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Abstract 
Digital currencies store balances in anonymous electronic addresses. We analyze the trade-
offs between the safety and convenience of aggregating balances in addresses, electronic 
wallets and banks. In our model, agents balance the risk of theft of a large account with the 
cost to safeguarding a large number of passwords for many small accounts. Account 
custodians (banks, wallets and other payment service providers) have different objectives and 
trade-offs along these dimensions; we analyze the welfare effects of differing industry 
structures and interdependencies. In particular, we examine, the consequences of “password 
aggregation" programs, which, in effect, consolidate risks across accounts.  

Bank topics: Digital currencies and fintech; Financial services; Payment clearing and settlement 
systems; Central bank research 
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1 Introduction

Custodians of financial assets have always needed to weigh customers’ conflicting goals

of security and ease of access. However, the rapid development of new electronic ar-

rangements for storing customer balances has made these trade-offs more salient. Digital

currencies, in contrast to traditional bank accounts, store balances in addresses that do

not need to be associated with the identity of the owner,1 making them, at least po-

tentially, more vulnerable to loss. Without an ability to identify individuals, the users,

payments service providers and regulators face different trade-offs of safety and conve-

nience. Analyzing these trade-offs is necessary to guide the design of publicly issued

digital currencies and the regulation of private ones.2

In this paper, we consider the security risks of transaction balances and how these

risks are shared between users and providers. We ask whether there are externalities

from storing large balances and, if so, what the role of regulators should be. For exam-

ple, should regulators establish standards for passwords and other safeguards, or should

we expect competition to achieve an efficient outcome? As new techniques appear for

improving safety or convenience, will they be adopted or blocked?

Balances of digital currencies are stored and transacted using addresses and wallets.

An address is a location to store valuables. In the case of digital currencies, the valuables

are uniquely identified digital objects called coins. Addresses can contain multiple coins

or none at all, but each address has one associated private key: a password. Coins inside

an address are kept separate and individually identified. In other words, the balance of

an address is composed of individual coins that may have different denominations, similar

to depositing several physical coins or bank notes in a safe deposit box. In this sense an

address is an aggregator of coins.

Another way to maintain balances of digital currencies is to use a wallet, which man-

ages the private keys of the addresses.3 In Bitcoin, the most prominent digital currency,

the system itself establishes the safety protocols of addresses, which are extremely good.4

1In this sense, digital currencies are a type of token-based payment system like cash. For more
details on the distinction between token-based and account-based systems, see Green (2008b), Kahn and
Roberds (2009), and Kahn (2016). For a contrasting view, see Milne (2018).

2A central bank could issue public digital currencies in a scheme where it tracks user identity. How-
ever, Kahn et al. (2018) argue that central banks are unlikely to choose this form for retail transactions.
Barontini and Holden (2018) survey central banks’ interest in issuing digital currency; Mancini-Griffoli
et al. (2018) discuss the trade-offs surrounding the issuance of central bank digital currencies.

3Different wallets provide various services, but at a minimum they manage the private keys and basic
transaction functions—for example, choosing which coins to use in a transaction.

4To be able to crack a private key of a Bitcoin address by brute force, a hacker would need to try
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In contrast, wallets can provide their own level of security and potentially other iden-

tification requirements, alternative means of recovering the private keys in the wallet,

management of transactions and other convenient features. In most digital currencies,

wallets are provided privately and competitively, offering convenience to the users.

Access to the balances in the addresses and wallets is protected by passwords, but

with different levels of strength. Although the level of security of Bitcoin private keys

is extremely high, directly managing them can be quite cumbersome. Since a wallet is

a collection of addresses and its respective private keys, a compromised password for a

wallet endangers the entire balance in the wallet.5 We call this contagion.

We propose a simple framework to analyze several aspects of digital currencies. In

our environment, agents try to economize on the cost of remembering and managing

passwords while maintaining the safety of their balances. One of the problems agents

face when carrying out this task is the question of optimal aggregation: among how many

accounts should agents divide their balances? Is it a case of “don’t put all your eggs in

one basket,”or, as Mark Twain said, “put all your eggs in the one basket and—watch

that basket.”6

To analyze the trade-off of security and convenience we focus on the transactions

motive for holding balances. A customer conducts purchases by withdrawing from the

accounts provided by competing “banks” (think of wallet providers or crypto exchanges).

There are two types of malefactors: “Hackers,” who try to steal balances directly by brute

force, and “thieves,” who attempt to obtain customer passwords. Theft in our framework

is conducted using “man in the middle”attacks, social engineering or exploitation of

software vulnerabilities. Every time an account is accessed to check the balance or make

a withdrawal, there is a risk of a thief intercepting the communication between the

investor and the bank, thereby obtaining the password. Contagion puts the rest of the

balance of the account at risk. Therefore, in equilibrium, customers choose the best

trade-off between convenience and risk, which depends on the probability of contagion,

the frequency of withdrawals and the costs of keeping track of passwords.

Theft also occurs because of the consumer’s inability to properly follow the protocols

to ensure safety. One example is weak private keys that are generated by mistake or

2256 − 1 different keys. There are just under 2160 addresses. Some addresses therefore have more than
one corresponding public key and thus more than one corresponding private key.

5In their shortest human-readable form, private keys can be represented by a string of 30 case-sensitive
characters. Typical wallets in turn can be secured with human-readable 12-word pass phrases.

6Clemens (1894) Pudd’nhead Wilson, Chapter 15, emphasis Twain’s. He takes the maxim from a
speech by Andrew Carnegie in 1885.
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because the protocol is too complex to use.7 This highlights the interaction between the

design of the protocols and the effort that customers put into securing their private keys.

Theft of private digital currencies is quite common. Although their cryptography

makes them virtually impossible to hack by brute force, the wallets and exchanges that

hold them have been subject to frequent hacking and malfeasance. One prominent case

is the failure in 2014 of the Bitcoin exchange Mt. Gox, which lost an equivalent of

$473 million at the time of bankruptcy. Since then, cases of hacking of private keys and

exchanges have become more common. A report suggests that in 2018, an equivalent of

$950 million was stolen from exchanges (Ciphertrace 2019).

Although these questions are similar to the questions around security and convenience

of cash or traditional bank accounts, new issues emerge from the electronic nature of

digital currencies. First, contagion is not a serious concern for cash: a stash under a

mattress is not immediately put at risk of theft when spending a portion of it at some

other location. In the case of traditional bank accounts, identification requirements

permit, to a certain extent, the reversal of fraudulent transaction. Moreover, issues of

scale pose a greater challenge for new technologies. Cash is bulky and costly to manage

in large quantities, but for digital currencies the same private key can manage $1 or $1

billion.8 In addition, managing the private key of an address requires more attention and

knowledge than protecting a bank note. Finally the digital environment enables the arms

race between payments system providers and customers: providers include cumbersome

security features, customers find software apps that allow evasions, and providers in turn

develop deterrents for these evasions.9

Literature
Public key cryptography (Diffie and Hellman 1976 and Merkle 1978, 1980) is the

foundation of digital currencies because it allows a receiver of money to identify the

sender as the rightful owner of the money being sent. Computer science evaluates a

cryptographic protocol by testing the probabilistic safety of its mathematical primitives

assuming the protocol is used as intended. In the case of the public key cryptography

implemented in most digital currencies, the private key is assumed to be secret. This is

the weakest link we examine in this paper.

7Independent Security Evaluators (2019) show that in spite of the statistical impossibility of randomly
generating the private key of an existing address, typical mistakes in key generation allowed them to
find 732 Ethereum private keys in a short period of time.

8Nowadays it is hard to find traditional physical bearer instruments of large denominations. In 1982,
the U.S. congress restricted the issuance of bearer bonds (Briner 1983).

9Herley (2009) describes some of the practical consequences of this adversarial relationship.
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Of course, computer scientists have recognized that the effectiveness of a security

protocol depends as much on economic incentives for users as on its mathematical foun-

dations (Moore 2010, Anderson and Moore 2007, 2009, and Herley 2009). There is also

literature on interdependent security games that straddles the boundary between eco-

nomics and computer science.10 Papers in this literature typically consider games among

firms whose risk of a security breach depends on both their own and other firms’ defensive

actions. In general, the games examined in our paper can be also be classified as part of

this literature. However, we focus on the differing incentives of providers and customers

as well as malefactors in a digital currency environment.11

This paper is also related to the broader literature that discusses the role of central

banks in providing safe and efficient payment systems. There is consensus on the im-

portance of the role central banks play in high-value payment systems (Green 2008a and

Lacker 2008) and in the provision of physical currency, an arrangement that has allowed

for many forms of private payments systems to emerge. There is no consensus, however,

about whether central banks or private firms should provide digital currencies and, if so,

how these digital currencies should be designed and how should they interact.12

The fact that digital currencies allow storing balances and transacting anonymously,

raises the issue of privacy. Kahn et al. (2005) show the value of anonymity in an envi-

ronment with moral hazard. When online transactions cannot be conducted with cash,

credit-based methods expose the user to identity theft from the seller or an intermediary.

This highlights the value of electronic money alternatives. In contrast, our paper shows

the emergence of another form of moral hazard when the safety of digital currencies is

at risk from a potentially inefficient level security chosen by users or wallet providers.

