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Abstract 
Default risk models have been widely employed to assess the ability of households and 
sovereigns to insure themselves against shocks. Grid search has often been used to solve these 
models because the complexity of the problem prevents the use of faster but less general 
methods. In this paper, we propose an extension of the endogenous grid method for default 
risk models, which is faster and more accurate than grid search. In particular, we find that our 
solution method leads to a more accurate bond price function, thus making substantial 
differences in the model’s main predictions. When applied to Arellano’s (2008) model, our 
approach predicts a standard deviation of the interest rate spread one-third lower and defaults 
3 to 5 times less frequently than does the conventional approach. On top of that, our method 
is efficient. It is approximately 4 to 7 times faster than grid search when applied to a canonical 
model of Arellano (2008) and 19 to 27 times faster than grid search when applied to the richer 
model of Nakajima and Ríos-Rull (2014). Finally, we show that our method is applicable to a 
broad class of default risk models by characterizing sufficient conditions. 
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1 Introduction

In many financial markets, default has been widely observed. World capital markets have often
experienced sovereign defaults on a large scale, and consumer bankruptcy protection is an impor-
tant form of social insurance in many countries. Given this, researchers have employed default
risk models to better understand the sources of default, the implications of default-related policies,
and the ability of households and countries to insure consumption in richer incomplete market set-
tings.1 As richer data sets have recently become accessible, there have been more opportunities to
observe a diversity of behaviors in consumer loan markets. In response, default risk models have
become more complex over time. However, despite the increased computational burden, we have
relied on the stability of grid search methods to solve default risk models at the cost of efficiency
and accuracy because there are few robust and efficient solution methods for these models.2

In this paper, we propose a solution method for default risk models that has several notable
advantages. First, our method leads to a more accurate bond price function and thus substantially
alters the model’s main predictions. When applied to Arellano’s (2008) model, our method causes
significant differences in stationary distributions as well as simulation results. Under our method,
the mean debt-to-income ratio is about 70% lower, defaults are 3 to 5 times less frequent, and stan-
dard deviations of the interest rate spread are 3 times lower than those under grid search. Second,
our method is faster, and this computational gain increases in richer models. It is approximately
4 to 7 times faster than grid search when applied to a canonical model of Arellano (2008); it is
approximately 19 to 27 times faster than grid search when applied to the richer model of Nakajima
and Rı́os-Rull (2014). Finally, our method is applicable to a broader class of default risk models:
both finite and infinite-horizon models, models with other discrete choices and multiple types of
defaults.

Our method is an extension of the endogenous grid method (EGM), which was originally de-
veloped by Carroll (2006). The EGM is much faster than standard solution methods by avoiding
using a forward-looking non-linear solver in finding decision rules.3 Although this prototype EGM
requires many restrictions to be applied, the EGM has progressed to solve a broader class of dy-

1For example, there have been studies for the episodes of sovereign default (Aguiar and Gopinath, 2006; Arellano,
2008; Yue, 2010), the implications of consumer bankruptcy reforms (Chatterjee et al., 2007; Livshits et al., 2007;
Athreya, 2008; Athreya et al., 2009; Livshits et al., 2010; Chatterjee and Gordon, 2012; Nakajima, 2017), and the
interactions between household default and business cycles (Nakajima and Rı́os-Rull, 2014; Gordon, 2015).

2Arellano, Maliar, Maliar and Tsyrennikov (2016) developed an envelope condition method (ECM) for default risk
models. However, as mentioned by the authors, the ECM does not guarantee the convergence of value functions if
their default rule is endogenous.

3For example, in the neoclassical growth model, forward-looking solution methods search for a next period optimal
level of asset (a′), given a current level of asset (a). These forward-looking methods compare values of choosing
different a′ to find the optimal a′, therefore compute values multiple times. This step is computationally costly. On
the other hand, the EGM backwardly solves a given a′ using the first-order conditions (FOCs).

1



namic problems.4 However, these extended EGMs cannot be used to solve default risk models
because of the properties of these models that make the basic method inapplicable. First, in default
risk models, value functions are non-concave and not everywhere differentiable because default-
ing is a discrete choice that introduces kinks in the value functions. The general problems of
non-concavity have been addressed ((Fella, 2014; Iskhakov et al., 2017; Druedahl and Jørgensen,
2017)), but none of these papers are immediately applicable to default risk models, as they do
not address another issue: the feasible set of asset holdings is ex-ante unknown and varies across
individual states.5 This set must be found before solving a model with default to use the solution
methods mentioned above.6

Our method comprehensively handles the computational issues above. First, we address the
issue of non-concavity and non-differentiability by employing Fella’s (2014) algorithm. But, as
mentioned previously, Fella’s (2014) EGM cannot be directly applied to default risk models be-
cause it works only when the feasible set for asset holdings is known, as is the case with an
exogenous borrowing constraint or a collateral constraint.

To address this issue, we introduce a numerical procedure to identify the feasible set for the
solution, according to theoretical findings in Clausen and Strub (2020). In Arellano’s (2008) model
with i.i.d. endowment shocks, they showed that the feasible set is characterized by one cut-off rule
for assets conditional on endowment shock (and vice versa); above the cut-off, the derivative of the
loan price schedule in assets is locally well defined at optimal choices and the first-order condition
(FOC) is well established as a necessary condition for the global solutions; and in every optimal
debt contract, the discounted value of debt, the product of the price and the quantity of debt,
increase in the quantity of debt.

To use these theoretical findings with persistent shocks, we assume a finite Markov chain and
characterize one cut-off rule conditional on each Markov state, as suggested in Clausen and Strub
(2020).7 This modification enables us to apply their theorems for i.i.d. shocks to the case with
persistent shocks. For each state, we search for the minimum level of debt, above which the
discounted value of debt increases in the amount owed; take this minimum as the risky borrowing
limit, which serves as the lower bound of the feasible set of debt holdings. Likewise, conditional

4For example, the EGM has been extended to solve models with endogenous labor supply (Barillas and Fernández-
Villaverde, 2007), discrete choices (Fella, 2014; Iskhakov, Jørgensen, Rust and Schjerning, 2017), and multiple dimen-
sional choices (Hintermaier and Koeniger, 2010; Druedahl and Jørgensen, 2017).

5In contrast, when an option to default is unavailable, this issue does not appear because the feasible set of the
solution is irrelevant to its equilibrium. It is predetermined through an exogenous borrowing constraint or a collateral
constraint.

6Villemot (2012) is an exception using the EGM to solve a default risk model in Arellano (2008) by introducing a
heuristic algorithm that updates the lower bound of the feasible set. However, this algorithm is not guaranteed to find
the correct feasible set.

7The theorems in Clausen and Strub (2020) might not be applicable if one assumes a continuous and persistent
income process. However, given a finite Markov chain, as we do in computation, the theorems are applicable.
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on the current endowment and threshold, we compute the default probability and the loan price
schedule, using a continuous probability density function. This approach, combined with Fella’s
(2014) algorithm, allows us to make the best of the computational benefits of the EGM in solving
default risk models.

We illustrate the detailed procedures of our method with a canonical model of Arellano (2008).8

Our EGM has noticeable computational benefits in efficiency. Our method converges approxi-
mately 4 to 7 times faster than grid search. These computational benefits increase when we apply
our method to solve the richer model of Nakajima and Rı́os-Rull (2014). We show that our method
is approximately 19 to 27 times faster than grid search.

We also find that our threshold-based computation for the default probability makes differences
in the loan price schedule’s shape, thereby improving solution accuracy. The loan price schedule in
Arellano (2008) is step-shaped because the default probability is computed based upon a discrete
Markov chain. In contrast, our threshold-based approach leads the loan price schedule to be smooth
because the default probability is computed in a continuous probability density function based
on the cut-off of default in endowment shocks. These improvements in accuracy bring about
substantial differences in the simulation results. For example, the standard deviation of the interest
rate spread (the difference between the yields of government bonds and the risk-free rate) in the
threshold-based method is approximately one-third of that in the discrete method with the step-
shaped price schedule. The default is 3 to 5 times more frequent in the discrete method than in our
threshold-based method. We find that this threshold-based method is the main driving force behind
the improvements in accuracy. Grid search is also as accurate as the EGM when implemented with
this threshold-based method.

In addition, as in White (2015), we characterize sufficient conditions for our method to be
applicable to a model. The sufficient conditions imply that our EGM can be applied to a broad
class of default risk models: both finite and infinite-horizon models, along with other discrete
choices (e.g., housing, durable goods, health insurance, and retirement) and multiple types of
defaults (e.g., Chapter 7 vs. Chapter 13 in consumer bankruptcy). We also discuss the possibility
of the application of our method to default models with long-term debt (Chatterjee and Eyigungor,
2012; Hatchondo et al., 2016; Bocola and Dovis, 2019).

The organization of this paper is as follows. Section 2 describes the model of Arellano (2008),
to which we apply our method. In Section 3, the detailed procedures of our algorithm are demon-
strated, and Section 4 reports the results. In Section 5, we provide and discuss sufficient conditions
for the application of our method. Finally, Section 6 concludes this paper.

8This model is well suited as a pedagogical example because it contains all the necessary components in a relatively
simple model.
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2 Model

In this section, we lay out Arellano’s (2008) model.9 In the model, the government starts each
period with assets a and endowments eS . The natural logarithm of endowments, S, follows an
AR(1) process with a persistence of ρS:

S
′
= ρSS + ε

′
, (1)

where ε′ is i.i.d. and follows N(0, σ2
S). Let f(S

′|S) describe the continuous stochastic process
for S ′ conditional on S. Following the literature, we approximate the AR(1) process as a Markov
chain πS,S′ . The government has an option to default on its debt a < 0. Given the option to default,
the government solves the following problem:

V (S, a) = max {V c(S, a), V d(S)}, (2)

where V (S, a) is the value of the government, V c(S, a) is the value associated with not defaulting,
and V d(S) is the value associated with defaulting.

