is that the demand shock (or the nominal shock in our case) in the model

may commingle a variety of actual demand disturbances with different dynamic effects

on interest rates and output. This aggregation of different effects can influence the inter-

pretation of impulse response functions. This caveat is an important reason why we use

the label “nominal” instead of “demand” (as well as “real” instead of “supply”), since this

aggregation may capture supply shocks that have little or no long-run impact.

Another caveat is that even demand disturbances may have long-run impacts on out-

put. Demand disturbances that influence the savings rate may subsequently influence the

long-run capital stock and output. Increasing returns or learning-by-doing would also

mean that we may not be able to recover distinct demand and supply shocks by using

long-run restrictions. In this case, the identification we use to find the nominal shocks

would push these demand disturbances as part of the real shocks that we identify. This of-

fers one interpretation of one of the two types of real shocks—the one that is uncorrelated

with 6∗C—although there are other possibilities.

Even then, if demand has no long-term impact, its effects on capital accumulation

may be indistinguishable from a truly permanent impact in finite-sample data. Blanchard

(2018) voices this issue, given the slow recovery that followed the 2008-2009 financial crisis,

when he asks whether potential output is really independent of nominal disturbances (or

monetary policy) and whether there really is no long-run trade-off between inflation and

output. Jordà, Singh, and Taylor (2020) provide international evidence that the capital

stock and total factor productivity exhibit hystereses with respect to monetary policy

shocks.

2.4 Time-varying Loadings

The class of models discussed in Section 2.2 has constant loadings parameters Σ̄, Σ̃ and

�H∗ , but we are mostly interested in the specifications with time-varying loadings. There

are several reasons for this. First, the consensus is that �∗C is more volatile during the
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1970s and 1980s relative to the period following the 1990s (see, e.g., Figure 2b in Stock and

Watson 2016) but that A∗C is relatively more volatile during the period after the mid-1990s.

The existing estimates of �∗C show a flat pattern starting sometime after the mid-1990s. By

contrast, the existing estimates of A∗C show larger changes and a declining pattern after the

mid-1990s. There is also ample evidence that the cyclical component of the short rate, 8̃C ,

is much more sensitive early in recessions or around periods of financial distress (Cieslak

and Povala, 2016).

These patterns suggest that sensitivities to macroeconomic shocks have changed over

time. We interpret these as changes in the loadings of the shocks on the cyclical and secular

components of the macro variables. The results in Section 4 show that the variations over

time in these loadings improve the identification of the shocks in models that combine

secular and cyclical components. These time-varying loadings also mean that the macro

variables have time-varying volatilities.

Cyclical Components We consider an approach that is simple and parsimonious and

preserves the connections with the established identification strategies in the literature.

The loadings of the cyclical components on the shocks are given by the following:

Σ̃C =


E 8̃ ,C 0 0

0 E�̃,C 0

0 0 E H̃ ,C



�′
8̃

�′�̃

�′
H̃


= +̃CΣ̃, (12)

where thematrix Σ̃ is unrestrictedup to some identification assumptionswediscuss below.

Each vector �· combines the shocks into fixed proportions while each scalar, E·,C , controls

the scale of the innovations to each of the cyclical components over time. The dynamics

for the time-varying factors, E·,C , are specified in Section 2.5 and are estimated jointly with

other parameters of the model. Then, the cyclical components have dynamics given by

"̃C = Φ(!)"̃C + Σ̃C−1�C .
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Secular Components We follow a similar route for the loadings of the shocks on the

secular components. For "̄C , these are given by the following:

Σ̄C =


E 8∗ ,C 0 0

0 E�∗ ,C 0

0 0 E6∗ ,C



�′
8∗

�′�∗

�′6∗


= +̄CΣ̄, (13)

where the matrix Σ̄ is unrestricted. For the potential output, we have

�H∗ ,C = EH∗ ,C�
′
H∗ , (14)

but we restrict the scaling factor EH∗ ,C = E6∗ ,C . Again, the dynamics for each scalar, E·,C ,

are presented in Section 2.5 along with parameters that are estimated jointly with the rest

of the model. These scalars, E·,C , vary the scale of the innovations to each of the secular

components. However, the relative contribution of each shock is parameterized by the

matrix Σ̄. Then, the dynamics of the secular components are given by

"̄C ="̄C−1 + Σ̄C−1�C

ΔH∗C =6
∗
C−1 + �′H∗ ,C−1�C .

2.5 Loading Dynamics

The scaling factors must remain positive, and we use ���'��(1, 1) dynamics for this

purpose (see Nelson, 1991). To illustrate, in the case of the cyclical short rate 8̃C , we have

that

ln
(
E2
8̃ ,C

)
= $ 8̃ + � 8̃ ln

(
E2
8̃ ,C−1

)
+ 6

(
I 8̃ ,C

)
, (15)

where 6
(
I 8̃ ,C

)
is the innovation to the variance process given by a function of the normal-

ized variable I 8̃ ,C ≡

′
8̃
�C√


′
8̃

 8̃
. The scaling factors E�̃,C and E H̃ ,C for the inflation and output gaps,
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respectively, have similar dynamics. Therefore, the innovation is driven by the shocks �C ,

the loadings of each shock are given by the vectors of parameters 
 8̃ and the denominator√

′
8̃

 8̃ is a convenient normalization. All these parameters are estimated jointly. The

function 6(·) allows for asymmetry in the effects of I 8̃ ,C on E
2
8̃ ,C
, which is consistent with

the evidence of the substantial asymmetry in the pattern observed in the output gap mea-

sures across expansion and recession phases recorded in theNational Bureau of Economic

Research (Morley and Piger, 2012).9

We introduce an important restriction to the process of the time-varying loadings for

the secular components. The reason for this is that, in standard unobserved component

models, the variance of the secular changes can diverge as the forecast horizon increases.

This severely over-estimates the uncertainty around the future, which affects standard

analytical tools like the variance’s decomposition. To see what the issue is, consider the

variance of 8∗C+� some � periods ahead:

+0AC
[
8∗C+�

]
=

(
�′8∗�8∗

) ©­«
�∑
9=1

�C

[
E2
8∗ ,C+9−1

]ª®¬ ,
where the coefficient for each term in the sum is equal to 1 because of the unit root in the

process for 8∗. Proposition 1 provides sufficient conditions on the properties of E2
8∗ ,C for the

convergence of lim�+0AC
[
8∗C+�

]
.10

Proposition 1 Suppose the scalar E2
8∗ ,C has ���'��(1, 1) dynamics given by Equation (15),

where I8∗ ,C ≡

′
8∗�C√

′
8∗
8∗

and

6 (I8∗ ,C) =
√

′
8∗
8∗I8∗ ,C + �8∗ (|I8∗ ,C | − � [|I8∗ ,C |]) .