We proceed as follows. Section 2 discusses the technological details of security and

account management of digital currencies. Section 3 describes the framework. In sec-

tion 4 we model the equilibrium password strength and associated number of accounts

under various management strategies. In section 5 we explore password reuse, password

aggregation software and the implications of competition between providers. Section 6

discusses policy interventions. We conclude in section 7 and suggest some open research

10For a survey, see Laszka et al. (2014). Early contributions on the economics side focus on security
as a public good. See Hirshleifer (1983) and Varian (2004).

11Most of the theoretical work in economics on digital currencies has focused on their effects for
monetary policy and their efficiency as means of payments. See Davoodalhosseini (2018) and Chiu and
Koeppl (2017) and citations therein. All of these analyzes assume away the risks associated in the
management of the private keys.

12For a wide variety of opinions, see, He et al. (2016), Bordo and Levin (2017), Mancini-Griffoli et al.
(2018), Brunnermeier et al. (2019), and Duffie (2019).
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questions. The Appendix presents additional model details.

2 Aggregation and Security Risks

To understand the risks in digital currencies we need to describe how the different levels

of aggregation work. We also provide some empirical evidence of the security risks. We

use the example of Bitcoin, which is the most popular digital currency and a model for

many others. The unit of account in Bitcoin is the satoshi, which is equal to 1 × 10−8

bitcoin. However, the Bitcoin system does not keep track of every satoshi location but

of bundles of them. These distinctly identified bundles are called unspent transaction

outputs (UTXOs).

Figure 1 depicts the different levels of aggregation. Addresses form the first level of

aggregation. Bitcoin addresses have unique private-public key pairs, randomly generated

at no cost. More precisely, an address in Bitcoin is an alphanumeric string that represents

a possible destination for a Bitcoin payment, i.e., a location to store UTXOs. The

public address is broadcast to the network, while the private key should be kept secret.

Addresses are like safe deposit boxes that can hold an amount of Bitcoin. In fact, a few

addresses hold billions of dollars worth of bitcoins. By combining the private and public

keys, an individual can take the coins out of that box to send to a new box. The security

of the entire balance of an address depends on the secrecy of the private key. In other

words, the private key is the password to whatever is in the box.

The next level of aggregation of balances is provided by wallets. A wallet is software

that manages public and private keys and is in turn protected by its own master key. In

addition, wallets may allow additional means for users to protect and recover the access

to them. Wallets perform the functions of selecting the UTXOs when spending and

manage the new addresses for change transactions.13 The user is responsible for keeping

the master key safe. If the wallet’s key is lost or stolen, the wallet developer bears no

responsibility for any resulting loss of funds.

The third level of aggregation is provided by firms holding balances on behalf of cus-

13“Hierarchical Deterministic” (HD) wallets is a standardized protocol used by many private digital
currencies. Such wallets have the ability to hold many types of coins. HD wallets handle change
transactions by creating a tree of addresses. For example, suppose a person owns 2 UTXOs: one with
2 bitcoins and another with 1 bitcoin. If this person sends 1 bitcoin to a new address, the wallet can
choose to use the first UTXO and create “change” of 1 bitcoin, which will be sent back to the sender to
a new address as a new UTXO. The other alternative is to send the second UTXO for which there would
be no “change.” HD wallets are secured by a master password that can be recovered with a 12-word
phrase.
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Figure 1: Levels of aggregation of digital currencies and their associated security setup. Tokens
are contained in addresses that are secured by private keys. Wallets can manage the private keys of
multiple addresses and are secured themselves by a master key. Providers, like exchanges, aggregate
funds of customers into accounts and secure them by passwords. Typically, as the stored value increases,
customers use higher levels of aggregation.
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tomers. These firms, known as exchanges, can provide either wallet services or accounts

that in fact commingle the funds of customers. In the latter case, the customer surren-

ders the private keys to the firm and receives a deposit.14 The exchanges can provide

on-us payments (reducing the transaction cost and delay of digital currencies) or liquid-

ity between various digital currencies earning spreads on these transactions. Some of the

exchanges further aggregate the balances of their clients into new addresses holding large

balances managed in “cold” wallets that are not connected to the internet. In summary,

as balances are aggregated, security risk become concentrated at the highest level.

We can gauge the magnitude of the security risks we are discussing by examining the

Bitcoin distribution of addresses and coins by amount of coins in each address. Figure

2 shows that the large majority of addresses have very small amounts of coins. These

might be “change” transactions or lost addresses. Most of the value of the Bitcoin system

is held in the addresses containing between 10 and 100 coins. At the other extreme, a

handful of addresses each hold more than $500 million dollars and one holds $1.2 billion

dollars (at $10,500 U.S. dollars per bitcoin). Frequently, the largest addresses are owned

by the exchanges that manage funds on behalf of clients. As of this writing, six of the

ten largest addresses are cold wallets owned by these firms.

All of the theft in Bitcoin and other major digital currencies has occurred because

the security of the wallets or exchanges was compromised, and not by the brute force

hacking of the private keys associated with addresses. For example, private keys can be

stolen from individuals’ computers by exploiting simple software vulnerabilities. Also,

some exchanges that provide wallet services have had their security compromised or had

14Note that this potentially alters the legal liability in case of theft.
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Figure 2: Distribution of the number of addresses and of bitcoins by size of address (in number of
coins) as of 2018. The vast majority of addresses contain small number of coins, either from change
transactions or lost coins. The bulk of coins are contained in addresses that have between 10 and 100
coins, between $100,000 and $1,000,000 dollars at today’s prices. A handful of addresses hold more than
$1.6 billion dollars. The security of the coins in a given address relies entirely on the secrecy of that
address’s private key. Source Bitinfocharts.com.
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rogue employees (for example, Mt. Gox and Coincheck).

In 2018, $950 million dollars worth of digital currencies was stolen from established

exchanges (Ciphertrace 2019). In addition, it is quite likely that a large portion of the

theft of digital currencies (in wallets or exchanges) via the capture of their private keys

is not reported at all because the exchanges are not able to distinguish a fake from a real

claim of theft, leaving customers to bear the entire loss. In general, it is hard to know

what share of the theft is due to vulnerabilities in security, scams, or carelessness on the

part of the exchange, but analysis of the self-reported breaches by exchanges suggests

that the majority of them are due to a hack to exchanges’ hot wallets (those connected

to the internet) or to an application vulnerability (a coding error).15

15See https://magoo.github.io/Blockchain-Graveyard/ for a breakdown of causes of the hacks.
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Figure 3: Cumulative distribution of unspent transaction outputs (UTXO) by number of bitcoins in
each address as of 2011 (left) and 2018 (right). An UTXO is a collection of coins in a given Bitcoin
address. Source Bitinfocharts.com.

3 Framework

This section briefly outlines our framework; in subsequent sections we examine a variety of

simplified versions of this general structure to consider specific issues. Section 4 examines

password length and number of accounts. Section 5 examines how security protocols

interact with the effort exerted by customers.

The world consists of customers, banks and malefactors. Customers divide their

wealth among one or more accounts, which they access with some frequency. We will

focus on the transactions motive for holding balances. Customers need to make a fixed

number of payments per period. To make a payment, the individual makes a withdrawal

from an account.16

Banks hold customers’ accounts and establish protocols to maintain a level of safety

in accessing accounts. We can interpret banks as wallet providers and an account as

a particular wallet.17 In this world there is no way to identify individuals when they

make withdrawals. Instead, we assume that for each account the bank provides a q-bit

password to be used as identification. If the proper password is given, the individual may

make a withdrawal of funds. If the individual has more than one account, he will have a

different password for each account; this assumption is relaxed in the later sections.

16We assume holding funds at home is prohibitively inconvenient or dangerous, thus withdrawals only
occur to make mandatory payments (or to transfer to another account).

17There are five types of wallets for keys: online, mobile, desktop, hardware and paper. Our definition
of bank is broad enough so that all these types of wallets fit in our model. See https://medium.

com/@fastinvest/the-most-comprehensive-cryptocurrency-wallet-guide-5e820a26ed44 for an
explanation of their differences.
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In addition to fees charged by the banks, customers suffer disutility from the effort

they take to protect their accounts and the need to keep track of passwords, as well as

from any other difficulties in accessing the account, which depend on the level of security

imposed by the bank.

We will denote the bank’s cost function by K(·) and the customer’s cost function

by c(·). Different sections of the paper will focus on different aspects of these costs. We

assume that both banks and customers are risk neutral in monetary losses. This allows

us to present results as starkly as possible; extensions when customers are risk averse

will be clear.

We distinguish two types of malefactors. Hackers focus on banks and make brute

force attacks on customer accounts in banks. For simplicity, we will assume that it is

length of password that serves as the deterrent to hackers. Thieves focus on customers,

gaining access by exploiting customers’ transactions activity—in effect using “man-in-

the-middle” exploits. Thieves are deterred by the care with which customers act and by

the complexity of the protocols maintained by the banks. The crucial distinction is that

thieves are aided by the frequency with which a customer uses a password, while hackers

are aided by the simplicity of the password. In welfare calculations, we will consider the

costs to banks and customers, ignoring any cost imposed on hackers and thieves.

4 Password Strength and Account Management

A customer receives a fixed amount of income I each period, with which the customer

makes a fixed number T of equal-sized payments. Meanwhile the customer holds funds in

accounts at one or more banks. Let n be the number of accounts the customer holds and

let Q be the total number of bits in all of the customer’s passwords. Then, we represent

the customer’s direct disutility from dealing with the accounts by c(n,Q) = nα+ C(Q),

the first term being the fixed cost per account and the second the (increasing) cost of

keeping track of all the passwords. Later, we will extend the analysis to consider costs

associated with customer effort at account protection and variation in inconvenience

associated with different accounts.

