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Abstract 
This practical review assesses several approaches to solving medium- and large-scale 
dynamic stochastic general equilibrium (DSGE) models featuring occasionally binding 
constraints. In such models, global solution methods are not possible because of the curse of 
dimensionality. This causes the modeller to look elsewhere for methods that can handle the 
significant non-linearities and non-differentiable functions that inequality constraints 
represent. The paper discusses methods—including Newton-type solvers under perfect 
foresight, the piecewise linear algorithm (OccBin), regime-switching models (RISE) and the 
news shocks approach (DynareOBC)—and compares the results from a simple borrowing 
constraints model obtained using projection methods, providing example MATLAB code. The 
study focuses on the news shocks method, which I find produces higher accuracy than other 
methods and allows the modeller to study multiple equilibria and determinacy issues. 
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1 Introduction

A dynamic stochastic general equilibrium (DSGE) model is a system of stochastic differ-

ence equations composed of first-order conditions and feasibility constraints. These are

typically non-linear systems without a closed-form solution, and while researchers can use

global solution methods to simulate and analyze small models, they generally use local

approximation methods. Using perturbation to approximate the model delivers a number

of benefits, such as allowing quick and easy computation and estimation and, perhaps

most appealingly, providing reasonably accurate analysis around the steady state with

clear policy recommendations. However, a significant drawback, and one that I focus on

in this review paper, is an inability to deal with non-differentiable functions, including

occasionally binding constraints (OBCs), such as those that include min and max opera-

tors. This type of function can be found in nearly all macroeconomic models, whether it

be a positivity constraint on investment, borrowing constraints on households or firms,

or the zero lower bound (ZLB) on nominal interest rates. However, common practice is

to either ignore the presence of the constraints or assume they are always binding. In

this paper, I briefly discuss the various OBCs commonly encountered in macroeconomic

research. I then look at the different ways of solving models with OBCs, focusing on

using the DynareOBC tool kit described in Holden (2019, 2016). As this paper shows,

this method allows the modeller the freedom to strike the right balance between speed

and accuracy and, in contrast to other out-of-the-box methods, allows the easy analysis

of multiple equilibria. This study is a practical guide to using these methods, mostly

within the Dynare environment, and it assumes some familiarity with Dynare (for more

information on Dynare, see Adjemian et al. (2011)).

The two most common methods Dynare uses to solve models are perturbation methods

when the command stoch_simul() is used and Newton-type methods when simul() is

used. Specifically, when stoch_simul() is used, Dynare solves a Taylor approximation of

the decision and transition functions up to third order. Higher-order approximations will

give a better fit to the non-linearities of the model but also play a role in how uncertainty

affects model dynamics. At first order, certainty equivalence holds and there is no risk

premium. At second order, risk is constant. And at third order, risk is linear in the

state; this is the lowest order at which risk will be time varying. If simul() is used,

Dynare uses Newton methods to solve the non-linear model over a finite time period. In
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this case, agents in the model are assumed to know the full future path of the economy,

and so risk plays no part. Dynare can also solve a stochastic, non-linear model using the

extended path algorithm proposed by Fair and Taylor (1983). This is solved when the

command extended_path() is used. The order the user chooses determines the accuracy

of evaluating future uncertainty. For orders greater than zero, Dynare uses a Gaussian

quadrature, which scales exponentially in the number of shocks and the order. Because

of this, attempting to achieve accuracy using this method is likely to be prohibitively

slow.

Models with OBCs can be simulated using global solution methods, such as through

dynamic programming, or using projection methods, which are able to capture all model

non-linearities. The main drawback is that models solved using global techniques do not

scale well to larger models; as a result, many models solved using this method make

restrictive assumptions to limit the state space, such as using exogenous endowment

instead of an endogenous production sector. Global methods also cannot guarantee

convergence for non-optimal problems, such as the Taylor rule with a ZLB, and require

a high level of technical skill to set up. There are a number of methods for solving larger

models with OBCs, including fast ones (such as Guerrieri and Iacoviello (2015)) and

accurate ones (such as Maliar and Maliar (2015)). The choice to focus on the method

proposed in Holden (2019, 2016) is guided by the balance between accuracy and speed

in simulation. The method also provides necessary and sufficient conditions for a unique

solution and the ability to select between alternative solutions when there are multiple.

I compare simulation results obtained using the following methods: projection methods;

the inbuilt Dynare perfect foresight and stochastic extended path methods; the piecewise

linear method using the OccBin tool kit; a regime-switching approach using the RISE tool

kit; and DynareOBC, which relies on news shocks. Details of the methods are kept as an

overview in this review paper; see Guerrieri and Iacoviello (2015) for further information

on OccBin and Binning and Maih (2017) for information on RISE. For DynareOBC, see

a theoretical paper on the existence and uniqueness conditions in Holden (2019), and a

paper detailing the computational algorithm in Holden (2016). I begin with a discussion

of one OBC that is often the focus of attention: the ZLB on nominal interest rates.
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1.1 The zero lower bound on nominal interest rates

Researchers have long recognized that the ZLB could be a significant constraint on a

central bank’s attempt to combat deflation. However, it is only since the global financial

crisis (GFC) that the issue has risen to prominence in the macroeconomic literature,

emphasized by an enormous amount of recent research into the ZLB and related topics.

Many authors have studied the dynamics of the New Keynesian (NK) model under a

ZLB constraint (e.g., Braun and Körber 2011; Fernández-Villaverde et al. 2015). Of these,

Coibion, Gorodnichenko and Wieland (2012) question whether the inflation target should

be increased, Bilbiie, Monacelli and Perotti (2019) analyze government spending at the

ZLB and Wieland (2019) examines the effect of supply shocks. Some papers measure

the impact of the ZLB on expectations of longer-term rates (Wright 2012; Swanson and

Williams 2014; Bauer and Rudebusch 2016); others study the link between financial

stability and the ZLB (Fischer 2016); some look at uncertainty (Nakata 2017; Plante,

Richter and Throckmorton 2017); and others study credibility and commitment in a

ZLB environment (Adam and Billi 2007; Bodenstein et al. 2012). Many papers have

also studied the efficacy of unconventional policies when constrained by the ZLB (see

Hamilton and Wu 2012; Gambacorta, Hoemann and Peersman 2014; Gilchrist, López-

Salido and Zakrajšek 2015; Wu and Xia 2016).

The Japan experience since 1995 led some researchers to work in the area, notably

Eggertsson and Woodford (2003), who describe previous interest in the subject as a

“theoretical curiosity.” The experience of the United States, the United Kingdom and

other advanced economies following the GFC led to a rush of research into what had

become a problem for countries trying to combat high debt without standard monetary

policy to counter the contractionary effects. Even as interest rates began to rise, there was

increased concern that hitting the ZLB was becoming a regular occurrence, as “normal”

rates seemed lower than in the past. On this issue, contributions have argued that the

fiscal spending multiplier is particularly large when the ZLB is binding (e.g., Woodford

2011; Eggertsson 2010; Erceg and Lindé 2014), whereas others have argued that there is

no multiplier effect (see, e.g., Braun and Körber 2011; Braun, Boneva and Waki 2016;

Mertens and Ravn 2014). The intuition for a higher multiplier is as follows: suppose

an economy is experiencing an episode with nominal interest rates at their ZLB and

the government begins a fiscal expansion. If the expansion raises inflation expectations,
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then, because the nominal interest rate is fixed, these are directly passed through to lower

expected real rates. This stimulates activity further than if nominal rates were also to rise

in response. An alternative channel discussed in Eggertsson (2010) works through the

labour market: increased inflation expectations reduce real incomes, prompting increased

labour supply; this causes the national income to rise. In contrast to the arguments for

a high multiplier, Braun, Boneva and Waki (2016; 2013) study the ZLB in an NK model

and find fiscal multipliers close to one. They argue that the result depends on whether a

linear or non-linear solution is used and which price-setting friction is used. Eggertsson

and Singh (2019) respond by showing that a positive multiplier is present in both linear

and non-linear settings and disappears with certain types of price-setting friction only

when applied in an unrealistic way. The question is yet to be resolved.

Another debated issue relates to the possible presence of multiple equilibria and indeter-

minacy. While the uniqueness of equilibria can be guaranteed in the linear NK model,

this is not obviously true when interest rates are unable to turn negative. Consider the

standard 3-equation NK model with a ZLB:

π̂t = βEt [π̂t+1] + κŷt + εst (1)

ŷt = Et [ŷt+1]−
1

σ

(
r̂t − Et [π̂t+1]

)
+ εdt (2)

r̂t =

 φππ̂t + φyŷt + εmt if rt ≡ r̂t + r̄ ≥ 0

0 otherwise
(3)

This implies two long-run equilibria dependant on expectations: a normal/inflationary

equilibrium with r = r̄, π = π∗ and a deflationary one with r = 0, π = −r̄. This is one

cause of the so-called liquidity trap (see Benhabib et al. 2014) and opens up the possibil-

ity of non-fundamental1 shifts in expectations that cause the economy to jump between

equilibria (sunspots). Because being in the deflationary equilibrium implies that house-

holds and firms believe the economy is converging to the bad steady state, many papers

rule this out explicitly on both theoretical and empirical grounds. Significant evidence

shows that central banks are able to signal their commitment to the good equilibrium

in the long run, and potentially employ alternative policy measures to ensure this is the

case. Furthermore, while the inflationary equilibrium is locally stable, the deflationary

one is not. However, even when ruling out the long-run deflationary equilibrium, Holden
1That is, unrelated to “fundamental” shock, such as to technology and preferences.
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(2019) shows that under many specifications, the model can still be indeterminate when

a ZLB is present. For example, suppose that in a given quarter, the expectation of the

ZLB binding in the next quarter is deflationary; this expectation could lead to a self-

fulfilling ZLB episode as the interest rate is cut in response.2 So, in a similar way to the

sunspots, there is the possibility of non-fundamental shifts in expectations. This is the

case for many well-known NK models, such as that of Smets and Wouters (2007). Holden

shows that uniqueness can be restored by replacing inflation targeting with a price-level

targeting regime.

