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Abstract 
The COVID-19 pandemic and the resulting public health mitigation have caused large-scale 
economic disruptions globally. During this time, there is an increased need to predict the 
macroeconomy’s short-term dynamics to ensure the effective implementation of fiscal and 
monetary policy. However, economic prediction during a crisis is challenging because of the 
unprecedented economic impact, which increases the unreliability of traditionally used linear 
models that use lagged data. We help address these challenges by using timely retail payments 
system data in linear and nonlinear machine learning models. We find that compared to a 
benchmark, our model has a roughly 15 to 45% reduction in Root Mean Square Error when 
used for macroeconomic nowcasting during the global financial crisis. For nowcasting during 
the COVID-19 shock, our model predictions are much closer to the official estimates. 
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1 Introduction

The spread of COVID-19 globally has caused large-scale loss of life and unprecedented eco-

nomic damage (McKibbin and Fernando 2020). Governments worldwide have responded to

these shocks on a multitude of dimensions, including public health measures, fiscal stimulus,

and monetary policy (Bank of Canada 2020; Baldwin and Mauro 2020). Monetary policy de-

cisions in particular require an understanding of the current state of the economy; However,

estimating the current state of the economy – often referred to as economic nowcasting – is

difficult for two reasons: (a) delay, i.e., most of the official estimates of economic indicators

are released with a substantial lag, and (b) uncertainty, i.e., these indicators undergo mul-

tiple revisions later, sometime years after their first release (Giannone et al. 2008; Banbura

et al. 2010).

Traditionally, policy institutions have used lagged macro variables in linear models to

predict the current state of the economy. Such approaches are useful in normal circumstances.

However, during economically stressed periods, macroeconomic nowcasting is challenging

because of the unprecedented economic impact and the speed of policy changes. During

such times – as we move forward into this unfamiliar world – traditional lagged data and

linear regressive models used for predictions become unreliable due to their slow response

and limited ability to capture sudden and large effects.

To address these issues, this paper aims to predict the current state of the economy

using retail payments system data in linear and nonlinear machine learning (ML) models.

Canadian retail payments data capture numerous types of transactions, such as consumers’

income and expenditures, business-to-business payments, and Canada’s government transfer

payments. In the past, it has been shown that such data carry timely information about

the economy and they are useful for predictions (Galbraith and Tkacz 2007; Carlsen and

Storgaard 2010; Barnett et al. 2016; Duarte et al. 2017; Galbraith and Tkacz 2018; Raju and

Balakrishnan 2019; Aprigliano et al. 2019), more so during crisis periods such as COVID-19.

For example, in the recent paper by Chetty et al. (2020), the authors illustrate how private
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sector spending data can help rapidly identify the origins of economic crises. Similarly,

in Bounie et al. (2020), the authors demonstrate changes in consumer response to a severe

economic shock due to COVID-19 using card transactions data in France.

We use a high-frequency payments dataset that consists of the settlement of multiple

payments instruments. Our dataset is much more comprehensive than the data sets used

in Galbraith and Tkacz (2018); Chetty et al. (2020); Bounie et al. (2020). Furthermore,

our data come from the main settlement system for retail payments in Canada, so it has

no sampling error. Therefore, due to its timeliness and comprehensiveness, it is an ideal

candidate for macroeconomic nowcasting during a crisis.

We employ ML models such as the elastic net, support vector machines, random forest,

and gradient boosting to efficiently leverage the broad cross-section of different payments

instruments simultaneously (Zou and Hastie 2005; Burges 1998; Breiman 2001; Friedman

2001). These models are flexible, so they can help us capture nonlinear interactions between

the predictors and macro indicators (Richardson et al. 2018). This is important in the current

situation since the economic effects of COVID-19 are sudden and large.

As a benchmark, our analysis indicates that during the global financial crisis, these

payments data in conjunction with ML models (in this case, gradient boosting) improve

prediction accuracy by up to 45% over a benchmark linear time-series model. We also

document that the nowcasts from our model are currently much closer to May and June

2020 official estimates than this benchmark model. Our benchmark model includes lagged

macro variables and the high-frequency Canadian Financial Stress Indicator (CFSI) (Duprey

2020) in a linear regression model.

Historically, econometricians have used new data or developed new techniques to better

understand the current state of the economy (Giannone et al. 2008; Ghysels et al. 2007;

Bok et al. 2018; Kapetanios and Papailias 2018). The new data sources have spurred the

development and use of different econometric techniques. One popular approach involves

dimension reduction of a broad cross-section of time series: for example, the nowcasting
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dynamic factor model (DFM) of Giannone et al. (2008). Another approach involves using

different frequencies of data to construct a better forecast, such as mixed-data sampling

(MIDAS) models developed by Ghysels et al. (2007). Although DFM performs slightly

better than the MIDAS model, both are shown to be competitive in predicting Canada’s

GDP by Chernis and Sekkel (2017).

Recently, econometricians have started exploiting non-traditional, high-frequency, and

large-scale data sets, such as the financial market data, Google search data, and satellite

data for economic nowcasting and forecasting (Choi and Varian 2012; Andreou et al. 2013;

Li 2016; Donaldson and Storeygard 2016; Koop and Onorante 2019; Buono et al. 2017).

Non-traditional and large-scale datasets sometimes do not fit into the traditional economet-

ric models. Therefore, researchers have begun exploiting ML-based prediction approaches.

For example, the articles by Einav and Levin (2014a,b) suggest that the ML approaches com-

plement the traditional econometric tools and are useful in extracting economic value from

non-traditional data sources. The articles by Chakraborty and Joseph (2017); Richardson

et al. (2018) suggest that the ML models generally outperform traditional linear model-

ing approaches in prediction tasks, and in some cases, the ML algorithms outperform the

commonly used econometric tools, such as DFM.1

In addition, econometricians have used electronic transactions datasets that potentially

have information related to the economy. This makes intuitive sense since virtually all

exchanges of goods and services are paid and settled via some payment systems. In Verbaan

et al. (2017), the authors use debit card payments data for nowcasting Dutch household

consumption. In Galbraith and Tkacz (2018), the authors use point-of-sale debit and cheque

payments data to nowcast Canada’s GDP and retail sales. Similarly, in Aprigliano et al.

(2019), the authors use some of the data from Italy’s retail payments system for nowcasting

and forecasting.

In this paper, we extend earlier work by Galbraith and Tkacz (2018); they use a subset

1A comprehensive review of the use of machine learning (ML) and big data for nowcasting and forecasting is
presented in the following articles (Hassani and Silva 2015; Kapetanios and Papailias 2018).
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of the streams of payments data in our dataset to nowcast Canada’s GDP and retail sales

using an ordinary least squares model. In contrast, we use all settlement data from retail

payment systems and also use more flexible models to capture the large effects of the crisis.

Using all data is important to overcome a drawback of the previous study, i.e., payments

through particular instruments may rise or fall due to non-economic reasons (technological

advancements such as the decline of cheque usage). Using one or two payments instruments

in isolation could bias predictions. Our paper is also an extension of our earlier work on

payments data and ML for nowcasting (Chapman and Desai 2020), with the primary focus

being on the current crisis period.