For this section, a bank’s costs K(y,N ,B,Q) depend on the number of customers,

y, the total number of accounts, N , aggregate balances in all the accounts, B, and the

aggregate level of account security, summarized by Q, the total number of bits in all

passwords of all accounts at the bank. We assume costs are increasing in y, N , and Q.
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Banks pass their costs through to the account holders via fees.18

4.1 Password Hacking

First, we consider the hacker, who attacks a bank by generating passwords at random

in an attempt to obtain funds. Let h be her cost for each attempt to gain access to an

account. If successful, the hacker will obtain the funds in the account. If unsuccessful,

she can always try again.

Suppose the average balance in an account is b. Given that the bank services N
accounts, each protected by a password of length of q bits, the expected payoff to a

hacker from an attempt to access funds at the bank is 2−qN b − h. If this is positive,

then hackers will enter.19 Thus, for banks to be viable, password length has to be q ≥ q∗,

where

q∗(B) = log2(B/h). (1)

Note that the temptation to hack, and therefore the required size of the password, is

associated with the total value of funds in the bank, not with the amount available in

any particular account.20 Henceforth, we will assume that the bank sets q to the deterrent

18This is a reasonable assumption in the environment of private digital currencies, which are typically
open-source platforms, so that there is free entry to develop wallet technology. For example, as of 2019
there were at least two dozen approved mobile wallets in Apple’s app store for Bitcoin. Other digital
currencies, such as Ethereum, also have many wallets available.

19This claim is making several large simplifying assumptions. First, we are assuming that all passwords
are equally likely. This is a reasonable assumption when the bank provides passwords (provided the
bank’s password randomizing procedure is not deficient) but not when customers choose their own
passwords. See for example Bonneau et al. (2012).

Second, we are assuming that repeated failures do not alert the bank to shut down access to the
accounts. This would certainly be an unrealistic assumption in the case of multiple attempts on a single
account. It might be somewhat less distasteful if we are considering attempts on random accounts at the
institution, although even then alert IT personnel would be expected to see the pattern of attempted
intrusions. One alternative is to assume that the repeated attempts are not instantaneous but carried
out with sufficient lag as to reduce the possibility of detection (although such delay would significantly
increase the cost of each attempt). On the other hand, repeated attacks without delay are feasible in the
bitcoin environment; for example Vasek et al. (2017), who study the hacking of bitcoin “brain wallets”
(a method of storing private keys in password-protected publicly accessible locations), conclude that
passwords for brain wallets are regularly successfully hacked.

The third simplification is to ignore the fact that as a hacker try more passwords, failures increase her
subsequent chances of success, since she amasses a list of passwords that don’t work. Thus, the chance
of success of each attempt is not constant, even if the distribution of passwords is uniform. However,
with large values of q this extra complication is of minor importance. For calculation of bounds on the
expected number of attempts needed to hack a single account, see Massey (1994)

20As predicted, attacks on exchanges increased dramatically with the rise in the value of cryptocur-
rencies in 2017 (EY 2017 and Stecklow et al. 2017).
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level q∗. Thus the bank’s costs are

K(y,N ,B,N q∗(B)).

Suppose we vary the number of accounts per customer while holding the number of

customers and the total balances unchanged—that is, we let N vary while holding y and

B constant. Bank costs are minimized by setting N as small as possible—one account

per customer. Meanwhile, if all the customer’s accounts are at the same bank, then the

customer’s costs are

nα + C(nq∗)

which again is minimized by reducing n.

In other words, customers and the bank agree that when hacking is the sole threat,

there is no advantage to holding multiple accounts at a single bank. For example, consider

a customer who has three accounts at a single bank, each protected by a different four-

letter (essentially 20-bit) password. Suppose the customer is asked to consolidate those

accounts into a single account with a single 12-letter password. By our assumptions,

the disutility to the customer would decrease, and so if the safety of the arrangement

were the same, then the customer would willingly agree to the change. Even if α were

zero (that is even if there were no fixed disutility attached to additional accounts), the

customer would still be indifferent regarding the change.

Nonetheless, even if the customer were indifferent, the bank would not be indifferent.

One large account under a 12-letter password is a greater deterrent to hackers than three

accounts under different four-letter passwords. Hackers are tempted by the amounts held

as a whole in the bank. If those amounts are split into smaller accounts, then the hacker

gets less money on any successful attempt, but this is exactly made up for by the greater

chance of hitting on an account. In other words, if the bank is big enough that a 12-letter

password is necessary to deter the hacker from attacking and if the accounts are split

into smaller accounts, then each of those smaller accounts will still have to have its own

unique 12-letter password. That is to say, consolidating a customer’s accounts within the

bank is cheaper for everybody (except the hacker).

If costs are passed through to the customer, then the customer will prefer a single

large account at one bank to multiple small accounts across banks. In a world with

identical customers, all banks will pick the same password length, and each individual

will concentrate his holdings in a single account at a single bank. With heterogeneous

wealth, different banks will specialize in different sized accounts, but again customers

11



will deal with just one bank. In other words, if password hacking is the only threat, bank

accounts should have large balances and passwords should be correspondingly long.

Now to compare the optimal with the actual password length, take the case of Bitcoin.

The value of all bitcoins is US$100 billion. We can approximate the hacking attempt cost

with the cost of a computing operation. Currently, the best specialized processors can

perform 16 Terahashes per second or 16 × 1012 operations/sec. Assuming the only cost

is electricity, with a consumption of 120W/h and an electricity cost of US$0.15kW/h,

each operation would cost US$1.86 × 10−17. In reality, hacking attempt costs would be

higher because of the fixed costs of hardware and because banks will surely respond to

the hacking attempts. With these assumptions, the minimum password length required

is q∗ = log2(1011/1.8−17) = 92, compared with the current length of 256. This shows

that current password length is many orders of magnitude larger than the minimum

necessary.21

4.2 Password Theft and Contagion

The second type of danger is password theft. The distinguishing feature of theft is that

it becomes more likely the more frequently the password is used.

Recall that money is withdrawn T times, and suppose each withdrawal leads to a

fixed probability π of a disclosure of the password to a thief.22 To minimize the risk of

theft, it is optimal to withdraw from the same account until that account is exhausted.

This is because it is the withdrawal that exposes the account to risk of theft. If the agent

withdrew from various accounts concurrently, then this would expose more balances for

longer periods of time until the balances of all accounts are exhausted from transactions.

Thus, each account would have T/n withdrawals in succession. Each account contains

at the start I/n in income. After one withdrawal has been made, then there is (I/n)−I/T
left in the account. After the second withdrawal, there is (I/n) − 2(I/T ) and so forth

until after T/n withdrawals nothing is left. After each withdrawal, whatever remains in

the account is the amount that can be stolen, and theft occurs with probability π on

21The calculation of the market value that would make a hacker break even is $1.015×1077, an absurd
value, or the cost of hacking attempts $1.8× 10−247, effectively zero.

22Probability of theft in our model comes from the ability of thieves to intercept communications
between the bank and the customer. In reality this power can come through a variety of attacks, such
as keystroke logging or actual interception of communications. If we assume the draws are independent,
then the probability of the first disclosure on the first withdrawal from an account is π, on the second
withdrawal is (1− π)π = π − π2 etc. For simplicity we approximate the situation by assuming that the
probability remains π each time, and higher order terms are ignored.
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every occasion. Since there are n accounts, the expected amount lost to theft is:

nπ

(T/n)∑
k=1

(
I

n
− k I

T

)
=
πI

2

(
T

n
− 1

)
. (2)

When banks are competitive, the costs of banks are passed on to the customer. Thus

the competitive equilibrium can be derived by solving the cost minimization problem of

the customer:

min
n

αn+ C(nq∗)︸ ︷︷ ︸
private costs

+K(y,N ,B,Q)︸ ︷︷ ︸
bank cost

+
πI

2

(
T

n
− 1

)
︸ ︷︷ ︸

expected theft

(3)

where increasing n by 1 increases N by 1 and Q by q∗. Treating n as a continuous

variable, the solution is:

n =

√
(πIT )/2

α +KN + q∗(C ′ +KQ)
, (4)

where KN + q∗KQ is the marginal cost to the bank of opening an additional account

for an existing customer without receiving any additional funds; this consists of a fixed

component and a component that depends on the complexity of the account security,

here proxied by password length.

Consider the case where the various marginal cost components are constant. As is

intuitive, the optimal number of accounts for the customer increases with T , the number

of withdrawals to be made; with π, the probability of success of theft; and with I, the total

amount initially deposited by the customer. Thus, holding the number of withdrawals

fixed, the number of accounts increases with the size of the individual withdrawals I/T.

On the other hand, the number of accounts decreases with the costs associated with an

account. So, for example, as h decreases (hacking gets easier) the necessary password

length q∗ increases, and customers respond by reducing the number of separate accounts

they hold.23

23As in the previous section, when customers are heterogeneous then, under competition, banks will
specialize in accounts of different sizes: larger banks will hold larger accounts. Results are similar if the
banks are able to extract all consumer surplus through price discrimination (on, for example, size of
balance). The general case of heterogeneous customers under oligopoly merits further examination. It
is interesting to note the similarity of equation (4) with the classic cash demand result of Baumol (1952)
and Tobin (1956).
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4.3 Account Management

So far, customers deplete their accounts one by one. Another way to manage the risk is

to maintain a hierarchy of accounts such that a large sum of money is kept in a high-

level account, occasionally tapped for transfers to a lower-level account, from which the

customer makes more frequent withdrawals. This management strategy combines two

benefits: maintaining large accounts with high security to control the risk of theft and

keeping only small amounts in the frequently accessed accounts to limit the loss to theft.