9This function is given by 6
(
I 8̃ ,C

)
=

√

′
8̃

 8̃I 8̃ ,C + � 8̃

(���I 8̃ ,C ��� − � [���I 8̃ ,C ���] ) .
10This approach can be generalized to other processes. A similar result is available from the authors in

the context of the asymmetric ��'��(1, 1) dynamics of Hentschel (1995).
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If �8∗ = 1 and $8∗ < $̄8∗ , where

$̄8∗ ≡ �8∗
√

2
�
− ln

©­­­­­«
exp

( (√

′
8∗
8∗+�8∗

)2

2

)
Φ#

(
�8∗ +

√

′
8∗
8∗

)
+ exp

( (√

′
8∗
8∗−�8∗

)2

2

)
Φ#

(
�8∗ −

√

′
8∗
8∗

)
ª®®®®®¬
,

then +0AC
[
8∗C+�

]
converges,

+0AC
[
8∗C+�

]
−→
�

(
�′
8∗�8∗

)
�8∗

E2
8∗ ,C ,

where �8∗ ≡ 1 − 4$8∗−$̄8∗ and Φ# (·) is the standard normal distribution’s cumulative distribution

function.

The restrictions on the ���'��(1, 1) guarantee that +0AC
[
8∗C+�

]
converges to a positive

scalar for arbitrarily large horizons, �. Intuitively, the shocks that are very far away in the

future eventually have no impact on the secular component (in expectations). Stock and

Watson (2007) and Wright (2011) analyze unobserved component models with stochastic

volatility (for the case of inflation), and thevolatilitydynamics that theyuse are obtainedby

imposing $ = 0, � = 1 and � = 0, which implies that+0AC
[
�∗C+�

]
divergeswith the horizon

in the model, since $ = $̄ = 0. Absent the restriction that we introduce, the volatility of

any of the variables that are influenced by the secular components would diverge as the

forecast horizon increases, which would severely over-estimate the uncertainty and affect

such standard analytical tools as the decomposition of the variance.

2.6 Bond Prices

Pricing Kernel This section develops a model for nominal yields where macro shocks are

priced and have both secular and cyclical impacts on yields. We build on the assumption

of no arbitrage, which guarantees the existence of a positive pricing kernel process, �C+1,

such that the price of any asset, +C , that does not pay any dividends at time C + 1 satisfies
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+C = �C[�C+1+C+1]. For tractability, we consider the following pricing kernel:

ln (�C+1) = −8C + �′C�C+1 +
1
2�
′
C+1ΓC�C+1 − "C + � 5 ,C� 5 ,C+1, (16)

where "C is the convexity term given by

"C = ln�C
[
exp

(
�′C�C+1 + (1/2) �′C+1ΓC�C+1

) ]
+ ln�C

[
exp

(
� 5 ,C� 5 ,C+1

) ]
.

Themacroeconomic shocks in this economy are priced in the bondmarket, with the prices

of risk �C to be defined. The pricing kernel also includes a quadratic term because the

time-varying loadings generate the variance risk. This pricing kernel specification follows

Monfort and Pegoraro (2012) to pin down the price of the variance risk ΓC , also to be

defined below. Finally, we follow Ang and Piazzesi (2003) and the subsequent literature

in introducing one additional latent source of risk, � 5 ,C+1, which is uncorrelated with the

macro shocks. This new risk drives a latent factor, 5C+1, that ismeant to capture the residual

variations in nominal yields that are unexplained by the macro variables. We construct 5C

such that it does not influence the dynamics of the short rate but can influence the term

premium. Therefore, we label 5C a term structure factor and, for this purpose, we assume

that 5C has simple AR(1) dynamics given by

5C+1 = � 5 + ) 5 5C + D 5 ,C+1, (17)

where the innovation is given by D 5 ,C+1 = �′
5 "
Σ̃�C+1 + � 5 � 5 ,C+1, and where � 5 ,C+1 ∼ #(0, 1)

is a term premium shock that is uncorrelated with the macro shocks.

Prices of Risk For ease of exposition, we specify the prices of risk in the case where "̃C

has VAR(1) dynamics. Following Duffee (2002), we consider prices of risk that are a linear
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functions of the state variables:



� 8̃ ,C

��̃,C

�H̃ ,C

� 5 ,C


=


(� − ΓC)Σ̃−1

C 0#×1

01×# 1

 ×
©­­­­­­­­«



�0,8̃

�0,�̃

�0,H̃

�0, 5


+



�′
8̃

�′�̃

�′
H̃

�′
5





8̃C

�̃C

H̃C

5C



ª®®®®®®®®¬
, (18)

with one important difference due to the first term on the right-hand side of this equa-

tion.11 This term is different in our case because the sources of risks, �C , have time-varying

loadings on macroeconomic variables, while in Duffee (2002) all state variables are Gaus-

sian with constant variance. In the specification that we detail below, the price of variance

risk ΓC collapses to zero when all state variables have constant variances, hence matching

the specification in Duffee (2002).

In addition to the assumption of linearity, we embed two additional restrictions in the

specification of the prices of risk. First, we restrict the price of risk of the term structure

factor in Equation 18 as follows:

�′5 = [0
′
3×1 � 5 5 ]. (19)

This assumption ensures that the financial market factor does not affect the dynamics of

8C , does not enter the expectations component of bond yields, but only affects bond yields

through term premiums.

The second restriction in Equation 18 is implicit: we exclude the secular components

from the prices of risk. This is to guarantee that the expected returns from holding

bonds are stationary. This restriction also makes the model parsimonious and improves

the accuracy of the parameter estimates. Most existing DTSMs use stationary pricing

11In the case where "̃C has general VAR(p) dynamics, the second term on the right-hand side of Equa-

tion 18 also includes ? − 1 lags of "̃C−1, as in Joslin et al. (2013a).
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factors. There are many lines of evidence supporting this assumption. Hall, Anderson,

and Granger (1992) provide early evidence that bond yields are cointegrated and that

the bond risk premium is stationary (see also Engsted and Tanggaard, 1994). Consistent

with this observation, Cieslak and Povala (2015) find that, for bonds, the predictability

of excess returns that are based on current yields essentially doubles once the inflation

trend is removed from these yields. In fact, they report that the predictable component

of bond returns has a half-life of 10 months (yields have half-lives of five years or more)

and that this is orthogonal to the inflation trend. Bauer and Rudebusch (2020) examine an

important dynamic term structure model where bond yields share a common trend given

by 8∗C , which corrects for inflation and the real rate trends. They emphasize that describing

bond yields as cointegrated processes is a useful description in small samples.

Unspanned Volatility To be consistent with the observation that the yields do not span

the conditional volatilities of the yields (Collin-Dufresne and Goldstein, 2002; Collin-

Dufresne, Goldstein, and Jones, 2009), we assume the following price of the variance

risk:

ΓC = � − Σ̃′C(Σ̃Σ̃′)−1Σ̃C . (20)

This term disappears if the scaling factors E·,C are constant and equal to 1, in which case

the conditional variance Σ̃C is constant and the coefficient ΓC is zero. Hence, our approach

uses multiple unspanned volatility factors and is similar to earlier works by Creal andWu

(2017) and, more recently, Hansen (2019) that use unspanned volatility factors to analyze

macroeconomic risks in bond yields.