We proceed as follows. In section 2 we describe the retail payments system data. Section

3 provides a brief overview of the nowcasting methodology, followed by the results and

discussion in section 4. Finally, in section 5 we conclude our findings. Several appendices

provide details on the payments data and the ML-based nowcasting methodology employed

in this paper.

2 Retail Payments System Data

The vast majority of non-cash transactions require settlement to extinguish the debt be-

tween the buyer and the seller.2 In modern economies, this is typically accomplished via

a centralized payments system. In Canada, there are two systems operated by Payments

Canada that settle these transactions: the Automated Clearing and Settlement Systems

(ACSS) and the Large-Value Transfer System (LVTS). ACSS settles the majority of retail

and small-value payment items, and LVTS clears large-value payments between Canadian

financial institutions. In this paper, we focus on payments data from ACSS only. In 2019,

ACSS handled an average of 33 million payments items per day, with an average daily total

value of $29 billion.

2According to recent surveys, only 14% of physical retail sales by value settled with physical cash as opposed to
through a payment system (Henry et al. 2018).
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ACSS clears 24 types of payments instruments (referred to as streams). Broadly, these

streams can be categorized into two groups: electronic streams, which include, for example,

Automated Fund Transfer (AFT), Point-of-Sale (POS) Payments, Electronic Data Inter-

change (EDI), On-line payments, and Government Direct Deposit; and paper-based streams,

which incorporate Encoded Paper, Paper Remittances, Government Paper Items, etc.

Over time since ACSS’s inception in 1999, some payments streams were discontinued,

some new streams were created, and some were merged; therefore, in this study, we use

transactions settled in 20 payments instruments. These streams account for the majority of

the payments settled in ACSS. Our data consist of the daily gross dollar amount, i.e., value,

and number of transactions, i.e., volume settled in those payments instruments.

To overcome the effects of the sudden changes in the streams and to get a better rep-

resentation of payments flow, we merged a few streams which belong to similar categories

and settle related payments.3 This could help us to mitigate the non-stationarity effects

due to sudden changes in streams (primarily driven by technological advancements). Also,

to overcome the effects of consumers’ choice of payments, i.e., when they switch payments

method,4 we include the sum of all payments instruments in ACSS, Allstream, as a separate

series. This should assist us in getting the overall picture from ACSS and mitigating the

effects of a few unused streams. After these adjustments, we are left with 12 streams that

are listed in Table 1 along with a short description.5 We use both value and volume of each

stream; therefore, we have in total 24 series.

The shares of many streams (in terms of value and volume of payments) have changed

over time. Due to their usability, electronic means of payments have become more common

than paper items. Most of these changes are primarily driven by technological advancements

leading to the inception and adoption of new payment instruments; however, an economic

crisis like COVID-19 can also influence the payments flow.

3See Table 1 footnotes for the specifics of each adjustment performed.
4For nowcasting, we are interested in capturing whether spending (or earning) has actually slowed (or stopped),

rather than switched payment method.
5Further details of the individual payments instruments are provided in Appendix A.
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Table 1: ACSS payments streams used in this studya

ID Label Short Description

C AFT Credit Direct Deposit (DD): payroll, account transfers

D AFT Debit Pre-authorized debit (PAD): bills, mortgages, utility

E Encoded Paperb Paper bills of exchange: cheques, bank drafts, paper PAD

F Paper Remittances Corporate bill payments. Settles payments similar to Y-stream

G Government Itemsc Paper items: Government of Canada paper items

J On-line Paymentsd Electronic payments using a debit card through the internet

M Government DD Recurring social payments: social security, tax refunds

N Shared ABM Network Debit card payments to withdraw cash at ABM

P POS Paymentsd Point-of-sale (POS) payments using debit card

X EDI Paymentse Exchange of corporate-to-corporate payments

Y EDI Remittances Corporate electronic bill payments

All Allstream The sum of all payments streams settled in the ACSS
a These eleven payments streams are representative of 20 payments instruments in the ACSS. There are a few

more payments instruments; however, because they are not available for the entire time period we’re con-
sidering in this paper, they are excluded from this study. The excluded streams are ABM Adjustments, ICP
Regional Image Payment, and ICP Regional Image Returns. NOTE: Excluded streams collectively account for
about 0.001% of the total value settled in the system. For further details on ACSS streams, refer to Appendix A.

b Stream E is the sum of multiple streams settled separately in ACSS. It combines Encoded Paper (E), Large-
Value Encoded Paper (L), and Image Captured Payments (O) streams and subtracts Image Captured Return
(S), Unqualified (U), and Computer Rejects (Z) streams.

c Stream G is the sum of multiple streams settled separately in ACSS. It incorporates Canada Savings Bond (B),
Receiver General Warrants (G), and Treasury Bills and Bonds (H).

d Value and volume of On-line Payments (J) and POS Payments (P) streams are obtained by subtracting On-line
Returns (K) and POS Refund (Q) streams, respectively.

e EDI: Electronic Data Interchange.

6



Figure 1: Shares of payments streams in terms of value (dollar amount) after making adjustments
outlined in Table 1. Historic period: Jan 1999 to July 2020, and latest period: April to July 2020.
NOTE: The shares of Shared ABM Network, Government Items, Paper Remittances, and On-line
Payments are < 0.4% for both the historic and latest periods. However, the Government Items
increased to 1.5% in the latest period.

Figure 2: Shares of payments streams in terms of volume (number of transactions) after making
adjustments outlined in Table 1. Historic period: Jan 1999 to July 2020, and latest period: April
to July 2020. NOTE: The shares of Paper Remittances, Government Items, EDI Payments, and
On-line Payments are < 0.3% for both the historic and latest periods.
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In Figure 1 and Figure 2, we compare the value and volume shares of each payments

stream using the entire dataset (historical data ranging from Jan 1999 to July 2020) with

the latest data, i.e., for the period ranging from April to July 2020. Historically, the En-

coded Paper stream has the highest value shares, followed by the AFT Credit, and the POS

Payments stream has the largest volume shares, followed by the Encoded Paper stream.

In recent months – fueled by social-distancing rules due to COVID-19 – the AFT Credit

value (primarily used for payroll) share has more than doubled, and that of Encoded Paper

stream shares has been halved, compared to the historical shares. Similarly, the transactions

value settled in Government Direct Deposits stream (which settles government social security

payments) has increased four times. This increase in flow is likely due to the Canada Emer-

gency Response Benefit (CERB) payments to provide financial support to Canadians who

are directly affected by COVID-19. Similar effects are observed in the volume of payments.

For example, the POS Payments volume shares have increased by 7 percentage points, and

Encoded Paper volume shares have decreased by 11 percentage points.

ACSS payments capture numerous types of transactions from both sides of macroeco-

nomic accounts: for example, consumers’ income and expenditures. It includes, for instance,

payrolls and government social payments from the income side; and bills, mortgages, utilities,

donations, and cash withdrawals from the expenditure side. ACSS also includes business-

to-business bill payments in EDI and Canada’s government spending in Government Paper

Items. Therefore, this variety, timeliness, and the lack of errors in the ACSS dataset make

it a rich economic information source. Thus, it is an ideal candidate for high-frequency

economic monitoring and macroeconomic nowcasting (Galbraith and Tkacz 2007, 2018).

