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Abstract 
This paper uses reinforcement learning (RL) to approximate the policy rules of banks 
participating in a high-value payments system. The objective of the agents is to learn a policy 
function for the choice of amount of liquidity provided to the system at the beginning of the 
day. Individual choices have complex strategic effects precluding a closed form solution of the 
optimal policy, except in simple cases. We show that in a simplified two-agent setting, agents 
using reinforcement learning do learn the optimal policy that minimizes the cost of processing 
their individual payments. We also show that in more complex settings, both agents learn to 
reduce their liquidity costs. Our results show the applicability of RL to estimate best-response 
functions in real-world strategic games. 

Bank topics: Payment clearing and settlement systems; Digital currencies and fintech; Financial 
system regulation and policies; Financial institutions 
JEL codes: A12, C7, D83, E42, E58 



1 Introduction

High-value payments systems are used to settle transactions between large financial institutions
and are considered part of the core national financial infrastructure.1 Most high-value payments
systems settle in real time and require financial institutions to fund their payments with costly
central bank liquidity. Fortunately for banks, they do not have to fund the entire aggregate
value of their daily payments. Rather, they can, in part, count on liquidity from incoming
payments (McAndrews and Rajan 2000).

Banks make hundreds of payments to each other throughout the day. While banks make
some payments related to their own activity, the vast majority of the payments they make
reflect underlying customer requests, which are determined from real economic activity. Banks
take the payment requests they receive from customers as exogenous. Payment requests from
customers must be processed on the day they are received, but for most payments banks have
flexibility in terms of when, during the day, they process payment requests.2

Each bank starts the day with an initial liquidity allocation that it arranges with the
central bank.3 As payments come in and out, the bank’s initial liquidity balance fluctuates. If
a bank’s liquidity balance falls to zero, it cannot make any payments until new liquidity comes
in.4 This bank suffers a delay cost that is proportional to the period of delay. The delay costs
represents customer dissatisfaction with the lack of timely processing of their requests. In
addition, if at the end of the day the bank does not have sufficient liquidity to complete its
payments, it must borrow additional liquidity from the central bank. The cost of borrowing at
the end of day is greater than the cost of providing liquidity at the beginning of the day.

A key decision that banks make in these systems is the provision of initial liquidity. This
is a strategic decision since the timing of the arrival of incoming liquidity from others depends
on how much initial liquidity they post. If others post more liquidity, which means incoming
payments are likely to arrive sooner, then a bank can make more of its own payments with
recycled liquidity and thus require less of its own liquidity (Bech and Garratt 2003).

The initial liquidity decision of banks is complex. In a system with multiple banks and
multiple periods in which payment requests arrive, researchers have been unable to solve
for the equilibrium initial liquidity profile. This raises two interesting questions. First, if
equilibrium strategies are difficult to determine, what do banks actually do? And second, can
advanced machine learning techniques find equilibrium solutions and hence potentially be a
valuable guide for practitioners and infrastructure providers?

1To get a sense of their importance, in Canada the Large Value Transfer System (LVTS) processes payment
values equivalent to annual GDP every five days.

2An exception are CLS payments, which must be processed immediately upon request.
3Most large value payments systems around the world fit this description, although systems differ in terms of

how this is done. An exception is Fedwire Funds in the United States, which allows uncollateralized overdrafts.
4Ignoring overdraft possibilities or posting new collateral.
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There is a burgeoning economics literature on agent-based modelling of actors in payments
systems, which we discuss below, that is attempting to answer the first question. This paper
focuses largely on the second question. That is, as an initial investigation into the potential
application of machine learning to payments systems, we seek to explore the extent to which
these techniques can deliver solutions.

Estimating policy functions in payments system is important for two additional reasons.
First, looking down the road to a time when system participants may be using these algorithms,
knowledge of these functions could help regulators achieve their mandates of ensuring safety
and efficiency of these systems. For example, regulators could assess the liquidity and risk
implications to the system should banks themselves attempt to use these machine learning
algorithms for their liquidity management.5 Second, understanding equilibrium behaviour of
participants through these functions can be helpful to design new payments systems. This is
particularly relevant given the worldwide trend to modernize core national payments systems.6

We estimate the best-response functions for liquidity provision in a stylized large value
transfer system using machine learning techniques. In particular, we apply an approach
called reinforcement learning (RL). RL is a computational approach to automate learning of
sequential decision-making. RL emphasizes the learning of an agent by trial and error through
the association of actions to states that maximize certain objectives in the form of cumulative
rewards (Sutton and Barto 2018). RL is particularly suitable for the problem of estimating
the policy functions of the participants in a payments system. In the case of the payments
system, the experience provided by trial and error should allow agents to learn to process
payments at the lowest possible cost. RL allows a very broad specification of the learning
environment, which could be stochastic, have a large state space, include more than one agent
learning simultaneously, etc.

We start off with a two-period model with known customer payment requests. We then
consider a twelve-period model in which payment requests are drawn from payment profiles
estimated from the Canadian Large Value Transfer System (LVTS) data. In either case, the RL
agent does not know if the payment demand profile is constant or drawn from a distribution, or
if the distribution changes over time. Rather, the RL agent learns about the environment as it
experiments with liquidity choices in an attempt to minimize its cost of processing payments.

The twelve-period model with randomly drawn payment requests is more realistic. We
consider the two-period fixed-payment model because we can solve it analytically. We derive

5Some papers are already examining the policy implications of RL agents trained to solve problems like
algorithmic pricing. See Calvano et al. (2020).

6Australia and Denmark launched new wholesale systems in 2017, Canada is expected to launch its own in
2021, and other countries have announced new systems like FedNow in the United States. Traditionally, the
process for designing a new high-value payments system relies on the empirical evaluation of different design
options through simulation of the outcomes of a potential system using historical data as inputs (Rivadeneyra
and Zhang 2020).
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the best-response functions of each bank and compute the Nash equilibrium. This provides a
target solution for the RL estimation and allows us to determine unequivocally whether or not
the RL procedure works. We cannot solve the twelve-period model analytically, however, we
can solve it using brute-force search, which again provides the target outcomes.

We demonstrate that RL techniques can be used successfully to replicate equilibrium
behaviour. In addition to demonstrating the usefulness of machine learning in guiding
participant behaviour, we observe quantitatively the importance of the relative size of the delay
and initial liquidity costs for their initial liquidity choices. Having estimates of the sensitivity
of the agent’s best responses across different levels of delay cost is important because delay
cost is unobservable to researchers and policymakers.

We proceed as follows. Section 2 discusses related literature. In Section 3 we describe
the stylized payments system environment we will use in the training of the RL agents. In
Section 4 we derive the game-theoretical equilibrium to the initial liquidity problem in a
specialized version of the environment. We will use these results to benchmark to the results
of the training. Section 5 discusses the RL algorithm and the multi-agent learning setup. In
Section 6 we turn to the training of the initial liquidity problem. We examine two versions of
this problem: one with two intraday periods and one with twelve intraday periods. Section 7
provides some concluding remarks. Several appendices show the training for the problem of
the intraday timing of payments, the pseudocodes and robustness exercises.

2 Related Literature

As an economics paper using machine learning techniques, we are related to the expanding
literature exploring the connections between these two fields. Calvano et al. (2020) study
the implications of RL agents trained to solve important economic problems. They examine
the likelihood that the pricing algorithms of multiple sellers trained with RL could result in
collusion without the use of any coordination, a potentially challenging problem for competition
policy. Igami (2020) examines the similarities and differences between structural estimation (as
understood in econometrics) and dynamic programming and RL in the context of two-player,
perfect-information, zero-sum games like chess and Go. The game we examine in this paper is
more complex, most importantly because it’s a game of imperfect information that can yield
cooperative or non-cooperative solutions.

In terms of the application to payments systems, our work is related to the empirical
work by Galbiati and Soramäki (2011), who examine the initial liquidity choice problem
and simulate an agent-based version of that game. Similarly, Arciero et al. (2008) used an
agent-based model of a payments system to study interbank flows of liquidity and propagation
of systemic risk under critical conditions. These models are useful to understand the intuition
of the behaviour but limited insofar as agent-based models make strong assumptions about
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the shape of the objective functions. In our case, the only assumption we need to use RL is
that the agent seeks to minimize the costs of processing payments.