In what follows, we consider the case of a depositor who maintains only two accounts—an

“investment” account and a “transaction” account; the case of a more general hierarchy

is considered in the appendix.

Label the individual’s two accounts with subscripts i and t respectively. In any

period, I is deposited into the investment account. As before, the individual will make

T payments during the course of the month. In this setup, the customer’s problem is

to determine the optimal number of transfers between accounts. In what follows, n will

be the number of transfers from the investment account to the transaction account in a

period.

As before, withdrawals incur a probability of theft: πi and πt for the investment and

transaction accounts respectively. This probability is the risk of theft of the password of

the account from which the amount is being withdrawn and not the account to which

the funds are being transferred. In other words, we assume that there is no risk of theft

associated with depositing funds.24

For concreteness, we assume that when I/n is withdrawn from the investment account,

the portion I/T is used directly for payment and the remnant is deposited into the

transaction account. Then the transaction account is used to make payments until it

is exhausted, at which point the next withdrawal is made from the investment account.

Thus, in this environment, the total number of withdrawals is fixed. The more frequently

money is moved from the investing to the transactions account, the higher the average

balance in the transactions account relative to the average balance in the investment

account. As a function of the number of transfers n, the expected loss from theft is:

I

2

(
(n− 1) πi +

(
1

n
− 2

T

)
(T − n)πt

)
.

Intuitively, the average holdings in the investment account are I
2
(1 − n−1), and the

24This would be the case, for example, if the account numbers for depositing in an account were kept
distinct from the account numbers for withdrawals, as is the case in some countries.
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probability of a breach of the account is πin. Similar calculations apply to the transactions

account. Therefore, the choice of the frequency of withdrawals from the investment

account is:

n =

√
T

πi/πt − 2T−1
'
√
Tπt
πi

. (5)

As expected, the frequency at which the funds should be moved between the two

accounts goes up as the square root of the number of transactions to be made and with

relative likelihood of theft in the two accounts.

The sequential account management strategy described by (4) and the tiered strategy

described by (5) have close counterparts in the common practices in cryptocurrencies.

The sequential account management strategy suggests that although the re-use of ad-

dresses for transactions is strongly discouraged by user guidelines of many cryptocurren-

cies due to security (and privacy) risks, users find it optimal to use a single address for

a few transactions.25 Of course, one way to avoid re-using addresses and managing their

keys is to use key management software, such as a wallet. We analyze this case in the

next section.

If we add in terms di and dt, for the customer’s cost of inconvenience per withdrawal

from the two accounts respectively, then the objective becomes the minimization of:

min
n

I

2

(((
1− 1

n

)
πi + di

)
n+

((
1

n
− 1

T

)
πt + dt

)
(T − n)

)
and the solution in this case is:

n =

√
T

(πi + di − dt)/πt − T−1
'
√

Tπt
πi + di − dt

. (6)

The intuition is similar to that for equation (5). In Appendix A.3 we derive exact versions

of these equations with an alternative assumption of the timing of the first withdrawal.

The two-level hierarchy strategy is a common practice among online exchanges of

cryptocurrencies. These firms use two types of private key storage, colloquially called hot

and cold storage. Hot storage refers to key management databases that are connected

to the internet and therefore at a higher risk of theft from hackers. Cold storage, in

contrast, refers to key management databases that are connected to the internet only

on the occasions when transfers are required and therefore at lower risk. This practice

is intended to limit the potential theft in case exchanges are hacked. Jain et al. (2018)

25See the guidelines of Bitcoin about address reuse: https://en.bitcoin.it/wiki/Address_reuse.
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analyze a stochastic version of a model for optimizing an exchange’s transfers between

hot and cold wallets, arriving at an equation analogous to (5).

5 Security Protocols and Customer Response

In reality, the above strategies are stark simplifications because customers interact with

banks on several dimensions beyond the choice of the number of accounts or frequency of

transfers among them. For example, banks can choose from different security protocols,

and customers undertake different levels of care to keep accounts secure. In this section,

we consider the interaction between the security protocols established by banks, customer

effort, and password aggregation programs. First, we focus on a single bank/customer

pair and endogenize the probability of theft. In the following subsections we consider

the case where two banks interact by choosing security protocols knowing that customers

may reduce their costs of compliance with bank requirements by, for example, reusing

passwords or using password aggregation programs. To concentrate on these other dimen-

sions, we will assume throughout this section that a customer has at most one account

with each bank and that each account is accessed once a period.

5.1 Customer Response

To begin with, assume that the customer has a single bank account. Theft results in a

loss of L. The probability π(s, e) of a loss is now a convex, decreasing function of the level

of security s chosen by the bank and the effort e (level of care) chosen by the customer.

In general, the cost depends on both parties’ actions; we will assume that the cost to the

bank K(·) = s and the cost to the customer is a convex function c(s, e). We will focus on

situations where increasing the level of security increases cost of effort to the customer.

The socially optimal arrangement would minimize

Lπ(s, e) + s+ c(s, e)

so that first order conditions are:

L |πs| = 1 + cs

L |πe| = ce.

Intuitively, the customer should increase the level of care until on the margin the cost is
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equal to marginal benefit in terms of reduced probability of loss. The bank should do the

same, taking into account that increased security could increase costs to the customer as

well.

In order to choose correctly, the customer must take into account the joint benefits

from deterring malefactors. In practice, however, the customer is unlikely to bear the

entirety of these costs (both because of legal protections and because of the fact that

some of the costs to the bank of a theft will be hard to verify).26 Let us suppose that

the losses are divided between the bank and the customer: Lb +Lc = L. If the customer

chooses e on his own, then the customer sets

Lc |πe| = ce,

choosing too little care.

If it were behaving non cooperatively, the bank would also be expected to underpro-

vide security, since it too does not face the full cost. But it is more likely that, with the

bank moving first, it is able to establish terms of agreement and fees to help internalize

the full costs. If in doing so it could impose the full costs of a loss on the customer,

it would be possible for the bank to induce the customer to take the proper care, and

in anticipation of that, for the bank to take the efficient level of care as well. Since we

assume instead that the customer’s losses are limited to Lc, the bank faces a simple moral

hazard problem with respect to the customer: it cannot control the customer’s actions

or condition payments on them, and it knows that the customer will underprovide care.

Its only option is to adjust its own level of security accordingly:

min
s
Lπ(s, e) + s+ c(s, e)

s.t.

e ∈ arg minLcπ(s, e) + c(s, e).

The envelope principle implies that for small reductions in Lc away from L, the

choice of s remains unchanged to first order and e decreases. The response becomes

26For example, in the U.S., Regulation E places stiff limitations on the monetary losses to a bank ac-
count holder if unauthorized withdrawals occur (see the webpage of the Consumer Financial Protection
Bureau, https://www.consumerfinance.gov/policy-compliance/rulemaking/regulations/1005/

6/). It is possible, indeed likely, that the bank will impose a limited amount of non-pecuniary costs
on the consumer in the event of a loss, through, for example, bureaucratic hurdles (filling forms, waiting
periods for refunds, and the like). But to the extent that these are dissipative costs, they will not be
used to reach the full first best outcome, and the results will be similar to those described in the text.
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more complicated for larger moves of Lc. The customer’s level of care is always smaller,

but depending on degrees of substitutability the bank’s optimum s can either increase,

in order to make up for the customer’s reduction, or decrease, in order to entice the

customer to increase the level of care. However the following example will be relevant

for the subsequent analysis.

5.1.1 Example

Let π be additively separable in s and e

π(s, e) = ψ(s) + φ(e)

and let the convex function c(·, ·) take the form

c(s, e) = C(e) if e ≥ s

= ∞ otherwise .

In other words, by choosing s, the bank forces the customer to take effort e at least equal

to s.

Define s∗ and e∗ by

Lφ′(e∗) + C ′(e∗) = 0

Lψ′(s∗) + 1 = 0.

If e∗ > s∗ then the first-best outcome is (s∗, e∗). Otherwise it is (z∗, z∗), where

Lψ′(z∗) + Lφ′(z∗) + 1 + C ′(z∗) = 0.

In the second best, the customer chooses e = min{s, ê}, where ê is defined by

Lcφ′(ê) + C ′(ê) = 0.

Thus, the second-best (s, e) is found by comparing the social welfare of the two

candidates: (s∗, ê), or (z∗, z∗). Three outcomes are possible:

1. The first best equals the second best (in which case both are (z∗, z∗).

2. The first best has (s∗, e∗) and the second best has (s∗, ê) where ê < e∗.
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3. The first best has (s∗, e∗) and the second best has (z∗, z∗), where z∗ < e∗ and

z∗ > s∗.

In short, in this example, moving from first to second best, customer effort e either

remains constant or decreases and and bank security choice s either remains constant or

increases.

5.2 Competing Banks

We now consider the situation where a customer can have one bank account at each of two

banks k = 1, 2. When there is no interdependence between the customer’s accounts, the

analysis from the previous section applies to each account separately. In reality, however,

there are significant sources of interaction. When banks offer the customer accounts in

a non-cooperative game, then the externalities can lead to inefficient outcomes. In our

examples below, the banks choose protocols that are too lenient.27

The game we will consider takes the following form:28 Each bank offers one account,

choosing a level of security sk and a price fk. The customer chooses whether to accept

each offer and then chooses an effort level e. We consider subgame perfect Nash equilibria

of this game.