The value associated with not defaulting is as follows:

V c(S, a) = max
{a′≥−Z}

u(eS − q(S, a′)a′ + a) + β
∑
S′

πS,S′V (S
′
, a
′
)

, (3)

where Z is a lower bound on debt to prevent Ponzi schemes but is otherwise not binding in the
equilibrium. u(·) is the utility function that is differentiable, and q(·, ·) is the loan price schedule
over the natural logarithm of current endowments S and the next period asset a′ .

The value associated with defaulting is as follows:

V d(S) = u(h(S)) + β
∑
S′

πS,S′
[
θV (S

′
, 0) + (1− θ)V d(S

′
)
]

(4)

h(S) =

λ if eS > λ

eS if eS ≤ λ,
(5)

where θ is the probability that the economy will regain access to the international credit markets.
The above value function implies that default causes two kinds of penalties. The first type of

9We focus on describing the government problem here. For detailed explanations of the model environment and
other features, please see Arellano (2008).
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penalty responds exclusion costs. This is the opportunity cost of not having access to the credit
market in the following period with probability 1-θ. The other type of penalty captures output
costs. The government must pay eS − λ when eS is greater than λ under a bad credit history.

The financial market is competitive with risk-neutral lenders whose expected profit is zero.
With these lenders, the loan price schedule, q(S, a′), satisfies

q(S, a
′
) =

1− δ(S, a′)
1 + r

, (6)

where δ(S, a′) is the probability of default associated with S and a′ , and r is the risk-free interest
rate.

To set the loan price, we need to characterize the default probability δ(S, a′). To do so, let us
define D(a) as

D(a) = {S : V c(S, a) < V d(S)}. (7)

The probability of default with endowments S and assets in the next period a′ is

δ(S, a
′
) =

∫
{S′∈D(a′ )}

f(S
′ |S)d(S

′
) =

∫
{S′ :V c(S′ ,a′ )<V d(S′ )}

f(S
′|S)d(S

′
), (8)

where f(·|S) is the probability density function of S ′ conditional on the current state S. IfD(a
′
) =

∅, the equilibrium default probability becomes zero, and the bond price is equal to that of a risk-
free bond. Here, although the discrete Markov chain, πS,S′ is used to compute the expected value
functions, the default probability δ(S, a

′
) is computed with this continuous probability density

function of f(·|S) over S ′ , allowing us to apply the theoretical findings in Clausen and Strub
(2020). It is important to note that this is an essential difference to earlier work that used the
approximation πS,S′ for both the expected value functions and the default probability δ(S, a

′
).

More details will be addressed in the next section.

3 Algorithm

Let us establish notation to explain the algorithm. Let n be the number of iterations for
the value function and loan price schedule. Let EV n(S, a

′
) be the expected value function,

β
∑

S′ πS,S′V
n(S

′
, a
′
). We will denote Ga′ = {a′1, . . . , a

′
N

a
′ } as the grid for assets, a′ , in the

next period. In addition, we define Da′EV
n(S, a

′
) as the derivative of the expected value function

with respect to the next period asset holdings, a′ . We compute the numerical derivative of the
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expected value function in the following way:

Da′EV
n(S, a

′

k) =


EV n(S,a

′
k+1)−EV n(S,a

′
k)

a
′
k+1−a

′
k

, for k < Na′

EV n(S,a
′
N
a
′ )−EV

n(S,a
′
N
a
′ −1)

a
′
N
a
′ −a

′
N
a
′ −1

, for k = Na′ ,
(9)

where Na′ is the number of grid for a. The numerical derivative of the discount loan rate with
respect to a′ , Da′q

n(S, a
′
), is computed in the same way.

3.1 Calculating Risky Borrowing Limit

We set up the feasible sets of the solution through the risky borrowing limit (credit limit), which
is studied in Arellano (2008) and Clausen and Strub (2020). They show that, for each state S,
the size of loan q(S, a

′
)a
′ increases with a

′ in every optimal debt contract. If the size of loan
q(S, a

′
)a
′ decreases in a′ , households can increase their consumption by reducing debts (increasing

a
′), which implies that it cannot be an optimal debt contract. Arellano (2008) defines the risky

borrowing limit to be the lower bound of the set for optimal contract. Using this theoretical finding,
we numerically compute the risky borrowing limit for each state S using the following definition:

Definition 3.1.1. For each n and S, anrbl(S) is the risky borrowing limit if

∀a′ > anrbl(S), Da′

(
qn(S, a

′
) · a′

)
= Da′q

n(S, a
′
) · a′ + qn(S, a

′
) > 0. (10)

Figure 1 illustrates the risky borrowing limit, anrbl(S). To the right (left) of a′ = 0, households
are saving (borrowing). The return on savings is 1+r, and the risk borrowing limit is anrbl(S). Note
that this borrowing limit varies with S, which determines S ′ and thus the probability of default.

Note that most existing endogenous grid methods do not require a procedure of defining the
risky borrowing limit. Models without default, to which the previous endogenous grid methods
are applicable, have a borrowing constraint that is known ex-ante, as in the case of an exogenous
borrowing constraint and a collateral borrowing constraint. However, in default risk models, the
borrowing constraint is unknown ex-ante, and thus it is difficult to use the preexisting endogenous
grid methods. We here address this issue by introducing a numerical procedure of searching for
the risk borrowing limit according to its theoretical properties. Going forward, when we compute
the endogenous grid, we will only use grid points that lie above the risky borrowing limit.10

10We argue that the risky borrowing limit might be a general feature of default risk models. More details will be
addressed in Section 5.4.
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qn(S, a
′
) · a′

a
′

0anrbl(S)

qn(S, a
′
) · a′

Slope= 1
1+r

Saving

Borrowing

Risky borrowing limit

Figure 1: Risky Borrowing Limit

3.2 Identifying the (Non-) Concave Region

Fella (2014) presented an algorithm that divides the space of assets in the next period a
′ into

concave and non-concave regions. In the concave region, the FOC is sufficient and necessary for
the global solutions, whereas in the non-concave region, the FOC is only a necessary condition.
The algorithm uses information on the curvature of the expected value function. We adjust his
algorithm to work in our context. The details are described below.

Following Fella (2014), we use Figure 2 to understand how this algorithm works in our context.
The vertical axis represents, for a given S, the values for the derivative of the expected value
function, Da′EV

n(S, ·), and the marginal utility of consumption, u′(·). The horizontal axis is the
value of asset holdings in the next period, a′ . Given a level of cash on hand M(= a + S), the
marginal utility of present consumption increases with asset holdings in the next period, a′ . Let
M
′′′
< M

′′
< M

′ be three arbitrary levels of cash on hand. Given a′, the larger the cash in hand, the
more consumption.11 Since the utility function is concave, marginal utility of present consumption
is decreasing in cash on hand. The non-monotonic and discontinuous line is the derivative of the
expected value function, Da′EV

n(S, ·). The curve is discontinuous at those values of a′ for which

11From the budget constraint, c+ q(S, a′)a′ =M .
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Da′EV (S, a′), u′(M − q(S, a′)a′))

a
′

a
′

0 a
′

1 a
′

2 a
′

3 a
′

4 a
′

5 a
′

6 a
′

7 a
′

8 a
′

9 a
′

10a
′

11a
′

12a
′

13a
′

14a
′

15a
′

16a
′

17a
′

18a
′

19a
′

20a
′

21a
′

22a
′

23
‖

anrbl(S)

Da′EV
n(S, a

′
)

u
′
(M

′′′ − q(S, a′)a′)

u
′
(M

′′ − q(S, a′)a′)

u
′
(M

′ − q(S, a′)a′)

vmax(S)

vmin(S)

‖
amin(S)

‖
amax(S)

Figure 2: Illustrating the Algorithm
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the default probability jumps discretely as a′ changes.12 The risky borrowing limit, anrbl(S), is
represented at a′2. Let us define Ganrbl(S) as the set of all grid points for assets above the risky
borrowing limit anrbl(S). Here, Ganrbl(S) = {a′2, . . . , a

′
23}.

This algorithm identifies the concave region by using information related to the FOC.13 In
Figure 2, the intersection points between u′(·) and Da′EV

n(S, ·) are where the FOC holds. A
non-concavity causes a jump in Da′EV (S, ·), which can lead to multiple crossing points (e.g.,
u
′
(M

′′ − q(S, a′)a′) intersects Da′EV (S, ·) twice; between a′9 and a′10, between a′12 and a′13). The
multiple crossing points mean that the FOC is not a sufficient condition but a necessary condition.
In contrast, if there is only one crossing point, then the necessity of the FOC combined with
uniqueness means that it is also sufficient for a global solution.14 As in Fella (2014), we identify
the concave region where the two curves are single-crossed by using the following criterion.

a
′
i ∈ Ganrbl(S) is on the concave region if either

∀ a′j ∈ Ganrbl(S) with a
′

j < a
′

i, Da′EV
n(S, a

′

i) < Da′EV
n(S, a

′

j) or (11)

∀ a′j ∈ Ganrbl(S) with a
′

j > a
′

i, Da′EV
n(S, a

′

i) > Da′EV
n(S, a

′

j).

This condition implies that the derivative of the expected value function, Da′EV
n(S, a

′
), is strictly

decreasing on the concave region. In Figure 2, a′5 and a′15 are the two thresholds of this condition;
we denote them as amin(S) and amax(S), respectively. As a result, in Figure 2, the concave region
is {a′2, a

′
3, a

′
4}∪{a

′
16, · · · a

′
23}. The remaining region becomes the non-concave region, {amin(S) =

a
′
5, a

′
6, · · · , a

′
14, a

′
15 = amax(S)}. vmax(S) and vmin(S) are the corresponding values of Da′EV (·)

at amax(S) and amin(S), respectively.
Note that identifying the concave region is equivalent to finding amin(S) and amax(S). To find

the thresholds, we take the following steps. First, we check the discontinuous points of the deriva-
tive of the expected value function, Da′EV

n(S, a
′
i) with respect to a′i. In Figure 2, the discontinu-

ous points arise at a′11 and a′12. Second, over the discontinuous points, we find the minimum value
of Da′EV

n(S, ·) and denote it as vmax(S). In Figure 2, vmax = Da′EV
n(S, a

′
11). Next, we search

for a set of a′i that satisfies Da′EV
n(S, a

′
i) ≤ vmax(S), which is {a′15, a

′
16, · · · , a

′
23} in Figure 2.