Bond Prices Given these assumptions about the pricing kernel, using the standard recur-

sive argument, it follows that the price of a nominal bond with = periods until maturity,

%
(=)
C = �C[�C+1%

(=−1)
C+1 ], is given by

%
(=)
C = exp

(
�= − =8∗C + �′="̃C + � 5 ,= 5C

)
. (21)
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The bond yields are given by

.
(=)
C = 8∗C + 0= + 1′="̃C + 1 5 ,= 5C , (22)

where the coefficients are given in the appendix and with the initial conditions 01 = 0,

11 = 41 and 1 5 ,1 = 0 so that .(1)C = 8C = 8∗C + 4′1"̃C . Equation 22 means that bond yields

that have a stationary risk premium share one common cointegration relationship, where

any interest rate spread is stationary. The constant 0= captures the average term premium

(e.g., the constant is 1.66 percent for the 10-year yield in our results).

Risk-Neutral Dynamics The existence of the positive pricing kernel �C+1 is equivalent to

the existence of an equivalent martingale measure (or risk-neutral measure) Q, such that

�
Q
C [+C+1] = �C[4 8C�C+1+C+1]. It is useful to look at the dynamics under this risk-neutral

measure:

5C =)
Q
5
5C + DQ5 ,C

"̃C = +ΦQ"̃C−1 +ΦQ" 5
5C−1 + Σ̃�QC

"̄C = ̄ + "̄C−1 + Σ̄�QC , (23)

where ΦQ
" 5

is a 3 × 1 vector. One key feature is that the autoregressive matrix for "̄C

under the risk-neutral measure Q is the identity matrix, exactly as under the physical or

historical measure. This is what guarantees the stationarity of the bond risk premium. To

see this, consider a more general case where this autoregressive matrix is given by Φ̄Q.

Applying the conditional expectations operators to the definition of the log of the excess
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bond returns, we find that the (log) bond risk premium is given by the following:

1A?
(�)
C→C+= =��−= + �= − �� + �̄′�−=

(
� −

(
Φ̄Q

)=)
"̄C

+ �′�−=
{
�C

[
"̃C+=

]
−

(
ΦQ

)=
"̃C

}
+ � 5 ,�−=�C[ 5C+=] − (� 5 ,� − � 5 ,=) 5C , (24)

which immediately shows that the risk premium is stationary if and only if Φ̄Q = �.12

3 Estimation

3.1 Data

Macro Data We estimate the model using US data. The sample period starts in 1983 and

ends in 2019. The sampling frequency is quarterly. Figure 2a shows the macroeconomic

data. For the short rate, 8C , we use the secondary market rate for 3-month Treasury bills,

in percentage terms. For the inflation rate �C , we use the compounded rate of change in

the personal-consumption-expenditures index, excluding food and energy, annualized,

in percentage terms and seasonally adjusted. For output HC , we use real gross domestic

product, in log of billions and seasonally adjusted. We use the macro data available from

the website of the Federal Reserve Bank of St. Louis.

Yield and Survey Data Figure 2b shows the yields for bonds with 2-, 5- and 10-year

maturities. For our estimation, we select zero-coupon yields with annual maturities

between one and ten years, in annualized percentage terms, from the GSW database

(Gurkaynak, Sack, and Wright, 2006). We also use data on the rates of inflation swaps

12This expression for the bond risk premium follows from the definition of excess returns, and from the

price of a zero-coupon nominal bond with = periods to maturity in the general case, given by:

%
(=)
C = exp

(
�= + �̄′="̄C + �′="̃C + � 5 ,= 5C

)
,

with coefficients given by standard recursions, starting at �1 = 0, �̄1 = �1 = −41 and � 5 ,1 = 0.
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with 2-, 5- and 10- year maturities.

In the spirit of Kim and Orphanides (2012), we use survey data to help with the

precision of the estimation. Long-horizon survey forecasts can improve the identification

of secular and cyclical components. Orphanides andWei (2012) also use surveys as a way

to capture structural changes in a stationary VAR that they estimate recursively. Cieslak

and Povala (2015) find that using survey-based expectations of inflation from a variety

of sources to control for the expected inflation in predictive regressions of bond excess

returns consistently strengthens the return predictability.

Using survey data plays an important role in disciplining the model. The Beveridge-

Nelson decomposition relies on the difference in the persistence between components. In

practice, it is difficult to pin down this difference in a short sample when using only the

likelihood. Intuitively, increasing the variance of the secular changes may improve the fit

of the one-period forecasts, which is the basis of the likelihood, but this can also cause

over-fitting and produce secular component estimates that are implausible. However, at

very long horizons, the model forecasts depend on the secular components but not on the

cyclical components. Hence, long-term surveys help to identify variations in the secular

components as well as obtain stable and sensible estimates of the secular components.

We use the estimates of the long-horizon forecasts for the short rate, inflation and

GDP growth available from Crump, Eusepi, and Moench (2016). The idea behind their

estimates is that different surveys offer forecasts at different frequencies and horizons,

which can be pooled together to obtain smoothed estimates at regular frequencies and

fixed horizons. Clearly, the measurement errors surrounding the smoothed estimates

are not negligible, and this uncertainty will be embedded in the estimation procedure,

which we discuss below. Therefore, different model specifications may deliver a range of

plausible but different estimates, even when survey data are used.

Figure 2c shows long-horizon survey forecasts for the short rate, inflation and output

growth in our sample period. The secular changes are visually apparent. There is a slow
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decline for inflation, which exhibits a plateau starting at around 1998. There is also a slow

decline as well as a plateau starting at around 1998 for the short rate, but this decline

resumes after 2009. This renewed decline is absent from the survey forecasts for inflation

and have been attributed to declines in the real neutral rate. Finally, the long-horizon

forecasts show output growth rising to 3 percent for much of the decade after 1998 but

declining to below 2 percent by the end of our sample period.

3.2 Identification

We proceed in steps for clarity. In the first step, we take as given the identification of ΣC

fromΣCΣ
′
C = ΩC = (Σ̃C+Σ∗C)(Σ̃C+Σ∗C)′, date by date, to discuss the parameter identification in

a statistical sense. For this discussion, we group the parameters into two blocks. The first

block contains the parameters that drive the time-varying loadings given in Section 2.4.

The second block contains the parameters that drive the conditional means given in

Section 2.2. In the second step, we discuss the identification of ΣC .

If ΣC is identified date by date and if the block of conditional mean parameters is

identified, then the block of conditional variance parameters is also identified. This block

contains the parameters $·̃, � ·̃, 
 ·̃ and � ·̃ given in Equation 15 as well as the parameters

$·∗ , 
·∗ and �·∗ given in Proposition 1. The parameters can be estimated using the Nelson

(1991) EGARCH recursions, which can be started at the initial values E·,0 = 1, without loss

of generality, and using the conditional mean parameter to obtain updates of the shocks

in the EGARCH recursions.