If bank k’s offer is accepted, its expected profit is

fk − Lbπk(·)− sk,

otherwise it is zero. The probability of loss πk(·) can in general depend on levels of

security and effort; we will consider specific cases. Let the gross value to the customer of

a single account be V , and the gross value of adding a second account be ∆V ≤ V. The

total cost of care to the customer c(·) will depend in general on the number of accounts

accepted, the security measures provided for those accounts and the customer’s chosen

effort. The customer’s utility is

V + ∆V − f1 − f2 − Lcπ1(·)− Lcπ2(·)− c(·)
27Using our earlier terminology, the first of the two examples will be relevant when considering defense

against hackers, the second when considering defense against thieves.
28The setting is a simple example of a game of non-exclusive contracting under moral hazard. For

further analysis of such environments see, for example, Kahn and Mookherjee (1995) or Attar and
Chassagnon (2009). Note that in the absence of the moral hazard element, our game would be a
standard Bertrand duopoly game.
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if the customer accepts both accounts, and

V − fk − Lcπk(·)− c(·)

if the customer only accepts bank k’s account, and 0 otherwise.

Again, specific cases will be considered below.

5.2.1 Password Reuse

An important form of interdependence arises through the potential for password reuse.

Customers find it easier to remember one password rather than separate passwords for

each account. In many respects, this is the analogue of a decision to consolidate two

accounts into a single, larger account. Doing so affects both the costs to the participants

and the potential loss.

Suppose that customer effort is identified with password length (or more generally,

password quality). Then a customer left on his own will equate the marginal cost of the

password length with the benefit gained from protecting both accounts:

Lc
∣∣π1
e + π2

e

∣∣ = ce,

As before, if Lc = L the customer chooses e efficiently, and if Lc < L the customer

underinvests in effort.

When the bank dealt with the customer in isolation, as noted in the previous section,

the bank might respond to the underinvestment by toughening its own protocols. How-

ever, when passwords are reused, the bank’s tendency to do this is dampened by the fact

that part of the benefit now accrues to the other bank.

Suppose then that each bank sets a minimum length required for passwords, sk, but

then allows customers to choose their own password meeting that requirement. When

customer effort is identified with password length, this is equivalent to the customer

bearing a total cost of C(e), subject to

e ≥ max{s1, s2}. (7)

Effectively, then, this is an extension of the example from the previous section; with

restriction (7), the total expected social cost if both accounts are opened is W (s1, s2, e),

where

W (s1, s2, e) = Lπ1(s1, e) + s1 + Lπ2(s2, e) + s2 + C(e).
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We will assume that ∆V is large enough that it is always efficient to open two accounts.

The second-best allocation (s1, s2, e) minimizes this social cost subject to the incentive

condition

e ∈ arg mine≥s1,e≥s2 Lcπ1(s1, e) + Lcπ2(s2, e) + C(e).

Assuming again that each πk is additively separable in its arguments,

πk(sk, e) = ψk(s) + φk(e),

the consumer’s incentive problem is solved by e = max{s1, s2, ê}, where

Lcφ′1(ê) + Lcφ′2(ê) + C ′(ê) = 0.

Because of the non-convexity of the problem, calculating the second-best allocation is

somewhat complex. Description of the solution and conditions for the various cases are

presented in Appendix B.1. Depending on parameter values, the second-best allocation

may have both banks set minimum password requirements below ê, the level the customer

would choose on his own. In this case, the second best is equal to (s∗1, s
∗
2; ê), where s∗k

satisfies the first-best condition

Lψ′k(s
∗
k) + 1 = 0.

As a consequence in this case, the banks’ strategic actions are uncoupled, and the second

best can be achieved by non-cooperative play by the banks.

Another possibility is that the standards of the stricter bank (say, bank 1) are higher

than what the customer would independently choose. In this case, the second best takes

the form (s̃1, s
∗
2; s̃1), where s̃1 satisfies the following condition:

Lψ′k(s̃1) + Lφ′1(s̃1) + Lφ′2(s̃1) + C ′(s̃1) + 1 = 0,

and as a result, the second-best outcome cannot be achieved as an equilibrium outcome.

To see this, suppose on the contrary that the equilibrium strategy choices for the banks

were (s̃1, f1), (s∗2, f2) and that the customer responded by accepting both offers and (per-

force) choosing e = s̃1. Since the initial position forces the customer to choose a level of

care exceeding what he would choose on his own, slightly relaxing in the bank’s require-

ment to s̃1 − ε allows the customer to reduces effort to s̃1 − ε. From the definition of s̃1,
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we know that

Lψ′1(s̃1) + Lφ′1(s̃1) + C ′(s̃1) + 1 > 0.

Thus, the relaxed requirement, increases the joint benefit of bank 1 and the customer

and forms the basis of a deviation. If the customer is currently receiving some surplus

from the arrangement with bank 2, then the customer continues to accept the second

account in the deviation. If the customer is receiving no surplus from bank 2, then the

customer simply drops this account as part of the deviation. Either way, there exists a

small adjustment in fees such that the deviation results in a gain for both bank 1 and

the customer at the expense of bank 2. The equilibrium generally has bank 2 choosing a

lower level of care than second best. Details for a particular class of cases are provided

in Appendix B.2.

Note that this form of the costs encourages convergence between standards for the

two banks: the bank with lower standards is not deterred from raising them by fear of

imposing costs on the customer, while the bank with higher standards faces pressure to

lower them.29

In this example, if each bank could impose full costs of a loss on the customer (that

is, if L equaled Lc), there would be no need for banks to discourage any cost-saving

activities by customers. Customer choices would be efficient, and given this, banks would

fully internalize costs to choose efficient standards.

5.2.2 Password Aggregation Programs

If a bank wants to forestall password reuse (or use of too-simple passwords), it might

issue randomly generated passwords to its customers. However, such a strategy will be

ineffective in the presence of password aggregation programs, which reduce the cost to

customers by storing passwords for them and allowing them to use a master password

to access all their accounts. Like the case of password reuse, this is the analogue of a

decision to consolidate two accounts into a single, larger account. However, the arms race

doesn’t stop there: banks can and do choose a variety of other security protocols, some

of which are designed to thwart customers’ attempts to bypass security requirements.

So, for example, the question of password aggregation becomes more complex when

competing banks consider choosing different security protocols (for example, two-factor

29The resultant externalities would be a reason for banks to internalize these effects by having cus-
tomers have both accounts with the same bank. In a more general framework, the feasibility of this will
depend on banks’ abilities to offer a variety of accounts with specialized purposes and whether there will
be a temptation for an account holder to open additional accounts with another bank.
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authentication), which in turn affect the usefulness of aggregation programs.

To examine these possibilities, we further simplify the model by limiting the bank to

a choice between two levels of service: sk ∈ {u, p} (for “unprotected” and “protected”),

associated with different probabilities of loss to the bank. For protected service, the

probability of the loss is πp. For unprotected service, the probability depends on whether

the customer is also accepting unprotected service from the other bank. If the customer

uses only one bank account, then the probability is πu. If the customer is using two

unprotected accounts, then each has the probability of loss πuu. We assume

πuu > πu > πp,

which has the interpretation that use of two unprotected accounts entails the possibility

of a thief discovering the password.30

The cost to the customer also depends on the security chosen by the banks. The

protected service imposes a cost cp on the customer, while the unprotected service imposes

costs cu or cuu depending on whether the customer is also obtaining unprotected service

from the other bank, where

cuu < cu < cp.

This setup reflects an environment where a more secure protocol is burdensome to

the bank and customer. However, the benefit of the more secure protocol is that it

limits the risk of loss from the choice of the customer with respect to the customer’s

second account or the choice of the other bank in terms of which level of service to offer.

An interpretation of this environment is where the protected level of service precludes

password aggregation programs through protocols like two-factor authentication. The

protocol of the unprotected level of service, on the contrary, allows password aggregation

programs, thus increasing the risk of loss if both accounts are unprotected.31

30For simplicity, we make these probabilities symmetric; effectively, we are assuming that the order of
access of the accounts is random. Considering the accounts in a hierarchy, so that likelihood of contagion
is no longer symmetric, will be a natural direction for further work.

31However, we shouldn’t complacently assume that techniques like two-factor authentication are the
finish line in the arms race. Technologies will continue to develop to enable customers to evade the new
restrictions. We might postulate the invention of hardware solutions aggregating the various dongles
and physical keys required by different banks for two-factor authentication. For a prediction in science
fiction more than a quarter century ago about the inevitability of such developments, we turn to Douglas
Adams:

...It was an Ident-I-Eeze, and was a very naughty and silly thing for Harl to have lying
around in his wallet, though it was perfectly understandable. There were so many different
ways in which you were required to provide absolute proof of your identity these days that
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Without loss of generality we set L = 1 and Lc = 0. (Any direct costs to the customer

from theft could be reinterpreted as part of c). We place the following restrictions on

parameters:

V = ∆V > cp + πp > cu + πu. (8)

That is, the second account provides the same benefit to the customer as the first account,

and if only one service is adopted by the customer, then the unprotected level of service

is more efficient than the protected level. Further:

cuu + πuu > cp + πp. (9)

That is, if the customer adopts the same type of service from each bank, then the pro-

tected service is better than unprotected service. An implication of the two sets of

restrictions is that the most efficient arrangement is to obtain protected service from one

bank and unprotected service from the other bank. (In fact, this weaker requirement is

really all we need for the discussion.)