Our work is also related to the applied game theory literature. Previous work is the
theoretical model of Bech and Garratt (2003), which solved for the equilibrium of the intraday
liquidity game. In that paper, banks that receive a customer payment request make a strategic
decision whether to provide liquidity in the morning period or wait until the afternoon, hoping
that they can then fund this payment using incoming liquidity. Waiting is costly, however,
since, as we assume in this paper, there is a customer dissatisfaction cost associated with
delaying payments. The initial liquidity provision decision agents make in our paper is closely
related to the decision made by banks in Bech and Garratt (2003). A key difference is that
our agents make this decision before observing any of the customer payment requests. We also
tackle more complicated payment request scenarios.

More generally, we are related to the game theory literature exploring how equilibria of
games emerge through various methods like reinforcement learning (Roth and Erev 1995) or
others (Fudenberg and Levine 2016). Our results, showing the convergence of the trained
policy functions to the optimal solutions for the special cases for which we can solve them,
confirm the convergence conditions to a unique equilibrium derived by Funai (2019).

3 The Payments System Environment

Our environment is a real-time gross settlement (RTGS) payments system. To settle transac-
tions, participants in the system require liquidity provided by the central bank. Transactions
are settled in real time without netting, which means that, for example, two offsetting positions
between two banks cannot be cancelled out even if they were submitted to the system in the
same instant and for the same amount. Banks participating in the system use it to satisfy the
exogenous and random payment demands they receive throughout the day from their clients.
Banks can source the liquidity required to process the payments from collateral they post at
the central bank, which is costly due to its opportunity cost, or from incoming payments from
other banks, which is not as costly. This creates an incentive to delay processing their own
payments to wait for incoming payments. On the other hand, delaying payments is costly to
banks if they don’t service their clients in a timely fashion. Therefore, the bank’s problem is
to choose a policy that balances the cost of initial liquidity and the cost of delay by choosing
the level of initial liquidity and the timing of their own payments, all of which conditional on
the other bank’s own policies. At the end of the day, banks are required to satisfy all payment
demands. If they don’t have enough liquidity, they can borrow from the central bank at a cost
higher than the cost of collateral at the beginning of the day.

In our environment, each day is an episode e that is divided into intraday periods t =

0, 1, 2, ..., T . At the beginning of the day t = 0, the agent is faced with making the decision to
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Table 1: Timeline, decisions of the agent and constraints of the environment

Beginning of the day, t = 0

Available collateral: B

Initial liquidity decision: x0 ∈ [0, 1]

Liquidity allocation: `0 = x0 · B

Cost of initial liquidity: rc · `0

Intraday periods, t = 1, ..., T − 1

Payment demand: Pt

Decision to send: xt ∈ [0, 1]

Liquidity constraint: Ptxt ≤ `t−1

Agent receives incoming payments: Rt

Evolution of liquidity: `t = `t−1 − Ptxt +Rt

Cost of delay: rd · Pt(1− xt)

End-of-day borrowing, t = T

Borrowing from central bank (for remaining payments): `cb

Cost of end-of-day borrowing: rb · `cb

allocate share x0 ∈ [0, 1] of collateral B for its initial liquidity, `0 = x0 · B. Subsequently, at
each intraday period t = 1, ..., T − 1 the agent receives payment demands Pt and has to choose
the share xt ∈ [0, 1] of requested payments to send in that intraday period. The agent’s choice
is constrained by the available liquidity in that intraday period so that Ptxt ≤ `t−1. At the
end of each intraday period the agent receives payments from other agents, which we denote
by Rt. Then the available liquidity evolves according to: `t = `t−1 − Ptxt +Rt.7

The associated cost with the initial liquidity choice is rc · `0, and the cost of delay is given
by rd · Pt(1 − xt). If the agent does not have enough liquidity at T − 1 to satisfy all the
remaining payment demands, the agent can borrow from the central bank at rate rb, which
is more expensive than the morning liquidity cost rc. Table 1 summarizes the timeline and
decisions of the agent.

Learning in the high-value payments system is appropriately modelled by the RL approach.
RL relies on the assumption that an agent learns from observing the result of its actions in
the form of explicit rewards given by the environment. By repeatedly interacting with the
environment, the agent can learn to associate state-action pairs that bring high rewards.

7For ease of notation, Pt includes any payment demand that was not sent in the previous intraday period
Pt−1 · (1− xt−1).
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Our model of the environment abstracts away from two important dimensions of payments
systems: the indivisibility of payments and the interbank market for liquidity. Typically, due
to legal restrictions, a payment request can only be fulfilled by the bank in its entirety or not
at all. In other words, the payment amount cannot be fulfilled by splitting the payment into
smaller amounts. In our learning setup, however, agents are presented with continuous payment
demands at each intraday period and are assumed to pay the largest fraction xt ∈ [0, 1] they
can afford given available liquidity.8 Divisible payments may be a reasonable approximation of
reality when aggregate payment requests are large relative to the size of individual payments.
The second aspect we do not consider in this paper is that banks participating in actual
payments systems can typically source liquidity in an interbank market, and not only from the
central bank or from incoming payments. Including these two dimensions of the environment
are avenues of future research.

4 The Initial Liquidity Game

The initial liquidity game is a one-shot game in which agents i = {A,B} simultaneously choose
their allocation of initial liquidity, `0, to minimize the cost of processing all payments. We
present the case where payments are known and the day is composed of two periods, T = 2,
however our empirical analysis also includes the case of unknown, randomly drawn payments
with T = 12. Let the total payment demand to agent i be the sum of each intraday period
payment demand:

P i = P i1 + P i2.

We assume that both agents behave optimally with respect to the intraday policy conditional
on having available liquidity, i.e., xt = 1, so that the remaining value of payments to be sent is:

max(Pt − `t−1, 0) t = 1, 2.

Then, the total cost in terms of the initial liquidity choice `0 is:

R(`0) = rc`0 + max(P1 − `0, 0) · rd + max(P2 + P1 −R1 − `0, 0) · rb (1)

where rc < rd < rb are the per-dollar cost of initial liquidity, delay and end-of-day borrowing,
respectively. Therefore, the first term is the total cost of initial liquidity, the second term is
the cost of delay after period t = 1 and the third term is the cost of borrowing at the end of
the day to send the remaining payments. Note that R1 are the payments received from the

8The assumed decision for agents to pay as much as they can in each intraday period is in fact optimal
given divisible payments. Because payments are assumed to be divisible, banks do not have an incentive to
hold back on making payments during the day as a precautionary move to conserve liquidity for large payments
that might arrive later in the day. In Appendix A we show that our RL agents can learn this simple policy.
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other agent in the first period but only available in the second period. See the definitions in
Table 1.

In general, we have four cases depending on two conditions. The first condition is the
relative size of initial liquidity and the first period payment demand, `0 ≶ P1. This determines
the delay cost in the first period irrespective of the other agent’s choice, as the sent payments
in that period are not available to the agent until the second period. The second condition is
the relative size of the initial liquidity choice and the difference between the total payments
demand and the received payment, `0 ≶ P −R1. The term on the right is the net intraday
payment demand. For each case, the total cost is as follows:

1. `0 > P1 & `0 > P −R1. Initial liquidity is sufficient to cover the first period payment
demand as well as the second period, irrespective of the value of the received payment.
The cost is only the initial liquidity cost:

rc`0.

2. `0 > P1 & `0 < P −R1. Initial liquidity is sufficient to cover the first period payment
demand but not the second period given the value R1 of the received payment. The
total cost is the initial liquidity cost and cost of net borrowing at the end of the day:

(rc − rb)`0 + (P −R1)rb.

3. `0 < P1 & `0 > P − R1. Initial liquidity is short to cover the first period payment
demand but enough for the second period given the R1 of the received payment, which
would be expected to be relatively large in this case. The total cost is the initial liquidity
cost and cost of delaying P1 − `0:

(rc − rd)`0 + P1rd.

4. `0 < P1 & `0 < P − R1. Initial liquidity is short to cover the first period payment
demand and short for the second period given the R1. The total cost is the initial
liquidity cost, cost of delaying P1 − `0 and of borrowing the rest:

(rc − rd − rb)`0 + P1rd + (P −R1)rb.

We make the following assumptions about the behaviour of agents and the environment.
First, agents are risk neutral and will choose their initial liquidity to minimize the total
liquidity cost. Second, we assume that the payment demand profile is common knowledge.
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And third, rc < rb so the cost of end-of-day borrowing is higher than in the morning and there
is no compensation for positive end-of-day balances if, for example, R1 > P .