The second block contains the parameters �6∗ , Σ̃ and Σ∗ in Equation 10, as well as Φ9

for 1 ≤ 9 ≤ ? in Equation 6.13 If ΣC is identified, then we can analyze the identification of

these parameters based on the moving-average representation of Δ"C ≡ "C −"C−1 :

Δ"C = 6∗043 + ΣC−1�C +
C−1∑
9=1

ΘC−1, 9�C−9 , (25)

13For this discussion, we consider the general VAR(p) dynamics, which are that Φ(!) = ∑?

9=1Φ9!
9 .
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where the coefficients ΘC−1, 9 are predetermined with respect to Δ"C . This means that,

when updating, it is feasible to alternate between the EGARCH recursions and the condi-

tional mean recursions. The parameter in this moving-average representation can be used

to identify the structural parameters. These coefficients are given by

ΘC−1, 9 =
(
Ψ9 −Ψ9−1

)
Σ̃C−1 + 43�′6∗ ,C−1, (26)

where the coefficients can be obtained recursively from the structuralΦ: using the follow-

ing:

Ψ9 =

?∑
:=1

Φ:Ψ9−: , (27)

for 9 = 1, 2, . . . with Ψ0 = �3 and Ψ9 = 0 for any 9 < 0.14 Based on Equations 25-27, the

online appendix establishes the following lemma.

Lemma 1 If ΣC is identified, then Σ̃, Σ∗, �6∗ and Φ9 for 1 ≤ 9 ≤ ? are also identified.

This leaves the question of how to identify the parameter ΣC of the reduced-form

innovations. This is the central identification problem in a standard structural VAR

with constant loadings. However, introducing time-varying loadings means that the

identification of the shocks becomes somewhat more involved. Primiceri (2005) analyzes

the issue in a multivariate autoregressive system where all of the parameters can change

over time. The intuition from this more general case applies here: the identification of the

shocks requires #(# − 1)/2 restrictions for each date C. In our case, this requires three

restrictions on the matrix ΣC , date by date.

To ease the computational burden of estimating the parameters, we first identify ΣC

with the Cholesky decomposition of ΩC , which is unique. Once we obtain the parameter

estimates, we can rotate the estimated shocks, �C , into new shocks, �̂C , that satisfy the

14The coefficientsΨ9 are those in the equivalent infinite-horizon moving-average representation for "̃C ,

"̃C =
∑∞
9=0Ψ9Σ̃C−9−1�C−9 , where we set "̃0 to zero, which is its population mean.
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desired identification restrictions by using one set of equations for every date. Lemma 2

states this result formally.

Lemma 2 There exists a unique matrix 'C such that the macroeconomic shocks given by �̂C+1 =

'−1
C �C+1 verify the identification restrictions in Equation 11, date by date. These shocks have a

loading matrix given by

ˆ̃
ΣC = +̃CΣ̃'C

Σ̂∗C = +̄CΣ
∗'C ,

and these new shocks are observationally equivalent to Σ̂C �̂C+1 = ΣC�C+1, where Σ̂C = ˆ̃ΣC + Σ̂∗C .

The online appendix provides the proof and the algebra to construct this rotation ma-

trix. Different identification restrictions correspond to different rotation matrices. Prim-

iceri (2005) follows a similar two-step identification strategy. This two-step approach

differs from a more traditional one that estimates the reduced-form innovations, DC , and

the covariance matrix,Ω, in a first step, say via ordinary least squares, and then identifies

Σ fromΩ in a second step to recover the shocks. The reason for this difference is practical.

Estimation of the model with time-varying loadings requires the shocks to update the

loadings when using the recursions such as in Equation 15. Hence, given the estimates,

we can use matrix 'C to compute the new shocks, a new loading matrix that determines

the macro dynamics as well as important objects such as impulse response functions and

variance decompositions.

3.3 Likelihood

Estimation via maximum likelihood is straightforward and much of the details are rele-

gated to the online appendix. We do not attempt to implement the model using real-time

data, which subjects us to the critique in Clark and Kozicki (2005) that notes that estimates

of secular components in real-time data are influenced by data revisions. The likelihood
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is available up to a recursion and does not need a Kalman filter because the innovations

are available from the observed macro data, DC+1 = "C+1 − �C["C+1]. The likelihood is

given by

ℒ",C+1 = −
3
2 ln(2�) − 1

2 ln (det (ΩC)) −
1
2D
′
C+1Ω

−1
C DC+1, (28)

where the innovations, DC , and the conditional variances are available recursively in the

appendix.

Cieslak and Povala (2015) find that long-term survey forecasts also do a good job of

stripping yields from the trend in the expected inflation and pinning down the cyclical

bond risk premium (see their Table 10). In addition, they report that survey-based mea-

sures of expected inflation bring in additional information in this context, relative to bond

yields. Kim and Orphanides (2012) propose using survey forecasts of short-term interest

rates as an additional input to the estimation of the persistent component of yields, albeit

their analysis focuses on stationary models. In the same spirit, we add measurement

equations based on the survey forecasts, (̄C , of macro variables that are available from

Crump, Eusepi, and Moench (2016). These survey forecasts correspond exactly to the

very-long-horizon forecasts "̄C in the model:

(̄C = "̄C + 4(,C , (29)

where the measurement errors, 4(,C , have independent normal distributions. The likeli-

hood of the survey data is then given by the following:

ℒ(,C+1 = −
3
2 ln(2�) − 1

2 ln(det(Ω()) −
1
2 4
′
(,C+1Ω

−1
( 4(,C+1. (30)

We calibrate the matrixΩ( to the standard deviations of the measurement errors obtained

from Crump, Eusepi, and Moench (2016), which capture the sampling uncertainty that

surrounds their estimates of (̄C that are based on the available data. In this way, the long-
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term surveys provide important information about the unobserved components, but the

standard errors that we calibrate are sufficiently wide that, at times, our baseline estimates

disagree with the survey forecasts.

To compute the likelihood of bond yields, and following Chen and Scott (1993) and

Joslin, Le, and Singleton (2013b), we assume that one linear combination of yields is

measured perfectly. This allows us to recover the latent factor, 5C , directly from the cross-

section of bond yields, given the parameters of the models, and also to bypass a Kalman

filter step. This likelihood is given in the online appendix. Finally, the inflation swap

rate, �̄(=), is derived as the risk-neutral expectations of the average inflation rate over some

horizon, =. The likelihood of the swap data is then given by the following:

ℒBF,C = −
3
2 ln(2�) − 1

2 ln (det (ΩBF)) −
1
2D
′
BF,C (ΩBF)−1 DBF,C , (31)

where DBF,C is the vector of the measurement errors for the inflation swap rates.