1.2 Other models of occasionally binding constraints

After the ZLB, perhaps the most prominent class of OBC in the literature is borrowing

constraints experienced by households, banks and firms. The role of household borrowing

constraints has been studied by Guerrieri and Iacoviello (2017), who show how the pres-

ence of occasionally binding collateral constraints can drive macroeconomic asymmetries.

In a borrower-saver DSGE model, they show that during a housing boom, borrowing con-

straints become slack as the value of housing collateral increases. When house prices fall,

borrowing constraints tighten, leading to much sharper downturns. A growing literature

is studying other occasionally binding financial constraints, such as adverse selection

in investment (Swarbrick 2019), bank borrowing constraints (Holden, Levine and Swar-

brick 2020), equity constraints (Brunnermeier and Sannikov 2014; He and Krishnamurthy

2013) and cash-in-advance constraints (Dixon and Pourpourides 2016).

Another OBC found in the literature is irreversible investment (see Bernanke 1983; Ca-

ballero and Pindyck 1996; Bloom et al. 2007). Although its irreversibility is often over-

looked in the macroeconomic literature, investment is a sunk cost and cannot be recovered

if economic conditions change significantly. This implies an opportunity cost of invest-

ment not present in the standard model that introduces an uncertainty effect. Consider

a firm choosing to invest and observing the distribution of possible states-of-the-world.

When times are good, the firm will want to invest more; but when times are bad, it

may want to disinvest. If we define higher uncertainty as an increase in the dispersion of

these states of the world, it follows that higher uncertainty implies a higher probability
2To see why a future ZLB episode could be deflationary, note that the implication of the ZLB binding

is that the interest rate is higher than it would be without the bound. Therefore, the expectation of the

ZLB binding is equivalent to the expectation of future monetary shocks.
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of disinvestment. This increased probability will cause firms to insure against this by

waiting to invest.3 That being said, an important consideration is that aggregate invest-

ment never gets close to zero; so, for irreversible investment to have a role in aggregate

business cycles, one must consider some form of firm heterogeneity where the idiosyn-

cratic, firm-level shocks are much larger than the aggregate macroeconomic shocks. The

same is partly true with respect to household borrowing constraints, giving rise to the

heterogeneous agent New Keynesian (HANK) literature (see, e.g., Kaplan, Moll and Vi-

olante 2018). However, rather than introducing full heterogeneity, researchers commonly

model two types of households (equivalently, TANK), such as those with patient savers

and impatient borrowers, which is the approach that Guerrieri and Iacoviello (2017) take.

Debortoli and Gali (2017) show that using two agents can be a good approximation to a

fully heterogeneous agent model.

2 Model solutions methods

If a particular OBC is thought to play an important role in macroeconomic dynamics,

then linear solution and estimation are likely to perform poorly. Modelling the ZLB

in DSGE models, for instance, has become necessary for analysts to produce accurate

forecasts and recommend alternative measures, such as fiscal stimulus or unconventional

monetary policy. I identify several approaches in the theoretical literature used to solve

models with OBCs and, at least briefly, look at all of them in this paper. The first, as

has already been discussed, is to use global approximation methods to capture all model

non-linearities, including the precautionary behaviour, although use of these methods is

restricted to small-scale models given the rapidly increasing computation cost.

A popular alternative that retains the model non-linearities is to use a deterministic

solution that assumes perfect foresight and in which the model must return to equilibrium

in finite time. In one sense, this method is more accurate than approaches based on local

approximation techniques under uncertainty, as it captures the full non-linearities of the

model—but, of course, at the cost of losing agents’ precautionary behaviour inherent

to a stochastic environment. One approach that can incorporate the role of risk is to

use a functional approximation, or a penalty function approach, that approximates the
3Gilchrist, Sim and Zakrajšek (2014) find evidence for a positive relationship between uncertainty

and credit spreads, consistent with the option value.
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constraint in a perturbation solution (see, e.g., Brzoza-Brzezina et al. 2015). Another

approach, inspired by Eggertsson and Woodford (2003), was developed further by Jung

et al. (2005) and implemented into Dynare by Guerrieri and Iacoviello (2017) in the

OccBin tool box. This relies on a two-state (or piecewise) linear approximation that is

driven by a Markov chain with an absorbing state. Related to this is a regime-switching

approach pioneered by Binning and Maih (2017) and implemented in Junior Maih’s tool

kit, RISE. The final approach, and the one that I focus on, is to use anticipated news

shocks to impose the constraints. I will discuss in detail the computational method

proposed in Holden (2016) and review some of the theoretical results and considerations

outlined in Holden (2019).

These different approaches can be used to introduce many different types of OBCs into

macroeconomic models, such as those summarized above. The benefits of these ap-

proaches vary with respect to the trade-off between speed and accuracy, and depend

on the following: the number of constraints and how they interact; how often they are

expected to bind; and whether they are endogenous in the sense of being internalized in

the decisions of economic agents (e.g., borrowing constraints) or not (e.g., the ZLB). In

this discussion, I will explore the alternative methods presented above and consider some

of these factors. I will examine some methods in greater detail, with a particular focus

on the implementation in Dynare.

To provide some comparison between methods, I will analyze the results from the fol-

lowing simple model with a fixed real interest rate in which households face a borrowing

constraint when selling bonds but can buy bonds without limit. As the interest rate is

fixed and there is an unlimited supply of bonds, the model can be seen as a small open

economy. The representative household solves

max
Ct+s,Ht+s,bt+s

Et

∞∑
s=0

βs
[
logCt+s + χ log (1−Ht+s)−

δ

2
b2t+s

]
(4)

s.t. Ct + bt = exp (zt)Ht +Rbt−1 (5)

bt ≥ b, (6)

where R is an exogenous rest-of-world interest rate; Ht is hours worked; b ≤ 0 is the

borrowing limit; and δ
2b

2
t is a cost of holding or selling bonds, introduced to ensure

stationarity. δ can be set very small. zt is the exogenous productivity level following an

7



AR(1) process:

zt = ρzt−1 + εt, εt ∼ N
(

0, σ2
)
. (7)

With a little rearranging of the resulting first-order conditions, this leads to saving,

consumption and leisure decisions characterized by

1

Ct
= βEt

[
1

Ct+1

]
R+ µt − δbt (8)

Ct =
exp (zt) +Rbt−1 − bt

1 + χ
(9)

Ht = 1− χ Ct
exp (zt)

(10)

µt (bt − b) = 0 (11)

µt ≥ 0 (12)

bt ≥ b. (13)

The last three equations are the Kuhn-Tucker conditions, and µt is the Kuhn-Tucker

multiplier, equivalent to a Lagrange multiplier. This has the same interpretation as

giving the value of relaxing the borrowing constraint. As the constraint is well-behaved,

the last three conditions can be summarized with

min {µt, bt − b} = 0. (14)

2.1 Choice of benchmark

Of the methods mentioned above, the global approximation can be considered the closest

to the “true” rational expectations solution to the model. For this reason, in this analysis,

I treat the solution found using global methods as the benchmark and loosely assess the

other approaches conditional on the distance from the projection solution.4

3 Projection methods

If the dimension of the model is small—such as with the borrowing constraints model

defined by equations (7–10, 14), which has only one state variable and one shock—then it
4A more typical approach to assessing accuracy is to compute the approximation error using Euler

equation residuals (see Santos 2000). The Euler error is commonly found to be of the same order of

magnitude as the approximation error, but OBCs introduce an additional source of approximation from

which this choice may not be as robust.
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is possible to compute a global approximation of the policy function. Various methods are

examined in a large literature on the topic; but, as a benchmark example, a small model

with an occasionally binding constraint can easily be solved with projection methods (see

Judd 1992).

The objective is to find a function that characterizes the household consumption, saving

and labour supply decisions. This unknown function can be written as

bt = g (bt−1, zt) (15)

to give a backward-looking law of motion for the economy. The true “policy” function

g (·) can be approximated using some “basis” function, a polynomial for instance, by

specifying a grid over bt−1 and zt and making sure the basis function satisfies the model

at each grid point. Whether this is satisfied exactly or whether residuals at each grid

point are minimized depends on the choice of basis function.