Definition 1 A pure strategy Nash equilibrium of the initial liquidity game is a pair of initial
liquidity choices (`A0 , `

B
0 ) such that for i = {A,B}

`i0 = arg minR(`i0).

The best-response function for each agent is:

`i = P i1 + max
(
P i2 −min(`−i, P−i1 ), 0

)
(2)

where −i means not i. This is intuitive: since the payment expected to be received is not
available until the second period, the agent should at least allocate enough initial liquidity
to cover the first period payment. Deviating from this strategy would only add delay cost,
which is more costly than the initial liquidity cost. The second term is the net liquidity needed
for the second period payment that is net of the payment received. Since we assume both
agents follow the optimal intraday payment policy (i.e., send as much payments conditional
on already available liquidity), the payment received by i will be the lesser of the first period
payment demand and liquidity choice of agent −i. It is easy to verify that given rc < rd < rb,
there is a unique minimum of the cost function 1. In fact, even if the other agent were to
deviate, say, by choosing `−i0 = 0, agent i would still be better off by choosing `i0 = P i1 + P i2
according to 2. Therefore, under the assumption of the parameter values, there is a unique
Nash equilibrium. Figure 1 illustrates this graphically using a special case where PA1 > 0 for
agent A and PB1 = 0 for B.

The equilibrium of this game provides a benchmark to the machine learning problem
presented later in Section 6. As discussed by Fudenberg and Levine (2016), in game-theoretic
setups of learning, if agents keep track of their frequency of play and the actions of players
converge, they will converge to the Nash equilibrium or the Nash distribution (known as the
quantal response equilibrium) when actions have a degree of randomness.

Noticing the differences in setups between the machine learning environment and the
game-theoretic solution illustrates the power of reinforcement learning algorithms. As is
typical in some setups using the Nash equilibrium concept, players in the game have complete
knowledge of the environment and in particular of the payoffs of the opponent. In our case,
this requires knowing the size of the state space, the payment profiles and the utility function
of the opponent. Consequently, learning has no purpose and does not occur. In contrast, as
we will later show, the reinforcement learning agents do not know the payment profiles nor
the fact that there is another agent or how it behaves. Therefore, results showing that the
reinforcement learning agent achieves the optimal behaviour supports our use of the algorithm.
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Figure 1: Cost function (left) and equilibrium of the game (right). Agent A is in blue and B in red with
PA1 > 0, PB1 = 0 and PB2 > PA1 . Without loss of generality, this example shows that there is a unique minimum
for the total cost for both agents and a unique pure strategy Nash equilibrium.

(a) Cost as a function of initial liquidity choice
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5 RTGS as a Multi-Agent Reinforcement Learning Problem

Reinforcement learning (RL) methods are used for optimizing the behaviour of an agent in an
uncertain environment. The agent improves its behaviour by interacting with the environment
via the selection of actions (from a set of possible actions A) in discrete time steps, and
transitioning between states of the environment (from a set of possible states S). Specifically,
while at state st ∈ S at time step t, the agent selects action at ∈ A; the environment responds
with a new state st+1 ∈ S and a numerical cost rt. The goal of the agent is to discover a
policy π : S → A mapping states to actions such that following this policy will minimize the
cumulative sum of costs incurred. Traditionally, there is a single agent being trained; in our
current work, we train two agents concurrently in the same environment, which results in more
complex learning dynamics. See Appendix B for further technical details.

Figure 2 depicts our learning setup. Two agents in the payments system interact with the
same environment by each making independent action choices. Based on the actions chosen
by each agent, the environment will return a cost to each, as well as a new state. The state
for each agent consists of the current period, the agent’s current liquidity and the payment
demands. Although the same learning algorithm is used for both agents, each agent executes
this algorithm independently and maintains its own policy. Appendix B provides further
details of the learning setup.

Given the multiple complexities involved with the setting just described, we aim to isolate
some of them so as to better explore the learning dynamics and more carefully develop
algorithms for handling the complete, independent multi-agent setting. Our strategy for
training the agents is to separately tackle the initial liquidity choice and the intraday payments
decision. This strategy allows us to verify that our learning algorithm is performing as expected.
The training of the agents proceeds as follows.

For the initial liquidity decision, the agent will be trained while the intraday decision is
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Figure 2: Reinforcement learning in the context of a payments system, where the agents represent separate
banks. Each agent must learn to optimize the choice of initial liquidity as well as the choice of intraday
payments. Each agent maintains its own policy, represented as a neural network (in grey), to make the action
choices (in red), conditioned on the current state (in blue). The environment provides the agents with the cost
(composed of the initial liquidity, delay and end-of-day borrowing costs in green) which they use to improve
their policy.
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fixed to send all payments.9 The optimal initial liquidity policy, given the intraday policy, is
the one that minimizes the cost of processing all payments. Intuitively, when the agent behaves
optimally in its intraday decision, making the initial liquidity choice requires estimating its
own payment demand profile and the payments it expects to receive.

This is akin to the well-known bandit problems (see Sutton and Barto (2018), Chapter
2), with the added complexity that the transition dynamics for each agent is affected by the
learning process of the other agent. Under this lens, this bandit setting allows us to evaluate
the learning process in the independent multi-agent setting without the compounding effects
present when dealing with sequential decision problems.

The learning task is episodic. In our setup a day is divided into multiple intraday periods,
which we take to be one hour each. Each episode starts with the beginning of the payment
cycle and ends at the end of the payment cycle. In the last intraday period, banks are required
to satisfy all payment demands. If they do not have enough liquidity, they will automatically
borrow the shortfall amount from the central bank. The central bank is not strategic and will
always lend the necessary amount at the fixed borrowing cost.

We simplify further by limiting our training to only two agents simultaneously, as shown in
Figure 2. Both agents are transferring payments to each other through the payments system.
The payments demand is exogenous and received throughout the day from their clients. To a
certain extent, training only two agents is not a big limitation in our exercise if, in reality,

9For the intraday payment decision, we know the analytical solution: in order to minimize the intraday cost
of processing payments, the agent must learn to send as much as it can at every intraday period, xt = 1 ∀ t.
In Appendix A we verify that our agents indeed learn this simple policy.
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banks use only one policy function to manage their payments irrespective of which agent they
are sending to and if they do not distinguish from which agent they have received a payment
from. Therefore, a similar training setup would be agents learning a policy to process payment
demands to many other agents as long as the learning agent does not know or use information
specific to the recipient. We plan to investigate more interacting agents in future work.10

Note that the information provided to the agents in the state does not reveal if they are
playing against one or more players. To see this more clearly, imagine that while we train
agent A, agent B follows a policy that does not depend on the state that agent A observes;
then, after training, agent A should infer that the payments it receives do not depend on its
own choices or the state. In this non-strategic environment, the learning task of agent A would
be to estimate the payments demand from its clients and derive the policy that minimizes its
costs. On the other hand, when training the agents simultaneously, if the choices of agent A
affect the available liquidity of agent B, then agent A should infer that the environment is
more complicated than simply estimating its own payment demand.

6 Initial Liquidity Policy Estimation

6.1 Learning setup

The learning setup for the initial liquidity policy is as follows:

• Number of intraday periods: We will consider two scenarios, one in which each
episode is divided into only two intraday periods, T = 2, and one in which the episode is
divided into twelve intraday periods, T = 12. The reason for testing the first scenario
is that for this case we have the analytical solution to the policy and therefore we can
verify if the learning algorithm is performing as expected.

• Agents: Agents A and B are trained simultaneously over multiple episodes (depending
on the exercise).

• Payments demand: The payments demand profile is drawn from the LVTS data
shown in Figure 3.

• Intraday payment policy: In the current environment there is no benefit in delaying
payments, therefore the optimal intraday policy is to always send all payments. Therefore,
both agents’ intraday policy is to send all the payments if possible or the entire value of

10In the payments system environment, a multi-agent setup presents particular difficulties for the training
exercise because the payment decisions of every agent affect the available liquidity of all agents. Furthermore,
for each agent we would need to train an intraday payment policy function for individually deciding which
payments to send to each of the other agents.

12



liquidity in that intraday period, i.e., if Pt < `t−1 send xt = 1, otherwise they choose xt
such that payments sent are equal to `t−1.