Note that our dataset does not include some of the payments instruments which are not

settled through the ACSS, such as credit card and e-transfer payments.6 However, Galbraith

and Tkacz (2018) concluded that the credit card payments data in Canada does not add

6In 2019, credit card payments accounted for about 6.2% in value and 31.1% in volume of total retail transactions
in Canada. Similarly, e-transfer payments accounted for 1.5% in value and 2.5% in volume (Paturi and Chiron 2020).
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any value in nowcasting GDP and retail sales.7 Furthermore, our dataset does not include

on-us transactions where both sender and receiver have an account with the same financial

institution; therefore, such transactions do not need to be settled in ACSS. However, their

shares are small and hence might not drastically influence our analysis.8

2.1 Effects of COVID-19 Shock on Payments Streams

The COVID-19 pandemic is having an unprecedented economic impact on the Canadian

economy. Before COVID-19 struck Canada, the economy had been operating close to po-

tential for nearly two years (Bank of Canada 2020). However, most economic activities have

been reduced substantially due to the COVID-19 shock and the public health response to it.

These effects are directly visible through some of the ACSS payment streams.

ACSS data, which are available daily, can be used for high-frequency economic monitor-

ing.The effects of most of the economic activities of consumers, corporations, and government

can be observed daily using these streams. This is important for policymakers in economi-

cally stressed periods to quantify the immediate effects of such extreme events.

In Figure 3, we present daily value and volume series for three payments streams, namely,

shared ABM Network, POS Payments, and Government Direct Deposit.9 The effects of

COVID-19 shock are evident through these time series. Both values and volumes of ABM

Network and POS Payments fell starting in mid-March 2020, and when the full effects of

the pandemic hit in April, both value and volume reached their lowest levels. Starting in

mid-May 2020, both ABM and POS streams show signs of recovery. By the end of May,

the POS stream had recovered to the pre-COVID level; however, the ABM stream is still

recovering slowly. Similarly, the Government Direct Deposits stream shows the increased

7Note that in Galbraith and Tkacz (2018) the authors used a short sample size in their analysis of credit card data.
The results could be different for a larger sample size.

8On-us payments amount to roughly 20% more than those settled in ACSS. The values of on-us transactions differ
by payments instrument; for instance, in Encoded Paper, it is about 25%, and in POS Payments, it is about 16% (Paturi
and Chiron 2020).

9We select these streams because the effects of COVID-19 shock are clearly visible in these streams and cover both
earnings and spending.
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flow during the same period, confirming the effects of social security payments, probably

under CERB, launched during the onset of COVID-19.

Figure 4 compares the monthly aggregated value and volume of Encoded Paper, POS

Payments, and Allstreams, respectively.10 A sudden and massive drop in these streams’

values and volumes in April 2020 highlights the severity of COVID-19’s effect on the economy.

Compared to the same period in 2019, the Encoded Paper stream value fell by 33%, and

volume dropped by 39%. Similarly, we observe a 32% and 41% drop in value and volume

of POS Payments as well as 15% and 27% decline in value and volume respectively for all

payment streams via the Allstream variable.

The higher drop in volumes compared to values in these streams indicates that consumers

choose to spend in bulk, i.e., they avoid multiple visits to marketplaces to reduce the risk of

catching COVID-19. Starting in June 2020, the POS stream has recovered to pre-COVID

level; however, the Encoded Paper stream has yet to recover. The Allstream value and

volume show that ACSS is recovering fast; but, it had not entirely recovered by July 2020.

2.2 Payments Data for Macroeconomic Nowcasting During a Crisis

The crux of the problem of nowcasting during a crisis is that most of the official estimates

of macroeconomic indicators are released with a substantial delay. For instance, GDP in

Canada is released with a delay of eight weeks. Furthermore, these indicators can undergo

revisions sometimes years after their first release, highlighting the uncertainty of the mea-

surement. Therefore, it is valuable to provide current-period estimates of these indicators

using more timely available information: in this case, payments data from the ACSS.

During a rapid crisis such as COVID-19, macroeconomic predictions are difficult because

of the large and unprecedented economic impact.11 This could undermine the use and relia-

10We select these streams because the Encoded Paper stream accounts for the highest value share, POS Payments
stream accounts for the largest volume shares, and Allstream is an indicator of the entire value and volume of transac-
tions settled in ACSS.

11The unemployment rate soared to 13% in Apr 2020 as the full force of the pandemic hit, compared with 7.8% in
Mar 2020 (Statistics Canada. Table 14-10-0287-01, monthly, seasonally adjusted).
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Figure 3: Selected payments streams’ value (blue) and volume (orange) at daily levels for the
period before and during the COVID-19 crisis.

11



Figure 4: Comparison of the monthly aggregated and seasonally adjusted Encoded Paper (E), POS
Payments (P) and Allstream (All) value and volume streams for the last three years. Highlighted
(in gray) is the ongoing COVID-19 period.
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Table 2: Delay period for official estimates of key
macroeconomic indicators in Canada.

ID Macroeconomic Variable Delay Period

GDP Gross Domestic Product 8 weeks

RTS Retail Trade Sales 6 weeks

WTS Wholesale Trade 6 weeks

HPI New House Price Index 6 weeks

CPI Consumer Price Index 2 weeks

UNE Unemployment 1 week

bility of traditional lagged data and linear models used for nowcasting, which typically have

at least an implicit assumption that the economy is in some sort of stationary equilibrium.

Therefore, non-traditional models and higher frequency data in real time are needed.

For demonstration, we use the macroeconomic indicators listed in Table 2 as target

variables12 for nowcasting using ACSS payments data. Like other macroeconomic time

series, ACSS streams have a strong seasonal component. We adjust all series (both value

and volume) for seasonality using the X-13 ARIMA tool (X13 Reference Manual 2017).13

The year-over-year (YOY) growth rates of the seasonality adjusted payments series are used

to predict the similarly adjusted YOY growth rates of macroeconomic indicators.

Pairwise correlations between YOY growth rates of the seasonality adjusted macroeco-

nomic variables and selected payments streams are listed in Table 3. These indicate that

most of the ACSS streams have a strong correlation with macroeconomic indicators. The All-

stream and Encoded Paper values are strongly correlated to the most macro indicators. AFT

Credit and POS Payments have a high correlation with Retail Trade Sales (RTS), Wholesale

Trade Sales (WTS), House Price Index (HPI), and Consumer Price Index (CPI). Shared

12Seasonally adjusted monthly GDP, RTS, WTS, HPI, CPI, UNE are obtained from Statistics Canada Tables 36-10-
0434-01, 20-10-0008-01, 20-10-0074-01, 18-10-0205-01, 18-10-0006-01, and 14-10-0287-01, respectively.

13Seasonality adjustments are performed because official macro indicators are released with similar adjustments.
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ABM values and volume are strongly correlated with GDP, WTS, and Unemployment.