But is such an arrangement a Nash equilibrium?

Theorem. If

cu + cp + πp > 2cuu + πuu

then there is no fully efficient Nash equilibrium of the game. In any equilibrium, contagion

occurs with positive probability.

Proof. If bank 1 offers the protected service with probability 1, then the strictly dominant

strategy for bank 2 is to offer the unprotected service at the price f2 = V − cu, giving it

a profit of V − cu − πu.
If bank 2 offers the unprotected service at this price, then the candidates for best

response by 1 are to offer the protected service at a price V −cp, or to offer the unprotected

life could easily become extremely tiresome . . . Just look at cash machines, for instance.
Queues of people standing around waiting to have their fingerprints read, their retinas
scanned, bits of skin scraped from the nape of the neck and undergoing instant (or nearly
instant — a good six or seven seconds in tedious reality) genetic analysis, then having to
answer trick questions about members of their family they didn’t even remember they had
and about their recorded preferences for tablecloth colors. And that was just to get a bit
of spare cash for the weekend. If you were trying to raise a loan for a jetcar, sign a missile
treaty or pay an entire restaurant bill, things could get really trying.

Hence the Ident-I-Eeze. This encoded every single piece of information about you, your
body and your life into one all-purpose machine-readable card that you could then carry
around in your wallet, and it therefore represented technology’s greatest triumph to date
over both itself and plain common sense. (Adams (1992) Mostly Harmless, p. 72.)
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service at the maximum price possible:

2V − 2cuu − f2.

Thus, if

V + cu − 2cuu − πuu > V − cp − πp,

there is no fully efficient Nash equilibrium for the duopoly game.

The condition of the theorem is consistent with conditions (8 - 9) above. For example,

the following table of parameters satisfies all inequalities (for any V greater than 9):

·uu ·u ·p
π 9 4 3

c 1 4 6

π + c 10 8 9

The crucial feature of the condition is that contagion be important, that is, that πuu is

significantly larger than πu. If the inequality of the theorem is reversed, there is a fully

efficient Nash equilibrium.

6 Policy Discussion

What is the role of a welfare maximizing regulator with respect to the security protocols

that banks establish? This depends on which protocols each bank is offering to their

respective customers and whether password aggregation programs or other workarounds

are available. The most common protocols are: i) requiring customers to have strong

passwords (for example, by establishing a particular format, length, or use of special

characters); ii) requiring customer to use random passwords generated by the bank;

iii) requiring customers to change their passwords at certain intervals; iv) two-factor

authentication (requiring a special dongle or app to generate a single-use code, or a

phone or verified email address to receive those codes); and v) protocols (invisible to the

customer) that interfere with password aggregation programs.32

We analyze the effects of the frequency of change of passwords and two-factor au-

32An example of interference is a bank website design that sabotages the ability of browsers to au-
tomatically locate the input box for passwords. Another less common protocol is the lookup in public
websites for “pwned” passwords in order to alert customers or to reject such passwords outright.
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thentication when there are two banks and password aggregation might be available to

customers from a third party. The effects of the policies can be examined through their

changes in the probability of theft and cost to customers.

6.1 Frequency of Change of Passwords

The first intervention is the requirement of the regulator that banks demand customers

to change their passwords with certain frequency. The probability of theft falls propor-

tionally with the frequency of password change mandated by the regulator because the

likelihood of the thief getting hold of a useful password falls by half if the password is

changed twice as often. Let eb1 here be the number times in a given period of time that

a password has to be changed, as mandated by the regulator. Then we can write the

probability of theft as:

π(eb1 , ec) = e−1
b1
π̃(ec),

and ∂π̃/∂ec < 0. Further assume that the cost to customers is proportional to the times

they are required to change the password:

c(eb1 , ec) = eβb1 c̃(ec),

with β ≥ 1 and ∂c̃/∂ec > 0. Here, the interpretation of the effort exerted by customers

is, for example, the need to write down and protect the list of passwords.

The simplest case is when both banks require random passwords and no password

aggregation is available. In this case, the requirement of the regulator will not change the

probability of theft of the other bank because the thief does not know the timing of the

passwords changes. If the cost to the customer increases with the frequency of change

linearly, the level of care that the customer exerts will not change, since every password

is equally difficult as it is randomly generated by the bank.

Now consider the opposite extreme case, in which customers, to reduce their burden,

reuse passwords for both banks. In this case, the policy of demanding password changes

on one bank will have the positive effect of reducing the probability of theft on the second

one, as the customer will change both at the same time.

Consider further the situation when there are password aggregation programs. The

probability of theft would not be affected because, in spite of the customers changing the

passwords used with the banks, the risk of theft of password aggregator would remain

the same. This is because the user or program cannot be compelled to comply with
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the policy. Likewise, the policy would not have a significant effect on the cost to the

customer, as the program would handle most of the additional costs associated with the

changes.

6.2 Two-Factor Authentication

Today, many traditional banks, wallets, and exchanges offer two-factor authentication as

an option to increase security. The intervention in this case would be to require users

to use it. Two-factor authentication methods require a second, additional method of

identification independent of the first. The bank only releases the funds if both factors

are correct at the time of the withdrawal request. Then the probability of theft is:

π(e1F
b , e2F

b , e1F
c , e2F

c ) = π1(e1F
b , e1F

c )π2(e2F
b , e2F

c ),

where, as before, π is decreasing in all of its arguments. The efforts exerted for each factor

are not independent, as the customer will equate both at the margin. But in general, for

the same level of total effort (ec = e1F
c + e2F

c ), this protocol would result unambiguously

in a lower or equal probability of theft.

The cost to customers is in general additive in each factor of authentication and

convex in the effort to handle each:

c(e1F
b , e2F

b , e1F
c , e2F

c ) = c1(e1F
b , e1F

c ) + c2(e2F
b , e2F

c ).

Because the probability of theft decreases more than the increase in the cost to the

customer, two-factor authentication, provided that it is feasible, will make customers

better off with a combination of reduced expected theft and a lower optimal level of effort.

The reason why banks might not require customers to always use it might be because

for customers with small balances, the reduction in expected theft will not compensate

for the additional effort. Banks and exchanges might have difficulty ex-ante determining

which customers should be required to use two-factor authentication. A regulator would

face the same issues, as balances could vary greatly over time.

7 Concluding Remarks

We have studied the trade-off between the safety and convenience of storing balances in

anonymous addresses. This type of aggregation is the foundation of all private digital
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currencies, such as Bitcoin. Security risks arise from hackers, focusing on banks and

exchanges, and from thieves, attempting to steal private keys and account passwords

from customers. The extent of loss depends the technological choices of banks and

the effort of customers, giving rise to a moral hazard problem. With shared liability

we find that in general customers will take too little care. Even when managing their

balances individually and facing the entire risk of loss, customers will find some level

of aggregation desirable and so will prefer to use wallets, reuse addresses, and rely on

password aggregation program.

Our findings have implications for the design of central bank digital currencies (CBDC)

and their ecosystem. If the central bank can establish liability rules for loss of digital

currency similar to those for bank notes, customers will have the incentives to exert the

appropriate level of care. Enforcing these rules, however, might not be as straightfor-

ward. Moreover, determining the liability in case of loss would be even more complicated

if the design of the CBDC allows any individual or firm to hold the digital tokens. If

this is possible, we would expect customers to aggregate balances in accounts held at

intermediaries, such as exchanges. This would give rise to deposits in unregulated en-

tities, which might be out of reach of domestic authorities. Designing a CBDC that is

universally accessible but cannot be held by certain firms is a technological challenge.

Our framework applies to any digital asset that functions as a bearer instrument. As

institutional investors consider holding digital currencies, it would be relevant to analyze

other protocols like multisignature and key sharding. Another avenue is to analyze the in-

centives of large technology companies considering issuing digital currencies, which could

provide custody services and earn revenue from the online activity of their customers.

We leave this for future papers.
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A Appendix

A.1 Expected Loss from Theft

Here we derive the expected value of theft in the two-account version of the model when

the number of transfers in a period is n. We have assumed implicitly that n ≤ T and that

at the moment of transfer, the amount I/T is used for a purchase. After one transfer

of I/n out of the investment account, the remaining balance is I − I/n. Every time this

transfer occurs, the likelihood of theft is πi. Therefore, the probability of theft after n

transfers is:

πi

n∑
k=1

(
I − k I

n

)
=

Iπin

2

(
1− 1

n

)
. (10)

Similar calculations apply for the transaction account. After the transfer into this account

and the first payment, the balance of the account is I/n− I/T . After the next payment,

I/n−2I/t remains, and so forth. Every time this purchase occurs, the likelihood of theft

is πt. Therefore, the expected value of theft after T/n− 1 payments from every occasion

a transfer is made:

πt

T/n−1∑
k=1

((
I

n
− I

T

)
− k I

T

)
=

Iπt
n

(T − n)

(
1

2n
− 1

T

)
,

which occurs n times when the transfer from the investment account is made; therefore

the probability of theft from using the transaction account is:

=
Iπt
2

(T − n)

(
1

n
− 2

T

)
. (11)

Adding (10) and (11), the total expected lost from theft adding from both accounts is

I

2

((
1− 1

n

)
πin+

(
1

n
− 2

T

)
πt(T − n)

)
, (12)

as in the text.
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A.2 General Hierarchy of Accounts

Here we describe a version of the model with a hierarchy of accounts. For this section, we

set consumer costs to c(n,Q) = αn+CQ and bank costs K(·) to zero without significant

effect on the results.

