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Abstract 
This paper evaluates the contribution of cross-sector allocative efficiency to the productivity 
slowdown in the US during the 1970s and 2000s. We extend the framework of Oberfield (2013) 
to derive sufficient statistics for allocative efficiency and decompose aggregate productivity 
growth in a multi-sector economy with or without input-output linkages. We find that 
approximately two-thirds of the productivity slowdown can be explained by the lack of 
improvement in allocative efficiency. Furthermore, data shows that increased sector-level 
volatility is associated with the deterioration of allocative efficiency.  

Résumé 
Dans cette étude, nous évaluons dans quelle mesure l’efficience allocative intersectorielle 
contribue au ralentissement de la productivité aux États-Unis durant les années 1970 et 2000. 
Nous enrichissons le cadre conçu par Oberfield (2013) pour établir des statistiques suffisantes 
concernant l’efficience allocative et décomposer la croissance de la productivité globale dans 
une économie multisectorielle comportant ou non des liens entre les intrants et les extrants. 
Nous constatons qu’environ les deux tiers du ralentissement de la productivité découlent de 
l’absence de gain d’efficience allocative. De plus, les données indiquent qu’une volatilité 
sectorielle accrue est associée à la détérioration de l’efficience allocative. 

 



1 Introduction

Growth in US real output per worker decreased significantly in the 1970s and the 2000s (see

Figure 1). The slowdown in productivity growth is among the most significant macroeco-

nomic developments in the past few decades and has captured the attention of academic

researchers and policymakers. This paper evaluates the role of allocative efficiency across

sectors in explaining aggregate productivity dynamics during these periods. We show that

allocative efficiency across sectors—or more precisely, the lack of improvement in it—is the

common factor behind both episodes of slow productivity growth.

Figure 1: Labor productivity in the US
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Notes: This figure plots the logarithms and growth of real output per worker in the United States business sector. The growth

rate is computed as the hp-filtered log difference in real output per worker. The slow growth during the 1970s and 2000s is

also documented using real output per hour (Figure 1 of Vandenbroucke, 2021) and TFP (Figure 1 of Aum et al., 2018). The

gray bars indicate the two productivity slowdown episodes.

We begin by documenting two key facts of allocative efficiency across sectors. To do so, we

use a multi-sector model, with and without input-output linkages, and sector-level data from

the KLEMS database and the World Input-Output Table to measure allocative efficiency.

First, we find that the gradual improvement in allocative efficiency is a significant driver of

overall productivity growth in the long run. From 1960 to 2007, allocative efficiency gradually

improved, contributing to approximately 20 percent of the aggregate labor productivity

growth during this period. Second, the periods of productivity slowdown in the 1970s and
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2000s stand out as two exceptions to this long-run trend. Allocative efficiency declined during

the 1970s and then stagnated in the 2000s, following two decades of continuous improvement.

From a broader perspective, productivity growth is driven by either (i) enhancements in

fundamental productivity (i.e., due to technological advancements) or (ii) improved resource

allocation across sectors. If there is a stagnation or decline in allocative efficiency, it can

lead to slower productivity growth. While data show that the growth rates of observed labor

productivity in the 1970s and 2000s decelerated compared to those of the 1960s and 1990s,

our analysis attributes approximately two-thirds of these decelerations to either stagnation

or decline in allocative efficiency. Consequently, fundamental productivity contributes to

only about a third of the observed slowdown in productivity growth.

Next, we investigate the volatility of sectoral productivity as a potential contributor to the

lack of improvement in allocative efficiency during the 1970s and 2000s. Previous theoretical

and empirical research has highlighted a mechanism linking higher time-series volatility to a

decline in allocative efficiency when (non-convex) adjustment costs are present. The option

value associated with making an adjustment results in an inaction region in which firms adopt

a wait-and-see approach in adjusting their inputs rather than choosing input quantities that

would maximize output in every period. This inaction region broadens with higher volatility

as the option value of waiting increases, resulting in a widening gap between the actual

allocation of resources and the optimal allocation implied by productivity.

We document a significant variation in volatility over time and across sectors, with higher

volatility tending to be associated with a deterioration in allocative efficiency relative to the

long-term trend. Through an estimated reduced-form model, we find that this increased

volatility plays a substantial role in the observed productivity slowdown. In line with this,

sectors subjected to more volatile productivity shocks show slower growth in allocative ef-

ficiency. Our analysis further reveals that when sectors experience positive productivity

shocks, the amount of resources flowing into those sectors falls short of what the optimal

allocation would predict. We also observe that periods characterized by high volatility corre-

spond to an increased dispersion of factor utilization rates across sectors, a pattern possibly
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driven by the wait-and-see motive.

In summary, our analysis reveals three related findings. First, the gradual improvement

in allocative efficiency is a long-run trend, contributing approximately 20 percent of the

productivity growth over our sample period. Second, deviations from this trend help give rise

to periods of faster- or slower-than-normal productivity growth. And lastly, we emphasize

the crucial role of lower volatility in the productivity process for efficient resource allocation,

which, in turn, plays a substantial part in driving productivity growth.