Table 3: Pairwise correlations between YOY growth rates of the seasonality adjusted
macroeconomic variables and a few selected payments streams.*

E-value All-value N-value N-volume P-value All-volume C-value

GDP 0.85 0.81 0.81 0.74 0.67 0.67 0.59

RTS 0.80 0.70 0.77 0.73 0.76 0.71 0.62

WTS 0.83 0.82 0.66 0.56 0.54 0.52 0.59

HPI 0.53 0.57 0.27 0.15 0.51 0.11 0.64

CPI 0.51 0.22 0.44 0.30 0.38 0.31 0.56

UNE -0.87 -0.79 -0.85 -0.78 -0.68 -0.70 -0.55
*1 Correlations are calculated for the period Jan 2005 to July 2020.
*2 Payments streams: All-Allstream, E -Encoded Paper, N - Shared ABM Network, C - AFT Credit, D -

AFT Debit, P - POS Payments, and Y - EDI Remittances.
*3 Macroeconomic variables: GDP - Gross Domestic Products, RTS - Retail Trade Sales, WTS - Whole-

sale Trade Sales, CPI - Consumer Price Index, HPI - House Price Index, and UNE - Unemployment.
Value is the dollar amount, and volume is the number of transactions.

*3 Payment streams are arranged in ascending order of their correlation with GDP, and the order is kept
constant for all other macro variables.

The YOY growth rates of Allstream and Encoded Paper values are plotted with YOY

growth rates of GDP, RTS, WTS, HPI, CPI, and Unemployment (UNE) in Figure 5. To

get a sense of the importance of the payments data during a crisis, we highlight the growth

rates of Allstream and Encoded Paper during the 2008 global financial crisis (in gray) and

COVID-19 shock (in blue).

During this period, the decline and rebound in growth rates of these payments streams go

hand in hand with macroeconomic indicators. This is a good indication of the economic value

associated with these payments streams during the crisis period. Similarly, both Allstream

and Encoded Paper values’ growth rates show a dramatic drop in Apr 2020, showing the con-

sequences of the COVID-19 shock. This implies that payments data, which is available daily,

could be exploited to quantify the effects of the COVID-19 shock on crucial macroeconomic

indicators.
14



Figure 5: Growth rate comparisons of macro variables with Encoded Paper (E) and Allstream
(All). Highlighted in gray is the global financial crisis period; blue shows the ongoing COVID-19
period.
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3 Methodology

To exploit non-traditional and large-scale data sources, researchers have recently begun uti-

lizing ML models for economic prediction. The ML models are shown to efficiently handle

wide- and large-scale data and can manage collinearity. Furthermore, they are demonstrated

to methodically capture non-linear interactions between the predictors and the target vari-

able. However, there are some challenges in using ML models for macroeconomic predic-

tions (Einav and Levin 2014a,b; Chakraborty and Joseph 2017).

The use of ML models sometimes leads to a loss of interpretability and the problem of

overfitting. These models also demand large-scale data, which is often hard to get in the

context of macroeconomic prediction (Chakraborty and Joseph 2017). However, the ML

models employed in this paper, such as elastic net regularization, support vector regression,

random forest, and gradient boosting, are interpretable up to a certain extent (Zou and

Hastie 2005; Burges 1998; Breiman 2001; Friedman 2001). Also, the problem of overfitting

can be mitigated using cross-validation techniques (Hastie et al. 2009; Friedman et al. 2001).

Nonetheless, ML models are useful in cases when the emphasis is on improving prediction

accuracy – which is the primary focus of this paper. Richardson et al. (2018) shows that some

of the ML models outperform the commonly used nowcasting approaches, such as DFM, in

nowcasting New Zealand’s GDP. Below we briefly discuss the nowcasting models employed

in this paper. This section borrows from Chapman and Desai (2020). The interested reader

is encouraged to read that paper, where we provide a fuller exploration and comparison of

the models referred to here and references therein.

Consider a set X = {x1,x2, . . . ,xM} of M attributes (sometimes called predictors or inde-

pendent variables) and a target y (dependent variable), each with N data points. This can

be represented as a dataset (X ,y) where X is of size N×M and y is a vector of size N×1.

Let us denote ŷ as the predicted target, which can be obtained using an OLS model as

ŷ(X ,w) = Xw, (1)
16



where w is a vector of unknown coefficients (weights) of size M×1. In OLS, we fit the linear

model of the form given in Equation 1, and the objective is to minimize the residual sum of

squares between the observed values y and the predicted values ŷ of the target,

min
w ‖y− ŷ(X ,w)‖2

2 , (2)

where ‖.‖∗ is L∗ norm. Such linear models have proven to be a valuable and straightforward

model for prediction due to the Gauss-Markov Theorem (if the underlying data satisfies

a few assumptions about the distributions of the error) and many years of practical use.

However, when some of the predictors are correlated, the OLS estimates become highly

sensitive to random errors in the target. Also, OLS is susceptible to the outliers in the data

and, importantly, can only model relationships linear in the parameters w. Therefore, it

generally does not perform well on large and complex datasets (Hastie et al. 2009).

We also employ some of the recently popularized parametric and non-parametric ma-

chine learning approaches such as elastic net (Zou and Hastie 2005), support vector ma-

chines (Smola and Schölkopf 2004), random forest (Breiman 2001; Liaw and Wiener 2002),

and gradient boosting (Friedman 2001). For each considered model there are many variations

proposed in the literature; however, we have focused on the basic version of each model. We

give a high-level description of each below.14.

The elastic net (ENT) is a regularized linear regression model. Here the objective is

similar to that of the OLS in Equation 2 with the addition of L1 and L2 penalties on how large

the sum of the parameters w can get.15 In an elastic net regression, the combination of L1 and

L2 penalties allows for learning a sparse model while encouraging grouping effects, stabilizing

regularization paths, and removing limitations on the number of selected variables (Zou and

Hastie 2005).

Support vector regression (SVR) is another model useful for the problems with multiple

14For further details on these models, refer to Appendix B
15A regression model that uses only the L1 penalty is a Lasso regression, and a model that uses only the L2 penalty

is a Ridge regression (Hastie et al. 2009; Zou and Hastie 2005).
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predictors. It uses a very different objective function compared to the OLS or ENT. The

SVR is based on support vector machines. These are algorithms whose task is to find a

hyperplane that separates the entire training dataset into, for example, two groups by using

a small subset of training points (called support vectors). In the case where there is no

such hyperplane, it is modified to minimize the number of misclassified points in every

region (Burges 1998; Smola and Schölkopf 2004).

Another popular approach is random forest (RF) regression. It is a decision tree–based

ensemble learning method built using a forest of many regression trees. It is a non-parametric

method and hence approaches the multicollinearity problem slightly differently than para-

metric approaches such as OLS or ENT. Random forest is also a bagging (bootstrap aggre-

gation) approach, i.e., each tree is independently built from a subset of the training dataset.

Each sample could randomly select a subset of features from the available set or the entire

features set. The final prediction is performed by averaging the predictions of all regression

trees (Breiman 2001; Liaw and Wiener 2002).