4 Results
We estimate several versions of the model, with a focus on understanding nominal

shocks. Our baseline model incorporates the cross-equation restrictions given in Sec-

tion 2.2 as well as time-varying loadings for shocks. We also estimate the case with

constant loadings, which is nested in the baseline model. We find that it is important

to let the shock loadings vary over time as this allows us to capture how the impact of

nominal shocks changes over time. We also estimate the case with unrestricted VAR(1)

dynamics. We find that the cross-equation restrictions from Laubach andWilliams (2003)

help pin down the output gap and the potential output and that the VAR(1) estimates are

implausible, for instance when compared with the Congressional Budget Office (CBO)

estimates.
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4.1 Real and Nominal Shocks

The shocks that we recover, especially the nominal shocks, are key outputs of the model.

Panel (a) of Figure 2 shows the shocks in our baseline model and Panel (b) reports the

shocks in a model with constant loadings. The results from both models suggest that

nominal shocks are prevalent in every recession in our sample but that they are less

prevalent during the protracted recovery since 2009.

However, there are some differences among the shocks in these two models. To gauge

the differences, Panels (c)-(e) of Figure 2 show scatter plots for each type of shock in these

two models (the units in the scatter plots are standard deviations). The correlations range

from 0.61 and 0.72 for the two real shocks and up to 0.79 for the nominal shocks (this

translates into univariate regression '2s of 37, 52 and 62 percent, respectively). Some of

the differences are large. One notable example is the large negative shocks that occur

late in 2008. The negative nominal shock is much larger in the model with time-varying

loadings, while the real shocks play a bigger role in the model with constant loadings.

This difference corresponds to the outlier that we can see to the bottom left of Panel (e).

Overall, this shows that the assumption of constant loadings influences the identifica-

tions of the nominal and real shocks. In the following section, we show that this leads to

different interpretations of some of the cyclical and secular changes in interest rates. In

this particular case, using constant loadings leads to the conclusion that the great finan-

cial crisis has a large secular impact on inflation and the real rate and, therefore, on bond

yields.

4.2 Endpoint Estimates

The endpoints �∗C and A
∗
C play an important role in “de-trending” bond yields within the

model, as in Cieslak and Povala (2015) and Bauer and Rudebusch (2020). This section

shows that assuming time-varying or constant shock loadings leads to different end-

point estimates. More importantly, using time-varying loadings reveals different nominal
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shocks.

Inflation Endpoint Figure 3 presents the inflation endpoint, �∗C , from the baseline model

and the model with constant loadings. The overall pattern is unsurprising. Early in our

sample, the inflation endpoint is around 6 percent, but it quickly falls and remains on

a plateau of around 4 percent for most of the 1980s. Starting in 1992, the endpoint of

inflation gradually declines again and reaches a lower plateau of slightly above 2 percent

around 1998; it stays there for the remainder of the sample. The models closely agree

with each other but the baseline model produces a much smoother path because of the

time-varying loading E�∗ ,C . To see the effect of this loading, Panel (b) of Figure 3 shows

the time-series of the one-year-ahead volatility for the shifting endpoint varC(�∗C+4). This

shows that, in our sample, the inflation endpoint becomes anchored. Early on, the annual

volatility is around 30 basis points, but it dramatically declines after 1990, reaching a very

low level of between 1 and 3 basis points after 2000 (for comparison, in our sample, the

standard deviation of the observed inflation rate is 52 basis points). In the model with

constant volatility, the conditional variance varC(�∗C+4) is constant at 23 basis points, which

is why the endpoint estimate continues to fluctuate in this model throughout our sample

period.

One key benefit of our framework is that we can document the contribution of nominal

shocks to the inflation endpoint �∗C , shown in Panel (c) of Figure 3. We also report the total

contribution of both real shocks. The baseline results show that both nominal and real

shocks influence secular inflation. Overall, across the sample, around two thirds of the

decline is attributed to the cumulative impact of the nominal shocks. The baseline results

also show that the impact of both shocks declines toward zero during the sample, which

is due to changes in the E�∗ ,C loading. Early in the sample, the loading of the nominal

shocks is around 0.1, meaning that �∗C tends to absorb one tenth of the nominal shocks

during that period, but this loading declines toward zero over the course of our sample.

The loadings of the real shocks exhibit similar changes because of changes to E�∗ ,C .
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How the shock loadings change over time plays an essential role in capturing the

anchoring of �∗C . To see this, in Panel (d) we report the contribution of each shock in the

model with constant loadings. In this restricted case, the nominal shocks play a much

smaller role throughout the sample. In fact, in this model, most of the disinflationary

period until the mid-1990s is attributed to the real shocks. Overall in the sample, around

60 percent of the decline in �∗C is attributed to the real shocks. This model’s interpretation

clashes with the general view that the decline in secular inflation during this period is

largely due to the actions of central banks. In addition, the real shocks in this model

continue to cause substantial updates to �∗C throughout the sample. This is inconsistent

with the general view that variations in secular inflation are very small toward the end of

the sample. For instance, the episode of the great financial crisis shows a large negative

impact of real shocks on �∗C but that this reverts after only a few years.

Real-rate Endpoint Panel (a) of Figure 4 presents estimates of the real-rate endpoint A∗C .

The overall pattern shows three phases that are broadly in line with the results reported

by Laubach and Williams (2003) and Holston, Laubach, and Williams (2017) for the US.

First, A∗C exhibits a gradual decline over the ten years between 1983 and 1993, ending

soon after the 1990-1991 recession. This is a period when the long-term forecasts show

declines for the short rate that are more pronounced than the declines for inflation. Then,

the A∗C estimate rises from 1993 to 2000, which corresponds to Fed chairman Greenspan’s

prediction for an acceleration in productivity growth. During this period, output growth

accelerates but inflation remains subdued, and these are attributed to the long-awaited

impact of information technology on productivity. Meyer (2003) offers a detailed review

of the policy discussions of that period. However, part of the decline in A∗C may be due to

real benefits from the lower level and lower volatility of inflation (see, e.g., Barro (2013)

and Al-Marhubi (1998) , respectively). After this episode, the neutral rate resumes its

decline, reaching 2 percent around 2008 and 0.5 percent in our baseline model at the end

of our sample.
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Our results shed some light on the volatility of the neutral real rate. Panel (b) shows that

the neutral rate’s one-year-ahead volatility is 14 basis points in the model with a constant

volatility. By contrast, after 2005, the estimated volatility of the real-rate endpoint in the

baseline model is less than 5 basis points. Therefore, the decline in the baseline real-rate

endpoint estimates after 2008 is due to a succession of correlated shocks that push A∗C in

the same direction and not to the incidence of a few large shocks.

Panel (c) reports the contribution of both real shocks separately (nominal shocks play

no role here). Wefind that the first type of real shock plays a greater role early in the sample

but that the second type of real shock becomes more important during the 2000s. The first

type is orthogonal to the innovations in 6∗, while the second can influence both A∗ and 6∗.