We choose the minimum among this set and define it as amax(S). In Figure 2, amax(S) = a
′
15.

vmin and amin are computed analogously.

12Although the decision on default is the only discrete choice in the model, other types of discrete choices can be
addressed along with default options. More details will be discussed in Section 5.

13We compute the first-order condition with respect to a′ in Equation 3 to get u′(M − q(S, a′)a′) = Da′EV (S, a′).
14In Figure 2, this happens at the point where u

′
(M

′′′ − q(S, a′
)a

′
) intersects Da′EV (S, ·): between a

′

4 and a
′

5.
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3.3 Computing the Endogenous Grid for the Cash on Hand

For each S and a′i ∈ Ganrbl(S), we compute the endogenously determined cash on hand, M(S, a
′
i).

To retrieve this endogenously determined cash on hand, M(S, a
′
i), we need to obtain the endoge-

nously determined consumption by using the following FOC:

For each n, S and a
′

i ∈ Ganrbl(S), u
′
(c(S, a

′

i)) =
Da′EV

n(S, a
′
i)

Da′q
n(S, a

′
i) · a

′
i + qn(S, a

′
i)
, (12)

where c(S, a′i) is the endogenously determined consumption. The FOC (12) is locally well defined
and easy to compute.15, 16 Recall that the derivative of the expected value function,Da′EV

n(S, a
′
i),

and the loan price schedules,Da′q
n(S, a

′
i), are computed using equation (9). GivenDa′EV

n(S, a
′
i)

and Da′q
n(S, a

′
i), c(S, a′i) = u

′−1
(

D
a
′EV n(S,a

′
i)

D
a
′ qn(S,a

′
i)·a
′
i+q

n(S,a
′
i)

)
.

Given c(S, a′i), we retrieve the endogenously determined cash on hand M(S, a
′
i) as follows:

M(S, a
′

i) = c(S, a
′

i) + qn(S, a
′

i)a
′

i. (13)

For each S and a′i ∈ Ganrbl(S), we save the pairs of (M(S, a
′
i), a

′
).

3.4 Storing the No-Default Value Function on the Endogenous Grid for Cash on Hand

Given n, for each S and a′i ∈ Ganrbl(S), we compute the value function over the endogenous grid for
cash on hand, M(S, a

′
i), as follows:

V c,n+1(S,M(S, a
′

i)) = u(M(S, a
′

i)− qn(S, a
′

i) · a
′

i) + EV n(S, a
′

i), (14)

It is worth noting two things in this step. First, the value function is computed without any max-
operator, which contributes to efficiency. Second, the value functions are defined on the endoge-
nous grid of M(S, a

′
i), not on its exogenous grid.

3.5 Identifying the Global Solution over the Endogenous Grid for Cash on Hand

Given a level of cash on hand, the corresponding a′ may not be a global solution as illustrated in
Figure 2. In this step, we identify a set of the global solutions and save the corresponding pairs of

15Clausen and Strub (2020) proved the local differentiability of the expected value function and the loan price
schedules and showed the existence of the FOC (12). The proof in Clausen and Strub (2020) was for the case of i.i.d.
shocks on earnings, yet as they mentioned, the inclusion of AR-1 shocks does not make a huge difference in the proof.

16For each a
′

i ∈ Ga′ with a
′

i > arbl(S), the derivative of the size of the loan, Da′ qn(S, a
′

i)a
′

i + qn(S, a
′

i), is always
positive by the definition of the risky borrowing limit, anrbl(S). We assume that the utility function u(·) is differentiable
with respect to c. The derivative of the expected value function and price function can be obtained numerically using
equation (9).
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(M(S, a
′
i), a

′
i). Given n and S, a′i ∈ Ganrbl(S) is either on the concave region or on the non-concave

region. When a′i is on the concave region, as a′3 in Figure 2, the pair of (M(S, a
′
i), a

′
i) implies a

global solution because the FOC (12) is a sufficient and necessary condition. We save all of the
pairs (M(S, a

′
i), a

′
i) on the concave region.

When a′i is on the non-concave region (e.g., a′i = a
′
9) in Figure 2, the pair of (M(S, a

′
i), a

′
i)

does not guarantee a global maximum because the FOC (12), while necessary, is not sufficient.
As in Fella (2014), for each S and a′i on the non-concave region, we verify whether this a′i is the
global solution by solving the following problem:

a
′

g = argmax
{a′k∈{amin(S),··· ,amax(S)}}

[
u(M(S, a

′

i)− qn(S, a
′

k) · a
′

k) + EV n(S, a
′

k)
]
, (15)

where {amin(S), · · · , amax(S)} is the non-concave region. If a′i = a
′
g, this implies that the pair

of (M(S, a
′
i), a

′
i) corresponds to a global solution, thus we save this pair. If a′i 6= a

′
g, we discard

this pair. This step does not add much computational intensity, since it only searches over the
non-concave region.

3.6 Computing the Endogenous Grid for the Current Assets Related to the Global Solu-
tions

For the saved pairs of (M(S, a
′
i), a

′
i) for the global solutions, we store the corresponding pairs of

(a(S, a
′
i), a

′
i). For each saved a′i, we compute the endogenous grid for the current assets, a(S, a

′
i),

as follows:

a(S, a
′

i) = M(S, a
′

i)− eS. (16)

Note that when a set of a′i corresponds to the global solutions, a(S, a
′
i) monotonically increases

with a′i, thereby allowing for a one-to-one mapping from a to a′ . This mapping enables us to use
splines to evaluate the policy function over the exogenous grid in the following step.

3.7 Evaluating the Policy Function and the No-Default Value Function on the Exogenous
Grid for the Current Assets

Using the one-to-one mapping between a(S, ·) and a′ , we employ a linear interpolation to evaluate
the policy function of asset holdings, a′ = ga(S, ·), over the exogenous grid for the current asset ai.
Then, we obtain the corresponding value V c,n+1(S, ·) over the exogenous grid for the current assets
ai by computing V c,n+1(S, ai) = u(ai + eS − qn(S, ga(S, ai)) · ga(S, ai)) + EV n(S, ga(S, ai)).
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3.8 Computing the Value of Defaulting

So far, we have solved the value of non-defaulting. In default risk models, agents choose whether
to default by comparing their non-defaulting value with a defaulting one. In this step, we compute
the value of defaulting. The value function with a bad credit history is as follows:

V d,n+1(S) = u(y(S)) + β
∑
S′

πS,S′
[
θV c,n+1(S

′
, 0) + (1− θ)V d,n(S

′
),
]
. (17)

Since the value function of defaulting is not related to any continuous endogenous state, it is not
costly to compute it.

3.9 Updating the Value Function and Loan Price Schedules

We update the value function, V n+1(S, a), and the price function, qn+1(S, a
′
), in the following

way:

V n+1(S, a) = max {V c,n+1(S, a), V d,n+1(S)} (18)

qn+1(S, a
′
) =

1− δ(S, a′)
1 + r

,

where

δ(S, a
′
) =

∫
{S′∈D(a′ )}

f(S
′|S)d(S

′
) =

∫
{S′ :V c(S′ ,a′ )<V d(S′ )}

f(S
′|S)d(S

′
)
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Figure 3: Value of Repaying and Defaulting Given S, a′

As mentioned previously, Clausen and Strub (2020) prove that D(a
′
) is characterized by a

12



unique cutoff rule in endowment shocks when these shocks are i.i.d. To exploit this theoretical
finding, we modify the default set D(a

′
) as represented by i.i.d. shocks. Let us define the default

set of a′ conditional on S, D(a
′ |S), as

D(a
′ |S) = {S ′ : V c(S

′|S, a′) < V d(S
′ |S)}. (19)

Using S ′ = ρsS + ε
′ , we rearrange D(a

′|S) in terms of ε′ as follows:

D(a
′ |S) = {ε′ : V c(ρsS + ε

′
, a
′
) < V d(ρsS + ε

′
)}, (20)

This equation implies that the default set associated with a′ conditional on S can be represented
by cut-off rules for i.i.d. shocks, ε′ . In this case, as shown in Clausen and Strub (2020), for each
a
′ and S, there exists a unique cutoff ε̄S,a′ such that V c(ρsS + ε̄S,a′ , a

′
) = V d(ρsS + ε̄S,a′ ). The

conditional default set can be rearranged in terms of a unique cutoff ε̄S,a′ as follows:

D(a
′|S) = {ε′ ≤ ε̄S,a′ : V c(ρsS + ε̄S,a′ , a

′
) = V d(ρsS + ε̄S,a′ )}. (21)

This unique cutoff, ε̄S,a′ , can be computed by using information in the value functions. For exam-
ple, in Figure 3, given a pair of (S, a

′
), the cutoff ε̄S,a′ is 10.5− ρsS because vc and vd intersect at

S
′
= 10.5.
Then, the default probability function associated with S and a′ is

δ(S, a
′
) =

∫ ε̄
S,a
′

−∞
g(ε

′
)d(ε

′
), (22)

where g(·) is the probability density function of ε′ ∼ N(0, σ2
S). For each S and a′ , we compute

ε̄S,a′ by employing an interpolation on the value functions in S ′; compute δ(S, a′) directly with the
cut-off rule, ε̄S,a′ , and the probability density function of the normal distribution, g(·).

We compute EV n+1(S, a). If ||EV n+1(S, a)− EV n(S, a)||∞ > 10−5 where || · ||∞ is the sup
norm over SXA, start a new iteration with n = n+ 1.

3.10 Summary of the Algorithm

To sum up, given an iteration number, n, and the expected value functionEV n(S, a), the algorithm
is as follows:

1. For each S, calculate the risky borrowing limit, anrbl(S), and save it.
2. Identify the (non-) concave region of asset holdings a′ by using the algorithm of Fella (2014).
3. Given (S, anrbl(S)), compute the endogenously determined cash on hand,M(S, a

′
i), by solving

13



the FOC (12). Save these pairs of (M(S, a
′
i), a

′
i).