Similar to the random forest, gradient boosting (GB) regression is a tree-based non-

parametric ensemble learning approach. However, unlike random forest, this approach is

based on boosting in which a sequence of weak learners (for example, small decision trees)

are built on a repeatedly modified version of the training dataset. The data modification at

each boosting interaction consists of applying weights to each of the training samples, and

for successive iterations, the sample weights are modified (Friedman 2001).

3.1 Model Training and Cases Specifications

In the implementation of the above-discussed methods, we use the expanding window ap-

proach. We first divide the dataset into two subsets: a training set and a testing set. Next,

part of the training set, i.e., a validation set, is kept aside for model tuning and cross-

validation.16

16Refer to Figure 10 in Appendix D for schematic representation and further description.
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We train the models in two steps. During the first step, we use the training and validation

sets. For each iteration (or fold) of the expanding window, we increase the training sample

by one period and then predict the next period from the validation set. At the end of this

step, i.e., when we finish iterating over the validation set, a few selected hyperparameters for

each of the models are tuned using cross-validation.17 In the second step, the tuned models

are used for prediction by reutilizing the expanding window approach over the training and

testing set. For the out-of-sample model evaluation, we use Root Mean Square Error (RMSE)

as the key performance indicator.18

As a benchmark, we first employ a linear regression model using OLS and then utilize

more sophisticated ML models discussed in section 3. The time horizon for nowcasting t +1

is based on the payments data availability. For example, if we use payments data available

at t and first available lag (t−2 for GDP), then the model F can be specified as

ĜDPt+1 = F (GDPt−2, Paymentst). (3)

In the naive benchmark, we use an autoregressive (AR) model using the first available

lagged macro variable. For GDP, retail, and wholesale trade sales, which are released with

two months’ lag, we use the second lag; and for all other macro variables, we use the first

lag, as they are available with less than one month lag. For example, to nowcast July’s GDP

growth rates on August 1, we use official estimates of May (second lag). Similarly, we use

June’s official estimates to nowcast July’s unemployment growth rates.

In the benchmark (or the base case), we use predictors from the naive case along with

the Canadian Financial Stress Indicator (CFSI) in the OLS model. For example, to nowcast

July’s GDP on the first day of August, we use CFSI for July’s and May’s GDP growth

rate. The CFSI is a newly created composite measure of systemic financial market stress

for Canada. It is available immediately and is shown to track the economic crisis (Duprey

17We choose the parameters which give the best performance (lowest RMSE) on both training and validation sets.
18All models utilized here are employed using Scikit-learn: Machine Learning in Python (Pedregosa et al. 2011).
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2020). The CFSI is constructed using data from multiple market segments.19 Therefore, it

is a useful predictor to nowcast macroeconomic indicators and hence is used as a benchmark

to compare information gain using payments data.

In the main case of interest, along with the predictors specified in the base case above,

we use the payments streams listed in Table 1. For example, to nowcast July’s GDP on the

first day of August (at t +1), we use payments data and CFSI for July (at t) and the GDP

growth rate of May (at t−2).20 The model selection for the main case of each macroeconomic

variable is performed using the following steps:

1. First, we compute prediction scores for payments streams for the selected macro vari-

able using univariate linear regression tests (see Appendix C for further details).

2. Next, we arrange payments stream in the descending order of their scores and incor-

porate one stream at a time from that list for the prediction.

3. We repeat steps 1 and 2 for each regression method discussed in section 3 and get the

in-sample training and out-of-sample testing RMSEs for all cases.

4. Finally, we select the best model, i.e., the model with least in-sample training and

out-of-sample testing RMSEs, to report the nowcasting results.

4 Results and Discussion

We present the results of nowcasting for the cases specified above. Situations of severe shock

are natural areas in which our data and techniques are particularly useful. Therefore, we

employ them to study the economic crisis periods. We first demonstrate the usefulness of

19CFSI is computed using the data from the following seven market segments: the equity market, the Government
of Canada bonds market, the foreign exchange market, the money market, the bank loans market, the corporate bonds
market, and the housing market.

20Traditionally, predictions are performed at multiple time horizons, for example, extending from the start of the
month of interest until a day before the official release (Giannone et al. 2008; Galbraith and Tkacz 2018). However,
in this paper, we focus on the current period, which is critical for policymakers during crisis. Also, payments data are
shown to add the most value at nowcasting horizon, i.e., at t +1 (Galbraith and Tkacz 2018; Aprigliano et al. 2019).
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ACSS payments data during the global financial crisis as a test case. Next, we use payments

data to nowcast macroeconomic indicators for the current COVID-19 period.

ACSS payments data used for these exercises range from Jan 2005 to Jul 2020 (p = 187

sample points). YOY growth rates nowcasting of various macro variables for the benchmark

and the main cases are performed. The results of these exercises are discussed in the following

sections.

4.1 Global Financial Crisis

In this case, the in-sample training period is Jan 2005 to Oct 2008 (p = 46), and the out-of-

sample testing period is Nov 2008 to Jan 2010 (p = 14), i.e., the 2008 financial crisis period

with significantly low growth rates. In Table 4, we compare the nowcasting performance

(in terms of RMSE) of the only best-performing ML model (from the list of the following

models: elastic-net, support vector machines, random forest, and gradient boosting) on the

main case data with the OLS on main case data and benchmarks.

ACSS payments data provide significant reductions in nowcasting RMSE for most of the

macroeconomic variables considered in this paper. The information gain using payments

data is higher for the macro variables, which have a higher delay period. For instance, we

get 50 to 60% reduction in RMSE over AR model and 38 to 44% RMSE reductions over

benchmark case in nowcasting GDP, retail trade sale, and wholesale trade sale (which are

delayed by six to eight weeks).

Comparatively, the information gain using payments data is slightly lower for the macro

variables, which have a shorter delay period. For instance, we get about 20 to 50% reduction

in RMSE over AR model and 12 to 21% reductions in RMSE over benchmark in nowcasting

unemployment, CPI, and HPI (which are delayed by only a week or two). Except for CPI

and HPI, all other main case predictions are statistically significant for the Diebold-Marino

test using the benchmark.21

21We recognize that Diebold-Mariano test has poor finite-sample properties; however, we use it to be comparable
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It is worth noting that the major gains in nowcasting accuracy are achieved by using

payments data, i.e., we get 10 to 30% reduction in RMSE when payments data is used in

the OLS model. However, the ML models contribute to increasing prediction accuracy by 3

to 20% across all targets.

In nowcasting GDP and retail trade sale and wholesale trade sales, the gradient boosting

regression (a non-parametric and non-linear model) performs better than other models con-

sidered in this paper. The linear and parametric models, such as support vector regression

and elastic net, perform slightly better in nowcasting CPI, HPI, and unemployment. How-

ever, overall the gradient boosting model gives the consistently better performance across

all targets. This is probably due to its ability to efficiently handle multiple predictors and

capture sudden and large changes in interaction between the predictors and target variables

during economic crisis periods.

Visual comparisons of in-sample and out-of-sample predictions are depicted in Figure 6.

In all cases, including the payments data provides downturn and recovery indications that

are much better than the benchmark case in both in-sample and out-of-sample periods. We

conjecture that this is due to the new information provided by the payments data and the

flexible ML models that allow this data to provide better predictions.