Hence, changes to the secular real rate tend to be uncorrelated to changes in the potential

growth, 6∗C , in the first half of the sample up until roughly 1998.15 However, the recent

decline in A∗C after 2008-2009 is largely driven by shocks that are correlated with changes

to potential shocks, suggesting that technology, capital accumulation and demographics

play larger roles during that period. Finally, Panel (d) reports the contribution of real

shocks in the model with constant loadings. The difference is stark. The model with

constant loadings shows no changes in the nature of the real shocks that are driving A∗C
and no compression in the dispersion of these shocks.

4.3 Cyclical Short Rate

Given the secular components �∗C and A
∗
C , the variations in bond yields due to the expecta-

tions component are determined by the dynamics of the cyclical component of the short

rate 8̃C . Panel (a) of Figure 5 shows estimates of 8̃C in our baseline model as well as in the

15This raises the question of whether the variations in A∗C early in our sample can be interpreted as

variations in the neutral real rate, because standard models would associate changes to the neutral real

rate to changes in potential output growth. We note that our estimates for A∗C are close to the estimates in

Laubach and Williams (2003). We leave for future research analyses whether further economic restrictions

have impacts on the identification of shocks to the neutral rate.
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case with constant loadings. Overall, the estimates align very closely across models. For

instance, the estimates are close to zero toward the end of our sample, at around minus

0.5 percentage points, which indicates that the policy tightening was almost finished by

the end of 2018.

Panel (b) shows the one-year-ahead volatility of the cyclical rate E0AC(8̃C+4), the volatility

of its endpoint E0AC(8∗C+4) and the covariance term, which together sum to the conditional

volatility of the observed short rate. When this volatility is higher, this corresponds to

periods when the expectations component is likely to play a large role. The results show

three large spikes in the volatility of the cyclical rate around 1983-1984, 1998 and 2007 as

well as more modest increases around 1990 and 1994. The spikes are consistent with the

findings of Cieslak and Povala (2016) that the short-rate expectations becomemore volatile

before recessions and around asset-market volatility bouts. Outside of these spikes the

cyclical volatility is much lower and close to the secular volatility.

Panels (c)-(d) of Figure 5 compare the contribution of each macroeconomic shock to 8̃

in models with constant and time-varying coefficients, respectively. The baseline model

draws a consistent picture of the impact nominal shocks have on inflation and the cyclical

component of the short rate. We find that the contribution of nominal shocks to the short

rate are large early in the sample period, which corresponds to the period when nominal

shocks also contribute to secular changes to inflation (Figure 3) and when the impulse

response functions show a strong policy response to nominal shocks (see Figure 6 below).

By contrast, the nominal shocks’ contributions to 8̃C almost disappear in the second half

of the sample, when inflation becomes anchored and shocks to the cyclical short rate are

smaller. This appears to be consistent with the conclusion of Ramey (2016), in a review of

the empirical evidence, that monetary policy has become more systematic over time.16

Impulse Response Function The disappearing impact of nominal shocks on �∗C and 8̃C

coincides with changes in the impulse response functions of every observed macro vari-

16Since it is plausible that monetary policy shocks are captured by nominal shocks.
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able. We find that the responses of the short rate, inflation and output to nominal shocks

decrease between the beginning and end of the sample period. To see the changes, Fig-

ure 6 compares the impulse response functions of the short rate, inflation and output at

two dates in time. One date is the first quarter of 1984, which is the period when Figure 3

shows an important disinflationary role for nominal shocks. The other date is the first

quarter of 2007, which is the period when Figure 3 shows that the impact on secular

inflation is tiny. We choose 2007Q1 because this precedes the great financial crisis and

avoids the extended period that follows it, when the 3-month rate hovers just above zero.

This way, the changes that we report cannot be associated with the potential changes that

are due to the lower bound being below nominal yields. Focusing on two dates makes it

easy to see the contrasts. Choosing different dates in these two periods does not change

the message.

The results in Figure 6 show that, early in the sample, a nominal shock leads the short

rate to increase by 0.45 percentage points on impact and peak at 0.6 points after two years.

This is associated with an increase in the inflation rate of around 0.2 percentage points,

which is essentially permanent, and an increase in output growth of around 0.5, which

is short-lived. One interpretation of these results is that, when inflation is unanchored,

nominal shocks lead to the economy over-heating and a persistent increase in inflation,

along with a large and persistent policy rate response. However, the responses are very

different later in our sample. The impact on the short rate peaks at only 0.2 percentage

points and is less persistent, the impact on inflation is large but quickly disappears, and the

impact on output growth is small and also quickly disappears. One interpretation is that,

with inflation anchored, nominal shocks may cause substantial inflation, but this increase

is transitory, with little economic overheating and only a small short rate response. This

pattern is consistent with the theoretical argument in Clarida, Gali, and Gertler (2000)

that the post-1979 policy responses to inflation stabilize output and inflation. It is also

consistent with the empirical results in Cogley and Sargent (2005) that policy activism
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by the Federal Reserve after the chairmanship of Paul Volcker contribute to the fall in

inflation as well as to changes in its persistence.

The decompositions in terms of the secular and cyclical components offered in Panel (b)

differ from the results of Jordà and Taylor (2019), who suggest that the cyclical component

of the real rate explains, atmost, 40 percent of the variability and, therefore, that the secular

component explains the majority of the variations in the real rate. This difference is not

due to the distinction between the real and nominal short rate. Our results indicate that

the shocks to 8̃C largely translate to ÃC on impact. Instead, one reason for the differences

between our results and theirs is that we use a common set of shocks that drive the

unobserved cyclical and secular components. This choice puts a cap on the degrees

of freedom. Another reason is that we also use survey data to help pin down secular

variations. Finally, we restrict the role played by secular components in long-term yields

because we require that bond risk premiums be stationary. These differences limit the

variability that the model can attribute to the unobserved secular components.

4.4 Bond Yields

Given the substantial changes in how secular and cyclical components of the short rate,

8C , respond to nominal shocks during our sample period, there should be no surprise that

we find that the responses of bonds to nominal shocks also change.

Bond Yield Impulse Response Function Figure 7 shows the impulse response functions

of bondyieldswith 3-month, 2-year and 10-yearmaturitieswith respect to nominal shocks.

We show the responses at these three maturities on two dates, as in the previous section.

The first row exhibits the responses of the bond yields, the expectations components and

the termpremium for the first quarter of 1984. The second rowexhibits the same responses

but for the first quarter of 2007.

Early in the sample, the initial impact on the short rate is around 0.45 percentage

points and peaks close to 0.6 (which are the same as in Panel (a) of Figure 6). The initial

36



impact on the 2-year yield is around 0.7 percentage points and peaks close to 0.8, while the

initial impact on the 10-year yield is around 0.6 percentage points and peaks close to 0.7.

Therefore, bond yields strongly respond to nominal shocks in the first half of the sample.

Nominal shocks lead to (i) a higher level of bond yields, (ii) a steeper slope between the

short rate and longer-term yields and (iii) an inversion of the yield curve between 2- and

10-year maturities.