4. Compute the value function for non-defaulting over the endogenous grid for cash on hand,
(V c,n+1(S,M(S, a

′
i)).

5. Identify the global solution over the endogenous grid for cash on hand.

• If a′i is on the concave region, save the pair of (M(S, a
′
i), a

′
i).

• If a′i is on the non-concave region, verify whether the candidate (M(S, a
′
i), a

′
i) implies

the global solution by solving the value function. If this is the global solution, save the
pair of (M(S, a

′
i), a

′
i). Otherwise, discard it.

6. For the saved pairs of (M(S, a
′
i), a

′
i), compute the corresponding endogenous grid for the

current assets, a(S, a
′
i). Save the pairs of (a(S, a

′
i), a

′
i).

7. Using the monotonicity between a(S, a
′
i) and a′i, compute the policy function of asset hold-

ings and the value function for non-defaulting over the exogenous grid for the current assets.

• Use a linear interpolation to compute the policy function of asset holdings in the next
period, ga(S, ai). With ga(S, ai), compute V c,n+1(S, ai).

8. Compute the value function for defaulting, V d,n+1(S).
9. Update the value function, V n+1(S, a) = max{V c,n+1(S, a), V d,n+1(S)}, and loan price

schedules, qn+1(S, a
′
).

10. Compute EV n+1(S, a).
11. Start a new iteration with n = n + 1 if ||EV n+1(S, a)− EV n(S, a)||∞ > 10−5. Otherwise,

stop.

4 Results

We first document how computation speed and accuracy can be improved by using our EGM. We
compare our EGM results with two versions of grid search results: i) grid search with discrete
bond price function (Grid search 1), and ii) grid search with continuous bond price function (Grid
search 2). Later we show simulation results and investigate how the method of computing the price
function affects quantitative implications of a model.
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4.1 Parameterization

Table 1: Parameters

r 1.7% Risk-free interest rate
σ 2.0 Risk aversion
ρS 0.945 Endowment process
σS 0.025 Endowment process
β 0.953 Discount factor
θ 0.282 Probability of reentry
λ 0.969E(S) Output cost

We follow Arellano’s (2008) choice of parameter values. The utility function is

u(c) =
c1−σ

1− σ
.

The Markov chain approximation to the process follows Tauchen (1986). We set the lower and
upper bound of a to -2.5 and 3.5. Table 1 shows the values of the chosen parameters.

4.2 Computing Time and Accuracy

The model is solved on a grid of 200, 500, 1000, and 2000 for the continuous state variable a and a
grid of 21 for S. The grid points for S are linearly spaced and the grid points for a are log-spaced
around zero, as default decisions are made and measures are located near zero. The programs were
written in Fortran 95, and all computations were carried out on a single core of an Intel i7-4770
processor.

We find that the way of computing the bond price function matters for the results. As we
explained in Section 3.9, we identified the exact size of income shocks that lead to defaults to
compute default probability. As a result, q(S, a′) becomes a smooth function, unlike the step-
shaped schedule in Arellano (2008). However, this way of computing the bond price function is
not restricted to EGM, and we report the results from the two versions of grid search: i) grid search
with discrete bond price function (Grid search 1); and ii) grid search with continuous bond price
function (Grid search 2). Figure 4 shows the results of our computations. Our solutions using
grid search with discrete bond price function resemble the solution of Arellano (2008). When we
compute the probability of default more accurately, bond price functions look smooth with EGM
and Grid search 2. As a result, the savings functions are also smooth.
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4.2.1 Computing Time

Table 2: Computing Time (second)

# of Grid Points 200 500 1000 2000
Method EGM GS1 GS2 EGM GS1 GS2 EGM GS1 GS2 EGM GS1 GS2
Time to converge 2.2 11.0 9.3 10.9 68.0 59.0 43.8 268.5 224.8 187.6 1087.1 901.3
Time per iteration 0.01 0.06 0.05 0.06 0.36 0.31 0.23 1.41 1.18 0.98 5.69 4.72

Table 5 shows that the EGM is approximately 4 to 7 times faster than the grid search method
across all grid settings. Some readers might be concerned that identifying the exact size of income
shock to compute the bond price schedule may slow down the computation. However, Grid search
2 does not take longer to execute than Grid search 1.

Since the model we solve is simple, one might think that the efficiency gain is small. Further,
considering the additional time to implement the EGM algorithm, it might not be worth using the
EGM on a simple model to reduce computing time. However, if a model entails more complicated
features and hence takes longer to solve, the EGM can reduce computing time significantly. For
example, Nakajima and Rı́os-Rull (2014) use a more complex income process and aggregate un-
certainty. They use a method in Krusell and Smith (1998) to approximate the aggregate states of
the model, and thus solving it requires a long simulation (outer loop) after computing value func-
tions and decision rules (inner loop). Also, finding equilibrium requires several iterations of inner
loops and outer loops. We use our method to solve Nakajima and Rı́os-Rull (2014) and find the
EGM is from 18.5 to 27.3 times faster than the grid search method in the inner loops. In the outer
loops, the EGM is approximately 7.5 times faster than the grid search method. The details about
our implementation and numerical results can be found in the Appendix.

4.2.2 Accuracy

Bellman equation error We compute Bellman equation errors instead of computing Euler equa-
tion errors to measure accuracy. Recall the following notation: S is the state vector other than
assets a. Then, the Bellman equation

V (S, a) = u(c(S, a)) + ES′
[
V (S

′
, a
′
(S, a))

]
(23)

should hold exactly for the true decision rules. Because the decision rules are numerically com-
puted in our exercises, the Bellman equation (23) does not hold exactly with the numerically cal-
culated decision rules. We define c∗ as the solution for

u(c∗(S, a)) = V (S, a)− ES′
[
V (S

′
, ā
′
(S, a))

]
, (24)
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Figure 5: Bellman Error and Stationary Distribution for the EGM

Figure 6: Bellman Error and Stationary Distribution for Grid Search 1

Figure 7: Bellman Error and Stationary Distribution for Grid Search 2

where bars indicate the numerically calculated decision rules. We define the Bellman equation
error as

BE(S, a) =

∣∣∣∣1− c∗(S, a)

c̄(S, a)

∣∣∣∣ . (25)
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Following the literature, we report both the maximum and the average of Bellman equation
errors. We compute the average errors as the weighted average of the Bellman equation errors over
the stationary distribution and the maximum error as the maximum of the Bellman equation errors
lying only on the stationary distribution.17

Table 3: Bellman Equation Error (%)

# of Grid Points 200 500 1000 2000
Method EGM GS1 GS2 EGM GS1 GS2 EGM GS1 GS2 EGM GS1 GS2
Mean 0.013 0.028 0.013 0.013 0.027 0.013 0.013 0.029 0.013 0.013 0.029 0.013
Max 9.58 12.05 9.58 9.58 12.06 9.58 9.58 12.06 9.58 9.58 12.06 9.58
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Figure 8: Bond Price Ratio and Savings Ratio

17Although we vary the number of grid points for a when solving the value functions, we fix the number of grid
points for a to 2,000 when computing the stationary distributions.
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Figure 9: Distribution

Figure 5 to 7 show the Bellman equation errors and stationary distributions. In all figures,
there is less mass where errors are large. The differences are not noticeable in the figure, but Table
6 shows the differences. EGM and GS2 produce equally accurate outcomes and more accurate
outcomes than GS1. Both average and maximum Bellman equation errors in the EGM and GS2
are lower than those in the grid search methods across all grid settings. As we mentioned above,
the way of computing q(S, a′) affects accuracy significantly.

While Bellman equation errors look similar in Figure 5 to 7, stationary distributions do not.
This is also because of the differences in the way we compute the bond price function. As we
describe in Section 3.9, we compute the exact size of income shock that leads to a default and
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infer the default probability from the cumulative distribution function (CDF) of the income shock.
Since it removes the upward bias in the bond price, EGM and GS2 price functions are lower than
those of GS1.18 Figure 8 compares bond price computed using GS1 and bond price with EGM and
shows the ratio of savings function of the two methods.19 As is clear from the discussion so far,
the bond price ratios are always above one. Since borrowing is more expensive under the EGM
solution, borrowing is smaller. As a result, the aggregate borrowing is smaller when we solve the
model with EGM, and we see fewer masses with large debts. Figure 9 shows the differences in
distributions more closely. They plot cumulative density over assets at a given income level. As
mentioned, there are fewer borrowings with the EGM solution. Also, thanks to the smooth savings
function, we can see that masses are more smoothly distributed over grids in EGM distributions.
These differences not only contribute to achieving lower Bellman errors but also may affect the
implications of the model. We will discuss this issue further with the simulation results.

Table 4: Simulation Results

Computational Method EGM GS1 GS2
# of Grid Points 200 500 1000 2000 200 500 1000 2000 200 500 1000 2000
σ(TB/S)(%) 0.95 0.94 0.94 0.97 1.38 1.38 1.40 1.40 0.99 0.95 0.97 0.97
σ(rs)(%) 2.06 0.61 0.53 0.48 1.67 1.65 1.73 1.72 0.58 0.54 0.50 0.49
ρ(rs, S) -0.49 -0.61 -0.53 -0.41 -0.35 -0.41 -0.45 -0.45 -0.20 -0.32 -0.26 -0.25
ρ(rs, TB/S) 0.37 0.59 0.66 0.71 0.40 0.40 0.40 0.40 0.57 0.62 0.67 0.69
mean(rs)(%) 2.13 0.81 0.69 0.62 1.07 1.08 1.18 1.18 0.54 0.60 0.57 0.56
mean(a′/S) -3.15 -3.10 -3.10 -3.22 -5.48 -5.50 -5.72 -5.73 -3.27 -3.13 -3.21 -3.21
# of default per 500,000q 1665 1508 1337 1004 4879 5035 5509 5508 946 1206 1003 1003

TB: trade balance (output - consumption), S: income, rs: 1
q(S,a′)− risk-free rate, σ: standard deviation, ρ: correlation

Simulation results Table 7 reports statistics obtained in the simulations. TB is a trade balance
(output minus consumption), and rs is the interest rate spread (margin of extra yield over the risk-
free rate). Standard deviations are denoted by σ and are reported in percentage terms; correlations
are denoted by ρ. Statistics were computed following Arellano (2008). Samples were selected
using the following criteria: i) a default is declared immediately after the end of the sample, ii) the
sample length is 74 quarters, and iii) the last exclusion period was observed at least two periods
before the beginning of the sample. We select 1,000 such samples and report the average value of
statistics computed across samples of 74 periods.