In the prediction of almost all of the targets, the Allstream value and Encoded Paper value

scores22 highest among the payments steams, and they are identified as the most important

streams for macroeconomic nowcasting. In the case of GDP nowcasting, Allstream, Encoded

Paper, ABM Network, and AFT Credit values are more useful. Similarly, for RTS growth

rate nowcasting, along with the Allstream and Encoded Paper values, POS Payments, AFT

Credit, and AFT Debit values are more beneficial.

with similar papers where it has been used, for example (Chernis and Sekkel 2017; Aprigliano et al. 2019).
22See Figure 9 in Appendix C for details on prediction scores for selected predictors.
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Table 4: Global financial crisis: RMSE on testing period for seasonally adjusted YOY
growth rate nowcasting of macro variablesa

Targetb ARc Benchmarkd Main-OLSe Main-MLf RMSE Reduction (%)g

GDP 1.63 1.18 0.73** 0.66h** 44

RTS 5.12 4.12 3.32** 2.54h*** 38

WTS 5.74 4.73 3.67* 2.76h*** 42

CPI 0.61 0.54 0.49 0.47i 12

HPI 0.67 0.39 0.34 0.33i 16

UNE 6.86 6.21 5.08* 4.90i* 21
a In-sample training period: Jan 2005 to Oct 2008 (p = 46) and out-of-sample testing period: Nov 2008

to Jan 2010 (p = 14). Note that the seasonality adjustment of the payments streams is performed for the
sample up to Jan 2010, i.e., including the test set.

b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-Wholesale Trade Sales, CPI-Consumer
Price Index, HPI-New House Price Index, and UNE-Unemployment. Note, we use the latest release of
these targets. It is more appropriate for such exercises to use the first-release; however, we do not have
the historic (real-time releases) data for some of these macro variables.

c Autoregressive model using the first available lagged macro variable (for GDP, RTS, and WTS second
lag and others first lag).

d For benchmark, we use OLS with CFSI and the first available lagged macro variable.
e For the main-OLS case, we use payments data along with the predictors in the benchmark case in the

OLS model.
f For the main-ML case, we use payments data along with the predictors in the benchmark case and only

show RMSE of the best-performing models chosen from the list of the following models: elastic net,
support vector machines, random forest, and gradient boosting.

g Percentage reduction in RMSE over benchmark using main ML model.
h Gradient boosting regression model performs the best, giving an additional 10 to 20% reduction over

OLS with the main case, i.e., when payments data is included. These indicate the RMSE reductions due
to ML models over OLS. Also, for gradient boosting, we explore and tune the following hyperparame-
ters: number of estimators (trees), maximum depth of each estimator, and learning rate.
Refer to Appendix B, C, and D for additional details on the model and tuning procedure.

i Support vector regression model performs the best, giving an additional 3 to 5% reduction over OLS
with the main case. For SVR model, we explore and tune the following hyperparameters: kernel type
and regularization parameter value.

*, **, *** denote statistical significance at the 10, 5, and 1% level, respectively, for the Diebold-Marino test
using the benchmark.
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Figure 6: Comparison of main case nowcasts during global financial crisis with the benchmark.
The in-sample training period is Jan 2005 to Oct 2008 and the out-of-sample testing period is Nov
2008 to Jan 2010 (highlighted in gray).
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4.2 Covid-19 Shock

In this section, we present the results of macroeconomic nowcasting for the ongoing COVID-

19 period. For this case, we have a longer in-sample training period, i.e., Jan 2005 to Mar

2020 (p= 183), compared to the previous case. The trained models’ performance is examined

on the out-of-sample testing period ranging from Apr to Jul 2020. Since the testing sample

is tiny and our primary focus is on the crisis period, we select the best-performing model on

the global financial crisis for predictions (i.e., the models used for predictions in Table 4).

The predictions for May, Jun, and Jul 2020 are presented in Table 5.

For May 2020, our model predictions using payments data are much closer to the offi-

cially released values compared to the benchmark. In this case, the benchmark model could

correctly predict the sign (which is straightforward due to sharp drops in target values), but

the actual predictions fall short of official values. For this period, the nowcasting of macro

variables that have higher delay periods, such as GDP, RTS, and WTS, are more accurate

than those with shorter delay periods (CPI, HPI, and UNE). For Jun and Jul 2020, our model

predicts faster recovery of all macro variables. This is in line with the information seen in

most payments streams showing signs of recovery starting in Jun 2020. In contrast, the

benchmark model predicts recovery at a much lower rate. Note that the official estimations

of all macro variables for July 2020 will be available on Oct 1, 2020.

Employment is the hardest hit by COVID-19, and our model predicts that YOY growth

rates of unemployment increased by 80%, 74%, and 63% in May, Jun, and Jul 2020, re-

spectively. Model prediction falls short of the officially released estimates for that period;

however, our model performs much better than the benchmark model, which could not

capture the drastic effects of COVID-19 shock on unemployment. Similarly, our model per-

formance is more reliable than the benchmark of CPI and HPI but falls short of actual

predictions in May and June 2020. According to our model predictions, YOY growth rates

of CPI and HPI for July 2020 will be 1.37 and 1.46. The visual comparisons of in-sample

and out-of-sample predictions are depicted in Figure 7. In all cases, including the payments
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Table 5: COVID-19 Shock: Seasonally adjusted YOY growth rate predictions for May to July 2020.a

May 2020 Predictions Jun 2020 Predictions Jul 2020 Predictionse

Targetb Official Benchmarkc Maind Official Benchmark Main Benchmark Main

GDP -13.8 -5.81 -17.1 NA -14.6 -13.6 -6.47 -2.97

RTS -18.4 -7.58 -25.2 NA -20.8 -9.89 -5.96 1.58

WTS -17.7 -3.32 -17.9 NA -17.8 -14.8 -9.60 -0.71

CPI -0.29 -0.19 -0.24 0.73 -0.23 0.68 0.77 1.37

HPI 1.06 0.53 0.57 1.26 0.86 1.15 1.15 1.46

UNE 139.7 8.87 78.3 118.4 10.11 72.1 7.98 62.6
a In-sample training period: Jan 2005 to Mar 2020 (p = 183) and out-of-sample testing period: Apr to Jul 2020

(p = 4). Note that the seasonality adjustment of the payments streams is performed for the sample up to July 2020,
i.e., including the test set. Also, since the test sample is tiny, we do not provide out-of-sample RMSEs.

b GDP-Gross Domestic Product, RTS-Retail Trade Sales, WTS-Wholesale Trade Sales, CPI-Consumer Price Index,
HPI-New House Price Index, and UNE-Unemployment. Note, we use the latest release of these targets.

c For the benchmark, we use OLS with CFSI and the first available lagged macro variable (for GDP, RTS, and WTS
second lag and others first lag).

d For the main case we use payments data along with the variables from the benchmark case and show the prediction
of the best-performing model from Table 4 for each predictor (i.e., we use gradient boosting for GDP, RTS, and WTS
and support vector regression for CPI, HPI, and UNE).

e On Aug 1, 2020, i.e., at the nowcasting horizon for Jul 2020, we do not get official estimates of GDP, RTS, and WTS
for Jun 2020 and any macro variables for Jul 2020; therefore, they are not included in the table. However, at the time
of writing this paper, both Jun and Jul 2020 official estimates of the target variables were available as follows: Jun
2020 estimates of GDP=-8.12, RTS=-1.87, WTS=-1.90 and Jul 2020 estimates of GDP =-3.9, RTs =2.9, WTS =1.4,
CPI =0.42, HPI =1.7, and UNE =89.2 (all seasonally adjusted YOY growth rates).
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Figure 7: Comparison of main case nowcast with benchmark during COVID-19 shock period. The
in-sample training period is Jan 2005 to Mar 2020 and the out-of-sample testing period is Apr to
Jul 2020 (highlighted in gray).
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data provides downturn and recovery indications much faster than the benchmark case.