Our measure of allocative efficiency follows the tradition of the misallocation literature

(Hsieh and Klenow, 2009; Oberfield, 2013; Monge-Naranjo et al., 2019, among others).1

Our paper also is part of a strand of literature that utilizes sector-level data to examine

allocative efficiency between sectors or distortions at the sector level (Basu and Fernald,

2002; Caliendo et al., 2022; Liu, 2019).2 Our analysis reveals that cross-sector allocative

efficiency plays a significant role in explaining aggregate productivity dynamics, in line with

findings in Oberfield (2013) and Behrens et al. (2020).

Among the studies exploring the dynamics of productivity in the US during the 1970s

and 2000s, a few have examined the role of allocation. Investigating job reallocation across

manufacturing industries, Davis and Haltiwanger (2001) propose that oil shocks during the

1970s and 1980s could have created a discrepancy between the actual and desired factor

distribution at the industry level. Decker et al. (2020) demonstrate that reallocation across

firms significantly decelerated in the 2000s compared to the 1980s and 1990s, suggesting

this trend might negatively impact aggregate productivity. Our study diverges from Davis

and Haltiwanger (2001) and Decker et al. (2020) in our direct measurement of allocative

efficiency, as opposed to analyzing the reallocation rates.
1The existing literature, such as studies like Basu and Fernald (2002) and Baqaee and Farhi (2020),

adopts different notions of allocative efficiency that diverge from the one used in the misallocation literature.
Hence, results derived using these different definitions are not directly comparable.

2Note that we use the terms sector and industry interchangeably here. There also exists a large body of
literature utilizing firm- or establishment-level data to study allocative efficiency. An advantage of sector-
level data is their broad availability and the extensive time periods they cover. In the specific context of our
research, using sector-level data provides us with the opportunity to examine the early slowdown episode
(the productivity slowdown of the 1970s).
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A majority of papers studying the two slowdown episodes have sought causes that could

explain the decline in fundamental productivity. However, as Bloom et al. (2020) note,

without accounting for changes in allocative efficiency, the observed productivity dynamics

in the raw data differ from those of fundamental productivity. Consequently, the theories

developed to explain these dynamics might be flawed. For instance, labor productivity

observed in the raw data shows evidence of a gradual decline from 1960 to 2007. In contrast,

our result does not show a long-term secular decline in fundamental productivity. Instead,

fundamental productivity growth during 1960–2007 can best be characterized as a relatively

stable trend marked by prolonged weak growth that began in the 1970s and extended into

the 1980s. Recognizing the timing of the slowdown in fundamental productivity could be

useful in identifying its underlying causes.

In the same vein, most policy responses to the productivity slowdown primarily target

fundamental productivity. Examples include proposals for fiscal and monetary stimuli to

boost aggregate demand (Summers, 2018). While these policies may or may not be good

ideas, two issues arise from our results. Firstly, the data suggest the decline in fundamental

productivity is not as severe as it seems, indicating the need for more moderate subsidies than

what the raw data might suggest. Secondly, existing evidence shows that stimulative policies

can negatively impact allocative efficiency (Bai et al., 2016) or even promote the survival of

zombie firms (Banerjee and Hofmann, 2018), which could counteract any beneficial effects

on fundamental productivity.

Previous studies have explored the impact of productivity volatility on allocative effi-

ciency. For instance, Bloom et al. (2018) examine the impact of volatility shocks on the

allocative efficiency (among other things) in a quantitative model, while Asker et al. (2014)

focus on differences in allocative efficiency across countries. Our contribution to this body

of literature lies in identifying volatility as pivotal to understanding the prolonged produc-

tivity slowdowns in the US. The insights provided by Bloom et al. (2018) and Asker et al.

(2014) suggest that a decline in allocative efficiency during periods of heightened volatility

stems from firms’ optimization in the presence of adjustment costs. A significant policy

implication is that initiatives aimed at reducing the volatility of the productivity process or
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lowering adjustment costs could be the key to mitigating the issue of prolonged productivity

slowdown.

The rest of the paper is organized as follows: Section 2 builds the theoretical framework,

and Section 3 discusses the data as well as the mapping between the model and the data.

In Section 4, we present the main results. Section 5 includes extensions of the model and

robustness checks. Section 6 concludes.

2 Measuring allocative efficiency

This section presents the theoretical framework. We first characterize optimal allocation

across sectors to solve the planner’s problem. Then we derive sufficient statistics to measure

allocative efficiency. Finally, we decompose aggregate labor productivity growth in the data

into two components.