18For example, in Figure 3, the default probability would be the sum of transition probability for the first four grid
points if we do not find the exact cutoff point. We account the area from the fourth point to the point where vc and vd

meets: therefore, the default probability is always higher when using this scheme.
19Bond price ratio between EGM and GS2 is close to 1.
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Figure 10: Simulated Series

Simulation results reconfirm the importance of accurate bond price function. Overall, the re-
sults from EGM and GS2 are similar, and they are different from GS1 results.20 Mean debt-to-
income ratio is approximately 70% higher in GS1, as the upward bias in bond price leads to more
borrowings. Average interest spreads are higher in GS1 as loan sizes are larger; spread volatilities
are three to four times higher as well. Trade balances are approximately 50% more volatile, and
defaults are 3 to 5 times more frequent in GS1. Importantly, these gaps do not become narrow
as we increase the number of grid points.21 Figure 10 illustrates simulated income, trade balance,
borrowing, and interest rate spreads.22

The inaccuracy of GS1 results is consistent with the findings in Hatchondo et al. (2010). In this
paper, we show that grid search can be accurate as long as the bond price function is accurately
computed and the EGM can achieve efficiency as well as accuracy.

20While the results from EGM and GS2 are similar, the spreads are more counter-cyclical and mean spreads are
higher in EGM. This is because we often observe very small amount of borrowing (around 1% of endowment) and
high spreads from EGM simulation while no borrowing and zero spreads from GS2 in corresponding periods.

21When we increase the number of endowment grids, GS1 results are closer to GS2, as it leads to more accurate
loan price schedules.

22As can be seen in Figure 10, we use discretized order Markov shocks when simulating the model. Some might
wonder how much the cyclical properties are different if we use the original continuous shock. The properties are
largely similar; see Appendix B for details.
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5 Generalization of the EGM

In Section 2 and 3, we chose Arellano’s (2008) model to demonstrate our EGM because it is
applicable to this model. However, the EGM does not work in all models. For example, the EGM
may not be useful when asymmetric information exists between lenders and borrowers or when the
risky borrowing limit does not exist. This section formalizes the method in a theoretical framework
and provides its sufficient conditions in order to understand the class of models to which our EGM
is applicable. We modify theorems in White (2015), in accordance with the circumstances of
default risk models.

5.1 Formalization of the EGM

Consider a set of agents facing a dynamic maximization problem with a number of decision vari-
ables, each of which can be either continuous or discrete.23 Time t begins at period 0 and ends
after period T ∈ N.24 We denote st ∈ St ⊂ Rp as the exogenous state where p ∈ N. Let
at ∈ At ⊂ R be the continuous state. Let us denote dt ∈ Dt = {1, · · · , Nd} as the endoge-
nous default state. State variables (st, at, dt) correspond to (S, a, d) in Section 3. We define
bt ∈ Bt = {1, · · · , Nb} as the endogenous discrete state other than the default state, which does
not exist in Arellano’s (2008) model. Note that changes in the current endogenous state variables
(at, dt, bt) affect (at+1, dt+1, bt+1), but not st+1.

Agents make a choice of yt from the closed and convex feasible set Γt(st, at, bt, dt), where the
constraint correspondence, Γt(·), represents the budget set for the current state: Γt : St×At×Bt×
Dt −→ Yt ⊂ R. We denote the feasible set Yt = ∪{st,at,bt,dt}∈St×At×Dt×BtΓt(st, at, bt, dt) ⊂ R.
In Section 3, the choice yt corresponds to consumption c, and the constraint correspondence Γt(·)
corresponds to the budget constraints, Γ(S, d = 0, a) = {c : 0 < c ≤ S + a − q(S,−Z)(−Z)}
and Γ(S, d = 1, a) = {c : 0 < c ≤ h(S)}. Agents obtain a flow of utility from their choices
and states through the utility function Ut : St × Bt × Dt × Yt −→ R. Ut is continuous, strictly
monotonic, strictly concave, and twice differentiable to yt on its interior domain. In addition, the
discount factor βt is between 0 and 1.

Once agents determine yt, their state changes from (st, at, bt, dt) to the interim period state,
(st+1, at+1, bt+1, dt) ∈ St+1 × At+1 × Bt+1 ×Dt according to the transition function ∆t(·). Note
that this interim timing indicates the time before making decision on default in period t+1 but after
deciding yt, and thereby st, at, and bt change to st+1, at+1, and bt+1. The transition ∆t(·) depends
on random shock εt+1 ∈ Et+1 ⊂ Rl, drawn from the CDF of Ft+1(εt+1). εt+1 corresponds to ε′ in

23For the sake of easy exposition, we describe the problem in terms analagous to Section 3. However, while we refer
to the discrete decision as ”defaulting”, our algorithm can be applied in the context of other problems with discrete
choices such as housing.

24As in White (2015), it can be applied to infinite horizon models, with the time subscripts skipped.

23



Arellano’s (2008) model. Agents do not know the exact value of εt+1 when making the decision
on yt, but know the distribution of Ft+1(εt+1). The transition function ∆t is formally defined as

∆t : St × At ×Bt ×Dt × Yt × Et+1 −→ St+1 × At+1 ×Bt+1 ×Dt (26)

(st, at, bt, dt, yt, εt+1) 7−→ (st+1, at+1, bt+1, dt).

Since dt does not change in the interim period, we can express the transition function ∆t con-
ditional on dt. Further, we regard the future endogenous state bt+1 as given state b̄t+1 to
use the algorithm of Fella (2014) afterward. We define the transition function conditional on
(dt × b̄t+1) ∈ Dt ×Bt+1, ∆dt,b̄t+1

, as follows:

∆dt,b̄t+1
: St × At ×Bt × Yt × Et+1 −→ St+1 × At+1 (27)

(st, at, bt, yt, εt+1) 7−→ (st+1, at+1).

Recall that yt affects the transition from at to at+1, but not that from st to st+1. Thus, we can
decompose the conditional transition function ∆dt,b̄t+1

into the portion ∆S
dt,b̄t+1

independent of
yt and the portion ∆A

dt,b̄t+1
dependent on yt. This decomposition implies that ∂∆S

dt,b̄t+1
/∂yt =

0|p×1, ∂∆S
dt,b̄t+1

/∂at = 0|p×1, ∂∆S
dt,b̄t+1

/∂bt = 0|p×Nb
, and ∂∆A

dt,b̄t+1
/∂yt 6= 0. Since ∆S

dt,b̄t+1
is

irrelevant to (at, bt, yt), we represent ∆S
dt,b̄t+1

as a function of (st, εt+1). For example, in Section 2,
∆S
dt,b̄t+1

corresponds to the first-order Markov chain πS,S′ which was independent of consumption
c. ∆A

dt,b̄t+1
corresponds to the transition of the current assets a to the next period assets a′ that

depends not only on πS,S′ but also on consumption c.
We recursively represent the agent’s problem. At the beginning of each period, agents solve

Vt(st, at, bt) = max
dt∈{0,1,···Nd}

{vt(st, at, bt, dt))}, (28)

where Vt(st, at, bt) is the value after default decision and vt(st, at, bt, dt) is the value before default
decision. Before agents decide whether to default or not; for each (dt × b̄t+1) ∈ Dt × Bt+1, they
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solve

vt(st, at, bt, dt; b̄t+1) = max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt) + βtE
[
{Vt+1(st+1, at+1, b̄t+1)}

]

= max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+ βt

∫
Vt+1(∆dt,b̄t+1

(st, at, bt, yt, εt+1))dFt+1(εt+1). (29)

= max
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+ βt

∫
Vt+1(∆S

dt,b̄t+1
(st, εt+1),∆A

dt,b̄t+1
(st, at, bt, yt, εt+1))dFt+1(εt+1).

The terminal value is defined as:

vt(sT , aT , bT , dT ) = max
yT∈ΓT (sT ,aT ,bT ,dT )

Ut(sT , bT , dT , yT ). (30)

We define the policy function Ψt(st, at, bt, dt; b̄t+1) as follows:

Ψt(st, at, bt, dt; b̄t+1) (31)

= argmax
yt∈Γt(st,at,bt,dt;b̄t+1)

Ut(st, bt, dt, yt)

+βt

∫
Vt+1(∆S

dt,b̄t+1
(st, εt+1),∆A

dt,b̄t+1
(st, at, bt, yt, εt+1))dFt+1(εt+1).

If a model is included in a subset of the general class of problems described above, then the
EGM is applicable when the model satisfies the conditions described in the next subsection.

5.2 Conditions for the EGM

The EGM works only when the FOC exists and is well defined as a necessary condition for the
global solutions. This holds when condition C1 is satisfied.

• C1 : E[Vt+1(st+1, at+1, b̄t+1)] is locally differentiable with respect to the optimal choice of
at+1. In addition, at+1 = ∆A

dt,b̄t+1
(st, at, bt, yt, εt+1) is locally differentiable with respect to

the optimal choice of yt.

Researchers can check whether this condition holds in a specific problem by using the “Reverse
Calculus” method from Clausen and Strub (2020). They provide useful instruments for checking
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the local differentiability applicable to models with discrete choices and default options.
Assuming C1 is satisfied, the following FOC will then be a necessary but not sufficient condi-

tion for optimal consumption.