• State space: In every episode e, the agent observes the entire vector of intraday payment
demands.

• Action space: The action space is the liquidity choice as the fraction x0 of the available
collateral B. We discretize the unit interval for x0 into 21 evenly-spaced fractions:
{0, 0.05, 0.1, 0.15, ..., 1}. Recall also that `0 = x0 · B.

• Cost: The total processing cost per episode is:

R = rc`0 +
T−1∑
t=1

Pt(1− xt) · rd + rb`cb,

where rc is the cost of initial liquidity, rd is the intraday delay cost and rb is the end-of-day
borrowing cost. The last two terms are included because the agent might incur delay
costs and a borrowing cost if its chosen initial liquidity was not sufficient to cover all
payments. Note that in the last period, T , the agent borrows an amount equal to its
shortage to satisfy that period’s payments demand. Therefore, no delay cost occurs in
the last period.

6.2 Data and parameters

As payment demands we use transactions observed between two actual participants in the
Canadian Large Value Transfer System (LVTS).11 Each episode is a daily LVTS payments
cycle that runs, typically, from 6 a.m. to 6 p.m. We divide the episodes into twelve hourly
periods. We sum the value of transactions between these two participants for each hour; to
standardize them, we divide the payment values by the collateral each agent pledged to the
system on each particular day. We selected a sample of 380 business days between January
02, 2018, and August 30, 2019. The resulting payment demands are displayed in Figure 3.
Agent B’s average payment demands and range of payment values are higher than that of
agent A’s. Agent B’s demand peaks in the earlier part of the day before slowing down in the
last few periods. To perform the model training and evaluation, we randomly split the sample,
reserving 90% for training and 10% for testing.

For the initial liquidity decision problem, we consider two scenarios. The first scenario
is a problem with only two intraday periods, for which we have the analytical solution of
the optimal policy. The second scenario is a problem with twelve intraday periods. For both

11We are not permitted to reveal the identities of the participants. However, these two participants were
chosen because they are similar in terms of the value they process in the LVTS. For robustness, in Appendix
F.5 we show two other pairs of participants.
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Figure 3: Data used for training and testing, showing the hourly sum of payment flows between two
participants of the Canadian LVTS. The left plot shows the hourly averages and standard deviation over the
sample period. The right plot is the cumulative payments value. Sample is between January 02, 2018, and
August 30, 2019. Payments are standardized daily as a percentage of the collateral pledged to the LVTS system
in each given day.
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scenarios we use the following costs: for the initial liquidity cost rc = 0.1, for the per-period
delay cost rd = 0.2 and for the end-of-day borrowing cost rb = 0.4. Compared to the initial
liquidity cost, the high end-of-day cost should discourage agents from borrowing at the end of
the day instead of allocating sufficient liquidity at the beginning of the day.

The end-of-day borrowing cost (per dollar) is chosen to be the largest of the three because
the design of wholesale payments systems encourages participants to provide liquidity early in
the day instead of borrowing from the central bank. Consistent with this design, the data
show that banks rarely borrow from the central bank. The borrowing rate from the central
bank is 25 basis points above the interbank market for overnight loans, which is policy rate of
the other borrowing alternative for banks short of liquidity. At the end of the day, these loans
are typically priced at the policy rate.12

Furthermore, we observe in the LVTS data that banks allocate substantial initial liquidity
to the system but not enough to cover all their payment demands alone. This indicates
that, while the cost of liquidity in the morning is smaller than the cost of borrowing in the
evening, liquidity in the morning is still costly. One potential source of this cost are collateral
reallocation costs: once the collateral has been pledged to the Bank of Canada to collateralize
their payments in the system, changing this portfolio of securities is cumbersome (Bulusu
and Guérin 2019). This cost is smaller than the 25 basis points band between the target rate
and the borrowing cost of the bank. Note that this cost is not the opportunity cost of the
collateral itself as banks still receive the coupon proceeds from the pledged securities.

12The rules governing a payments system are explicitly stated in legal documentation and to a large
extent allow banks to estimate the cost of their payments operations, namely the cost of initial liquidity, any
compensation to their clients from delaying their payments and any end-of-day borrowing from the central
bank to settle all their payment obligations at the end of the day.
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Choosing the per-period delay cost is more difficult because it depends on the contractual
arrangements that banks have with their clients, which we do not observe.13 The theoretical
literature has analyzed various equilibria in which the delay cost can be higher or lower than
both the initial liquidity or the end-of-day liquidity (Bech and Garratt 2003). Therefore, there
is no a priori reason to choose one or the other. The empirical literature has not estimated
the relative magnitude of the delay cost. Therefore, as our baseline we choose a delay cost
in between the initial liquidity cost and the end-of-day cost, rc < rd < rb. For robustness,
Appendix F.4 presents alternative cases.

For training, we utilize the REINFORCE algorithm (Williams 1992) with a RL setup
and implement it in Python using TensorFlow (Abadi et al. 2016). Each agent’s policy
function π is approximated using a feed-forward neural network. Additional details on the
REINFORCE algorithm are discussed in Appendix A, and further details on the learning
setup, implementation and model parameters selection are discussed in Appendix D.

For each training episode, we simultaneously generate multiple trajectories using each
agent’s current policy, where each trajectory is a complete path of state, action and reward.
Subsequently, using the experience gathered through multiple trajectories, we update the
policy function at the end of each episode. This way, we train the agents over multiple episodes
and monitor each agent’s learning progress with the average cost over the training episodes.
To compute the confidence intervals of the payment decisions at each intraday period, we
simultaneously perform multiple independent training exercises.

6.3 Results of the training with two intraday periods, T = 2

In this scenario, to help in the illustration of the intuition, we use dummy payment demands
that have the same support as the discretized action space: PA = [0, 0.15], PB = [0.15, 0.05].
Each entry in the vector represents the demand in each intraday period. In this case the cost
function simplifies to R = rc`0 +P1(1−x1)rd + rb`cb for both the agents because in the second
period all payment demands have to be satisfied, possibly by borrowing at cost rb.

Notice that agent B has no incoming payment from A in the first period. Therefore, to
avoid delay and borrowing costs (recall rc < rd < rb), B has to allocate initial liquidity equal
to its total payment demands. If agent B performs the optimal action, then agent A will have
an incoming payment in the first period, which is equal to its payment in the second period.
Consequently, agent A can use the received payment to meet its demand. Therefore, the
optimal choice of A is to allocate nothing. In sum, the optimal liquidity choices for agent A and
agent B are 0 and 0.2. Accordingly, the optimal costs are RA = 0 and RB = 0.2× 0.1 = 0.02.
See Section 4 for the formal derivation of the optimal choices.

13Another source of delay cost we are not modelling here is the failure to meet an obligation to send an urgent
payment to a financial market infrastructure. This delay would incur potentially extremely high penalties from
regulators.
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Figure 4 shows the average training costs (left) and actions (right) for both agents A and
B obtained by performing 50 independent training exercises using 50 episodes in each exercise.
It can be observed that after initial exploration, both agents quickly learn to minimize the
cost by selecting actions closer to their optimal choices. Agent B, which has higher payment
demands and has no incoming payments, converged to a higher cost than agent A.

Figure 4: Average cost (left) and average initial liquidity decision (right) over training episodes of the
simplified initial liquidity problem with only two intraday periods. The cost converges to the optimal for
both agents (RA = rc`

A
0 = 0 and RB = rc`

B
0 = 0.02). Likewise, the initial liquidity decision converges to the

optimal choice shown in red for both agents, shown here in the scale of the bins of the action space vector.
Solid lines are the averages and shaded areas are the 99% confidence interval bands.
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6.4 Results of the training with twelve intraday periods, T = 12

In the previous section, we showed that agents learn to select optimal initial liquidity for the
simplified two-period setting. In the current scenario, we test the agent’s ability to learn the
optimal liquidity allocation in the twelve-period setting when faced with the LVTS payments
demand showed earlier in Figure 3.

Similar to the two-period case, both agents are trained simultaneously while playing against
each other, using the REINFORCE algorithm for 100 episodes. The average cost during
training and testing computed using 50 independent exercises is shown in Figure 5. The
cost for both agents plateaus to their minimum observed during this training around the
60th training episode. The confidence intervals over the course of training (at each episode
calculated using 50 training exercises) show that both agents do not converge to a single
liquidity choice. This is seemingly due to the nonstationarity in the environment. For instance,
the total cost associated with the selected action from agent A could sometimes be influenced
by the choice of agent B and vice versa. This could cause uncertainty of payment arrivals in
all twelve periods and hence influence the agent’s learning ability.