2.1 Value-added economy

We first consider a multi-sector value-added economy. There are N sectors in the economy

(i = {1, ..., N}). In year t, each sector produces a good Yi,t using capital, labor:

Yi,t = Ai,tK
αi,t

i,t L
1−αi,t

i,t ,

where Ai,t is the sectoral productivity. There is one final good Yt, which is produced by

aggregating all sectoral goods, such that

Yt =
N∏
i=1

Y
θi,t
i,t ,

where
∑

i θi,t = 1. This final good producer is a stand-in for the preference of price-taking

consumers, as in Oberfield (2013).
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Planner’s problem The planner’s problem is to allocate aggregate capital Kt and labor

Lt into the N sectors to maximize the output of final good Yt:3

max Yt =
N∏
i=1

Y
θi,t
i,t , s.t. Yi,t = Ai,tK

αi,t

i,t L
1−αi,t

i,t ,
∑
i

Ki,t = Kt,
∑
i

Li,t = Lt. (1)

The optimal allocation of capital and labor under problem (1) is such that K∗
i,t = χk∗

i,tKt

and L∗
i,t = χl∗

i,tLt, where χk∗
i,t =

θi,tαi,t∑
i θi,tαi,t

and χl∗
i,t =

θi,t(1−αi.t)∑
i θi,t(1−αi,t)

. The optimal distribution,

χk∗
i,t and χl∗

i,t, reflect the relative importance of sector i ’s capital and labor in producing the

final good.

Allocative efficiency We define allocative efficiency Et as the ratio between output in

the data (Yt) and output under optimal allocation (Y ∗
t ), such that Et =

Yt

Y ∗
t
. We can write

Et as follows:

Et =
N∏
i=1

(χk
i,t

χk∗
i,t

)αi,t
(
χl
i,t

χl∗
i,t

)1−αi,t

θi,t

, (2)

where χk
i,t =

Ki,t

Kt
and χl

i,t =
Li,t

Lt
are sector i ’s capital and labor as a share of aggregate Kt

and Lt in the data, respectively. Intuitively, (χ
k
i,t

χk∗
i,t
)αi,t(

χl
i,t

χl∗
i,t
)1−αi,t measures sector i ’s allocative

efficiency, which represents the deviation of the observed allocation in the data from the

optimal allocation. Aggregate allocative efficiency Et is the weighted geometric mean of

sectoral allocative efficiency with sectoral weights θi.4

2.2 Input-output economy

Next we consider an economy with input-output linkages. In the input-output economy,

each sector i ∈ {1, ..., N} produces good Qi,t using capital, labor, domestic and imported
3The optimal allocation problem takes the economy’s total capital and labor inputs as exogenously given.

Consequently, the measure of allocative efficiency we derive below is a static measure. It abstracts from the
dynamic implications of misallocation.

4Details of the model can be found in the Appendix Section B.1.
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intermediate goods, such that

Qi,t = Ai,t(K
αi,t

i,t L
1−αi,t

i,t )1−σi,t−λi,t

(
N∏
j=1

d
σij,t

ij,t

)(
N∏
j=1

m
λij,t

ij,t

)
,

where dij,t is the domestic intermediate good j used by sector i, mij,t is the imported inter-

mediate good j used by sector i, σi,t =
∑N

j=1 σij,t, and λi,t =
∑N

j=1 λij,t. There is one final

good produced by aggregating over these N sectoral goods:

Yt =
∏
i

Y
θi,t
i,t ,

where
∑N

i=1 θi,t = 1.

The resource constraint on the sectoral good i, therefore, can be written as

Qi,t = Yi,t +
N∑
j=1

dji,t,

and the total expenditure on imported goods is

Xt =
N∑
i=1

N∑
j=1

P̄j,tmij,t,

where P̄j,t is the price of imported intermediate good j relative to the final good.

Planner’s problem The planner’s problem is to allocate aggregate capital Kt, aggregate

labor Lt, sectoral output Qi,t and choose imported intermediate good mij,t such that the
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aggregate output net of imports (Y −X) is maximized:

max
{Ki,t,Li,t,dij,t,mij,t}Ni,j=1

Yt −Xt =
∏
i

Y
θi,t
i,t −

N∑
i=1

N∑
j=1

P̄j,tmij,t (3)

s.t. Qi,t = Ai,t(K
αi,t

i,t L
1−αi,t

i,t )1−σi,t−λi,t

(
N∏
j=1

d
σij,t

ij,t

)(
N∏
j=1

m
λij,t

ij,t

)
,

Qi,t = Yi,t +
N∑
j=1

dji,t,
∑
i

Ki,t = Kt,
∑
i

Li,t = Lt.

The optimal allocation of capital, labor and intermediate goods can be characterized

with a set of optimal shares (χk∗
i,t , χl∗

i,t, γ∗
ij,t, χy∗

i,t), such that K∗
i,t = χk∗

i,tKt, L∗
i,t = χl∗

i,tLt,

d∗ij,t = γ∗
ij,tQ

∗
j,t, Y ∗

j,t = χy∗
j,tQ

∗
j,t, and m∗

ij,t = (
θi,tλij,t

χy∗
i,t

)
Y ∗
t

P̄j,t
.5 The optimal shares can be solved

using the following systems of equations:

(i) χk∗
i,t =

θi,tαi,t(1−σi,t−λi,t)

1−
∑

j γ
∗
ji,t

/
∑

s
θs,tαs,t(1−σs,t−λs,t)

1−
∑

j γ
∗
js,t

, ∀i ∈ {1, ..., N}.