In the borrowing constraints model here, the “functional” equation to approximate is the

Euler equation (8). This is the only equation with an expectation operator, and focusing

on this is sufficient to solve the household saving problem, with the remaining equations

determining consumption and hours in closed form. Using the as-yet-unknown policy

function, g (·), the Euler equation can be given by

0 =
1 + χ

exp (z) +Rb− g (b, z)
− Et

[
1 + χ

exp (z′) +Rg (b, z)− g (b′, z′)

]
− µ+ δg (b, z) , (16)

where we are using the notation z = zt, z′ = zt+1, b = bt−1 and b′ = bt+1. Notice, then,

that if the approximation of the policy function is denoted as g̃ (·), then the error implied

by the approximation can be computed using

e =
1 + χ

exp (z) +Rb− g̃ (b, z)

−
∑
z′

p(z′)

[
1 + χ

exp (z′) +Rg̃ (b, z)− g̃
(
g̃(b, z), z′

)]− µ+ δg̃ (b, z) , (17)

where we have nested the policy function in place of b′′ and replaced the expectation

operator with a numerical integration over possible shocks z′ where p(z′) is the prob-

ability of observing a particular z′. Over a defined set of values for b and z, we wish

to solve g̃ (b, z) that minimizes e. In practice, and in what we do here, this might be

to choose the set of parameters that minimizes the sum of squared errors at each grid
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point, interpolating between each grid point with cubic splines.5 To do so, we rearrange

equation (17) to

g̃n+1 (b, z) = exp (z) +Rb

− 1∑
z′ p(z

′)

[
1

exp(z′)+Rg̃n(b,z)−g̃n(g̃n(b,z),z′)

]
+ µ− δ

1+χ g̃n (b, z)

(18)

with an implied zero error. The n indicates the iteration number; if we begin with

g̃1 (b, z) = b, the choice of bonds is set equal to the existing stock, and we can evaluate

(18) to solve g̃2 (b, z). On the face of it, we still have an unknown variable µ. But recall

that this is the value of relaxing the borrowing constraint. If the borrowing constraint

is slack, then µ must equal zero. If it binds, then µ > 0, but g̃n (b, z) = b′ = b. We can

therefore rewrite (18) as

g̃n+1 (b, z) = min

b,
 exp (z) +Rb

− 1∑
z′ p(z

′)

[
1

exp(z′)+Rg̃n(b,z)−g̃n(g̃n(b,z),z′)

]
− δ

1+χ
g̃n(b,z)


 . (19)

Given the new policy function, we check the error from equation (17). If it is within

chosen tolerance, then we have found our policy function; otherwise, use g̃n+1 (b, z) on

the right-hand side in the next iteration.6

To solve this in MATLAB, given the model parameters and the choice of projection

method, we first make decisions on the number of grid points, error tolerance and the

method of quadrature. This example has linearly spaced grid points, and so we define

this using linspace().7 With Nb grid points in the state and Nz in the shock, we end

up with a Nb × Nz grid for both b and z, with each element representing a possible

state of the world. Note that for a higher dimension problem—for example, if we also
5As discussed in Miranda and Fackler (2002), one could choose among different basis functions (e.g.,

Chebychev polynomials) and several projection methods (e.g., the Galerkin method and collocation).

For example, Chebychev collocation works particularly well for smooth policy functions. In our case, we

want to allow for kinks stemming from the constraint.
6Of course, for some models and starting guesses, this may not converge to a solution. In this case,

I refer the reader to Judd (1992) for alternative solutions.
7One may wish to concentrate grid points in the state where the economy spends the majority of

time, or at a point at which there is a kink. The funnode() function in Miranda and Fackler’s (2002)

CompEcon tool kit will generate grids concentrating nodes toward the end points.
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had habits in consumption so that Ct−1 was a state variable—we could conveniently use

[B_mesh,C_mesh,z_mesh] = ndgrid(B,C,z);, given the arrays for b, C and z.8

1 Nb = 100;

2 Nz = 100;

3 min_b = b_limit;

4 max_b = 0.8;

5 min_z = −0.1;
6 max_z = 0.1;

7 err_tol = 1e−8;
8 % Grids for the state

9 b = linspace( min_b , max_b , Nb )';

10 z = linspace( min_z , max_z , Nz );

11 b_mesh = repmat( b , 1 , Nz );

12 z_mesh = repmat( z , Nb , 1 );

For the integration, we use Gauss-Hermite quadrature, with the nodes and weights given

by the following:

1 % Nodes and weights for numerical integration

2 q_pts = 50;

3 [q_n,q_w]= hernodes(q_pts);

Using this, for each of the 50 nodes, z′ will equal ρz + σqn
√

2, and the probabilities

will equal p
(
z′
)

= qw/
√
π. We define a function, ex_mu(), that takes the grids and the

current guess as inputs and returns the expectation term in (19), using the following:

1 for i_q = 1:q_pts

2 z_p = rho * z_mesh + eps_p( i_q );

3 b_p_p = interp2( z_mesh , b_mesh , b_p , z_p , b_p , 'spline' );

4 ex_up_p = ex_up_p + ( q_w(i_q) * up( ( exp( z_p ) + r * b_p − b_p_p ) / (

1 + chi ) ) )./ sqrt(pi);

5 end

8Alternatively, if using the CompEcon tool kit, fundefn() can be used to set up the function space,

funnode() to create the grid points, and gridmake() to create the grids. See Miranda and Fackler (2002)

for more details.
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The function interp2() is a standard MATLAB function. The first two arguments (b

and z) are inputs to the policy function that returns the third argument (b′). The third

and fourth arguments (b′ and z′) are then inputs to the policy function that returns the

output from interp2() (b′′). The function has exact values for b′ at the grid points

of b and z and then interpolates between them with cubic splines, that is, third-order

polynomials. Given the initial guess for the policy function, b_p = b_mesh;, we compute

an initial value for the expectation term mu_p = ex_mu( b , z , b_p , params ); then

loop through the following:

1 while ssr>err_tol

2 b_p = max( exp( z_mesh ) + r * b_mesh − ( 1 + chi ) ./ ( mu_p − delta *

b_p ) , b_limit );

3 mu_p_new = ex_mu( b , z , b_p , params );

4 error = mu_p_new− mu_p;

5 ssr = sum( sum( error.^2 ) );

6 mu_p = mu_p_new;

7 end

On each iteration, we first calculate a new b′ from the Euler equation, compute the

expectation term given this new value and compare with that from the previous iteration.

If the sum of squared residuals falls below the defined tolerance, then we finish; otherwise

we repeat.

We can compute impulse response functions (IRFs) to a large negative productivity

shock. To do so, we simulate the model a large number of times over a horizon T for

which we plan to drop the first td periods. We repeat each simulation twice for the same

sequence of shocks; but for one of them, we add a technology shock of the desired size in

period td+1. We take the difference, then average over all replication to give an average,

or expected IRF. In the code, first, we draw a random sequence of shocks εt to give a

time-series for z. This is repeated r number of times:

1 % IRF simulation

2 irf_horizon = irf_periods+irf_drop;

3 % Draw shocks

4 eps_mat = randn( replic, irf_horizon );
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For each i ∈ {1, r}, we loop over the simulated the model, repeating the simulation twice

on each iteration but with the added shock:

1 for ii=1:replic

2 eps_1 = eps_mat( ii , :);

3 eps_2 = eps_1;

4 % Add shock of interest

5 eps_2( irf_drop+1 ) = eps_2( irf_drop+1 )−IRF_shockscale;
6 % Simulation

7 for t=2:irf_horizon

8 z_1(t) = rho * z_1(t−1) + sigma * eps_1(t);

9 b_1(t) = interp2( z_mesh , b_mesh , b_p , z_1(t) , b_1(t−1) , 'spline' );

10 z_2(t) = rho * z_2(t−1) + sigma * eps_2(t);

11 b_2(t) = interp2( z_mesh , b_mesh , b_p , z_2(t) , b_2(t−1) , 'spline' );

12 end

13 c_1(2:end) = ( exp( z_1(2:end) ) + r .* b_1(1:end−1) − b_1(2:end) ) ./ (1

+ chi);

14 h_1 = 1 − chi .* c_1 ./ exp( z_1 );

15 c_2(2:end) = ( exp( z_2(2:end) ) + r .* b_2(1:end−1) − b_2(2:end) ) ./ (1

+ chi);

16 h_2 = 1 − chi .* c_2 ./ exp( z_2 );

17

18 z_mat( ii , : ) = z_2 − z_1;

19 b_mat( ii , : ) = b_2 − b_1;

20 c_mat( ii , : ) = c_2 − c_1;

21 h_mat( ii , : ) = h_2 − h_1;

22 end

The size of shock we are interested in is defined by IRF_shockscale; in this case, we

choose 2.

Following a negative productivity shock, households wish to substitute in leisure for con-

sumption as the returns to work fall but choose to borrow to ensure a smooth consumption

path. Results are shown in Chart 1. As expected, all the variables drop following the

shock. When households face a borrowing constraint, they are unable to borrow from

13



Chart 1: Impulse response functions following technology shock using projection method
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Note: The red line is the model with borrowing constraint and the black line is a model with uncon-

strained borrowing. Plots show level deviation from the ergodic mean.

Table 1: Simulated moments

Mean Standard deviation Skewness

No constraint
C

0.667 0.012 0.08
With OBC 0.667 0.013 -0.34

No constraint
H

0.667 0.003 -0.03
With OBC 0.666 0.002 -0.07

No constraint
b

0.0008 0.10 -0.005
With OBC 0.059 0.06 1.14

Note: The table presents simulated moments of the model variables with and without the borrowing

constraint using projection method. The v ariables are expressed in levels.

their future consumption as much as they would like. So instead, they substitute leisure

for higher consumption, working more to make up some of the difference. Note that

bonds do not appear bound at b = 0.01 in this simulation. This is because the chart

shows deviation around the ergodic mean, which is found to be approximately 0.06. The

fact that bonds do not fall further in expectation is a result of the positive skewness

stemming from the presence of a lower bound.