∂Ut(st, bt, dt, yt)

∂yt
= (32)

−βt
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1),∆A

dt,b̄t+1
(st, at, bt, yt, εt+1))

∂at+1

·
∂∆A

dt,b̄t+1
(st, at, bt, yt, εt+1))

∂yt

]
dFt+1(εt+1).

Since Ut is differentiable, ∂Ut(st,bt,dt,yt)
∂yt

is well defined. Note that the FOC (32) is not sufficient but
necessary for the global solution of at+1 because EVt+1 might not be strictly concave due to the
default options and other discrete choices.

Let us define Zt ⊂ R as the set of post-decision endogenous state. zt ∈ Zt is the interme-
diate state after agents have chosen and executed their choices yt but before the transition shock
εt+1 arises. For example, in Section 3, the post-decision endogenous state zt is the size of debt
q(S, a

′
) · a′ because it is determined after consumption c is chosen, but before the transition shock

ε
′ is realized. This post-decision endogenous state enables us to decompose the endogenous state

transition function ∆A
dt,b̄t+1

(·) into intra- and inter-period components. This decomposition is im-
portant in employing the EGM because it requires the use of the FOC (32) represented by the
post-decision endogenous state zt. Formally, we decompose the endogenous state transition func-
tion ∆A

dt,b̄t+1
(·) as follows:

• C2 : For each dt and for each b̄t+1, there exist functions Ξdt,b̄t+1
: St × At × Bt × Yt −→ R

and χdt,b̄t+1
: St × Zt × Bt × Et+1 −→ At+1 such that ∆A

dt,b̄t+1
(st, at, bt, yt, εt+1) =

χdt,b̄t+1
(st,Ξdt,b̄t+1

(st, at, bt, yt), bt, εt+1) for all (st, at, bt, yt) ∈ Wt × At × Bt × Yt when
yt ∈ Γt(st, at, bt, dt; b̄t+1).

This condition implies that for each dt and b̄t+1, through the intra-period transition function Ξdt,b̄t+1
,

the states (st, at, bt) and choice yt generate a post-decision state zt. In Section 3, recall that zt =

q(S, a
′
)a
′ and at+1 = a

′ . Our EGM requires zt to act as a sufficient statistic for the endogenous
state at+1. This implies that there must exist a unique one-to-one mapping between zt = q(S, a

′
)a
′

and at+1 = a
′ .

To ensure that this mapping exists, we first need to ensure that q(S, a′)a′ should increase with
a
′ (so that the mapping is one-to-one). Second, zt = q(S, a

′
) · a′ needs to be independent of the

value of ε′ , so that the decomposition of a′ out of zt = q(S, a
′
) ·a′ is unique.25 We generalize these

conditions as follows:
25In Section 3, q(S, a

′
) is not a function of shocks ε

′
(or S

′
) but a function of the conditional mean of defaulting,

δ(S, a
′
) =

∑
{S′ :V c(S′ ,a′ )<V d(S′ )} πS,S′ . Note that the default set {S′

: V c(S
′
, a

′
) < V d(S

′
)} can be different

across default risk models because it depends on their default rules. What matters is that q(S, a
′
) is affected not by a
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• C3 : For each st, dt and b̄t+1, at+1 is independent of εt+1, but dependent on the conditional
expectation of the default decision Et(D(εt+1)) that is formed in the current period t. i.e,
at+1 = χdt,b̄t+1

(st, zt, bt, Et(D(εt+1))).

• C4 : For each st, dt and b̄t+1, at+1 = χdt,b̄t+1
(st, zt, bt, Et(D(εt+1))) monotoni-

cally increases with zt; therefore, there exists a function χ−1
dt,b̄t+1

(·) where zt =

χ−1
dt,b̄t+1

(st, at+1, bt, Et(D(εt+1))) and χ−1
dt,b̄t+1

(·) is increasing in at+1.

C3 implies that χdt,b̄t+1
(st, zt, bt, Et(D(εt+1))) is affected not by a future value of εt+1 but by

Et(D(εt+1)) that is formed in the current period t. C4 is a generalized version of the risky borrow-
ing limit. In Section 3, on the region of assets greater than the risky borrowing limit, zt = q(S, a

′
)a
′

is monotonic increasing in at+1 = a
′ . Note that zt = χ−1

dt,b̄t+1
(st, at+1, bt, Et(D(εt+1))) is indepen-

dent of the current continuous state at. This feature allows us to predetermine the lower bound
of the feasible set for the solution of at+1 at the initial step, thereby insulating the interactions
between the step of searching for the lower bound and that of computing the endogenously deter-
mined current state at in our EGM.

C2,C3, and C4 do not guarantee that the solution to the problem will be contained in the
feasibility set implied by Γt. To make the post-decision consistent with the feasible set such as
budget constraint, we need the following condition:

• C5 : Let dt and b̄t+1 be given. For all yt ∈ Yt and (st, at, bt) ∈ St × At ×
Bt, yt ∈ Γt(st, at, bt, dt; b̄t+1) if and only if Ξdt,b̄t+1

(st, at, bt, yt) ∈ Zt where Zt =

∪(st,at,bt)∈St×At×BtΞdt,b̄t+1
(st, at, bt,Γt(st, at, bt, dt; b̄t+1)).

C5 means that the post-decision endogenous state zt is a sufficient statistic for evaluating the fea-
sibility of choice yt. Additionally, this condition implies that Zt spans the entire space of possible
outcome. In Section 3, this condition implies that given S and a, knowing z = q(S, a

′
)a
′ is equiv-

alent to knowing c because they satisfy the budget constraint, c+ z = c+ q(S, a
′
)a
′
= S + a.

Unlike the transitional functions in White (2015), the transitional functions might not be dif-
ferentiable because of the inclusion of discrete decision variables. We need a condition to ensure
the local differentiability of these functions.

• C6 : For each dt and b̄t+1, (1) zt = Ξdt,b̄t+1
(st, at, bt, yt) is locally differentiable with re-

spect to the optimal choices of yt, and (2) at+1 = χdt,b̄t+1
(st, zt, bt, Et[D(εt+1)]) is locally

differentiable with respect to the optimal post-decision state of zt.

specific value of S
′

but by a function of its conditional expectation
∑
{S′ :V c(S′ ,a′ )<V d(S′ )} πS,S′ that is formed in the

current period.
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In Arellano’s (2008) model, (1) of C6 implies that zt = q(S, a
′
) · a′ is differentiable with respect

to c. This condition is satisfied for any S and a
′ as ∂q(S,a

′
)·a′

∂c
= −1. (2) of C6 implies that

a
′ is differentiable with respect to z = q(S, a

′
)a
′ . The differentiability of optimal next-period

asset holdings a′ with regard to z implies that q(S, a′) is differentiable with regard to a′ because
∂a
′

∂z
= [ ∂z

∂a
′ ]−1 = 1/(Da′q(S, a

′
)a
′
+ q(S, a

′
)). As with C1, a researcher can check whether their

setting has this property using Clausen and Strub’s (2020) reverse calculus technique.
With C1,C2,C3,C4,C5, and C6, for each (dt, b̄t+1) ∈ Dt × Bt+1, the FOC (32) can be

rewritten as follows:

∂Ut(st, bt, dt, yt)

∂yt

= −βt
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1), χdt,b̄t+1

(st,Ξdt,b̄t+1
(st, at, bt, yt), bt, Et[D(εt+1)]))

∂at+1

(33)

·
∂χdt,b̄t+1

(st,Ξdt,b̄t+1
(st, at, bt, yt), bt, Et[D(εt+1)]))

∂zt
·
∂Ξdt,b̄t+1

(st, at, bt, yt)

∂yt

]
dFt+1(εt+1)

= −βt
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1), at+1)

∂at+1

]
dFt+1(εt+1) ·

∂χdt,b̄t+1
(st, zt, bt, Et[D(εt+1)]))

∂zt

·
∂Ξdt,b̄t+1

(st, at, bt, yt)

∂yt
,

where χdt,b̄t+1
(st,Ξdt,b̄t+1

(st, at, bt, yt), bt, Et[D(εt+1)]) = at+1 and Ξdt,b̄t+1
(st, at, bt, yt) = zt.

Note that ∂at+1

∂zt
=

∂χdt,b̄t+1
(st,zt,bt,Et[D(εt+1)])

∂zt
and ∂zt

∂yt
=

∂Ξdt,b̄t+1
(st,at,bt,yt)

∂yt
can be pulled out of the in-

tegral because they are independent of εt+1. Recall that C4 and C6 imply ∂at+1

∂zt
> 0. Furthermore,

we assume the following condition:

• C7 : For each (dt, b̄t+1) ∈ Dt × Bt+1, ∂zt
∂yt

=
∂Ξdt,b̄t+1

(st,at,bt,yt)

∂yt
= K ∈ R \ {0}, and

sgn(
∂Ξdt,b̄t+1

(st,at,bt,yt)

∂yt
) = −sgn(∂Ut(st,at,bt,dt,yt)

∂yt
).

C7 implies that given a budget set, a change in yt must be accompanied by a change in zt of
the opposite sign. Furthermore, this change is a constant proportion such that the tradeoff be-
tween yt and zt is linear. This condition is a general feature of dynamic problems in economics.
For example, in the model of Arellano (2008), C7 implies that ∂q(S,a

′
)·a′

∂c
= −1 < 0; and thus,

sgn(∂q(S,a
′
)·a′

∂c
) = −sgn(u′(c)) < 0. In the neoclassical growth model, this condition means

∂kt+1

∂ct
= −1 in the budget constraint ct + kt+1 = (1 + rt)kt + wtlt.
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With C1 to C7, we can rearrange the previous FOC as follows:

∂Ut(st, bt, dt, yt)

∂yt
· 1

K
(34)

= −

[
∂χ−1

dt,b̄t+1
(st, at+1, bt, Et[D(εt+1)]))

∂at+1

]−1

· βt
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1), at+1)

∂at+1

]
dFt+1(εt+1),

where χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(εt+1)])) = zt. Note that
[
∂χ−1

dt,b̄t+1
(st,at+1,bt,Et[D(εt+1)]))

∂at+1

]−1

is well

defined because of C4 and (2) of C6. Now, at and zt disappear in the state vector.
We need a monotonicity of at+1 with respect to at to use a spline to approximate the decision

rule of at+1 over the exogenous grid. Condition C8 guarantees this monotonicity.