(ii) χl∗
i,t =

θi,t(1−αi,t)(1−σi,t−λi,t)

1−
∑

j,t γ
∗
ji,t

/
∑

s
θs,t(1−αs,t)(1−σs,t−λs,t)

1−
∑

j γ
∗
js,t

, ∀i ∈ {1, ..., N}.

(iii) {χy∗
i,t}Ni=1 solves the system of equations

1

χy
i,t

= 1 +
1

θi,t

∑
s

(
θs,t
χy
s,t

σsi,t

)
, i ∈ {1, ..., N}

and

γ∗
ij,t =

θi,tχ
y∗
j,t

θj,tχ
y∗
i,t

σij,t.

(iv) {Q∗
i,t}Ni=1 solves for the system of equations

Qi,t = χQi,t

(
N∏
s=1

Q
σis,t+λi,tθs,t
s,t

)
, i ∈ {1, ..., N},

where χQi,t = Ai,t[(χ
k∗
i,tKt)

αi,t(χl∗
i,tLt)

1−αi,t ]1−σi,t−λi,t(
∏N

j=1 γ
∗σij,t

ij,t )[θi,t
∏

s(
χy∗
s,t

χy∗
i,t
)θs,t ]λi,t

∏N
j=1(

λij,t

P̄j,t
)λij,t .

5See Appendix Section B.1 for details of the solution.
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Allocative efficiency Allocative efficiency Et is the ratio between the output net of im-

ports in the data and that under optimal allocation, that is, Et =
Yt−Xt

Y ∗
t −X∗

t
. It can be written

as a product of allocative efficiency of capital and labor Ekl
t , domestic intermediate goods

Ed
t , imported intermediate goods Em

t , and goods used for the final good production Ey
t :

Et = Ekl
t · Ed

t · Em
t · Ey

t , (4)

(i) Ekl
t =

∏N
i=1(((

χk
i,t

χk∗
i,t
)αi,t(

χl
i,t

χl∗
i,t
)1−αi,t)1−σi,t−λi,t)

∑
n θn,tCni,t ,

(ii) Ed
t =

∏N
i=1(
∏N

j=1(
γij,t
γ∗
ij,t

)σij,t)
∑

n θn,tCni,t ,

(iii) Em
t =

1−
∑N

n=1

θn,tλn,t

χ
y
n,t

1−
∑N

n=1

θn,tλn,t

χ
y∗
n,t

,

(iv) Ey
t =

∏N
n=1(

χy
n,t

χy∗
n,t
)θn,t

∏N
i=1(

∏
s(

χ
y
s,t

χ
y
i,t

)θs,t

∏
s(

χ
y∗
s,t

χ
y∗
i,t

)θs,t
)λi,t

∑
n(θn,tCni,t),

where Ct is the N × N Leontief inverse matrix adjusted for imported intermediate goods,

such that Ct = (I −Ωt)
−1 and Ωt(i, j) = σij,t + λi,tθj,t. Details of the model can be found in

Appendix Section B.2.6

2.3 Decomposition of aggregate productivity in the data

According to the definition of Et, the following equation holds: Yt = Y ∗
t Et. Dividing both

sides by aggregate labor inputs yields the decomposition of the labor productivity level:7

LPt = LP∗
tEt. (5)

6Input-output linkages alter the measurement of allocative efficiency in two important ways. First, the
measure now accounts for the allocative efficiency of intermediate inputs. Second, the weights representing
the importance of each sector now take into account input-output effects, represented by the Leontief inverse
matrix. For the second point, we provide more discussion in Appendix Section B.4.

7Equation (5) shows that allocative efficiency measures the distance between data (LP) and the production
possibility frontier (LP∗). See discussions in Baqaee and Farhi (2020) for three different notions of allocative
efficiency used in the literature.
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Taking the log difference gives the decomposition equation for productivity growth:

∆ logLPt = ∆ logLP∗
t +∆ logEt. (6)

Equation (6) shows that it is the changes (growth rates) of allocative efficiency, not the

levels, that matter for productivity growth. A useful statistic for our empirical exercise is
∆logEt

∆logLPt
, which measures the contribution of allocative efficiency to aggregate productivity

growth.

A few remarks about the framework are in order before moving on to the empirical ex-

ercise. Our model abstracts from examining the impact of within-sector allocative efficiency

on aggregate productivity growth. Conceptually, within-sector efficiency dynamics will be

embedded in sector-level productivity, Ai,t, which we take as given. Therefore, we interpret

our results strictly as an analysis of the impact of between-sector allocative efficiency on

aggregate productivity dynamics.

3 Application to the US data

Next, we introduce the datasets used in the empirical analysis and discuss the mapping

between data and our model.

3.1 Data description

We use the 2013 version of the KLEMS dataset and the World Input-Output Table (WIOT).