Panel (b) shows that the expectations component dominates the response of bond

yields to nominal shocks. This is consistent with the interpretation that, when inflation

is unanchored, nominal shocks lead to strong policy responses. The initial impact on

the expectations component is around 0.6 and 0.4 percentage points for the 2- and 10-

year bonds, respectively, which explains the yield curve inversion. This impact gradually

declines afterward but some of it is permanent because nominal shocks lift �∗C (compared

with Figure 7b). The impact on the term premium component is smaller, around 0.1 and

0.2 percentage points for the 2- and 10-year bonds, respectively, and peaks close to 0.25

and 0.4.

This inversion between the 2- and 10-year bond yields arises because the response

of the short rate increases with the horizon until after the responses of the growth and

inflation rates decrease. Note that the inversion predicts slower growth in the baseline

model. The observation that the expectations component drives the predictive content of

a yield curve inversion for future growth is consistent with the results of Ang, Piazzesi,

and Wei (2006).

The second row in Figure 7 shows the response in 2007Q1, which is typical for the

second half of our sample. Stated simply, here, the responses of bond yields to nominal

shocks are muted. The impact on the 2-year yield is close to 0.4 percentage points, which

is half the peak impact in 1984Q1, and it is more quickly reversed. We find that the

responses of the expectations components drive the more muted responses of the bond

yields. The impacts on the term premiums are still substantial but dissipate faster than
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during the earlier period.

Term Premium Panel (a) of Figure 8 shows the term premium for the 10-year zero-

coupon yield estimated in our model compared with the estimates of Adrian, Crump,

and Moench (2013) (ACM hereafter), available from the Federal Reserve Bank of New

York, as well as the estimates of Crump, Eusepi, and Moench (2016) (CEM hereafter). The

ACM estimate is widely cited by analysts and practitioners. While ACM do not explicitly

account for secular variations in 8∗C , the model specifications and estimation procedures

deliver term premium estimates with smaller trends than the estimates from a typical

maximum likelihood estimation. The CEM estimate relies on a rich panel of survey data

to correct for the influence of secular variations in 8∗C and does not rely on the no-arbitrage

restriction.

Figure 8 shows that the three estimates share broad similarities, which is of course

reassuring. There are twodifferencesworthunderlining. First, our baseline termpremium

estimate appears stationary. By contrast, both the ACM and CEM estimates show a

downward trend from 4 percent at the beginning of our sample period to less than 0

percent at the end of our sample period. Hence, these estimates attribute a greater share

of the high interest rates early in our sample to a higher term premium. Second, our

baseline estimate exhibits stronger cyclical patterns throughout the sample. For instance,

the baseline results exhibit a sharp drop in the term premium starting in the third quarter

of 2008 at the peak of the crisis, while the drop is more modest based on other models.

While there are several differences in the purposes and assumptions underlying these

three estimates, the key difference between these two observations is the combination of

(i) allowing for secular changes in bond yields and (ii) the restriction embedded in the

baseline estimates that the term premium be stationary.

Perhaps unsurprisingly, the term premium shock is the most important driver of the

term premium. Panel (b) reports the impulse response function of the 2- and 10-year term

premia relative to the shock, � 5 ,C+1. This is substantially larger than the impact reported
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in Figure 7 for nominal shocks. However, the effect dies out relatively quickly. For the

10-year bond, a one-standard-deviation term premium shock raises the yield by close to

0.6 percentage points over one quarter, which dissipates to around 0.4 and 0.2 after one

and two years, respectively.

To illustrate the magnitude of this impact relative to all other macroeconomic shocks,

Panel (c) of Figure 8 shows the share of the one-year-ahead variance of the term premium

that is explained by each shock. This share changes over time because of the time-varying

loadings. Overall, the term premium shock almost always explains two thirds or more

of the term premium variations at this horizon. This is consistent with the common

observation in the literature that macroeconomic variables explain a small share of the

termpremiumvariability. Nonetheless, and perhaps unsurprisingly, themacro shocks are

more important than the term premium shock when monetary policy changes its target

rate more actively. The share attributed to macroeconomic shocks reaches beyond 50

percent in a handful of cases, for instance around the 1990 recession, during the recovery

after the 2001 recession and in 2008.

Panel (d) shows the variance decomposition for longer horizons, up to 40 quarters

and fixes the date to 2007Q1. The share of the term premium variance attributed to

macroeconomic shocks increases to 50 percent at horizons between 2 and 3 years and rises

beyond that. At these longer horizons, the real shocks together explain the majority of

the term premium variations while, as expected, the nominal shocks explain only a small

share. This pattern is common across the sample. The real shocks typically dominate term

premium variations at lower frequencies. Given that the term premium only depends on

cyclical variables 8̃C , �̃C and H̃C , this immediately implies that, based on our identification

strategy (see the discussion in Section 2.3), real shocks have more-persistent impacts on

business cycle variations than nominal shocks do for most of our sample period.
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4.5 VAR(1) Dynamics

One important question is whether the cross-equation restrictions in Section 2.2 play an

important role in the results. Figure 9 reports the key results that highlight the differences.

Panel (a) shows estimates of the potential output from our baselinemodel, from themodel

with constant loadings and from the model with constant loadings and VAR(1) dynamics.

The VAR(1) produces a potential output that is much smoother than in the other models.

This is not innocuous since it affects the output gap estimates and, indirectly, the shocks

recovered from the model.

To see this, Panel (b) shows theoutput gap from the samemodels aswell as the estimates

from the CBO.17 The estimates from the baseline model and the model with the constant

loadings closely agree with each other. By the end of the sample period, the estimated

output gap is around -1 percent and the CBO estimate is close to zero. We also find that

the CBO output gap is not as deep following the 2001 and 2009 recessions and tends to

recover more quickly. We should expect some differences between these two estimates

since they use different methods: the CBO estimate relies on the “production-function”

method instead while the approach here relies on both cross-equation restrictions and the

statistical properties of the secular versus the cyclical components (following Blanchard

and Quah 1989). Coibion, Gorodnichenko, and Ulate (2018) provide a detailed discussion

of different approaches to estimating potential output and their relative advantages. Like

us, they find that the CBO estimates imply a quicker decline in the output gap than the

results obtained when following Blanchard and Quah (1989). However, our results and

those of the CBO agree on the timing of the peaks and troughs. All of these estimates

indicate a largely U-shaped recovery toward potential output. They also indicate that the

slowdown in potential growth started before 2008. These results are consistent with the

17We use the log difference between real GDP from the Bureau of Economic Analysis and the potential

output from the CBO, both available from the the Federal Reserve Bank of St. Louis FRED database. This

suggests the troughs of the output gap were around -2, -4, -3 and - 6 percent around 1987, 1993, 2002 and

2009, respectively.

40



evidence on the Great Recession presented by Eo and Morley (2020), which are based on

a regime-switching model for US output.