Figure 6 shows this more clearly. The figure shows the average and range of agents’ initial
liquidity decisions at various points of the training. At the start of training, both agents
chose initial liquidity around 1/2. As training progresses, both agents reduce their liquidity
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choice with A showing the largest reduction. Agent B, which has higher payment demands,
converged to a higher liquidity choice than agent A. Also, neither agent converged to a single
solution by the end of the training, likely due to the uncertainty of payment arrivals from the
other participant in each intraday period.

Note that for this more general case with twelve intraday periods, the learning is slower
compared to the two-period case in terms of training costs. Also, the confidence interval in the
twelve-period case is wider compared to the two-period case. These findings demonstrate the
complexity involved in generalization of learning with higher intraday periods (see Figures 4
and 5).14 Also, remember that for the twelve-periods case, we do not have the analytical
solution of the optimal initial liquidity choice and therefore we cannot know what is the
minimum equilibrium cost.15

Figure 5: Evolution of the cost over the training of the initial liquidity choice problem. These learning curves
show the cost incurred during training and testing for agent A (left) and agent B (right). The solid lines
are the average cost at each point in the training computed using 50 independent training exercises, and the
shaded areas are the 99% confidence interval bands.
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A key parameter in the environment is the delay cost that banks face, which is unobserved
by policymakers. Therefore, we examine the sensitivity of our results to the choice of delay
cost, rd. We performed the robustness exercise varying the cost of delay ranging from 0.01 to
0.3. Recall that in previous exercises rc = .1, rd = .2 and rb = .4. Figure 7 show the box plots
of the total cost of each agent at the end of the 50 training episodes for the different levels of
delay cost. When we vary the delay cost above the initial liquidity cost, i.e., for values above
0.1, agents increase their initial liquidity allocation, incurring a larger total training cost, in
order to minimize the delay cost. This sensitivity is, however, relatively small. In contrast,
the total cost of agent A is very sensitive when delay cost is below 0.1. Agent A is the one
with lower payment demands, therefore when delay cost is low enough, it learns to wait for

14Training convergence can be increased by using a neural network with hidden layers; see Figure 12 in
Appendix F.1 where we perform a robustness study with different network sizes.

15To tackle the problem of benchmarking our results in this case, we conducted a brute force computation
of the cost resulting from all possible combinations of initial liquidity choices and payment profiles for both
agents. Results are shown in Appendix C.
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Figure 6: Evolution over the training process of the initial liquidity choice, x0. Each solid line is the average
choice over 50 training exercises. Shaded areas are the 99% confidence interval bands.
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the incoming payments from B, reducing its initial liquidity allocation and its total cost.
The case where rd ≤ rc is interesting because the best response function of the agents is no

longer the one presented in Section 4, even in cases with only T = 2. With this configuration
of parameters, the agents might have the incentive to allocate less initial liquidity because if
the value of incoming payments is large enough, the reduction of initial liquidity cost could
compensate for the delay costs.

Figure 7: Boxplots showing the sensitivity of final costs after training across different selections of delay cost.
Whiskers are defined as 1.5 · IQR.
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7 Conclusion

This paper employs RL to estimate the policy rules of two banks participating in a high-value
payments system. Our results show that—in a simplified learning problem for which we know
the optimal solution—policy rules trained with the RL algorithm converge to the optimal
solution. Using the intuition and confidence in the training algorithm, we generalize to a
problem where agents have to simultaneously learn a policy to choose their initial liquidity. Both
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agents learn to choose the initial liquidity that minimizes their cost of processing all payments.
We performed a large number of robustness checks on the environment inputs (the payment
demand profiles, the choice of agents and cost parameters) and training hyperparameters.
These results show the applicability of RL to estimate best-response functions in real-world
strategic games.

The significance of these results are underlined by the fact that the initial liquidity decision
of banks is complex even when agents have full knowledge of the environment, the data
generating process and their opponent’s strategies. Our agents had no knowledge of the
environment, the data, or the game itself. From a normative point of view, if agents trained
with RL methods can find alternative solutions, regulators could use RL policies to help in
their mandates of ensuring the safety and efficiency of these systems. Also, understanding
these techniques will be relevant for policymakers as banks themselves are likely to attempt to
use these algorithms for their liquidity management.

Before these promises can be realized, we need a more complete understanding of the
liquidity management rules of financial institutions. This paper is the first in that agenda.
Future work will involve pursuing the following extensions. First, it is important to explore
how the agents would perform if they were learning the initial liquidity and intraday payment
problems at the same time. Second extension is to tackle the problem with more than
two-agents, which will require generalizing over more complex sets of payment demands to
potentially derive richer policies that account for who a payment is being sent to and who a
payment has been received from. A major extension will be to introduce some realistic features
of the payments system, like non-divisible or urgent payments, and an intraday market for
liquidity. These could be significant departures to the learning setup that might require new
algorithms and neural networks.
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A Intraday Payments Policy

In this appendix we describe the learning setup of the intraday payments policy and verify
that the RL agents learn the expected policy.

A.1 Learning setup

Here we describe the learning setup for the intraday payments policy:

• Agents: Agents A and B are trained simultaneously over 50 episodes.

• Intraday periods: Each episode is divided into twelve intraday periods, T = 12.

• Payments demand: For the payments demand profile over the twelve intraday periods
we use data from the Canadian LVTS. See Figure 3. During every episode in the training,
the agent confronts a payment profile drawn from these data. The agent does not know
the payment demand of a given intraday period until that period has arrived. We denote
pt for the new payment demand in period t, and Pt for the accumulated payment demand
in period t, the latter including previously delayed payment demands.

• Initial liquidity: At the beginning of every episode, the agent is provided enough
initial liquidity (`0) to settle the total value of the episode’s payments demand (i.e.,
`0 >

∑T
t=1 Pt). This means that regardless of the choice of the other agent, the training

agent would have enough liquidity to satisfy its demands.

• Initial Liquidity Cost: There is no cost associated with the initial liquidity allocation
(i.e., rc = 0).

• State space: At every intraday period t, the agent observes the following state space:
the current period t, the current period payments demand pt, accumulated payments
demand Pt (including previously delayed payment demands) and the current period
liquidity `t:

st = (t, pt, Pt, `t).

In the state, we provide the agent with new and previously delayed payments separately,
which will help in the training. An alternative would have been to provide only the total
accumulated payment demand.

• Action space: The action space is the fraction xt of total payments demand Pt to
be sent at time t. We discretize xt, the unit interval, into 21 evenly-spaced fractions:
{0, 0.05, 0.1, ..., 1}.
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• Cost: The total processing cost per episode is:

R =
T−1∑
t=1

Pt(1− xt) · rd,

where rd is the intraday delay cost and Pt is per-period payment demand, which includes
any delayed payments from the previous intraday periods.

• End-of-day: Since each agent starts with sufficient initial liquidity to settle all payments
even if it does not receive any payments from the other agent, there will be no end-of-day
borrowing from the central bank and costs will be zero.

In this environment, it is straightforward to verify using R that the optimal choice is xt = 1,
∀t. The intuition for this result is that given a level of initial liquidity at no cost, there is
no incentive to delay the payments. Therefore, the agent minimizes the cost of processing
payments by sending all the payment demands in each and every period, thus avoiding the
cost of delay. Correspondingly, this choice minimizes the cost.

Similar to the initial liquidity decision case, as payment demands we use the data described
in subsection 6.2. For training we use the REINFORCE algorithm. We approximate the policy
function, π, using a linear feed-forward neural network. The learning setup is implemented
in Python using TensorFlow. Additional details on the learning setup, implementation and
model parameters selection are discussed in Appendix D. Note that in Appendix F.5 we show
two other pairs of participants.

A.2 Results for the intraday payments decision xt

We present the results by showing the intraday payment choices and cost incurred by agents
over the training process. Figure 8 shows the evolution of the average cost, R, incurred by
each agent over 50 training episodes. Figure 9 shows the evolution, over the training process,
of the average payment choice, action xt, across samples in each episode. We present the
choices separately for the first four intraday periods, t = 1, 2, 3, 4. We also show the entire
range of choices observed across the training exercises, and the optimal choice, xt = 1, in red.