These versions of KLEMS and WIOT use the ISIC Rev. 3 classification, thus allowing

a straightforward mapping of sectors. We restrict our analysis to 28 private sectors in

the economy. Table A.1 in the Appendix lists these sectors. The KLEMS dataset covers

the period 1947–2010, while the input-output table covers 1995–2011, thus restricting the

analysis with input-output linkages to the period 1995–2010. Below we list all the variables
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used in the empirical exercise. We distinguish whether each variable is the nominal value

($) or quantity.

KLEMS (i) sector-level value-added and gross output ($), (ii) sector-level capital and labor

compensation, and cost of intermediate goods ($), (iii) sector-level real capital stock

and the number of workers (quantity).8

WIOT (i) sector i’s use of domestic sector j good ($), (ii) sector i’s use of foreign sector j

good ($), (iii) sector i good used in the final good production ($).

3.2 Mapping between model and data

In this section, we explain the mapping between model and data. Recall that to calculate

Et, we need (i) the allocation of capital, labor and intermediate inputs across sectors in the

data (χk
i,t, χ

l
i,t, χ

y
i,t, γij,t) and (ii) output elasticities (αi,t, σij,t, λij,t, θi,t), which allows us to

solve the optimal allocation.

Cross-sector allocation in the data First, we calculate the data allocation of capital,

labor and intermediate inputs: χk
i,t, χ

l
i,t, χ

y
i,t, γij,t. Ideally, we would like to use the quantity

of the inputs to calculate the allocation across sectors. We are able to do so for capital and

labor, such that χk
i,t =

Ki,t∑
i Ki,t

and χl
i,t =

Li,t∑
i Li,t

, where Ki,t is the real capital stock and Li,t

is the number of workers in sector i. Due to the lack of a quantity measure of intermediate

inputs, γij,t and χy
i,t are computed using expenditure, such that γij,t =

$dij,t
$Qj,t

and χy
j,t =

$Yj,t

$Qj,t
,

where $dij,t is sector i’s use of sector j good, $Qj,t is sector j ’s gross output and $Yj,t is sector

j good used in final good production, all nominal values.9

8The 2013 version of KLMES reports a capital quantity index for each year. An early vintage of EUK-
LEMS (2009 version) contains real capital stock based on 1995 prices, but the data are only available for a
shorter time series. We construct real capital stock for all years using the 1995 real capital stock and the
quantity index.

9Using expenditure as a proxy for quantity will provide an exactly accurate measure of allocative effi-
ciency if the cost of intermediate goods is the same across all sectors. In our model, the measure of allocative
efficiency only depends on the distribution of intermediate goods in terms of quantity across sectors. When
there is no price variation, the distribution of intermediate goods by expenditure is the same as the distri-
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In the baseline result, we do not distinguish between different types of capital and labor

inputs. We chose this as the baseline for two reasons. First, the data cover an extended

period, thus making it possible to study the earlier decades. Second, real capital stock and

total employment are taken from national accounts statistics rather than estimated using

survey data. Likely, they suffer less from measurement errors. In Section 5.5, we study the

case where capital and labor composition might differ across sectors, and we confirm the

robustness of our main results.

Output elasticities To solve the planner’s optimal allocation problem, we need to know

the output elasticities (αi,t, σij,t, λij,t, θi,t).

Among them, θi,t comes from the final-good production function. The final-good pro-

duction function is a stand-in for the preference of households (consumers) in the economy.

They represent the demand system in the data, and their value can vary across years, as in

Oberfield (2013) and Bils et al. (2020), capturing changes in the demand system over time.

We back out θi,t from the data using the expenditure share of each sector’s output in the final

good consumption. In the value-added economy, θi,t =
PY
i,tYi,t

ΣiPY
i,tYi,t

, where P Y
i,tYi,t represents the

value of sector i ’s value-added output. In the input-output economy, θi,t =
PQ
i,t(Qi,t−Σjdji,t)

ΣiP
Q
i,t(Qi,t−Σjdji,t)

,

where PQ
i,t(Qi,t − Σjdji,t) represents the value of sector i ’s gross output used for final con-

sumption.

The output elasticities of capital, labor, and intermediate inputs, αi,t, σij,t, and λij,t,

are intimately linked to their expenditure shares observed in the data. Nevertheless, these

expenditure shares cannot be applied directly to back out output elasticities because they

might be distorted.

To give an example of why these expenditure shares in the data may be distorted: suppose

the data is generated by a price-taking representative firm making optimization decisions

subject to a set of wedges on their capital and labor inputs, represented by (τ ki,t, τ
l
i,t).10 The

bution by quantity. If there is variation in the cost of intermediate goods across sectors, this approximation
will not capture the effect of price dispersion on allocative efficiency.