We can simulate time series using either a single draw of shocks over a long horizon

or many repeated simulations, and compute moments using the simulated data. We

can then compare moments to assess the impact of the borrowing constraint. Table 1

displays the first three moments from the simulated time series. The idea here is not to

attempt to match the empirical business cycle, but to emphasize the theoretical impact

of the borrowing constraint. When binding, the constraint generates a relative fall in
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consumption and higher hours. The constraint does not significantly alter the ergodic

mean of consumption and hours, but it does affect borrowing, which is 10 times higher

in the model with the constraint. Together with the large skewness, this highlights the

asymmetry in bonds, as the household can increase saving as much as possible in booms

but is limited in borrowing during downturns. I now turn to solution methods available

using Dynare. These are particularly relevant to solving larger models, for which global

methods are not feasible.

4 Solution methods in Dynare

When the expression stoch_simul() is used in the .mod file, Dynare computes a Taylor

approximation of the decision and transition functions of the model. This is computed

around the deterministic steady state and at first order will be of the form

bt = b+A(bt−1 − b) +Bzt, (20)

where b is the steady-state value of bt. The approach generalizes to higher orders and

is available in Dynare up to order three. For further reading on the technical details for

the derivation of the policy function (20) and the higher-order equivalents, see Collard

and Juillard (2001).

Suppose we wanted to include the occasionally binding borrowing constraint (14); then,

although it is possible to write the equation 0 = min(mu,b−b_limit), if stoch_simul()
is used, Dynare will perform a local approximation around the deterministic steady state.

The equation will then be an approximation of either bt = b or µt = 0, depending on

whether the constraint binds in steady state. The inequality constraint will be lost. While

the perturbation techniques employed by Dynare to solve stochastic models lose this type

of constraint, the same is not true for perfect foresight or extended path solutions.

4.1 Dynare’s perfect foresight solver

When simul() is used in the .mod file, Dynare uses a Newton-type algorithm that pre-

serves these non-linearities. Details of the various algorithms available can be found at

Adjemian et al. (2011). In such a model, the economy is in some defined equilibrium up

until period 1—the deterministic steady state, for example—at which point the agents

learn about any shocks in the current or future periods. The simulation is the path of the
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economy conditional on a set of shocks over a finite horizon that are known in the first

period. The final equilibrium may or may not be the same as the initial one before period

1, and the path to final equilibrium is imposed in finite time rather than asymptotically.

We can write the model as 

1
Ct
− β 1

Ct+1
R− µt + δbt

exp(zt)+RBt−1−Bt
1+χ − Ct

1− χ Ct
exp(zt)

−Ht

min {µt, bt − b}
ρzt−1 + εt − zt


= 0 (21)

or

f(xt−1, xt, xt+1, εt) = 0, (22)

where xt ≡
[
bt Ct Ht µt zt

]
is the endogenous state and εt the exogenous shock.

A perfect foresight solution—given the initial conditions, x0, and sequence of shocks,

εt—is a path x0, x1, x2, · · · converging to steady state, or another defined end condition,

and satisfying

f(x0, x1, x2, ε1) = 0

f(x1, x2, x3, ε2) = 0

f(x2, x3, x4, ε3) = 0

...

When simul() is called, Dynare stacks the model over T periods,

F (X) =



f(x0, x1, x2, ε1)

f(x1, x2, x3, ε2)
...

f(xT−1, xT , xT , ε3)


= 0 (23)

T is chosen sufficiently high such that the model is able to converge to the terminal

condition xT .9 The default algorithm then works as follows. Every element of x is set
9It is common to choose xT = x0 = x̄ so that the model begins and ends at the deterministic steady

state. There should be a sufficient burn-off period with no shocks at the end of the simulation to allow

the economy time to converge.

16



to the steady-state value x̄ before beginning the iterative Newton method to solve all x

simultaneously. For the nth iteration, every element is set to

x (n+ 1) = x (n)−
f
(
x (n)

)
f ′
(
x (n)

) . (24)

The iterations repeat until convergence.

Dynare offers a number of alternative algorithms, mostly variations of the Newton method

described. To enter the OBC in the model file, we can write, for example,

1 0 = min(mu,b−b_limit);

invoking the following command:

1 simul( periods=400 , stack_solve_algo = 0 );

Options of interest that are available in this setting include:10

• periods = INTEGER: This is the number of periods of the simulation.

• stack_solve_algo = 0|1|2|3|4|5|6: This allows the user to decide which of the

available seven Newton type algorithms to use.

An alternative is to choose stack_solve_algo = 7 to use an alternative algorithm

defined using option solve_algo = 0|1|2|3|4|5|6|7|8|9|10|11.

Choosing option stack_solve_algo = 0 requests that Dynare use the Newton method

with sparse matrices. An alternative approach, which is perhaps better suited to models

with OBCs, is to treat the problem as a Levenberg-Marquardt mixed complementarity

problem (LMMCP), invoked with option lmmcp.11 When a model has a condition such as

a borrowing constraint or ZLB, there is a discontinuity in the derivative (i.e., a singularity

in the Jacobian), which can lead to problems solving (24). We can use the algorithm

proposed in Kanzow and Petra (2004) to evaluate a generalized Jacobian, removing this

singularity.

Because using a deterministic set-up allows the analysis of the full implications of non-

linearities, it is a useful starting point—although there are some drawbacks. The model

is solved by stacking the system over T periods, where T is large enough to return the
10Refer to the Dynare manual for full description of all options.
11This is equivalent to using stack_solve_algo = 7, solve_algo = 10.
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system to equilibrium. The Newton approach solves all the equations over every period

simultaneously. This approach leads to a very large Jacobian; for a simulation over T

periods, a model with n endogenous variables will require a Jacobian matrix of order

n x T , leading to high computational demands. However, the Jacobian can be handled

as one large sparse matrix, cutting down on these demands. The particular solution

returned can also raise questions. It is unclear whether there are multiple solutions to

the model and why the one returned is chosen. And it is impossible to even know if

there is a solution or not if the method fails to converge. Another drawback, and the

reason why the perfect foresight technique can only be a starting point, is that the role

of uncertainty in the behaviour of agents is lost. This could introduce bias into the

precautionary actions that arise from the risk of hitting the bound and, if the constraint

is likely to bind in the near future, the bias could be large.

As before, we can compute the response of the simple borrowing constraint model to a

large negative productivity shock. To simulate an IRF, we specify the shock as follows:

1 shocks;

2 var epsz; periods 1; values −2;
3 end;

Because Dynare does not produce IRF plots automatically when calling simul(), we can

include the following code at the end of the .mod file:

1 figure_per_shock=floor((M_.endo_nbr−1)/9)+1;
2 for i=1:M_.endo_nbr

3 VarName = strtrim( M_.endo_names(i,:) );

4 j=floor((i−1)/9)+1;
5 p=i−(j−1)*9;
6 figure( figure_per_shock*(1−1)+j );

7 subplot(3,3,p)

8 plot( oo_.endo_simul(i,1:20) );

9 title( VarName );

10 if p==1

11 legend('epsz')

12 end

13 end
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Results are shown in Chart 2. As expected, all the variables drop following the shock.

When households face a borrowing constraint, they are unable to borrow from their

future consumption as much as they would like. So instead, they substitute leisure for

consumption, working more to make up some of the difference.

We can compare the perfect foresight IRFs with the global solution under uncertainty.

Because of the lack of precautionary saving under perfect foresight, there is much less

room for b to fall following the shock. This exaggerates the impact on consumption

relative to a solution method that captures precautionary behaviour.

Chart 2: Perfect foresight impulse response functions following technology shock
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Note: The red line is the model with borrowing constraint, the black line is a model with unconstrained

borrowing, and the blue line is the borrowing constraints model solved using projection methods. Plots

show level deviation from the ergodic mean.

4.2 Stochastic extended path solution

When extended_path() is used in the .mod file, Dynare simulates the model using the

stochastic version of the Fair and Taylor (1983) extended path algorithm as described

in Adjemian and Juillard (2013). In this approach, as under perfect foresight, the di-

mension of approximation is on the distribution of shocks. Under perfect foresight, the

approximation is that future shocks are known with certainty. Another approximation

could be to assign zero probability weight to future non-zero shocks. This is the case at

“order” zero, creating a stochastic simulation as if decisions are made conditional only on

the current shocks being non-zero. Because agents do not expect future shocks, uncer-

tainty plays no role in the model. By increasing the order, a higher number of periods of

uncertainty are considered and the approximation error falls. For example, at order one,
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the algorithm allows for the expectation of non-zero shocks in next period but assumes

agents believe no shocks will arrive in two periods’ time; at order two, two future periods

of non-zero shocks are expected, and so on. The approximation is solved by integrating

over the shocks up to the specified horizon. Beyond this time horizon, the assumption

is that agents believe all shocks will forevermore be zero and so consequently the model

will ignore the long-run risk of hitting the bound.

To achieve accuracy with the stochastic extended path, we must integrate over all shocks

of the model to a horizon of the same magnitude as the decay time of the model. As

Dynare uses a Gaussian quadrature, which scales exponentially in the number of shocks

and the order, this becomes infeasible except for very small models. In practice, when

the command extended_path(order=k,periods=T) is used, Dynare first draws a random

path for the exogenous variables over T periods before computing the corresponding path

for endogenous variables, taking the steady state as starting point. The main options

are:

• periods = INTEGER: This is the number of periods for which the simulation is to

be computed. This must be set by the user as there is no default value.