These results show that both agents quickly learn to reduce the average cost and closely
converge to the optimal behaviour of sending all payments in each intraday period. Recall
that the parametrized policy function has to learn to make 11 choices, one for each of the
intraday periods. Note that in the first episodes of the training, agents, on average, choose
to send roughly half of the payments in each of the intraday periods we display. This is due
to random initialization of the network parameters. Agent B, which has a higher payments
demand, starts at a higher average cost compared to that of agent A. Also, across the training
exercises, the range of cost for agent B is wider than for agent A. These plots suggest that,
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although the rate of learning can vary across the two agents, on average they both converge
close to the optimal behaviour, i.e., xt = 1.

Note that from intraday period t = 5 onwards, there is no difference in the shape of the
learning curves as both agents quickly converge to optimal in about the same number of
training episodes; therefore we omit them.

Figure 8: Evolution of the cost over the training process of the intraday payment decision. These learning
curves show the cost incurred during training and testing for agent A (left) and agent B (right). Only 25
training episodes are shown. The solid lines are the average cost at each point in the training, computed using
50 independent training exercises, and shaded areas are the 99% confidence interval bands..
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Figure 9: Evolution over the training process of the intraday payment choices, xt, at t = 1, 2, 3, 4. Each solid
line is the average choice over 50 training exercises. Shaded areas are the 99% confidence interval bands. From
intraday period t = 5 onwards, learning curves converge at roughly the same rate.
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B Reinforcement Learning

In computer science, reinforcement learning methods are used for learning how to act (near)
optimally in sequential decision-making problems in uncertain environments. In episodic tasks,
reinforcement learning problems typically involve a single agent (the learner) interacting with
an environment, formally defined as a finite Markov decision process (MDP) 〈S,A, T ,R, H〉,
where S is a finite set of states; A is a finite set of actions; T : S × A → ∆(S) encodes
the next-state transition dynamics, where T (s, a)(s′) is the probability of ending in state
s′ after performing action a from state s; R : S × A → [Rmin, Rmax] ⊂ R is the bounded
reinforcement function, providing a positive or negative signal that the agent can leverage to
improve its behaviour; and H is the horizon length. An agent’s behaviour is represented as
a policy π : S → ∆A, mapping states to a distribution over actions. Let Π be the set of all
policies.

Each policy induces a Markov chain, and we can quantify its value from state s0 ∈ S via
the following equation:

V π(s0) =
H∑
t=0

Eat∼π(st),st+1∼P(st,at)R(st, at)

This can also be expressed via the following set of recurrent equations, known as the Bellman
equations:

V π
0 (s) = 0

V π
H(s) = Ea∼π(s)

[
R(s, a) + γEs′∼P(s,a)V

π
H−1(s′)

]
(3)

When the system dynamics (e.g., P and R) are known, the system of equations above can be
solved via dynamic or linear programming.

We are typically interested in finding the optimal policy π∗ := arg maxπ∈Π V
π, which

satisfies the Bellman optimality equations, where for succinctness we write V ∗ instead of V π∗ :

V ∗0 (s) = 0

V ∗H(s) = max
a∈A

[
R(s, a) + γEs′∼P(s,a)V

∗
H−1(s′)

]
(4)

In addition to V π, it is often useful to maintain a state-action function Qπ, defined as follows:

Qπ(s, a) = R(s, a) + γEs′∼P(s,a)V
π(s′)

Access to Q∗ := Qπ
∗ immediately yields the optimal policy π∗(s) = arg maxa∈AQ

∗(s, a).
When the system dynamics are known (e.g., P and R), both equations 3 and 4 can be
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solved via dynamic or linear programming. However, in reinforcement learning we typically
assume the environment dynamics are unknown, and the value functions are estimated by
samples obtained from interacting with the environment. One natural approach is to use
Monte Carlo methods, where a set of trajectories are collected, and then for each s ∈ S, V π(s)

is estimated by averaging over all trajectories that passed through s (see Sutton and Barto
2018 for more details).

A more promising approach is one that combines ideas from Monte Carlo estimation and
dynamic programming: temporal-difference learning (TD-learning). Like Monte Carlo methods,
TD-learning updates its estimates from sampled experiences; but like dynamic programming
methods, it does so with single-step transitions. In its simplest form, after performing action a
from state s and observing reward r and next-state s′, TD-learning updates its estimate of
V π(s) with the rule:

V (s)← V (s) + α
[
r + γV (s′)− V (s)

]
where α is known as the step size and quantifies how aggressively to update V when a new
experience is received.

There are a number of learning methods that build on the TD update, and the interested
reader is referred to Sutton and Barto 2018 for a comprehensive overview. We will focus
on policy gradient methods, which updates a policy πθ parameterized by a weight vector θ.
For example, the policies may be encoded as neural networks and θ represents the network’s
weights, which is the approach we take in this paper. Under this paradigm, one can refer to
the performance of θ from an initial state s0 ∈ S as:

J(θ) := V πθ(s0)

Under this formulation, updating the parameters so as to increase the expected future
value can be done by updating θ using an estimate ∇̂J(θ) of the true gradient of the return
function: ∇J(θ):

θ ← θ + α∇̂J(θ)

where α is once again the step size. The policy gradient theorem (see Sutton and Barto 2018,
Section 13.2) states that:

∇J(θ) ∝
∑
s∈S

µθ(s)
∑
a∈A

Qπθ(s, a)∇πθ(s)(a) (5)

where µθ is the on-policy distribution relative to πθ16 (see Sutton and Barto 2018, Section 9.2
for details). Note that this requires that the parameterized policy πθ is differentiable, which
is typically the case when using a softmax activation from the output of a neural network.

16Intuitively, this is the fraction of time the agent expects to spend in a state s when following policy πθ.
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Specifically, if our network outputs a value estimate Q̂θ(s, a) ≈ Q(s, a), then the softmax
action selection would be:

πθ(s)(a) =
eQ̂θ(s,a)∑
b∈A e

Q̂θ(s,b)

A method for estimating the gradient in Equation 5 is to use Monte Carlo estimation, as
is done in the classic REINFORCE algorithm (Williams 1992). Let st ∈ S and at ∈ A denote
the state and action performed at time step t, and define Gk as the total return obtained from
time step k until the end of the episode:

Gt =

H∑
t=k

R(st, at)

Derived from the policy gradient theorem (5), the REINFORCE update is defined as follows,
after choosing action at from state st in time step t and observing total cost Gt afterwards:

θt+1 = θt + αGt
∇πθ(st)(at)
πθ(st)(at)

B.1 Multi-agent reinforcement learning

Multi-agent reinforcement learning is a growing area of research but is still a relatively new
field. The complex dynamics induced by multiple agents interacting with each other make
theses types of problems difficult to analyze and often require game-theoretic techniques for
reasoning about observed behaviours.

In Section 3 we introduced the real-time gross settlement (RTGS) payments system as an
environment involving multiple independent agents, so it can be considered as a multi-agent
reinforcement learning problem. However, our framing is different from the standard framing
in the multi-agent reinforcement learning literature, where it is typically expressed via an MDP
〈S,An, T ,R, H〉, where An = A1×A2×· · ·×An. Here, n agents observe the global state, but
each agent independently selects their action. After each agent has made an action selection
ai from state s, the next-state transition dynamics are defined by T (s, (a1, a2, · · · , an)) and
the reward dynamics by R(s, (a1, a2, · · · , an)). The interested reader is referred to Bowling
2003 and Foerster et al. 2016.

By contrast, our setting consists of n independent agents that do not get to observe a shared
global state. Formally, our setup is an MDP 〈Sn,An, T ,R, H〉, where Sn = S1×S2× · · ·×Sn
and An = A1 ×A2 × · · · × An. Here, each agent i observes a state si and selects an action
ai. Importantly, there may or may not be overlap between Si and Sj for i 6= j; that is, the
states observed by agent i may contain no information about the states observed by the other
agents. The transitions are governed by T ((s1, s2, · · · , sn), (a1, a2, · · · , an)) and the rewards
by R((s1, s2, · · · , sn), (a1, a2, · · · , an)), which means that even though the agents may not
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be able to observe each other’s states, their actions do affect each other’s transitions and
rewards/costs. This is a form of partial observability in a multi-agent setting, and the difficulty
each agent faces is independently dealing with this partial observability.