10The wedges may reflect statutory provisions such as tax code and regulations, discretionary provisions
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first order conditions lead to the following equation:

RtKi,t

wtLi,t

=
(1− τ li,t)αi,t

(1− τ ki,t)(1− αi,t)
,

where RtKi,t and wtLi,t are the capital and labor expenditure incurred by the firm, respec-

tively. We observe these expenditures in the data, and we can calculate the left-hand side of

the above equation. But without any assumptions, αi,t cannot be identified separately from

τ ki,t and τ li,t on the right-hand side.

This is a well-known issue in the literature, and it is usually addressed by making certain

assumptions (see Restuccia and Rogerson, 2017). Hsieh and Klenow (2009) presumed that

the US economy is undistorted, and its expenditure shares were used as the benchmark

value to study China and India. Oberfield (2013) dealt with this problem by exploiting the

panel structure of his dataset and assumed that firms’ expenditure shares might be distorted

in each year but undistorted on average over time. We will conduct our analysis in two

specifications following these approaches.

We first follow the strategy in Oberfield (2013) and assume that, in the long run, wedges

are not biased towards one factor so that expenditure shares are on average undistorted.

Using the previous example, this means that in any sector i, τ ki,t and τ li,t have the same

average over time. Hence in the data, the average expenditure shares in each sector over

time are equal to the true output elasticities. In practice, we conduct this specification by

computing the nominal factor expenditure shares and taking the average in a rolling window

centered around the current year. We perform the analysis with a rolling window of 3, 5,

7, and 9 years and find minimal differences in the results; hence, we report results from a

rolling window of three years in the main text.11

In the second specification, we assume that expenditure shares are undistorted in the

such as preferential treatment by the government, and market frictions and imperfections (Restuccia and
Rogerson, 2017).

11Although the assumption is necessary methodologically, one might wonder how it affects our results. To
answer this, we ask: what if wedges are biased towards one factor? We find that our main result still stands
even if, on average, the capital wedge is much larger than the labor wedge, or vice versa (see Section 5.7 for
details).
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latter years of our sample. This assumption is based on the empirical evidence that, in the

long run, allocative efficiency has improved in the US (Baily et al., 1992; Ziebarth, 2013).

More specifically, we use 2010, the last year of our sample, as the benchmark and assume it

is undistorted when estimating the elasticities.

We interpret estimates under this specification as allocative efficiency relative to the base-

year level. Although they might differ from the actual level of allocative efficiency, they are

informative statistics as our focus is on the changes in allocative efficiency over time. In a

way, this specification is analogous to Hsieh and Klenow (2009), who assumed that the US

economy was undistorted and applied US factor shares to the more distorted economies of

China and India. We show that our main results are robust under this specification (for

more details, see Section 5.7).

4 Results

This section presents the main results of the paper. We first examine the evolution of

allocative efficiency and establish its role in explaining productivity growth, both in the

long run and during the slowdown. Then we provide evidence of the relationship between

volatility and slow growth in allocative efficiency.

4.1 Contribution of allocative efficiency to productivity slowdown

Allocative efficiency stagnated or declined in the 1970s and 2000s. We begin with

an analysis of allocative efficiency spanning the period 1960–2010. In Figure 2, Panel (a),

we observe a gradual improvement in measured allocative efficiency, approaching an optimal

value of 1 over this time frame. However, this upward trend is interrupted by two notable

exceptions: (i) a decline during the 1970s and (ii) a plateau in the 2000s, following two

decades of continuous improvement. The plateau in the 2000s is evident in both the value-

added and input-output economies, although it is more pronounced in the former due to its
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longer time series. Although the value-added economy displays a higher level of measured

allocative efficiency (Panel a), the growth rates of allocative efficiency—the object of interest

when it comes to productivity growth—remain similar across both economies (Panel b).

Figure 2: Evolution of allocative efficiency over time
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Notes: Panel (a) displays the measured allocative efficiency (Et) in each year, while Panel (b) shows the
annual growth rates (∆ logEt). The gray lines represent the input-output economy, and the green lines
represent the value-added economy.

Next, we examine the contribution of improved allocative efficiency to overall productivity

growth. Data presented in Table 1 suggests that improved allocative efficiency contributes to

roughly 20% of productivity growth from 1960 to 2007, though this contribution fluctuates

considerably across different decades (Panel a). Notably, allocative efficiency contributes

most significantly to productivity growth during the 1960s, at 32%, while it contributes the

least during the 1970s, at -5%, and the second least during the 2000s, at 3%. Panel (b)

shows results for the input-output economy from 1995 to 2010, divided into three five-year

periods. Allocative efficiency contributes 13% to productivity growth in the latter half of

the 1990s, diminishes to 2% in the early 2000s, and drops further to -13% by the end of the

decade. Lastly, the value-added economy exhibits a similar trend during this period (Panel

c).