• order = INTEGER: This is the order of the solution, that is, the number of future

periods for which expectations are calculated.

Order set to zero would mean that every period, agents believe that only the current

exogenous variables are non-zero and so are surprised by the shocks. Order equal to four

would solve the model with agents believing that there can be shocks occurring in the

next four periods but with no more future shocks five periods ahead or more.

The solution method builds on the underlying perfect foresight algorithm of the last

section, the difference being that Et
[
{xt+s}ks=1

]
will not necessarily equal {xt+s}ks=1. To

compute the expectations, we follow the iterative procedure:

1. Start with the expectation horizon j = 1.

2. Beginning with expectations equal to the steady-state values Et [xt+s] = x̄ for

s = 0, ..., j, obtain a new set of expectations by solving the non-linear model dy-

namically. Every period t, evaluate the expectations of the future state up to period

t+ j using a Gaussian quadrature.

20



3. Setting the new expectations as the starting values, repeat step 2 until convergence.

4. Increase j by 1 and repeat steps 2–3.

5. Repeat up to j = k.

This captures the non-linearities of the system and differs from the standard stochas-

tic simulation, which computes approximations to the transition and policy equations.

Notably, there is no policy function to speak of, just simulated time series of the model

variables from which moments can be computed.

To compute time series for the borrowing constraints model, we set the order k = 0 and

periods T = 10000. Chart 3 shows the paths of consumption, hours, bond holdings and

the multiplier, µ, over 100 periods. Note that borrowing is constrained during several

periods of the simulation. When the borrowing constraint binds, households work more

and cut consumption relative to the model without a borrowing limit, as they are unable

to substitute as much consumption across time.

As before, we can compare moments using the simulated data. These are shown in Table

2. The table shows similar patterns to those observed above except the average saving

is not as high as with uncertainty and the skewness of bonds is higher. This highlights

the precautionary aspect of savings in the previous table, as opposed to just stemming

Chart 3: Extended path simulations (order = 0)
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Table 2: Simulated moments

Mean Standard deviation Skewness

No constraint
C

0.667 0.012 0.074
With OBC 0.667 0.013 -0.44

No constraint
H

0.667 0.003 -0.14
With OBC 0.666 0.002 -0.20

No constraint
B

0.004 0.10 -0.001
With OBC 0.046 0.06 1.45

Note: The table presents simulated moments of the model variables with and without the borrowing

constraint using extended path approach. The variables are expressed in levels.

from the skewness introduced by the constraint in these results. At order zero, there is

neither future uncertainty nor precautionary behaviour. Up to the period the constraint

binds, the paths of the variables are identical because the agents ignore any risk of the

constraint binding in future. To deal with this, we would need to increase the order and

allow the agents to evaluate future uncertainty. It is possible to do this up to orders two

to three, but it is prohibitively slow beyond this because the dimension of integration

increases exponentially in the order.

5 Piecewise linear and regime switching

Another approach used to solve models with OBCs is to treat the economy as switching

between regimes. For example, in the borrowing constraints model, one regime would

be an unconstrained regime when µt = 0, and a second would be a binding regime when

bt = b. One can then approximate policy functions in each regime using a choice of

method, typically perturbation. The resulting policy function within each regime will

be a function of the policy function within all other regimes. This introduces some

difficulties in both choosing the point around which the solution is perturbed and solving

the probabilities of switching between different regimes. The transition probabilities will

be endogenous and a function of the state. In the borrowing constraints model, for

instance, the probability of switching to the borrowing constrained regime will clearly

increase as b approaches b.

One solution to these issues taken by Guerrieri and Iacoviello (2015) and implemented
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Chart 4: Impulse response functions following technology shock using piecewise linear method
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Note: The red line is the model with borrowing constraint, the black line is a model with unconstrained

borrowing, and the blue line is the borrowing constraints model solved using projection methods. The

plots show level deviation from the ergodic mean for projection and from the deterministic steady state

for piecewise linear.

in the OccBin tool kit12 is to take a first-order approximation to each regime around

the deterministic steady state. One regime is considered the “reference” regime, which

would likely be an absorbing equilibrium and would need to be saddle-path stable. In

the case of the borrowing constraints model, the non-binding constraint would represent

the reference regime and the constrained borrowing would represent the second regime.

We then abstract from the transition probabilities and their effect on precautionary

behaviour, as the policy function implied by the linearized solution to the reference

regime ignores the possibility of the constraint binding. When the model is simulated

and the constraint binds, the regime switches. The path of the economy is solved subject

to the condition that agents do not expect any future shocks; in other words, they act as

if under perfect foresight, much like the order-zero extended path simulation described

above. IRFs of technology shocks are shown in Chart 4. The approach faces similar

drawbacks to that of the perfect foresight simulation, as precautionary saving does not

occur. As a result, there is an extended period spent at the borrowing constraint and an

exaggerated effect on consumption.

Maih (2015) proposes a more general solution that is implemented in MATLAB in the

RISE tool kit.13 Rather than treat the presence of the constraint as a surprise, the

modeller defines the transition probabilities either as constants (which is the natural

option in a Markov-switching parameter model) or as functions of the state for models
12Available at https://github.com/lucaguerrieri/occbin.
13Available at https://github.com/jmaih/RISE_toolbox.
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Chart 5: Impulse response functions following technology shock using regime-switching ap-
proach
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Note: The red lines are the regime switching simulations. The blue lines are impulse response functions

solved using projection methods, and the black lines are those solved with the piecewise linear algorithm.

The plots show level deviation from the ergodic mean.

of OBCs in which regime switching is endogenous. The modeller chooses the functional

form and parametrization of these probabilities, and it is feasible to write an iterative

process to simulate-update-simulate-update and so on, until the probabilities are close

to the true solution under rational expectations. The policy functions in each regime

are then perturbed around regime-specific steady states as if the economy will stay in

that regime forever. In addition to allowing for endogenous switching in expectation, the

policy functions can be approximated up to the fifth order. While still having drawbacks,

this more general approach improves on the piecewise linear solution. It relies on the user

defining sensible transition probabilities, and there may be some approximation error as

a result of the fixed point being far from the true solution. But it is an interesting and

useful approach, particularly from the perspective of different policy regimes. Suppose

that nominal interest rates are at zero, or the economy is in a constrained “crisis” regime,

and the policy-maker uses alternative rules and policy programs. In such cases, the

regime-switching method could be a particularly useful tool, with differing policy rules

determining macroeconomic outcomes. Impulse responses to the same shock as shown

for previous methods are displayed in Chart 5. In contrast to the piecewise linear ap-

proach through which we solved perfect foresight IRFs, generalized or average IRFs are

computed via Monte Carlo simulation using RISE. The results seem to improve on piece-

wise linear approach, and the remaining differences between the projection method and

regime switching are likely to be largely related to the parametrization of the transition

probability functions and so illustrate the difficulty of achieving good accuracy.
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6 The news shock method

An alternative approach, and one that I focus on in this review, is to treat the constraint

as an endogenous source of news, ensuring that where disturbances would cause bounds

to be violated, anticipated news shocks return the bounded variable to the constraint.

The method is described fully in Holden (2016), with a companion paper, Holden (2019),

discussing the necessary and sufficient conditions for the existence and uniqueness of

solutions at the bound.14 The method is implemented in the tool kit “DynareOBC.”

Just as one can view the stochastic extended path algorithm as building upon an un-

derlying perfect foresight algorithm, at the core of Holden’s (2016) description is the

perfect foresight solver with an extended path approach used to integrate over future un-

certainty. Below, I discuss the perfect foresight solver and the algorithm used to impose

the bound before describing the extended path method used. I finish with a discussion

of the conditions that guarantee the existence and uniqueness of a solution and look at

some examples of multiple equilibria in the NK model.

6.1 Layer 1: The perfect foresight solver

At the heart of the Holden (2016) algorithm is a fast perfect foresight solver. The speed is

necessary, as the solver will be invoked many times in the algorithm. Recalling equation

(19), implementing the borrowing constraint under perfect foresight involves ensuring

that bt = b during periods when borrowing would otherwise violate the constraint, and

having borrowing determined by the Euler equation otherwise. The method outlined

below endogenously determines when the constraint will bind by introducing anticipated

news shocks to bt when it would otherwise violate the constraint, ensuring that bt = b.

I will describe the method in a simple linear model with a single constraint from which

it generalizes to higher-order pruned perturbation and multiple bounds.15 Consider the

basic problem in computing the IRF under a perfect foresight simulation, that is, with
14An earlier version of the idea was first described in the appendix to Holden (2010) and further

developed in Holden and Paetz (2012) prior to these papers.
15Pruning is a way of dealing with explosive roots that can occur in models approximated to orders

greater than one (see e.g., Andreasen et al. 2018). The idea is to substitute lower-order approximations

into higher-order roots, i.e., to use a first-order approximation in second-order terms.
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no other future shocks. Let us write the model as

B (xt − µ) = A (xt−1 − µ) + CEt (xt+1 − µ) +Dεt, (25)

where Et−1εt = 0 and εt = 0 for t > 1. xt is a vector of model variables, εt a vector of

shocks, and µ a vector of constants where the ith element of µ is the steady-state value

of the ith element of xt. x0 is given as an initial condition and we assume a terminal

condition x→ µ as t→∞ holds. For t > 1, this becomes

B (x1 − µ) = A (x0 − µ) + C (x2 − µ) +Dε1

B (xt − µ) = A (xt−1 − µ) + C (xt+1 − µ) , for t > 1,
(26)

where the expectation operator and future shocks disappear because agents know εt = 0

for t > 1. As in the earlier perfect foresight section, solving impulse responses without a

bound means finding a path of xt ∈ Rn that satisfies (26).