Using ML models gives an additional improvement in nowcasting accuracy over the OLS

model with the payments data. This is probably due to ML models’ ability to capture the

sudden and large effects of economic crisis on the target variables. However, ML models’

use sometimes leads to a loss of interpretability and the problem of overfitting. Nonetheless,

the ML models employed in this paper are somewhat interpretable, and the problem of

overfitting is mitigated up to a certain extent using cross-validation techniques. We find ML

models are useful when the emphasis is on improving prediction accuracy and dealing with

sudden changes in the target—which is the primary focus of this paper.

The macro variables considered in this paper are complex and depend on a multitude

of economic activities. Independently, payments data, although they capture a variety of

economic transactions, might not be sufficient, but could be valuable in addition to other

predictors traditionally used in macroeconomic nowcasting. Moreover, the ACSS does not

capture all retail payments instruments, and some of these, e.g., credit card and e-transfer,

have seen strong growth during the COVID-19 period, pointing to some of the limitations

of this data for the current crisis. Nevertheless, our results indicate that the timeliness and

variety in ACSS payments data make it very useful for economic predictions during the crisis.

5 Conclusions

We utilize supervised ML techniques on Canadian retail payments system data to nowcast

various macroeconomic indicators during economically stressed periods. Our results indicate

that the major gains in nowcasting accuracy are achieved using payments data; However, the

ML models increase prediction accuracy. Overall, we see a 15% to 45% reduction in RMSE

for nowcasting different macroeconomic series over the benchmark when the payments data

in conjunction with ML methods applied to the global financial crisis. We also noted that the

information gain using payments data is higher for the macro variables with a longer delay
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period than those with shorter delay periods. While we are unable to use RMSE for the

current COVID crisis, we document that the nowcasts from our model are currently much

closer to June and July 2020 macroeconomic data than the benchmark model predictions.

We observe that ML models’ performance changes slightly for different nowcasting cases;

however, the gradient boosting model gives good performance for most of the cases. Our

study also exhibits that the ACSS Allstream and Encoded Paper values are the most impor-

tant predictors and have the most significant contributions for macroeconomic nowcasting.

We demonstrate that the payments data carry useful information about extreme financial

events. We also identify some of the limitations of ACSS payments data for nowcasting,

especially when official estimates are released with a short delay. To conclude, this study

signifies the importance of both retail payments systems data and ML models for nowcasting

and extends the set of information and the tools at the disposal of macroeconomic nowcasters

during a crisis.
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A ACSS Payments Instruments Details

Overview of the different payment streams in the ACSS payment system. Note: the first

letter indicates the stream-ID, then stream label followed by a short description.

• A: ABM Adjustments - POS payment items used to correct errors from shared ABM

network transactions (Stream N)

• B: Canada Savings Bond - Part of Government items. It includes bonds (Series 32 and

up and Premium Bonds) issued by the Government of Canada.

• C: AFT Credit - Direct deposit such as payroll, account transfers, government social

payments, business to consumer non-payroll payments, etc.

• D: AFT Debit - Pre-authorized debit (PAD) payments such as bills, mortgages, utility

payments, membership dues, charitable donations, RRSP investments, etc.

• E: Encoded Paper - Paper bills of exchange which includes cheques, inter-member

debits, money orders, bank drafts, settlement vouchers, paper PAD, etc.

• F: Paper-Based Remittances - These are used for bill payments and are identical to

electronic bill payments (Stream Y).

• G: Receiver General Warrants - Part of Government Items. Paper payment items

payable by the Receiver General for Canada

• H: Treasury Bills and Old-style Bonds - Part of Government paper items. Certain

Government of Canada paper payment items such as Treasury bills, old-style Canada

Savings Bonds, coupons, etc.

• I: ICP Regional Image Captured Payment - Items entered into the ACSS/USBE on a

regional basis

• J: On-line Payments - Electronic payments initiated using a debit card through an

open network, most commonly the internet, to purchase goods and services

• K: On-line Payment Refunds - Credit payments used to credit a Cardholder’s Account

in the case of refunds or returns of an Online Payment (Stream J)

• L: Large-value Paper - This is similar to Stream E; starting in Jan 2014, this stream

merged into E
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• M: Government Direct Deposit - Recurring social payments such as payroll, pension,

child tax benefits, social security, and tax refunds.

• N: Shared ABM Network - POS debit payments used to withdraw cash from a card-

activated device.

• O: ICP National - Image Captured Payments are electronically imaged paper items

that can be used to replace the physical paper item: cheques, bank drafts, etc.

• P: POS Payments - Point-of-service payment items resulting from the point-of-sale

purchase of goods or services using a debit card

• Q: POS Return - Credit payments used to credit a cardholder’s account in the case of

refunds or returns of a POS payment (Stream P)

• R: ICP Returns - Image captured payment returned items entered into the ACSS/USBE

on a national basis

• S: ICP Returns National - National image captured payment returned items entered

into the ACSS/USBE on a national basis

• U: Unqualified Paper Payment - Paper items that are all other bills of exchange which

do not meet Canada Payments Association requirements for Encoded Paper classifica-

tion

• X: EDI Payment - Electronic data interchanges are an exchange of corporate-to-

corporate payments such as purchase orders, invoices, and shipping notices

• Y: EDI Remittances - Electronic data interchange remittances are used for Electronic

Bill Payments such as online bill payments and telephone bill payments

• Z: Computer Rejects - Encoded paper items whose identification and tracking infor-

mation could not be verified through automated processes
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B Machine Learning Models

In this section, we briefly discuss the machine learning models employed for nowcasting.

For each considered model there are many variations proposed in the literature; however,

we have focused on the basic version of each model. Note that all models are implemented

using the Scikit-learn machine learning library (Pedregosa et al. 2011). See Appendix D for

more details on the model training, tuning, and cross-validation procedures.

B.1 Elastic Net Regularization

Elastic net is a regularized linear regression model. In ENT, the objective is similar to that

of the OLS with the addition of L1 and L2 penalties. A regression model that uses only the

L1 penalty is called a Lasso regression, and a model that uses only the L2 penalty is called a

Ridge regression. In ENT, the combination of L1 and L2 penalties allows for learning a sparse

model like Lasso where few of the weights are non-zero. It also maintains the advantages of

the Ridge regression such as encouraging grouping effects, stabilizing regularization paths,

and removing limitations of the number of selected variables (Zou and Hastie 2005; Hastie

et al. 2009).