Taken together, the data presented in Table 1 and Figure 2 suggest that allocative ef-

ficiency, a key driver of US labor productivity growth, either stagnated or declined in the

1970s and 2000s. This likely resulted in a reduced or even negative impact on productivity
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Table 1: Contribution of allocative efficiency to productivity growth ( ∆logEt

∆logLPt
)

(a) Value-added economy (b) Input-output economy (c) Value-added economy
(1960–2007) (1995–2010) (1995–2010)

1960–69 0.32 1995–99 0.13 1995–99 0.13
1970–79 -0.05 2000–04 0.02 2000–04 0.03
1980–89 0.30 2005–10 -0.13 2005–10 -0.10
1990–99 0.13 1995–2010 0.02 1995–2010 0.02
2000–07 0.03

1960–2007 0.20

Notes: This table shows the contribution of allocative efficiency to productivity growth ∆ logEt

∆ logLPt
. ∆ logEt

and ∆ logLP are based on the long differences in allocative efficiency and labor productivity between the
end and the beginning of each period. They are adjusted to reflect the growth rate over periods of the same
length (ten-year window in Panel a and five-year window in Panels b and c). Panels (a) and (c) report
results from the value-added economy while Panel (b) shows the results of the input-output economy.

growth during these periods.

Quantifying allocative efficiency’s role in explaining productivity slowdown. Fol-

lowing the previous discussion, Table 2 quantifies the contributions of allocative efficiency to

the productivity growth slowdowns experienced in the 1970s and 2000s. In this context, a

slowdown refers to a decrease in the rate of productivity growth when compared to preceding

decades. Column (1) of Panel (a) presents the decade-by-decade growth rates of observed

labor productivity. These rates are computed as the logarithmic differences between each

decade’s starting and ending points and are adjusted to reflect growth rates over periods of

the same length (10-year windows). Column (4) then calculates changes in the growth rates

compared with the previous decades. It shows that productivity growth rates in the 1970s

and 2000s (the two slowdown episodes) were 12 and 3 percentage points lower, respectively,

than those of the preceding decades.

To quantify the role of allocative efficiency during periods of productivity slowdown, we

start by decomposing observed labor productivity (LPt) into two components: allocative

efficiency (Et) and fundamental labor productivity (LP∗
t ) using Equation (5). Subsequently,

Columns (2) and (3) display the growth rates of fundamental labor productivity and alloca-

tive efficiency, respectively, calculated in a manner similar to Column (1). Lastly, Columns
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Table 2: Slowdown in productivity growth and the role of allocative efficiency

Growth rates by periods Changes in growth rates
(long log-difference) from preceding period

(1) (2) (3) (4) (5) (6)
labor productivity labor productivity

Periods data “fundamental” Et data “fundamental” Et

(a) VA economy (1960–2007)
1960–69 0.24 0.16 0.08 – – –
1970–79 0.13 0.13 -0.01 -0.12 -0.03 -0.08
1980–89 0.15 0.10 0.04 0.02 -0.03 0.05
1990–99 0.19 0.16 0.03 0.05 0.06 -0.02
2000–07 0.16 0.16 0.01 -0.03 -0.01 -0.02

(b) IO economy (1995–2010)
1995–99 0.11 0.10 0.01 – – –
2000–04 0.11 0.11 0.00 0.00 0.02 -0.0
2005–10 0.10 0.11 -0.01 -0.02 0.00 -0.02

(c) VA economy (1995–2010)
1995–99 0.11 0.10 0.01 – – –
2000–04 0.11 0.11 0.00 0.00 0.02 -0.0
2005–10 0.10 0.11 -0.01 -0.02 0.00 -0.02

Notes: Columns (1)–(3) present the growth rates in LPt (labor productivity, data), LP∗
t (labor productivity, fundamental),

and Et. These growth rates are based on the long differences in labor productivity between the end and the beginning of each

period. They are adjusted to reflect the growth rate over periods of the same length (ten-year window in Panel a and five-year

window in Panels b and c). Columns (4)–(6) present the changes in these growth rates from the preceding periods. Panels (a)

and (c) present results from the value-added economy while Panel (b) presents the results from the input-output economy.

(5) and (6) demonstrate the changes in these growth rates from their respective previous

decades.

Column (6) shows that the growth rates of allocative efficiency in the 1970s and 2000s

slowed down by 8 and 2 percentage points, respectively, compared to the preceding decades.

Concurrently, the growth rates of fundamental productivity fell by 3 and 1 percentage points

(Column 5). This suggests that approximately two-thirds (8/12, or 2/3) of the productivity

growth slowdown in these periods is attributable to a lack of improvement in allocative

efficiency, while the remaining third results from slowdowns in fundamental productivity.

Further, focusing on 1995–2010 in Panels (b) and (c), we see that productivity growth

decreased by 2 percentage points in the second half of the 2000s, which can be entirely

accounted for by the slower growth in allocative efficiency. Taken together, results in Table

2 reveal that the lack of improvement in allocative efficiency plays a quantitatively important
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role in explaining the productivity slowdown during the 1970s and 2000s.

So far, we have emphasized the importance of allocative efficiency in understanding the

productivity growth slowdown during the 1970s and 2000s. This understanding also provides

valuable insights into broader long-term productivity trends. The raw data in Column (1)

reveal a deceleration in productivity growth in the long run, with the 1960s standing out

due to an exceptionally rapid pace of growth at 24%. However, it is worth noting that this

extraordinary growth can be partly attributed to a fast improvement in allocative efficiency.