Suppose that the depositor maintains a hierarchy of n accounts. The transactions

amounts are withdrawn in N chunks, each of amount I/N , and each withdrawal leads to

a probability π of a disclosure of the password to a thief. Let m1 denote the number of

withdrawals from the smallest account/ first level of the hierarchy. The expected amount

lost to theft on the first level is

L1 = π

m1∑
i=1

(
m1

I

N
− i I

N

)
= π

I

N

m1 (m1 − 1)

2
.

That is to say, initially the depositor transfers to the first account m1
I
n

units of money

from the second, bigger, account. After m1 withdrawals, nothing is left, and the depositor

again transfers m1
I
n

units of money from the second account. Let m2 denote the number

of transfer from the second account to the first account. The expected amount lost to

theft on the second hierarchy is

L2 = m2L1 + π

m2∑
i=1

(
m2

m1I

N
− im1I

N

)
= π

m1I

N

m2 (m1 +m2 − 2)

2
.

The expected loss on the second hierarchy consists of the total loss from using the first

account, and the loss to theft from making the m2 transfers to the first account. In

general the expected amount lost to theft from all n accounts is

Ln = (Πn
i=1mi)

π

2

I

N

(
n∑
i=1

mi − n

)
.

Thus, the cost minimization problem is

min
n,mi

(Πn
i=1mi)

π

2

I

N

(
n∑
i=1

mi − n

)
s.t. I =

I

N
Πn
i=1mi,

where the budget constraint requires that the total amount deposited is equal to the total
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amount withdrawn. The first order condition with respect to mi is

π =
λ

mi

,

where λ is the Langrange multiplier. Hence we have

mi = N1/n.

Thus, the optimal number of withdrawals from each account is the same and is increasing

in the number of accounts if and only if I ≥ N . By substituting the above FOCs, the

agent’s problem becomes

min
n
αn+ Cqn+

π

2
I
(
nN1/n − n

)
.

The first order condition with respect to n is

1− 2 (α + Cq)

πI
= N1/n

(
1− logN1/n

)
,

α + Cq =
Iπ

2

N

n2

where the right side is strictly decreasing in N1/n for any N > 1. As is intuitive, the

number of accounts increases with the number of withdrawals to be made and with the

probability of success of theft. It decreases with the costs associated with an account,

including the necessary length of a password for each account (again, large banks will

have larger accounts). It increases with customer’s total income.

Which type of account management is better at minimizing the loss to theft? Define

H (n) ≡ αn + kqn + Iπ
2
n
(
N1/n − 1

)
and S (n) ≡ αn + kqn + Iπ

2

(
N
n
− 1
)
. Hierarchy

management of accounts has lower expected loss to theft than serial management of

accounts if and only if

min
n
H (n) ≤ min

n
S (n) .

Define ∆ (n) ≡ H (n)− S (n). Notice that ∆ (n) < 0 for all n ≥ 1 when N is sufficiently

large. Thus, the hierarchy management has lower loss than the serial management if the

withdrawal is sufficiently frequent.
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Notice that ∆ (1) = 0, ∆ (∞) > 0, ∆′ (∞) = 0 and

∆′ (n) =
Iπ

2

[
N1/n

(
1− logN1/n

)
− 1 +

N

n2

]
,

∆′′ (n) =
Iπ

2n3

[
N1/n (logN)2 − 2N

]
.

Since (logN)2 < 2N for all N ≥ 1, we have ∆′′ (∞) < 0. If logN ≤
√

2, i.e., N ≤ 3.69,

then ∆′′ (n) < 0 for all n and hence ∆ (n) > 0 for all n ≥ 1. If logN >
√

2, then

∆′′ (n) single-cross zero from above and ∆′ (n) is inverted-U shape in n. Furthermore,

if ∆′ (1) = N (2− logN) − 1 ≥ 0 i.e., N ≤ 6.31, then ∆ (n) > 0 for all n ≥ 1. Thus,

the serial management has lower loss than the hierarchy management if the withdrawal

is sufficiently infrequent that N ≤ 6.31.

A.3 Expected Loss from Theft with Alternative Timing of With-

drawal

If we remove the assumption that payment I/T is made immediately after the transfer is

made to the transaction account, then the expected loss of theft calculation is identical

to that in the n sequential accounts:

nπt

(T/n)∑
k=1

(
I

n
− k I

T

)
=
Iπt
2

(
T

n
− 1

)
. (13)

Total expected theft is simply:

I

2

(
(n− 1) πi +

(
T

n
− 1

)
πt

)
, (14)

and the solution to the problem is exact in this case:

n =

√
Tπt
πi

. (15)

If costs di and dt are proportional to I, total cost of account management including

expected theft is:

I

2

(((
1− 1

n

)
πi + di

)
n+

(
T

n
− 1

)
πt + dtT

)
, (16)
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and the solution is:

n =

√
Tπt
πi + di

. (17)

In this version, the inconvenience cost of the transaction account does not enter the

solution to the number of transfers because the number of payments T is fixed.

B Calculations for Password Reuse (Section 5.2.1)

B.1 Second Best

Recall

W (s1, s2, e) ≡ Lπ1(s1, e) + Lπ2(s2, e) + s1 + s2 + C(e),

where

πk(s, e) = max{ψk(s) + φk(e), 0}

for k = 1, 2, and C(e) =∞ if e < max{s1, s2}.
The first-best problem is convex, and its first-order conditions are:

Lψ′(s1) + 1 ≤ 0

Lψ′(s2) + 1 ≤ 0

Lπ′(e) + Lπ′(e) + C ′(e) ≥ 0

Lπ′(e) + Lπ′(e) + C ′(e) + Lψ′(s1) + 1 + Lψ′(s2) + 1 = 0.

Defining s∗k, e
∗ by

Lψ′(s∗k) + 1 = 0

Lπ′(e∗) + Lπ′(e∗) + C ′(e∗) = 0

we have that if e∗ > max{s∗1, s∗2} then (s∗1, s
∗
2, e
∗) is the first-best allocation.

The second-best problem is

min
(s1,s2,e)∈R3

+

W (s1, s2, e)

subject to

e ∈ arg mine≥s1,e≥s2 Lcπ1(s1, e) + Lcπ2(s2, e) + C(e).
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Define ê by

Lcφ′1(ê) + Lcφ′2(ê) + C ′(ê) = 0

(Note that ê ≤ e∗.) The second-best restriction on e is equivalent to

e = max{s1, s2, ê}

The set of second-best feasible triples (s1, s2, e) is not convex. However, it is made up

of convex sub-problems and for very mild conditions solutions exist. If in the first-best

allocation e = max{s1, s2}, then the allocation is also second best. If ê < e∗, and

e∗ > max{s∗1, s∗2}, then the first-best allocation is not second best.

For convenience define the functions

Ak(x) = Lψk(x) + x

G(x) = Lφ1(x) + Lφ2(x) + C(x).

Then

W (s1, s2, e) = A1(s1) + A2(s2) +G(e)

and the second-best problem is to minimize

W (s1, s2,max{s1, s2, ê}).

Assume the functions A1, A2, G are each strictly convex and have minima s∗1, s
∗
2, and e∗

respectively. Let

ŝk = arg mins∈R+
Ak(s) +G(s)

ẑ = arg mins∈R+
A1(s) + A2(s) +G(s).

Note that ŝk lies between s∗k and e∗. Consequently, if s∗k > ê then ŝ∗k > ê. Also note that ẑ

lies between ŝk and s∗−k, k = 1, 2, so that of the four values (s∗1, ŝ1, s
∗
2, ŝ2), two are greater

than ẑ and two less.

Define

R1 = {(s1, s2) ∈ R2
+|s1 > s2, s1 > ê}

R2 = {(s1, s2) ∈ R2
+|s2 > s1, s2 > ê}

R3 = {(s1, s2) ∈ R2
+|ê > s1, ê > s2}
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so that

R̄1 ∪ R̄2 ∪ R̄3 = R2
+

and

min(s1,s2)∈R2
+
W (s1, s2,max{s1, s2, ê})

= min{min(s1,s2)∈R̄1
W (s1, s2, s1),min(s1,s2)∈R̄2

W (s1, s2, s2),min(s1,s2)∈R̄3
W (s1, s2, ê)}

Thus, we can solve the sub-problem on each region and compare results to find the

global minimum. The search is simplified by strict concavity in each region. For example,

the first order conditions for region 1 are satisfied by (s1, s2) = (ŝ1, s
∗
2). Thus, there is an

interior minimum in region 1 (namely, (ŝ1, s
∗
2)) if and only if

(ŝ1, s
∗
2) ∈ R1.

Similarly, the following conditions are necessary and sufficient for interior minima in

regions R2 and R3, respectively:

(s∗1, ŝ2) ∈ R2

(s∗1, s
∗
2) ∈ R3.

The search is further simplified by the following

Observation. If there is an interior minimum in any of the regions, then the global

minimum is an interior minimum.