Consider a set X = {x1,x2, . . . ,xM} of M attributes (independent variables) and a target

y (dependent variable) and denote ŷ as the predicted target. With these specifications, in

ENT, the objective function to minimize is

min
w ‖y− ŷ(X ,w)‖2

2 +λ1 ‖w‖1 +λ2 ‖w‖2
2 , (4)

where w is a vector of unknown coefficients, and ‖.‖∗ is L∗ norm. This procedure can be

viewed as a penalized least squares method with penalty factor λ1 ‖w‖1+λ2 ‖w‖2
2. The ENT

is particularly useful with multiple correlated features. Note that we explore and tune the

following parameters: λ1 and λ2 by controlling constant α that multiplies the penalty terms,

mixing parameter l1 ratio and the maximum number of iterations (see Scikit-learn library

documentation for details (Pedregosa et al. 2011)).

B.2 Support Vector Regression

Support vector regression is another model useful for the problems with multiple predictors.

It uses a different objective function compared to the OLS or ENT. The SVR is based on

support vector machines where the task is to find a hyperplane that separates the entire

training dataset into, for example, two groups by using a small subset of training points

(called support vectors). In SVR the goal is to find a function, for instance, a linear function
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f (xi) = wT xi +b (where b is a bias and i = 1,2, . . .N), that has at most ε deviation from the

actual y for all the training data. Therefore the objective function to minimize is

1
2
‖w‖2

2 +C
N

∑
i=1
|yi− f (xi)|ε , (5)

subject to

yi− f (xi)≤ ε (6)

f (xi)−yi ≤ ε, (7)

where N is the number of training samples and C is a regularization parameter constant (Smola

and Schölkopf 2004). A different type of kernel functions (linear, polynomial, sigmoid, etc.)

can be specified for the decision function; therefore, it is versatile. For further details of SVM

theory and formulation, refer to Smola and Schölkopf 2004; Hastie et al. 2009. Note that we

explore and tune the following hyperparameters: kernel type, and regularization parameter

constant C (refer to Pedregosa et al. 2011 for details).

B.3 Random Forest

Figure 8: Random forest with K trees using n samples and m features for each tree.

Another popular approach is the random forest regression. It is a decision tree–based en-

semble learning method built using a forest of many regression trees. It is a non-parametric

method and hence approaches the multicollinearity problem slightly differently than para-

metric approaches such as OLS or ENT. In RF, each tree is independently built from a

bootstrapped subset of the training dataset. Each bootstrap sample could randomly select

a subset of features from the available set or the entire features set. The final prediction

is performed by averaging the predictions of all regression trees. The procedure is visually
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depicted in Fig. 8 (left). The two levels of randomness (i.e., the random subset of sample and

features) incorporated to build decision trees can help to reduce variance in the predictions.

RF has been shown to handle highly non-linear interactions between multiple predictors and

a target variable (Breiman 2001; Liaw and Wiener 2002).

Note, we explore and tune the following hyperparameters: the number of trees in the

forest n estimators, the maximum depth of the tree max depth, and the minimum number of

samples required to split an internal node min samples split (Pedregosa et al. 2011).

B.4 Gradient Boosting

Similar to the random forest, gradient boosting (GB) regression is a tree-based non-parametric

ensemble learning approach. It is a general technique of boosting in which a sequence of

weak learners (for example, small decision trees) are built on a repeatedly modified version of

the training dataset. The data modification at each boosting interaction consists of applying

weights to each of the training samples, and for successive iterations, the sample weights are

modified (Friedman 2001; Friedman et al. 2001).

Gradient Boosting Regression Trees are additive models whose prediction ŷ for a given

input X for each instance i can be written as

ŷi = Hp(Xi) =
p

∑
1

hp(Xi), (8)

where hp are weak learners, for example, decision trees (Friedman et al. 2001) and p is

number of learners. The model HP(X) is built as

Hp(X) = Hp−1(X)+ γhp(X), (9)

where the newly added weak learner hp (decision tree) is used in order to minimize a sum

of losses Lp:

hp =
arg min

p Lp. (10)

The γ is learning rate used to regularize the contribution of each new weak learner.

Note: we explore and tune the following hyperparameters: The number of trees in the

forest n estimators, learning rate, and the maximum depth of the tree max depth. Also,

both random forest and gradient boosting techniques are interpretable up to certain extent.

These models use decision trees as their base learners. These decision trees perform feature

selection from the provided set by selecting appropriate split points. This information can

be used to measure the importance of each feature (see Pedregosa et al. 2011 for details).
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C Feature Selection

To select k best predictors from the set of available attributes, we employ the SelectKBest

method from Scikit-learn (Pedregosa et al. 2011). This method removes all but the k highest-

scoring features using univariate linear regression tests. It is a linear model for testing the

individual effect of each of many regressors. To select K-best variables, it employs the

following steps: First, the correlation between each predictor and the target is computed.

Next, the computed correlations are converted to F-scores (using the F-test), then to p-

values. Finally, these F-scores with p-values are used to select k highest-scoring features.

In Figure 9, we plot the scores of a few of the selected payments streams for GDP (top)

and Unemployment (bottom) over the expanding window for the period ranging from Jan

2007 to Dec 2015. The F-scores are steady over the entire training period. For both GDP

and Unemployment, the ACSS Allstream and Encoded Paper values are the most crucial

predictor over the entire training period. Starting in early 2009, the scores for most of the

features increase rapidly. This is in line with the global financial recession starting point, and

scores for all streams reduce slightly after the recovery period. This indicates the importance

of payments data during the crisis period. The scores for most of the streams remain steady

throughout the remaining training periods.

Figure 9: The F-score of a few of the selected streams for GDP and Unemployment (UNE). These
plots are obtained after each training session of the expanding window approach over the period
ranging from Jan 2007 to Dec 2015.
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D Model Parameter Selection and Cross-Validation

The hyperparameter tuning and cross-validation of ML models employed in this paper are

performed using the following approach.

• Split the original dataset into a training set and testing set.

• Keep aside part of the training set for cross-validation, as shown in Figure 10.

• Select the range of hyper-parameters for each model.

• Using the selected parameter, for each step (or fold) of the expanding window do the

following:

(a) Fit the model using the training sample and get the training RMSE.

(b) Using the trained model, predict for the next point in the validation set.

(c) Get the average training RMSE across all folds and the validation RMSE.

(d) Select the parameters for which the average training RMSE is low and close to the

validation score.

• Use the tuned model to get the RMSE for the testing set.

This is a simplified procedure that assists in selecting the hyperparameters for each ML-

model and hence reduces the chances of overfitting, consequently improving out-of-sample

performance. For more sophisticated approaches for cross-validation and model tuning, refer

to the following articles and references therein (Arlot and Celisse 2010; LeCun et al. 2015;

Goodfellow et al. 2016).

Figure 10: Schematic of five-fold expanding window approach for training, cross-validation, and
out-of-sample prediction. The available dataset is divided into a training set, validation set, and
testing set. In each fold the (�) represents the training set and (•) represents the test set.
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