But suppose there is a ZLB on variable x1,t, where the subscript indicates it is the first

element of vector xt. The first row of (26) becomes

x1,t = max
{

0, µ1 +A1 (xt−1 − µ) +B1 (xt − µ) + C1 (xt+1 − µ) +D1εt
}
, (27)

with the matrix subscripts indicating row one. If we consider a shock that would cause

the bound to be violated, we want to find a path for xt that satisfies equations (25) and

(27), where x → µ as t → ∞.16 As the model returns to steady state asymptotically,

there is some horizon T by which the constraint will no longer be violated.

News shocks will be used to impose the bound, and so equation (27) is rewritten as

x1,t = µ1 +A1 (xt−1 − µ) +B1 (xt − µ) + C1 (xt+1 − µ) +D1εt + y1,t, (28)

where yi,t is a news shock known at period i that hits at period i + t − 1. y1,t can

be positive during periods t ≤ T ; but for t > T , the news shocks are known to be

y1,t = 0. The problem of the algorithm becomes finding a path for xt ∈ Rn and y1 =[
y1,1 y1,2 · · · y1,T

]′
∈ RT , given initial conditions x0, that satisfies

B (x1 − µ) = A (x0 − µ) + C (x2 − µ) +Dε1 + I ′1y1,t, (29)

16This rules out switching to another steady state. The introduction of OBCs can introduce multiple

steady-state equilibria. In the ZLB example with inflation targeting, for instance, Benhabib et al.

(2001) highlight a “bad” deflation steady state in the New Keynesian ZLB to which the economy might

converge. Ruling out multiple steady states in DynareOBC in this case implies the long-run credibility

of the policy-maker.
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which modifies the first row of (25) to equation (28).

6.1.1 The news shock problem as a linear complementarity problem

As the model is linear, DynareOBC exploits the fact that the impulse response to two

shocks is equal to the sum of the impulse response to each individual shock. Consider

first the path of x1,t given an (arbitrary) vector of news shocks y0 ∈ RT . Let mk ∈ RT

be a column vector with the impulse response of x1,t to a news shock of size 1 at period

k with x0 = µ, and let

M ≡
[
m1 m2 · · · mT

]
(30)

horizontally stack these relative IRFs. It follows that the path of x1,t given x0 = µ and

that an arbitrary vector of new shocks y0 is given by My0.

Let q ∈ RT be the path of x1,t up to period T that satisfies equation (26)—that is, the

model without the constraint—given any x0. The path of x1,t for any x0 and y0 ∈ RT

that satisfies equation (26) can be written as

q +My0. (31)

Let us get specific about how the news shocks can be utilized to impose the bound. For

a given x0, we must find a vector y0 and path for xt that satisfy equation (26) and the

ZLB on x1,t. The path for x1,t will be given by equation (31). The news shocks are used

only to impose the bound, so when x1,t > 0, y1,t = 0, this implies firstly that the solution

must satisfy

y0 ◦ (q +My0) = 0, (32)

and secondly that the news shocks can only push the variable up to the bound, that is,

y0 ≥ 0. Finally, the solution must impose the bound: so q +My0 ≥ 0.

The news shock problem is then characterized as a linear complementarity problem

LCP(q,M) (see Cottle (2009)): for a given q and M , the LCP(q,M) finds y ∈ RT

to satisfy
q +My ≥ 0

y ≥ 0

y ◦ (q +My) = 0.

(33)
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The linear complementarity problem is then solved by representing it as a mixed integer

linear programming problem for which there are many commercial solvers available. A

convenient property of this representation is that it allows us to numerically test whether

there is a unique solution and whether there is a solution at all. This contrasts with

standard perfect foresight solvers. For those, the failure of the solver tells nothing about

whether there is a solution, since the solver may have just become stuck in a local min-

imum. Additionally, standard perfect foresight solvers may return "non-fundamental"

solutions even when fundamental solutions exist, and there is no way to either force

the solver to always return a fundamental solution or easily tell whether a fundamental

solution has even been returned.

The necessary and sufficient conditions for the existence and stability of a solution depend

on the matrix M . These are outlined in detail in Holden (2019).

6.1.2 Some generalizations

The problem extends to multiple bounds. For n bounds, the vectors q ∈ RnT and

y ∈ RnT stack the impulse responses, ignoring the bound for each bounded variable and

the impulse response to the news shocks, respectively. Matrix M ∈ RnT×nT is a block

matrix where block Mi,j is the response of variable xi to the news shock on variable xj .

The problem as defined above relates to a ZLB constraint that does not bind in steady

state. When either the bound is not at zero, the OBC is an upper bound, or the OBC is

binding in steady state, we can amend the equation to generalize into the required ZLB

form: that is,

z1,t = max
(
z2,t, z3,t

)
becomes z1,t − z2,t = max

(
0, z3,t − z2,t

)
(34)

z1,t = min
(
z2,t, z3,t

)
becomes − z1,t = max

(
−z2,t,−z3,t

)
. (35)

6.1.3 Simulation and higher-order approximations

In the first-order (linear) case, the model was first approximated around the steady

state, yielding a model approximation of the form in equation (25); while at higher or-

ders, DynareOBC takes a pruned perturbation approximation using the Lan and Meyer-

Gohde (2013) algorithm. The algorithm as described readily extends to higher-order

approximations when the shadow shocks are of the form yd, since pruned perturbation

approximations of order d are linear in shocks to the power of d.
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6.2 Layer 2: The stochastic extended path type solver

Because yt ≥ 0, the news shocks cannot be mean zero: so Et
[
yt+s,k

]
> 0∀s, k. Further-

more, the expected value of y will depend on the current state. If this is ignored, bias

will be introduced in the expectation of the bounded variable. This could be particularly

detrimental if the constraint is likely to bind frequently. To extend to stochastic simu-

lation, the perfect foresight solver described in the previous section is embedded in an

extended path type solver. Recall that the order of integration increased exponentially

in the number of shocks and the number of periods of uncertainty using the Adjemian

and Juillard (2013) stochastic extended path algorithm. Now that we are working with a

pruned perturbation approximation to the model, the process of integrating over future

uncertainty is greatly simplified.

In particular, due to some nice properties of pruned perturbation solutions, we can de-

rive a closed-form formula for the covariance of the expected future path of the bounded

variables in the absence of the bound. Using this, we can take a Gaussian approximation

to the future distribution of the bounded variables in the absence of the bound and then

integrate over this distribution using Gaussian cubature techniques. In this way, Dynare-

OBC only has to solve the perfect foresight problem a number of times that is polynomial

in the periods of uncertainty, independent of the number of shocks. This means that we

can readily integrate over many periods of uncertainty with minimal computational cost.

Additionally, providing we take a higher-order perturbation approximation, we capture

the effects of even long-run risk not stemming from the bound for free, again in contrast

to the Adjemian and Juillard (2013) algorithm.

A further difference is that rather than assuming that the news shock variance goes

to zero beyond the horizon S, we use a cosine windowing function to scale the shock

variance. Particularly, if the covariance matrix is Σ, the covariance matrix used when

considering uncertainty at horizon k is given by

Σ̂k =
1

2

[
1 + cos

(
π

min{k − 1, S}
S

)]
Σ. (36)

The derivation of the covariance of the expected future path of the bounded vari-

ables ignoring the constraint is unchanged, using the modified covariance matrix Σ̂k

instead.17 Let Ω denote this covariance matrix, and let wt,t+i be the value the bounded
17See appendix E in Holden (2016) for details.
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variable would take at time t + i if the bound no longer applied after time t. Then[
wt,t+1 · · · wt,t+S

]′
is assumed to be normally distributed, which it will be at first

order and is a close approximation at higher orders. Using a Schur decomposition of Ω

will give Ω = UDU ′, where D ≥ 0 will be a diagonal matrix. By setting any very low

values of D to zero, we reduce the cost of integration, only scaling in Ŝ < S, where Ŝ

is the number of remaining non-zero elements of D. Using this step and the normal as-

sumption, we arrive at an approximation of the distribution of
[
wt,t+1 · · · wt,t+S

]′
of

Et
[
wt,t+1 · · · wt,t+S

]′
+ Λζ, where Λ ≡ U1

√
D11, with D11 ∈ RŜ denotes the matrix

block in D that includes the Ŝ non-zero elements and U1 the corresponding elements of

U , and where ζ ∼ N
(
0, IŜ

)
. This simplifies the integration problem to one of integrating

over Ŝ standard normals.