• C8 : For each (dt, b̄t+1) ∈ Dt × Bt+1, at the policy function Ψt(st, at, bt, dt; b̄t+1), zt =

Ξdt,b̄t+1
(st, at, bt,Ψt(st, at, bt, dt; b̄t+1)) is non-decreasing in at.

In Arellano’s (2008) model, C8 implies that zt = q(s, a
′
)a
′

= q(s, ga(S, a)) · ga(S, a) is non-
decreasing in a. Since C4 implies that q(s, a′)a′ is non-decreasing in a′ , these two conditions
indicate that a′ = ga(S, a) is weakly monotonic increasing in a. This monotonicity must be
required to use splines.

Let us denote ĝdt,b̄t+1
(st, bt, yt) and V̂dt,b̄t+1

(st, bt, at+1) as follows:

ĝdt,b̄t+1
(st, bt, yt) =

∂Ut(st, bt, dt, yt)

∂yt
· 1

K
(35)

V̂dt,b̄t+1
(st, bt, at+1)

= −

[
∂χ−1

dt,b̄t+1
(st, at+1, bt, Et[D(εt+1)]))

∂at+1

]−1

· βt
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1), at+1)

∂at+1

]
dFt+1(εt+1).

(36)

In Arellano’s (2008) model, K =
[
∂Ξdt,b̄t+1

(st,at,bt,yt)

∂yt

]−1

= −1 and [ ∂zt
∂at+1

]−1 = 1
D

a
′ q(S,a

′ )a′+q(S,a′ )
.

Therefore, ĝdt,b̄t+1
(st, bt, yt) = V̂dt,b̄t+1

(st, bt, at+1) is consistent with the FOC (12) in Arellano’s
(2008) model.

Note that for each (dt, b̄t+1) ∈ Dt × Bt+1, the EGM retrieves the endogenously driven choice
variable yt from the given decision states (st, bt, at+1). Next, the EGM finds the endogenously
driven current state at by using the retrieved yt(st, bt, at+1) with information on the budget set
Γt(·). As a result, for each (dt, b̄t+1) ∈ Dt × Bt+1 and given (st, bt, at+1), the EGM solves the

29



following system:

ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) = V̂dt,b̄t+1

(st, bt, at+1), (37)

where

ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) =

∂Ut(st, bt, dt, yt)

∂yt

∣∣∣∣∣
yt=yt(st,bt,at+1)

· 1

K

V̂dt,b̄t+1
(st, bt, at+1)

= −

[
∂χ−1

dt,b̄t+1
(st, at+1, bt, Et[D(εt+1)]))

∂at+1

]−1

·
∫ [∂Vt+1(∆S

dt,b̄t+1
(st, εt+1), at+1)

∂at+1

]
dFt+1(εt+1).

It is worth noting that there is no max operator, thereby leading to sufficient improvements in
computational efficiency.

Let us explain notations for the procedure of the implementation. Gat is the exogenous grid of
at and Gat+1 is the exogenous grid of at+1.

5.3 Implementation

The EGM is applicable if a problem satisfies C1−C8. The method follows a seven-step proce-
dure. Initially, let us begin with t = T and E[VT+1] = 0.

1. In each period t, let the expected value functionEt[Vt+1(st+1, at+1, b̄t+1)] and the conditional
mean of defaultingEt[D(εt+1)] be given. For each st, bt, dt, and b̄t+1, characterize an interval
of at+1 ∈ Gat+1 satisfying C4; find the minimum; and save it as arbl

dt,b̄t+1
(st, bt, Et[D(εt+1)])

(generalized risky borrowing limit). Going forward, take the states (dt, b̄t+1) ∈ Dt × Bt+1

and (st, bt) ∈ St ×Bt as given to make the notations simple.
2. For each at+1 ∈ Gat+1 with at+1 > arbl

dt,b̄t+1
(st, bt, Et[D(εt+1)]), compute the endogenously

driven yt(st, bt, at+1) by solving ĝdt,b̄t+1
(st, bt, yt(st, bt, at+1)) = V̂dt,b̄t+1

(st, bt, at+1) (Equa-
tion (37)). Then, save the pairs of (yt(st, bt, at+1), bt, at+1).

3. For each at+1 ∈ Gat+1 with at+1 > arbl
dt,b̄t+1

(st, bt, Et[D(εt+1)]), use the algorithm of Fella
(2014) to refine the global solution out of the candidates from the previous step. Save the
refined pairs of (yt(st, bt, at+1), bt, at+1) for the global solutions.

4. For the refined pairs of (yt(st, bt, at+1), bt, at+1), retrieve the corresponding endoge-
nously driven current state at(st, bt, at+1). To do so, first, compute zt =

χ−1
dt,b̄t+1

(st, at+1, bt, Et[D(εt+1)])). Then, use zt, yt(st, bt, at+1), and the budget set Γt to find
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at(st, bt, at+1) that satisfies Γt(st, at(st, bt, at+1), bt, dt; bt+1). This search is possible due to
C5. Now, at(st, bt, at+1) lies in the endogenously determined grid points of at. Save the
pairs of (at(st, bt, at+1), bt, at+1). Note that these pairs correspond to the global solutions.

5. For the saved pairs of (at(st, bt, at+1), bt, at+1), approximate the decision rule at+1 =

ga(st, ·, bt, dt, bt+1) over the exogenous grid of at, Gat . We can do this using a spline due to
the one-to-one mapping between at+1 and at (C8). Then, using the approximated decision
rule at+1 = ga(st, at, bt, dt, bt+1), compute the value function vt(st, at, bt, dt; b̄t+1) over Gat .

6. Solve max{(dt,b̄t+1)∈Dt×Bt+1} vt(st, at, bt, dt; b̄t+1) and update Vt(st, at, bt).
7. Compute Et−1[Vt(st, at, bt)] and Et−1[D(εt)]. Take t = t− 1; go back to Step 1 until t = 0.

5.4 Discussion

It is worth discussing how restrictive the sufficient conditions are. If these conditions were too
restrictive to address many types of default risk models, our method might not be more useful
than the conventional approach. Since C5 to C8 are widely shared features in general dynamic
problems in macroeconomics, we focus on C1 to C4.

C1 is about the local differentiability of the expected value function Et[Vt+1] with respect to
the optimal decision of at+1 and that of the decision rule at+1 with respect to the optimal choice
of yt. It might be hard to claim that all default risk models satisfy C1; however, Clausen and
Strub (2020) have shown that this feature is prevalent in many types of dynamic problems. More
importantly, we can, at least, certainly check whether this condition holds to a specific problem
with default risks by using the “Reverse Calculus” in Clausen and Strub (2020).

C2,C3, and C4 imply that there exists a post-decision state zt that is a sufficient statistic for
the future endogenous state at+1. According to White (2015), this property of sufficient statistics
must be required to use EGMs. To do so, in addition to C2, our EGM requires more conditions
than the EGM of White (2015) because in default risk models, the post-decision state zt is non-
linearly related to the future endogenous state at+1 (i.e., z = q(s, a

′
)a
′). This additional feature

brings C3 and C4. C3 implies that the EGM might not work in default risk models with shocks on
assets or investment, in which zt may not uniquely identify at+1 because the realization of shocks
εt+1 may affect assets at+1 (i.e., Glover and Shorts (2010)). Shocks on defaultable assets, however,
are not a commonly used assumption in the literature.

C4 implies that the EGM might not be applicable to default risk models where the gen-
eralized risky borrowing limit is not well defined or depends on endogenous states other than
(st, zt, bt, Et(D(εt+1))). We argue that the first issue might not be problematic, but the second is-
sue does impose some limitations on our method. The first issue implies that either the borrowing
constraint is unbounded, or utility is decreasing in the amount of debt anytime at+1 is negative. An
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unbounded borrowing limit allows for Ponzi schemes, which most researchers prefer to rule out.
For the case of utility decreasing in debt for the whole borrowing region, the generalized borrowing
limit is well defined at zero-assets, at+1 = 0, if the return on savings (at+1 > 0) is independent of
the individual choice of at+1. For example, in Arellano (2008), a′ = 0 is the upper bound of the
feasible set for the risk-borrowing limit because ∂[q(S, a

′
) · a′ ]/∂a′ = q(S, a

′
) = 1/(1 + rf ) > 0

if a′ ≥ 0. This assumption is quite common in the literature.
Note that, however, when the generalized risky borrowing limit is a function of endogenous

states other than (st, zt, bt, Et(D(εt+1))), it is uncertain whether our method works. For example,
when there exists asymmetric information between lenders and borrowers, the price function might
depend on the distribution over agents (i.e., Athreya et al. (2012)). In this type of models, we cannot
make sure whether the generalized risky borrowing limit can be predetermined with the states,
(st, zt, bt, Et(D(εt+1))). In this case, the EGM might not be applicable. To address this issue, one
might need to include the additional endogenous states in the generalized risky borrowing limit.
This inclusion, however, might dampen the efficiency gain of our method.

One might wonder whether our method is applicable to the sovereign default models that em-
phasize the role of coordination failures such as Cole and Kehoe (2000). In these models, it is
common to assume that the timing of the events in the debt market is as follows:

1. Shocks are realized
2. Government chooses a′

3. Lenders choose price for bonds
4. Government decides whether to default.

A government has the option to default after observing the outcome of the current period’s bond
auction, which depends on lenders’ belief on its default probability. We believe our methods can
solve the decision problems as long as the government is aware of lenders’ belief as well as their
bond price schedule. If a government knows that lenders believe that it will repay and hence offer
a relevant price schedule, we can find the risky borrowing limit and can compute the rest of the
steps. On the other hand, if lenders believe that the government will default and hence offer a
100% discount rate on the bond, the risky borrowing limit becomes zero. Therefore, when our
threshold approach for the default probability is employed in the model, C1 would be satisfied.
C2-C4 would be satisfied because the structure of lending and borrowing is the same as that in
Arelleno when the lender’s belief indicates a repayment.