The output gap estimates that are based on the VAR(1) are very different, which

suggests that the cross-equation restrictions play an important role in identifying the

output gap. In fact, the estimates are implausible. The estimated output gap is between 1

and 5 percent during the period between 1997 and 2007, which includes the 2001 recession.

Moreover, the estimated output gap that is based on the VAR(1) reaches -10 percent after

2009 and remains close to this level toward the end of our sample, in 2018. Hence, the

results show that the restrictions from Laubach and Williams (2003) that we implement

in our baseline model are useful for pinning down the output gap and the potential

output, to a large extent, because our Equation 8 connects the output gap to the monetary

stance, ÃC . Note that these are relevant for applications in which the system includes

unobserved cyclical and secular components, as in our case. The results do not bear on

the widespread use of the reduced-form VAR(1) dynamics to capture the relationship

between the observed macro variables when there are no unobserved components.

5 Conclusion
We provide a framework where secular and cyclical changes to the short rate, inflation

and output are jointly determined by a small set of shocks with loadings that change over

time. This framework incorporates pricing equations for bond yields in terms of macro

variables in addition to a latent termstructure factor. Weuse restrictions on the correlations

between innovations to the secular and cyclical changes to identify and analyze the impact

of nominal shocks. We find that the role and impact of nominal shocks onmacro variables

and bond yields dramatically change during our sample period. Our approach paves the

road to identifying the distinct impact of other types of structural shocks on the cyclical

and secular changes in bond yields. In particular, our baseline model ignores the impact

of regulatory or fiscal changes and does not distinguish between the roles of technology,
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demography and capital accumulation behind the evolution of potential output.
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Figure 9: Estimates from a Model with VAR(1) Dynamics

Results in a model with VAR(1) cyclical dynamics and constant loadings. Panel (a) com-
pares the potential output H∗C estimates (units are in log-dollars) from the baseline model,
the model with constant loadings and the VAR(1) model with constant loadings. Panel (b)
compares the output gap, H̃, estimates from the same model as well as the CBO estimates
(units are in percentage points).

(a) Potential output

pe
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(b) Output gap
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A Online Appendix
Not intended for publication.

A.1 Cyclical Dynamics—VAR(5) Coefficients
Given the relationships in Equation 7, Equation 8 and Equation 9, the cyclical components follow+�'(5)
dynamics with the following coefficients:
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A.2 Convergence of the Volatility of Secular Components
We derive conditions for the convergence of long-horizon volatility of secular components. Recall that the
volatility of each secular component is given by
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and at longer horizons
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Hence if � = 1 and the following condition holds:
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A.3 Bond Yields
We derive coefficients for the bond yield equation. We consider the general case where nominal bond
prices depend on secular and cyclical components and we derive restrictions such that the term premium
is stationary for bonds with arbitrary maturities. Define "̄C as follows:

"̄′C = [8∗ �∗ 6∗]′.

We assume the following risk-neutral dynamics for the macro components:

"̄C+1 =  ∗0 +Φ∗"̄C + Σ̄�&C+1

"̃C+1 =  ̃0 + Φ̃"̃C + )" 5 5C + Σ̃�&C+1 , (32)

where the scalar 5C follows stationary �'(1) dynamics under risk-neutral and physical probability mea-
sures:
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it follows that the yield to maturity of a zero-coupon bond is given by
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where for = > 1, the coefficients are given by the following recursions and the initial conditions are �1 = 0,
�∗1 = �̃1 = −41 and � 5 ,1 = 0:
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A.4 Identification—Lemma 1
Using Equation 26 we have

Ψ9 = � +
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)
Σ̃−1. (37)

where we define Θ̃9 ≡ Θ9 − 43�′6∗ . We can then use the recursion for Ψ9 in Equation 27 to recover the
parameter Φ9 for 9 = 1, . . . , ?:

Φ1 = Ψ1

Φ9 = Ψ9 −
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Φ9−:Ψ: , 9 = 2, ..., ?, (38)

which implies that we can write Φ9 for 9 = 1, ..., ? as functions of the Θ̃9 and Σ̃:
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which together (39) characterize Σ̃ as a function of the parameters Θ̃9 :

Σ̃ = Σ̃
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)
. (41)

Finally, Equations 27 and 37 with 9 = ? + 2 together yield an equation with only �6∗ as the unknown
parameter. Given that we have assumed the identification of Σ, we get Σ∗ as the difference: Σ∗ = Σ − Σ̃.
Here, we have solved for the complete set of structural parameters as functions of the reduced-form
parameters, hence the identification.
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A.5 Identification—Lemma 2
We define the matrix ' that satisfies the properties stated in Lemma 2. Define ' as follows:

' = Σ−1
1 Σ2 ,

so that ''′ = � by construction. The matrix Σ1 and Σ2 are given in the following. For this purpose, we
rewrite the estimates of �A∗ and �6∗ using cartesian coordinates:
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where �̂∗6 = �/2 and �̂∗A = �/2 − arccos(�)with � ≡
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A.6 Likelihood
Macro Data The likelihood of the macro data is available recursively. For the given time-C values of
"̃C , "̄C and H∗C , we compute �C["C+1] using Equations 3, 4 and 6 in Section 2.2, and we compute the
innovations DC+1 = "C+1 −�C["C+1]. Then, for the given time-C values for Σ̃C and Σ̄C , the (log) likelihood of
the macro variables is given by Equation 28. To increment the recursion, we update the conditional mean
and conditional variance components using the laws of motion discussed in Sections 2.2-2.4. We estimate
the initial values for "̄0 and H∗0 and we set "̃0 = �["̃C] = 0 and the starting values for E·,0 = 1. For ease of
comparison between the different models, we keep "̄0 and H∗0 fixed to the estimated values in the baseline
model. The case with constant loadings is easily nested by fixing the values E·,C = 1.
Bond Yields We assume that one linear combination of yields is measured to perfectly recover the latent
factor 5C directly from the cross-section of bondyields, given the parameters of themodels, andwe compute
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the likelihood of the bond yields. Consider the portfolio of yields,.C that are measured without errors,
where, is a row vector with size �. Then, it follows that

5C =
(
1/� 5 ,,

) [
,.C −

(
�, +

(
, ��

)
8∗C + �̃′, "̃C

)]
, (42)

where �� is a � × 1 vector of 1, �, = ,�, �, = ,� and � 5 ,, = ,� 5 , and where �, � and � 5 stack the
yield coefficients. In practice, W is the equally weighted portfolio of the � yields. The remaining � − 1
portfolios of yields.4C ≡,4.C are measured with errors where the matrix stacking, and,4 has full rank
and the likelihood is given by the following:

ℒ.4 ,C = −
� − 1

2 ln(2�) − 1
2 ln (det (Ω.4 )) −

1
2D
′
.4 ,C (Ω.4 )−1 D.4 ,C , (43)

where D.4 ,C are the � − 1 portfolios of the yield pricing errors, Ω.4 is a diagonal matrix of the standard
deviations of the measurement errors and the matrix stacking, and,4 has full rank.
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