The tool kit uses three alternative methods to integrate over future uncertainty: a “fast”

degree 3 monomial rule; the Gaussian cubature rule proposed in Genz and Keister (1996);

and the Quasi-Monte Carlo method. The first is with 2Ŝ + 1 nodes and equal positive

weights that provide a robust approximation, giving reasonable accuracy despite fast

simulation times. The second is a 2K + 1 monomial rule with O
(
ŜK
)

nodes, where

K ≤ 25 can be chosen by the modeller. The rule will feature negative weights if K > 0

and Ŝ > 1, which might prevent the upward bias that positive weights can introduce

by evaluating the integral far from the steady state. The higher degree is also likely to

give greater accuracy, and because the rule is nested, we can use an adaptive integration

degree that will improve computation times. The final method uses a Sobol sequence

(Sobol 1967) to generate
(

21+l − 1
)
points, where l ∈ N is chosen by the modeller. This

approach should be the most accurate; however, for well-behaved functions it will require

a far greater number of evaluations of the integrand than the Genz and Keister (1996)

approach for similar accuracy.

Which of the latter two methods delivers the most desirable mix of speed and accuracy

depends on the model. As a rule of thumb, if the bound binds very frequently, Genz

and Keister’s (1996) cubature is likely to dominate, whereas when the constraint binds

with moderate probability, quasi-Monte Carlo may be better. Whichever approach is

chosen, the result is an expected value of the vector y needed to impose the bound.

These news shocks will impact the expected value of xt+1 by moving up the expectation

of the bounded variable Et
[
x1,t+1

]
.
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6.3 Impulse response functions in DynareOBC

When cubature is not used, at first order the IRFs are simply perfect foresight simula-

tions. At higher orders, Dynare computes average IRFs using Monte Carlo simulation,

while DynareOBC uses the closed-form covariance matrices due to the pruning algorithm

so computes average IRFs without repeated samples. In the presence of OBCs, Dynare-

OBC will compute IRFs, adding the news shocks to impose the constraint. This is as if

agents thought the expected sequence of news shocks were known with certainty, even

if future shocks were to cause the constraint to be violated and different news shocks to

materialize.

With cubature, DynareOBC integrates out the effects of future shocks on whether the

model is at the bound in future, but it does not integrate out the effect of current

uncertainty on the bound. This means that while the base path takes into account current

uncertainty, current uncertainty is ignored when calculating the expected news shocks.

DynareOBC offers an improvement with a Monte Carlo simulation that provides a true

average given the behavioural approximation. Combining with cubature to calculate

agent expectations will provide IRFs of very high accuracy, but at some cost in speed.

7 Using DynareOBC to solve models with OBCs

The algorithms are designed to be easily implemented into Dynare. The OBC tool kit,

DynareOBC, needs to be downloaded and added to the MATLAB path. The tool kit is

available from:

https://github.com/tholden/dynareOBC

The recommended download process is as follows:

1. Download and install GitHub Desktop, from https://desktop.github.com/.

2. Click on the “Clone or download” button on the DynareOBC website.

3. Click “Open in desktop.”

This method allows the user to view change history and contribute fixes. The alter-

native method is to download a DynareOBC release in a zip file either from https:

//github.com/tholden/dynareOBC/releases or by clicking “Download ZIP” instead of
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“Open in desktop” in the steps. Once downloaded, the root DynareOBC folder, contain-

ing dynareOBC.m, needs to be added to the user’s MATLAB path.

The user can read information on the tool kit by typing dynareOBC into the MATLAB

command window. The first step is to test the Dynare installation by typing the following:

» dynareOBC testsolvers

This will attempt to solve a number of computational problems and check whether the

required solvers are working correctly.

7.1 The basics of DynareOBC usage

The user simply has to write the bounded variable in the .mod file—as we have above.

For example, in our borrowing constraints model, we enter the constraint as we did when

using the perfect foresight solver:

1 0 = min(mu,b−b_limit);

and use the standard stoch_simul() command. The model is then run from the MAT-

LAB command window with the command dynareOBC [FILENAME].mod [OPTIONS]. Rather

than running Dynare with the .mod file as input, MATLAB runs DynareOBC, which

solves the model using Dynare but searches for non-differentiable functions and performs

the necessary steps in the algorithm to include the inequality constraint. Note that not

all stoch_simul options are supported by DynareOBC, and currently no warning will be

generated if unsupported options are used. Details are found by typing dynareOBC into

the command window and hitting enter.

To solve the borrowing constraints model, the user can try typing

» dynareOBC soe_borrowing_constraint shockscale=−2

from the command window when in the Model 1/news-shocks/ directory of the ac-

companying code.18 This will try to simulate the model without using cubature. If the

user chooses stoch_simul(irf=40) in the .mod file, IRFs will be computed, and if, for
18Available at https://github.com/jonswarbrick/OBC_example_code.
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Chart 6: Impulse response functions following technology shock using news shock perfect fore-
sight solver
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Note: The red line is the model with borrowing constraint, the black line is a model with unconstrained

borrowing, and the blue line is the borrowing constraints model solved using projection methods. Plots

show level deviation from the ergodic mean.

example, they also include periods=1000, then the model will use the extended path type

method to simulate the model over 1,000 periods. The option shockscale=−2 scales the

technology shock by a factor of -2 but does not affect the solution or simulation. Note

that when the user lists options after the model file names that have ‘=’, the user must

make sure to not include spaces around the equal sign. The options are not case sensitive.

After running the code above, the user will see the following error: Impossible problem

encountered. Try increasing TimeToEscapeBounds, or reducing the magnitude of shocks.

This error occurs when there is definitely no solution to the bounds problem. This could

mean there is no solution in general, which contrasts with other methods discussed,

where the failure to converge to a solution might simply reflect a failure of the algorithm.

However, in this case, it is because there is no solution in which b is again unconstrained

within horizon T . This can be fixed by entering the following:

» dynareOBC soe_borrowing_constraint shockscale=−2
timetoescapebounds=40

Plots are shown in Chart 6. The results are virtually identical to those using Dynare’s

built-in perfect foresight solver.

Users will notice that when calling DynareOBC, Dynare is called three times and prints

output similar to the screen. Diagnostics about the existence and uniqueness of the

solution will appear below this. (For further technical detail on these conditions, see
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Holden (2019).) In addition to the oo_. and M_. structures, DynareOBC stores results

and data in a structure, dynareOBC_.. For instance, the IRFs without the bounds are

stored in dynareOBC_.IRFsWithoutBounds, and the M matrix is stored in dynareOBC_.

MMatrix.

As discussed above, several integration techniques are available to evaluate future uncer-

tainty. To use the Genz and Keister (1996) method with a maximum degree 7 polynomial,

the user can enter the following command:

» dynareOBC soe_borrowing_constraint shockscale=−2
timetoescapebounds=40 GaussianCubatureDegree=7

Changing the integer to something less than or equal to 51 will set the maximum degree

of integration. The periods of uncertainty given by S in the description above is 16

by default and is set using PeriodsOfUncertainty=16. Another option that might be

useful is CubatureSmoothing=0.1; since the Genz and Keister (1996) rules sometimes

oscillate from too high to too low as the degree increases, this option can be used to

smooth the results of adjacent degrees by setting to a float in the unit interval. To

speed up simulation, DynareOBC will not integrate to the full degree if adjacent rules

are sufficiently close; the choice of CubatureTolerance defines sufficiently close. Further

options to improve computational times of cubature include CubaturePruningCutOff

=0.01, where the number is a float on the unit interval. Eigenvalues of the covariance

matrix of the distribution from which we integrate that are below this number times

the maximum eigenvalue are pruned to zero, in order to increase integration speed. The

maximum dimension over which to integrate is set using MaxCubatureDimension=128,

where the number is an integer. If the algorithm needs to integrate over a larger space,

it will keep only the largest eigenvalues of the covariance matrix, “pruning” all remaining

to zero. This option sets the maximum number of eigenvalues to keep. To use the degree

3 monomial rule, the user can enter the following:

» dynareOBC soe_borrowing_constraint shockscale=−2
timetoescapebounds=40 FastCubature

This tends to give much faster computation speeds and is often of competitive accuracy.

The quasi-Monte Carlo can be invoked by using:
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» dynareOBC soe_borrowing_constraint shockscale=−2
timetoescapebounds=40 QuasiMonteCarloLevel=8

where QuasiMonteCarloLevel is the parameter l from the description where a Sobol

sequence with 21+l − 1 points is used.

Finally, as mentioned at the end of the previous section, although using cubature captures

the effect of future uncertainty of the constraint, it misses current uncertainty. To improve

on this, Monte Carlo simulation can be performed to compute generalized IRFs (GIRFs)

and capture the average effect of news shocks on the current period, which should have

important level effects on the IRFs.19 To compute GIRFs, the user invokes the option

SlowIRFs. The standard Dynare option replic=50 sets the number of draws, as it does

with normal Dynare. Ideally, to capture the precautionary effects of the bounds, the

user should invoke Monte Carlo simulation with cubature. In practice, I find that Monte

Carlo on its own seems to deliver very good accuracy with appealing computation times.

All DynareOBC options are printed to screen when dynareOBC is entered in the command

window with no model file or other argument listed.

Chart 7 shows IRFs from the borrowing constraints model, comparing across the Dynare-

OBC integration options and the projection method solution. All solutions with cubature

improve on the shape but miss the magnitude of the response. This result is perhaps

due to the level around which we solve IRFs. Chart 8 shows IRFs solved using only

quasi-Monte Carlo integration, using both this and Monte Carlo, and using only Monte

Carlo together with those solved with the projection method. The result is impressive.

When Monte Carlo simulation is used, DynareOBC produces IRFs that almost exactly

match those solved using projection methods.