Proof. If each of the three regions has an interior minimum, then the conclusion follows

immediately by continuity. If two of the three regions have interior minima, then two of

the three sets of conditions for interior minima must hold, and therefore the minimum of

the third region is on a boundary with one of the other two, and therefore dominated by

that region’s interior minimum. If exactly one of the regions has an interior minimum,

then the only way that the global minimum can be on the boundary is for it to be on

the boundary of the other two regions (and it cannot be (ê, ê)). There are two cases to

consider. First, suppose that region 3 has an interior minimum and there is a common

boundary minimum for regions 1 and 2 of (ẑ, ẑ). (See Figure 4). Since the minimum for

region 3 is interior, s∗1 and s∗2 are both less than ê. But the first-order condition for s2 is

the same in region 1 and in region 3. That means that on any vertical line in region 1

the objective attains the minimum at s2 = s∗2, which in turn means that the objective
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Figure 4: A single interior minimum, case 1

decreases as we move vertically down from the boundary in region 1 (and correspondingly

as we move left from the boundary in region 2) contradicting the claim that there is a

minimum on the boundary.

In the second case, suppose that the interior minimum is not in region 3 but in, for

example, region 1, and there is a common boundary minimum for regions 2 and 3 (Figure

5). Such a minimum must be (s∗1, ê) with s∗1 < ê. This means that s∗2 ≥ ê; otherwise there

would be an interior minimum in region 3. Since there is an interior minimum in region

1, ŝ1 > s∗1, and so it must be the case that e∗ > ŝ1 > s2 ∗ . But ŝ2 lies between e∗ and

s2∗; thus ŝ1 > s2∗ and (s∗1, ŝ2) is interior to region 2, contradicting the assumption, and

completing the proof.

As a result, we only have to search for a global minimum on the boundary of a region

when none of the regions have interior minima. We have the following result:

Observation. The global minimum is on the boundary of regions 1 and 2 if and only if
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Figure 5: A single interior minimum, case 2

the following four conditions hold

s∗1 ≥ ê

s∗2 ≥ ê

s∗1 ≥ ŝ2

s∗2 ≥ ŝ1,

in which case the global minimum is (max{ê, ẑ},max{ê, ẑ}). Otherwise, the global mini-

mum is interior to one of the regions.

Proof. If any of the conditions is violated, there is an interior minimum. (If the first is

violated, either there is a minimum in R3 or s∗2 > ê, in which case ŝ2 > ê, and there is

a minimum in R2. If the second is violated, the argument is symmetric. If neither the

first nor the second is violated, there is a minimum in R2 if the third is violated, and a

minimum in R1 if the fourth is violated.)

Conversely, if the minimum for every region is on the boundary, there cannot be three

of them, as it would violate transitivity. Therefore, the global minimum must be shared

by at least two regions. First, consider the possibility that it lies on the border of R3 but
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not at the corner. Suppose, for example, it is (ê, s∗1), then since it is interior to neither

of the two regions, s∗2 ≥ ê ≥ ŝ2. But this means e∗ ≤ ŝ2 ≤ ê, which is a contradiction.

The only other possibility is that it lies on the border of R1 and R2 (Figure 6). In

Figure 6: A boundary minimum

the vicinity of such a point (z, z), on the R1 side of the boundary, increases in s2 and

decreases in s1 must result in decreases in the costs. In other words, (ŝ1 < z < s2∗)
and correspondingly on the R2 side it must be that (ŝ2 < z < s1∗). Such a point would

also be a local minimum on the ray {(z, z)|z ≥ ê}, which establishes the final condition.

Moving into the region R3 cannot reduce costs, so it must be that s∗1 and s∗2 are greater

than ê.

B.2 Equilibrium

Note: For expositional purposes, in this portion of the appendix we will assume that

Lc = 0 and ψk(.) = 0. The results continue to hold for positive Lc, but the notation

becomes more complex. Additional considerations that arise in the general case will be

pointed out in the footnotes. Reintroducing ψk(.) makes no substantive difference; the

conditions described in the main text are adjusted accordingly.
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Suppose bank k offers (sk, fk). Let ιk be the indicator variable denoting the customer’s

acceptance of an account with bank k. The customer chooses (ι1, ι2, e) to maximize

U(ι1, ι2, e) ≡ ι1ι2(∆V − V )− C(e) +
∑
k=1,2

ιk(V − fk)

subject to

e ≥ max{ι1s1, ι2s2}.

Since C is increasing, the constraint binds.33 We denote the maximand to the con-

sumer’s problem by Û((s1, f1), (s2, f2)), a function of the banks’ offers. The following

table provides necessary conditions for (ι1, ι2) to be a maximizing choice:

If (ι1, ι2) = then Û =

(0, 0) 0

(1, 0) V − C(s1)− f1

(0, 1) V − C(s2)− f2

(1, 1) V + ∆V −max{C(s1), C(s2)} − f1 − f2

We denote the set of maximizers (ι1, ι2) by I((s1, f1), (s2, f2)).

Next consider bank k’s best response given the rival bank’s strategy. For instance,

bank 2’s profits are

P2(s2, f2, ι1, ι2) ≡ ι2(f2 − Lφ(max{s2, ι1s1})− s2.

Banks are interdependent because when the customer accepts bank 1’s offer it can reduce

the probability of a loss to bank 2.34 Given bank 1’s offer, bank 2 faces the following

second-best maximization problem:

maxP2(s2, f2, ι1, ι2)

subject to

(ι1, ι2) ∈ I((s1, f1), (s2, f2)).

The strategies (s1, f1), (s2, f2) belong to a subgame perfect Nash equilibrium in pure

33If customers bore part of the cost of account loss, then they would sometimes choose e greater than
the minimum requirement from the bank.

34In the case at hand, bank 2’s probability of loss is reduced whenever bank 1’s standards are higher.
In the general case, interdependence can arise through a second channel: Even if bank 1’s standards are
not higher, the customer may increase effort in order to protect both accounts.
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strategies if there exists (ι1, ι2) such that given bank 1’s strategy, the pair ((s2, f2), (ι1, ι2))

solves bank 2’s second-best maximization problem and vice versa. Solving the two second-

best problems simultaneously is not the same as finding the overall second-best outcome,

since each bank in its problem ignores the portion of the costs of losses faced by the other

bank.35

Define ŝk by

Lφ′(ŝk) + C ′(ŝk) + 1 = 0.

This is the first-order condition for the bank’s second-best problem when the bank can

offer an exclusive contract.

Theorem. In a pure strategy equilibrium, either one bank chooses ŝk satisfying the con-

dition and the other chooses security level 0, or else both choose 0.

Proof. Without loss of generality suppose that in a pure strategy equilibrium s2 ≤ s1.

Then, if s1 > 0, it must be the case that the customer is accepting bank 1’s contract.

(Otherwise, reducing s1 would reduce the bank’s losses.) If the customer is accepting

the contract, then unless the condition is satisfied, there is an adjustment of the level

of security and accompanying adjustment of the fee such that the customer continues

to accept the same menu of contracts and bank 1’s profits increase. Meanwhile, if bank

1’s contract is accepted in equilibrium, bank 2 always improves its profits by reducing

s2.

Depending on the difference between the value the customer attaches to the first and

second account, there may be a unique set of prices offered in a pure strategy equilibrium,

or there may be a continuum of possible prices for a given security level. If

V −∆V > C(0) (18)

then in equilibrium:

f1 = ∆V + C(0)− C(s1); f2 = ∆V.

These prices make the customer indifferent about acquiring the second account; nonethe-

less the customer retains some surplus from the first account acquired. If condition (18)

35In the general case, when the customer accepts both accounts, the solution to one bank’s second-best
problem is not the same as the solution would have been were the rival’s offer not available, because the
bank will take into account the effect on the customer of the portion of losses the customer faces from
both bank accounts.
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is reversed, then

f1 ≤ ∆V + C(0)− C(s1); f2 ≤ ∆V

and the sum of the two prices appropriates the entirety of the customer’s surplus from

the two accounts:

f1 + f2 = V + ∆V − C(s− 1).

The following theorem provides sufficient conditions for a non-trivial pure strategy

equilibrium to exist. Slight changes are needed if condition (18) is reversed.

Theorem. Assume (18) holds. Then the following conditions are sufficient for the exis-

tence of a pure strategy equilibrium in which bank 1 offers ŝ1, bank 2 offers the an account

with the minimum security 0, and both offers are accepted.

∆V > Lφ2(ŝ1) (19)

∆V > Lφ1(ŝ1) + ŝ1 (20)

C(ŝ2) + Lφ2(ŝ2) + ŝ2 ≥ C(0) + Lφ2(ŝ1) + C(0) (21)

Proof. Conditions (19)-(20) guarantee that both banks are making positive profits, so

neither will choose to offer a contract that will be rejected by the customer. Holding

fixed the offer by bank 2, the offer from bank 1 maximizes the joint payoff to bank 1

and the customer; and holding fixed the offer by bank 1, the offer from 2 maximizes the

joint payoff to bank 2 and the customer. Thus, there is no feasible deviation in which

the customer continues to take both contracts. Suppose a deviation by bank 1 causes the

customer to drop bank 2. Then the best possibility will have the same level of security

as before, because bank 1’s costs are unaffected by the lower security level of bank 2. As

a result, the joint profits of bank 1 and the customer can only decrease if the contract

with bank 2 is abandoned. Now consider a deviation by bank 2. The best possible offer

would have a security level ŝ2, but by condition (21) the surplus under that contract is

lower than the total of profit and utility to the customer and bank 2 under the existing

contract.

The conditions in this theorem are easily satisfied by making V and ∆V large and

making bank 2 inefficient at account protection. The conditions are compatible with con-

ditions that make the second-best outcome one in which both banks provide accounts.

Finally, note that the general result in the text applies to this specific case: the equilib-

rium outcome is not second best.
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