C Benchmark for the Initial Liquidity Choice Using Brute Force
Search

The results of Section 4 gave us benchmark results for the simplified problem with only two
intraday periods. The closed form solution is not available for T ≥ 3, therefore, to validate
the training results of the problem with twelve intraday periods, we computed an empirical
benchmark. Our benchmark is the planner solution that minimizes the sum of initial liquidity
costs for both agents. With the current setup of two agents, twelve intraday periods, 380
payment profiles and the assumption of the optimal intraday payments policy, it is still feasible
to calculate via brute force the sum of the initial liquidity costs for both agents in all possible
outcomes. This brute force approach would not be feasible as soon as we add more agents and
payment profiles.

We ran simulations to compute all feasible combinations of initial liquidity choices and
payment profiles for both agents and then calculated the cost of each combination. Among
these combinations, the planner’s choice of initial liquidity is the pair of liquidity choices that
yielded the minimum total cost for both agents A and B.

More formally, let Ri(`i0, `
−i
0 , Pj) be the initial liquidity cost for agent i ∈ {A,B} given

the liquidity choice pair (`i0, `
−i
0 ) ∈ L × L, and a given daily payment profile Pj ∈ P. For a

given payment profile Pj , the minimum system-wide total cost of initial liquidity is:

R∗(Pj) = min
(`A0 ,`

B
0 )∈L×L

RA(`A0 , `
B
0 , Pj) +RB(`B0 , `

A
0 , Pj). (6)

Then we define as our benchmark the average minimum system-wide total cost of initial
liquidity:

1

|P|
∑
Pj∈P

(
R∗(Pj)

)
. (7)

Correspondingly, the minimum and maximum cost across all payment profiles are:

min
Pj∈P

(
R∗(Pj)

)
, (8)
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and

max
Pj∈P

(
R∗(Pj)

)
, (9)

respectively.
We report these findings in Figure 10. The solid line is the average and the dotted red

lines are the minimum and maximum possible total costs across all payment profiles. For the
agents, the plot here shows the sum of the individual costs presented in Figure 5 to make a
comparison at the system level.

Note that to treat Equation 7 as our benchmark, we implicitly assume the existence of a
planner that implements the allocation of initial liquidity that minimizes total costs or some
form of cooperation between the parties, for example via side payments to allow them to share
the costs (Garratt 2019). Treated as a cooperative solution, if the sum of both agents costs
are above the average costs, there would still be room for better learning performance, albeit
one that might be hard to achieve when both agents learn independently.17

Figure 10: Evolution of total costs over the training of the initial liquidity choice problem with empirically
calculated bounds. Curves show the sum of the costs incurred by both agents (independently) during training
and testing. These are the sum of the costs shown in Figure 5. The solid red line is the average across payment
profiles of the minimum system-wide cost for each payment profile. Dotted red lines are the minimum and
maximum among all payment profiles.

0 20 40 60 80 100
Episodes

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Co
st

1e 1 System-Wide Cost: RL vs. Empirical
Training
Testing
Empirical Average
Empirical Minimum/Maximum

D Training Hyperparameters

In this appendix we provide further details on problem setup and hyperparameters used for
training along with the pseudocode. Table 2 lists environment settings and hyperparameters

17See Calvano et al. (2019) for an example of two reinforcement learning agents colluding to price above
their marginal cost in an oligopoly model of price competition. The authors report that to achieve this result,
training requires on average 500,000 episodes.
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used in training intraday payments and initial liquidity agents. These are base parameters
selected for each of the training exercises unless otherwise specified.

Table 2: Environment and agents parameters selected for training

Parameters Intraday payments problem Initial liquidity problem

Algorithm REINFORCE REINFORCE

Number of agents 2 2

Number of episodes 50 100

Periods in each episode 12 12

Batch size 10 10

State space 4 12

Action space 21 21

Initial liquidity cost 0 0.1

Per-period delay cost 0.2 0.2

End-of-day borrowing cost ∞ 0.4

Learning rate 0.1 0.1

Activation function tanh tanh

Optimization method - Adam

Policy network Linear network Linear/1-hidden layer network

Initial liquidity Unrestricted collateral Learning parameter

Intraday payments Learning parameter Send as much as possible

E Pseudocode

We provide the following pseudocode: Algorithm 1 for fixed payments policy, Algorithm 7 for
RL agents payments policy, Algorithm 3 for fixed liquidity policy, Algorithm 4 for RL agents
liquidity policy, Algorithm 5 for training intraday payments policy, Algorithm 6 for training
initial liquidity policy and Algorithm 8 for brute force search method used for validation. We
have chosen to separate out the pseudocode in this fashion to highlight the similarities and
differences of each problem setup; in future work we will aim to use reinforcement learning to
solve both problems simultaneously.
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Algorithm 1: πfixedP : Pseudocode for Fixed Payments Policy

input : sit = (t, pit, P
i
t , `

i
t)

output : xit
initialization ;
if last period then

send xiT = P iT and borrow P iT − `iT at cost rb if P iT > liT ;
else

send xi′t , the highest possible payment given liquidity up to lit
end

Algorithm 2: πθP : Pseudocode for RL Payments Policy
input : sit = (t, pit, P

i
t , `

i
t)

output : xit
initialization ;
if last period then

send xiT = P iT and borrow P iT − liT at cost rb if P iT > `iT ;
else

xit ∼ πiθ(sit)
send xi′t , the highest possible payment given liquidity up to min(xit, `

i
t)

end

Algorithm 3: πfixedL: Pseudocode for Fixed Liquidity Policy

input : si0 = (pi0, ..., p
i
12)

output : `i0
initialization ;
allocate enough liquidity to clear all payments; in our case, because of normalization,
this is always an `i0 = 1

Algorithm 4: πθL: Pseudocode for RL Liquidity Policy
input : si0 = (pi0, ..., p

i
12)

output : `i0
initialization ;
choose liquidity `i0 ∼ πiθ(si0)
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Algorithm 5: Pseudocode for Intraday Payments Problem
Result: Trained Policy Network
initialization ;
for each episode do

set liquidity using πifixedL(si0) for each agent i;
for each batch period do

send intraday payments concurrently using πiθP (sit) for each agent i
end
Perform batch gradient update to θ from experience collected using πiθP after each
batch ;

end

Algorithm 6: Pseudocode for Initial Liquidity Problem
Result: Trained Policy Network
initialization ;
for each episode do

set liquidity using πiθL(si0) for each agent i;
for each batch period do

send intraday payments concurrently using πifixedP (sit) for each agent i
end
Perform batch gradient update to θ from experience collected using πiθL after each
batch ;

end
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Algorithm 7: πθP : Pseudocode for RL Payments Policy
input : sit = (t, pit, P

i
t , `

i
t)

output : xit
initialization ;
if last period then

send xiT = P iT and borrow P iT − liT at cost rb if P iT > `iT ;
else

xit ∼ πiθ(sit)
send xi′t , the highest possible payment given liquidity up to min(xit, `

i
t)

end

Algorithm 8: Pseudocode for Loop Structure in Intraday Payments Problem
Result: Robustness Visualization
for each sample (independent training exercise) do

random initialize agents policy πiθP
for each episode (day) do

generate multiple trajectories (batch)
for each trajectory do

randomly sample new profile from the pool for each agent i
set liquidity using πifixedL(si0)

for each period do
send intraday payments concurrently using πiθP (sit) for each agent i
record each period experience: state, action and per-period cost

end
record each trajectory experience: state, action, cost

end
record batch experience: state, action, cost
perform batch gradient update to θ using batch experience collected under πiθP
record batch training loss and cost

end
record episode training loss and cost (averaged over batch)

end
plot episode training loss and cost across all samples (to get mean and CI)
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Algorithm 9: Pseudocode for Loop Structure in Liquidity Problem
Result: Robustness Visualization
for each sample (independent training exercise) do

random initialize agents policy πiθL
for each episode (day) do

generate multiple trajectories (batch)
for each trajectory do

randomly sample new profile from the pool for each agent i
set liquidity using πiθL(si0) for each agent i
for each period do

send intraday payments concurrently using πifixedP (sit) for each agent i
end
record each trajectory experience: state, action, cost

end
record batch experience: state, action, cost
perform batch gradient update to θ using batch experience collected under πiθP
record batch training loss and cost

end
record episode training loss and cost (averaged over batch)

end
plot episode training loss and cost across all samples (to get mean and CI)

F Robustness Exercises

Here we present the results of several robustness exercises (known as ablation studies in the
machine learning literature). We study how changes to the hyperparameters of the system and
the RL algorithm affect the learning performance. In general, the learning algorithm converges
in every exercise we attempted, but in some cases, depending on the hyperparameters, the final
policy might be different across exercises. More specifically, for the intraday payments problem,
regardless of the hyperparameters chosen, the algorithm converges to the optimal policy at
different speeds and variance of behaviour. On the other hand, for the initial liquidity problem,
the algorithm converges to different policies depending on the hyperparameters chosen. Note
that the training hyperparameters from Table 2 are kept constant across experiments unless
otherwise specified.