As well as computing IRFs, the extended path method can be used to simulate the model

over a large number of periods to evaluate simulated moments and cross-correlations.

Perhaps this is something the user can attempt: to compare simulated moments with

and without integration and across different integration methods. Without integrating

over future uncertainty, the simulation will be similar to that offered by the extended
19Note that at first order without the bound, Monte Carlo is not required, as the effects of shocks are

symmetric and independent of shock size and the current state. This is no longer true at higher orders of

approximation, and so Monte Carlo simulation is required to compute generalized IRFs with or without

the bound.
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Chart 7: Comparison of impulse response to a technology shock in the borrowing constraints
model using different solution methods
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Note: The blue line is projection method and the remaining news shocks method; the black line is

perfect foresight; the red line is a fast degree 3 monomial; the magenta line is the Genz and Keister

(1996) cubature rule; and the green line is quasi–Monte Carlo.

Chart 8: Comparison of impulse response to a technology shock in the borrowing constraints
model using different solution methods
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Note: The blue line is projection method and the remaining news shocks method; the black line is

quasi-Monte Carlo (QMC); the red line is QMC and Monte Carlo; and the green line is just Monte

Carlo.
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path at order zero. As discussed above and in Holden (2016), the DynareOBC simulation

without integration notably improves the accuracy and speed over the existing extended

path method in Dynare.

7.2 Determinacy and multiple equilibria in the NK model with a ZLB

Another consideration is that a unique solution to the LCP in equation (33)—giving

a path for the news shocks—can only be found if the "M" matrix exhibits a number

of properties (see Holden 2019). Indeed, these conditions are often not satisfied. In

this case, there could be multiple equilibria consistent with the true RE solution to the

model. To gain some intuition, suppose that the expectation in one quarter of the ZLB

binding in the next is deflationary; then this expectation could lead to a self-fulfilling

ZLB episode as the interest rate is cut in response. So, as with sunspot shocks, there

is the possibility of non-fundamental shifts in expectations. When there are multiple

solutions, DynareOBC always chooses the one that minimizes a linear combination of

the L1-norm of the shadow-shocks and the L1-norm of the return path. As mentioned

earlier, the LCP is expressed as a mixed integer linear programming (MILP) problem.

The specific form the MILP takes is as follows: given ω̃ > 0, q ∈ RT and M ∈ RT×T , we
find α ∈ R, ŷ ∈ RT and z ∈ {0, 1}T that satisfy

0 ≤ α (37)

0 ≤ ŷ ≤ z (38)

0 ≤ αq +Mŷ ≤ ω̃ (1T×1 − z) . (39)

The solution we are interested in, if it exists, will be y = ŷ
α . Given this form of problem,

ω̃ controls the linear combination that is minimized to choose a solution. As ω̃ → 0,

the solution given will be one that minimizes ‖q +My‖∞, while as ω̃ →∞, the solution

given will be one that minimizes ‖y‖∞. DynareOBC sets ω̃ = ω ‖q‖∞, where the modeller

chooses ω with the option omega=10000, for example. As a rule of thumb, choosing a

high value such as 10,000 will find a solution minimizing time at the bound, whereas a

low value, 0.0001 for instance, will select a solution with a longer time at the bound. To

gain some intuition, let us suppose we have a model with a shock causing a ZLB to bind.

If we believe the bound will be escaped after two periods, the linear complementarity
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problem is to find a solution,

y =

 y1

y2

 , (40)

that satisfies

y1 , y2 ≥ 0 (41)

(q1 +M11y1 +M12y2) , (q2 +M21y1 +M22y2) ≥ 0 (42)

y1 (q1 +M11y1 +M12y2) = y2 (q2 +M21y1 +M22y2) = 0. (43)

These impose that the news shocks must be positive (41), that the bound is not violated

(42) and that the constraint must be binding when there are non-zero news shocks (43).

These conditions imply two quadratics, so up to four solutions:

1. y1 = y2 = 0. This solution exists if q1 ≥ 0 and q2 ≥ 0.

2. y1 = − q1
M11

, y2 = 0. This solution exists if q1
M11
≤ 0 and M11q2 ≥M21q1.

3. y1 = 0, y2 = − q2
M22

. This solution exists if q2
M22
≤ 0 and M22q1 ≥M12q2.

4. y1 = M12q2−M22q1
M11M22−M12M21

, y2 = M21q1−M11q2
M11M22−M12M21

. This solution exists if M11M22 −
M12M21 ≤ 0.

That is, there are multiple solutions for at least some combination of q1, q2 ≥ 0 if

1. M11,M21 ≤ 0, or

2. M22,M12 ≤ 0, or

3. M11M22 −M12M21 ≤ 0.

In the NK model, the first of these occurs if a positive monetary policy shock, or news of

one, can cause interest rates to fall. Perhaps news of a shock occurring in the subsequent

period might be expected to cause a cut today, but it is also possible that a positive shock

today can cause a fall in rates depending on the coefficients in the Taylor rule. Suppose

the rule reacts strongly to deviations of output and inflation; then the response of the

economy to a monetary shock might cause an even larger policy reaction in the opposite

direction. Absent the ZLB, there is a well-discussed literature on the determinacy in the

NK model with inflation targeting; the so-called Taylor Principle implies that, providing

the nominal interest rate is adjusted more than one-for-one with inflation, the model

38



Chart 9: Comparison of impulse response to a Euler equation shock in the Brendon et al. (2020)
NK model
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Note: The top panel is with omega = 10,000, bottom with omega = 0.0001. The black line is without a

ZLB, and the red line is the ZLB model.

has a unique solution (see Taylor 1999; Woodford 2001). Even when the “bad” long-run

equilibrium is ruled out, Holden (2019) shows that in the presence of the ZLB there is

no unique perfect foresight path regardless of whether the Taylor Principle is satisfied.

Holden finds that replacing inflation targeting with price-level targeting restores determi-

nacy. As an example, Chart 9 shows impulse responses to a shock in the Euler equation

using the NK model from Brendon et al. (2020). Without the ZLB, the shock causes a

rise in economic activity and so an interest rate rise in response. With the ZLB present,

this is still a possible equilibrium path; but just the presence of the constraint opens up

the possibility of a second path in which economic activity falls sharply and interest rates

drop to the ZLB.

There are further options to help select between equilibria. These include FullHorizon,

ReverseSearch and SkipFirstSolutions=INTEGER. By default, DynareOBC searches

for a solution that minimizes time at the bound; it does so by trying to find a solution

by iterating through the exact length of time at the bound, T ∗, first trying T ∗ = 1,

then T ∗ = 2, T ∗ = 3 and so on. Under this default behaviour, solutions are typically

found with a minimal time spent at the bound, regardless of the choice of omega. When
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Chart 10: Comparison of impulse response to a discount factor shock in the Smets and Wouters
(2003) NK model
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Note: The black line is first solution found; the red line is the solution found when SkipFirstSolutions=1

is used.

ReverseSearch is invoked, DynareOBC instead begins from the maximum T ∗ defined in

TimeToEscapeBounds, i.e., T ∗ = T , then T ∗ = T − 1 and so on. With this option, we

are more likely to find solutions where the constraint binds for a longer period. The full

horizon option searches for a solution for any T ∗ ∈ (0, T̄ ). The SkipFirstSolutions=

INTEGER ignores the first INTEGER solutions it finds. If fewer solutions are found than the

number requested, then the last found will be returned. This last option is demonstrated

first in Chart 10, which shows the two solutions found for IRFs to a shock to the discount

factor using the Smets and Wouters (2003) model. In the second, the economy spends a

little longer at the ZLB but exhibits much larger drops in aggregate demand. Chart 11

shows the response to a large combination of shocks using the Smets and Wouters (2007)

version. In the first, the economy spends just a couple of periods at the ZLB, whereas

in the second solution found, conditional on exactly the same fundamental shocks, the

economy spends over three years at the bound and there is a very deep fall in economic

activity and inflation.

It is not clear that there is a general rule on placing probabilities on the occurrence of

particular equilibrium paths. I would argue that ignoring the presence of alternative

equilibrium paths is the least desirable option, but particular paths could also represent

unlikely outcomes. For example, consider an NK model that goes to the ZLB for a couple

of periods following a shock. Now suppose that an alternative model-consistent equilib-

rium path leaves the economy at the bound for 100 periods. One might rule this out on

the basis that it would represent significant coordination failure. Some forward guidance
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Chart 11: Comparison of impulse response to a combination of shocks in the Smets and Wouters
(2007) NK model
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Note: The black line is the first solution found; the red line is the solution found when

SkipFirstSolutions=1 is used.

policy or another alternative monetary policy action could shift inflation expectations

and move the economy from the ZLB. In any case, checking for multiple equilibria is a

model-by-model issue that warrants consideration.

8 Conclusion

To briefly conclude, I have reviewed several common ways to solve models featuring

an occasionally binding constraint. While I have presented projection methods as a

benchmark approach, I have also outlined alternative approaches for use with larger

models when global solution methods are not available. MATLAB code for all methods

is available at https://github.com/jonswarbrick/OBC_example_code.

Using a simple borrowing constraints model, I find that the news shock approach avail-

able as a Dynare tool kit, DynareOBC, performs very well relative to the alternatives.

Furthermore, this approach has additional appeal: it can confirm whether a solution to

a particular problem exists or not, and it allows the user to carefully analyze multiple

equilibria and choose between equilibrium paths when there are more than one.
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