It is worth mentioning default models with long-term debt, as more papers feature long-term
debt.26 We believe that our method can solve the baseline environment as in Chatterjee and Eyi-
gungor (2012). It is required to show that the price function is locally differentiable at optimal

26For example, Chatterjee and Eyigungor (2012), Hatchondo et al. (2016), Bocola and Dovis (2019).
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choices (C1 and (2) of C6). Given that Chatterjee and Eyigungor (2012) show that there exists
an equilibrium price function that is increasing in a′ (C4), it is possible to find a one-to-one map-
ping between post-decision state (q(s, a′)a′) and future endogenous state (a′) (C2). Since a′ is
determined in the current period in these types of models, too (C3), our EGM might work with
long-term debt models.27

Also, our method can be used for life-cycle consumer bankruptcy models (i.e., Athreya (2008);
Athreya et al. (2009); Livshits et al. (2007, 2010); Gordon (2015)) since the EGM solves the prob-
lem in a backward direction. These life-cycle models cannot be solved with the envelope condition
method of Arellano et al. (2016) because it is a forward-solving algorithm. Additionally, the EGM
can address multiple options to default (i.e., Chapter 7 and Chapter 13 in Consumer bankruptcy)
with other discrete choices (i.e., housing, durable goods, health insurance, and retirement) because
these models satisfy C1 to C8. This versatility might be useful in investigating the interaction
between default and other types of policies related to these discrete choices. Jang (2020), for ex-
ample, used the EGM to solve a life-cycle model that examines the role of consumer bankruptcy
in designing optimal health insurance policies.

Overall, the sufficient conditions imply that our EGM can cover a broad class of default risk
models.

6 Conclusion

We presented an extension of the endogenous grid method for default risk models. This method
combines Fella’s (2014) endogenous grid method by introducing a numerical step to search for the
risky borrowing limit, which is the lower bound of the feasible set for the solution of asset holdings.
By using the algorithm of Fella (2014) and our step for the risky borrowing limit, we identified the
region of solution sets to which Carroll’s (2006) endogenous grid method is applicable. Compared
to the conventional grid search method, the method brings substantial improvements in compu-
tational efficiency and accuracy. We further showed that our EGM is applicable to a broad class
of default risk models by providing sufficient conditions for the application. We hope that this
method opens up possibilities for researchers to investigate topics with default options that have
previously been left unexplored due to computational complexity.

27Chatterjee and Eyigungor (2012) mention that the continuous transitory income shock m is crucial for computa-
tion. We think that our method can achieve convergence without m as long as the persistent component of income is
continuous. We guess that m is necessary in Chatterjee and Eyigungor (2012) because they assume that the persistent
component of income is discrete. Here, even though we solve the model on the discretized grids, we compute the
cutoff of the income shock given S and S′ to get continuous default probability over the asset. This is consistent with
Chatterjee and Eyigungor (2012)’s insight; continuous shock is important on computational stability in a model with
a discrete choice.
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A Additional Results

We apply our algorithm to solve Nakajima and Rı́os-Rull (2014), which is computationally heavier
than Arellano (2008). We compare the computing time and accuracy of our EGM with those of
the grid search method as well. For details of the model and parameterization, see Nakajima
and Rı́os-Rull (2014). As in Nakajima and Rı́os-Rull (2014), we use Krusell and Smith’s (1998)
method to handle the aggregate uncertainty. Note that this method approximates aggregate states
using a few moments, and agents expect next-period states using parameterized functional forms
of those moments. The method achieves high accuracy, but it requires a long simulation to update
forecasting rules and may take many trials to find a proper functional form.

A.1 Specification of Krusell and Smith’s (1998) Method

Nakajima and Rı́os-Rull (2014) approximated (z,K;m) with (z,K,O), where z is total factor
productivity, K is aggregate capital, m is household distribution, and O is average individual labor
productivity. They use forecasting rules for K ′, L, r, and O′ , where L is aggregate labor and r is
risk-free rate. Here, we abstract from the counter-cyclical earnings risk and approximate aggregate
states (z,K;m) to (z,K). Additionally, instead of forecasting L, which is necessary to calculate
the wage w, we forecast the wage directly. We specify the forecasting functions for K ′, r, and w
as the following log-linear forms:

log K ′ = φk1(z,K) + φk2(z,K) · log K

log r = φr1(z,K) + φr2(z,K) · log K

log w = φw1(z,K) + φw2(z,K) · log K

A.2 Computing Time and Accuracy

We vary the size of the grid for assets across computational exercises. In all computational exer-
cises, we keep the number of the grid points for the other variables as follows. The size of the grid
for the permanent labor productivity shock is 2, that for the persistent shock is 15, and that for the
transitory shock is 3. The number of the grid for the TFP shock is 3, and that for K is 5. Because
we use Krusell and Smith’s (1998) method, we must go through the inner and outer loops several
times until the forecasting rules converge. We compute the average CPU time per iteration in the
inner loop and outer loop, respectively. We simulated the model for 2,000 periods with Krusell
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and Smith’s (1998) method, and all computations were carried out on on a single core of an Intel
i7-4770 processor. The programs were written in Fortran 95.

Table 5: Computing Time

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600
Computational Method EGM GS EGM GS EGM GS EGM GS
AVG CPU Time in INR. per ITER.* 0.68 12.54 1.25 29.27 1.99 54.39 2.99 79.65
AVG CPU Time in OTR. per ITER.* 29.49 173.49 27.05 185.62 24.48 182.79 38.66 286.97

.∗: Unit = minute.
‘# of GRD. PTS. for INR. - OTR.’ refers to the number of grid points for assets in the inner loops and in the outer
loops, respectively. Note that we re-solve the decision rules on the finer grids in the outer loops.

Table 5 indicates that the EGM is faster than the grid search method both in the inner loop and
in the outer loop. In the inner loops, the EGM is from 18.5 to 27.3 times faster than the grid search
method. In the outer loop, the EGM is approximately 7.5 times faster than the grid search method.
The gap differs across the size of the asset grid, but the EGM is much more efficient than the grid
search method across all grid settings.

To measure accuracy, we use three criteria in the literature. First, we compute Bellman equation
errors (BE error), which is defined the same way in Section 4. Second, we take Den Haan’s
forecasting test (DH error), described in Algan et al. (2014). It is the difference between expected
capital K ′e by the forecasting rules and realized capital K ′r from the simulations: |logK ′r − logK ′e|.
Finally, we report the R2 of the forecasting rules in the simulation step.

Figure 11 shows that with the EGM, the price dynamics in the simulation are very close to
those generated by the forecasting rules. Since they are very close to one another, it is hard to
observe blue lines in the dynamics of the risk-free interest rate and wage. Figure 12 shows that,
with the grid search method, there are differences between the simulated dynamics of these prices
and those generated by the forecasting rules. DH error measures those differences. Overall, DH
errors from the EGM are smaller than those from the grid search method.

Table 6: Computational Accuracy

# of GRD. PTS. for INR. - OTR. 200-500 300-500 400-500 500-600
Computational Method EGM GS EGM GS EGM GS EGM GS
Average of BE error∗ 0.11% 0.36% 0.06% 0.16% 0.03% 0.09% 0.02% 0.06%
Max of BE error∗ 10.77% 15.53% 11.34% 11.76% 11.57% 17.49% 11.71% 15.46%
R2 of K

′
function 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999

R2 of r function 0.9987 0.9911 0.9971 0.9882 0.9975 0.9963 0.9977 0.9940
R2 of w function 0.9999 0.9997 0.9999 0.9997 0.9997 0.9997 0.9997 0.9996
Mean of DH error 0.004% 0.01% 0.005% 0.012% 0.009% 0.01% 0.007% 0.01%
Max of DH error 0.029% 0.06% 0.038% 0.081% 0.047% 0.073% 0.04% 0.05%

.∗: The Bellman equation errors are computed in stationary equilibrium. The number of grid points refers to the number
of points for asset grid.
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Figure 11: Simulation Results for the EGM with the 500-600 Grid
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Figure 12: Simulation Results for the Grid Search Method with the 500-600 Grid

Table 6 shows that the EGM produces more accurate outcomes than the grid search method.
Regarding the Bellman equation errors, the average Bellman equation errors in the EGM are ap-
proximately three times lower than those in the grid search methods. Although the gaps in the
maximum Bellman errors are smaller than those in the average Bellman error, the EGM generates
smaller values of the maximum Bellman errors than the grid search method. These smaller gaps
appear because our EGM also uses the grid search method for the borrowing region. Additionally,
the EGM produces higher R2s of the forecasting functions than the grid search method. Lastly, the
average of Den Haan errors and maximum of Den Haan errors from the EGM are lower than those
from the grid search method across all grid settings.
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B Simulation Results

Table 7: Simulation Results

Computational Method EGM EGM (continuous income shock)
# of Grid Points 200 500 1000 2000 200 500 1000 2000
σ(TB/S)(%) 0.95 0.94 0.94 0.97 0.93 0.91 0.91 0.91
σ(rs)(%) 2.06 0.61 0.53 0.48 2.13 0.74 0.65 0.62
ρ(rs, S) -0.49 -0.61 -0.53 -0.41 -0.50 -0.42 -0.33 -0.29
ρ(rs, TB/S) 0.37 0.59 0.66 0.71 0.42 0.58 0.63 0.64
mean(rs)(%) 1.13 0.81 0.69 0.62 1.33 0.96 0.86 0.83
mean(a′/S) -3.15 -3.10 -3.10 -3.22 -3.13 -3.08 -3.08 -3.11
# of default per 500,000q 1665 1508 1337 1004 1552 1544 1427 1287

TB: trade balance (output - consumption), S: income, rs: 1
q(S,a′)− risk-free rate, σ: standard deviation,

ρ: correlation
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