F.1 Network size

We start with variants of the network size and structure. In general, for both the initial
liquidity and the intraday payments problems, we found that increasing the network size
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tended to speed up the agents’ learning, leading to faster convergence, all else being equal. For
the intraday payments problem, Figure 11 shows that although a linear network is sufficient
to find the optimal solution, we did not observe a problem of over-fitting when increasing the
number of hidden layers. This may be due to the fact that the optimal strategy for this game
is simply to send everything in any intraday period.

On the other hand, for the initial liquidity problem, Figure 12 shows that a linear network
had some difficulty—larger number of episodes and larger variance during training—in con-
verging to the optimal solution. Adding one hidden layer allowed us to converge significantly
faster to the optimal solution, however we observed diminishing benefits to increasing the
network size.

Figure 11: Robustness to the variation of the network size for the intraday payments problem: Learning
curves showing the cost incurred during the training for both agents. Solid lines are the average cost for
the 50 independent trial runs with the same parameters. Shaded areas are the 99% confidence interval.
Hyperparameters are consistent with Table 2, with the exception of the number of hidden layers in the neural
network.
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Figure 12: Robustness to the variation of the network size for the initial liquidity problem: Learning
curves showing the cost incurred during the training for both agents. Solid lines are the average cost for
the 50 independent trial runs with the same parameters. Shaded areas are the 99% confidence interval.
Hyperparameters are consistent with Table 2, with the exception of the number of hidden layers in the neural
network.
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F.2 Learning rate

The robustness exercises of the learning rate (α) showed mixed results. For the intraday
payments problem, an increase in the learning rate from 0.01 to 0.1 and 1 led to a faster
convergence. The relationship between higher learning cost with faster convergence and
narrower confidence intervals is shown in Figure 13 and 14. This is not too surprising given
the simplicity of the rule that needs to be learned in this problem.

In contrast, for the initial liquidity problem, an increase in the learning rate led to a slower
convergence as well as higher variance. This is likely due to the more complicated optimal
strategy for the initial liquidity problem. With the highest learning rate, α = 1, in every
episode agents incorporate all the information provided by the gradient but eventually do not
explore new policies. Consequently, both agents converge very quickly but to a high liquidity
cost compared to the other lower learning rates.

Figure 13: Variation of the learning cost in the intraday payments problem: Learning curves showing the
cost incurred during the training for both agents. Solid lines are the average cost for the 50 independent trial
runs with the same parameters. Shaded areas are the 99% confidence interval. Hyperparameters are consistent
with Table 2, with the exception of the learning rate in the learning algorithm.
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Figure 14: Variation of the learning cost in the initial liquidity problem: Learning curves showing the cost
incurred during the training for both agents. Solid lines are the average cost for the 50 independent trial runs
with the same parameters. Shaded areas are the 99% confidence interval. Hyperparameters are consistent with
Table 2, with the exception of the learning rate in the learning algorithm.
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F.3 Batch size

Similar intuitive results were found when we studied the effects of batch size on learning.
Unsurprisingly, a higher batch size results in lower variance with diminishing returns as batch
size increases. In some trials where batch size was singular, the learning fails to converge to
the optimal behaviour entirely. A larger batch size also tended to lead to faster convergence.
This is likely due to more exploration enabled by the larger batch sizes for the stochastic
attribute of the reinforcement learning algorithm. See Figures 15 and 16.

Figure 15: Batch size robustness for the intraday payments problem. Learning curves showing the cost
incurred during the training for both agents. Solid lines are the average cost for the 50 independent trial runs
with the same parameters. Shaded areas are the 99% confidence interval. Hyperparameters are consistent with
Table 2, with the exception of the training batch size.
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Figure 16: Batch size robustness for the initial liquidity problem. Learning curves showing the cost incurred
during the training for both agents. Solid lines are the average cost for the 50 independent trial runs with the
same parameters. Shaded areas are the 99% confidence interval. Hyperparameters are consistent with Table 2,
with the exception of the training batch size.
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F.4 Cost inequality relationship

In the exercises in the main body of the paper we assumed rc < rd < rb, the per-dollar cost
of initial liquidity, delay and end-of-day borrowing, respectively. Here we present an exercise
reversing the relationship between the cost of borrowing and the cost of initial liquidity, rc = .4
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and rb = .1. We found, not surprisingly, that agents allocated less liquidity when it was more
beneficial to borrow at the end of the day, and that agents allocated more liquidity when
borrowing was expensive. There is always some liquidity allocated regardless because there is
still a cost associated with delaying payments, thus the agents could not solely rely on waiting
for the opposing agent to send liquidity to them first as we fixed their intraday payments
behaviour to send all payments in each period. See Figure 17.

Figure 17: Robustness of the parameter choices of the costs in the initial liquidity problem. Learning
curves showing the cost incurred during the training for both agents. Solid lines are the average cost for
the 50 independent trial runs with the same parameters. Shaded areas are the 99% confidence interval.
Hyperparameters are consistent with Table 2, with the exception of the inequality relationship between the
cost of borrowing and the cost of initial liquidity.
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F.5 Payment Profiles

We performed additional robustness exercises to study the behaviour of agents that have
different payment profiles. The payment profiles for two other pairs of banks are summarized
in Figure 18. The results of the training are shown in Figure 19. To contrast with banks A
and B examined in the main body, were chose other pairs to show banks with diverging flows
late in the day (labelled C and D) and banks with homogenous flows throughout the day
(labelled E and F ). The results show that the total costs of D converge to a higher level than
the costs of C. For the E and F pair, the total value of payments sent and received between
each other is quite similar, and the total cost, as expected, converges to a similar magnitude.

We also performed the robustness exercise varying the delay cost. The box plots in Figure
20 presents the results for pair C and D, and Figure 21 presents the results for pair E and F .
These show the importance of the payment profile for the sensitivity of the delay cost: for pair
E and F that have very similar profiles, the variation of the delay cost affects the behaviour
and the total cost only slightly. On the contrary, for pair C and D, the change in the delay
cost matters substantially for C because it has the larger payment demand, in spite of this
coming only in the last three intraday periods. Note that, like for the case of agents A and B,
when the delay cost is below the liquidity cost, the sensitivity in total cost is quite large.
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Figure 18: Payment demands for banks labelled C and D (left), and banks labelled E and F (right). Each
plot overlays the hourly (bars, left axis scale) and cumulative (lines, right axis scale) sums of payments between
each of the two agents over the sample. The solid lines are the average, and the shaded areas are the 99%
confidence intervals. To contrast with banks A and B examined in the main text, these pairs were chosen to
show banks with diverging flows late in the day (C and D) and banks with homogenous flows throughout the
day (E and F ).
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Figure 19: Robustness of the training of initial liquidity problem under different payment profiles: pair C
and D on the left and pair E and F on the right. The solid lines are the average, and the shaded areas are the
99% confidence intervals. Hyperparameters are as outlined in Table 2.
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Figure 20: Boxplots showing the sensitivity of the total training cost to a variation in the cost of delay for
agents C and D. Whiskers are defined as 1.5 · IQR. Delay cost is varied between 0.01 and 0.3, while initial
liquidity cost is maintained at 0.1. The rest of the hyperparameters are as outlined in Table 2.
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Figure 21: Boxplots showing the sensitivity of the total training cost to a variation in the cost of delay for
agents E and F . Whiskers are defined as 1.5 · IQR. Delay cost is varied between 0.01 and 0.3, while initial
liquidity cost is maintained at 0.1. The rest of the hyperparameters are as outlined in Table 2.
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