Indeed, we find no evidence of a secular deceleration in the fundamental productivity growth.

The growth of fundamental productivity can best be described as a relatively stable trend

marked by prolonged weak growth, which began in the 1970s and extended into the 1980s.

This result highlights the importance of distinguishing between the influences of allocative

efficiency and fundamental productivity in understanding long-term productivity trends.

4.2 Decomposing allocative efficiency

Next, we carry out two decomposition exercises to further investigate the dynamics of aggre-

gate allocative efficiency. First, we break down the aggregate allocative efficiency into the

respective allocative efficiencies of capital and labor. Following this, we dissect the aggregate

measure into sectoral allocative efficiency.

Capital and labor. We decompose Et = Ek
t · El

t to identify whether capital or labor is

the main driver. We define the measures of capital and labor allocative efficiency in the

value-added economy as Ek
t =

∏N
i=1(

χk
i,t

χk∗
i,t
)αi,tθi,t and El

t =
∏N

i=1(
χl
i,t

χl∗
i,t
)(1−αi,t)θi,t , and for the

input-output economy, the measures are similarly defined.12

Figure 3 reveals that capital allocation is the more important driver across the sample

period. In contrast, labor allocation is more efficient than capital allocation in almost all

years, but it did not become more efficient over time. Indeed, labor allocation seems so

12Ek,t =
∏N

i=1(((
χk
i,t

χk∗
i,t

)αi,t)1−σi,t−λi,t)
∑

n θn,tCni,t and El,t =
∏N

i=1(((
χl
i,t

χl∗
i,t

)1−αi,t)1−σi,t−λi,t)
∑

n θn,tCni,t .
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efficient that it has little room for improvement and thus cannot possibly be a large driver.

As with the long-run dynamics, capital allocation plays a more significant role during the

two slowdown episodes.13

Figure 3: Capital and labor allocation
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Notes: This figure plots the evolution of capital (Ek) and labor allocation (El) over time using measures from the

value-added (VA) and the input-output (IO) economy.

Sectoral allocative efficiency. To discern whether a particular sector drives the overall

trends, we decompose the aggregate measure into sectoral allocative efficiency, represented

as Et =
∏N

i=1 E
θi,t
i,t , where Ei,t = (

χk
i,t

χk∗
i,t
)αi,t(

χl
i,t

χl∗
i,t
)1−αi,t is the allocative efficiency of sector i.14

Figure 4, Panel (a) presents the distribution of E
θi,t
i,t , where different shades of colors

correspond to different percentiles of the distribution. According to its definition, Ei,t = 1

means that sector i is at the optimal level. Therefore, an optimal allocation would see the

cross-sectional distribution of Ei,t collapse to a single point (Ei,t = 1 for all i), and a narrower

distribution indicates a more efficient allocation. Notably, the distribution significantly nar-

rows between 1960–1970 and 1980–2000 but widens in the 1970s and stabilizes post-2000,

mirroring aggregate allocative efficiency trends. Furthermore, the changes in Ei,t observed
13However, given the data do not differentiate between capital returns and profits, caution is necessary

when interpreting these results, particularly for policy implications, as we discuss further in Section 5.6.
14We discuss results for the value-added economy in the main text as the input-output model yields similar

results.
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at different percentiles indicates that these aggregate dynamics are not driven by a single

sector.

We also examine the allocative efficiency of the manufacturing and service sectors, repre-

sented in Figure 4, Panel (b).15 Both sectors experience a decline in allocative efficiency in

the 1970s, with the service sector recovering slightly earlier than manufacturing. Conversely,

the 2000s see a more concentrated drop in allocative efficiency of the manufacturing sectors.

Figure 4: Sector-level allocative efficiency
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Notes: Panel (a) plots the distribution of Ei,t in a model without input-output linkages. The different shades of color

represent different percentiles of the Ei,t distribution in year t. The grey line represents the median value of Ei,t. Panel (b)

plots the allocative efficiency for the manufacturing and service sectors in both models. The classification of manufacturing

and service sectors can be found in footnote 15.

To summarize, our analysis underscores the significant role of allocative efficiency in

explaining the deceleration of aggregate productivity growth during the 1970s and 2000s.

Moreover, we find that capital is the primary driver of change in allocative efficiency. The

sluggish growth in allocative efficiency during productivity slowdown episodes can be at-

tributed to sectors collectively moving away from the optimum. In Appendix Section A.2,

we conduct an in-depth analysis of the long-run changes in allocative efficiency. The remain-

der of Section 4 will delve into an investigation of a potential driver behind the patterns of

allocative efficiency during the two slowdown episodes.

15 The manufacturing and service sectors are defined as Em
t =

∏
i∈manu E

θi,t
i,t and Es

t =
∏

i∈serv E
θi,t
i,t ,

respectively. See Table A.1 for sector classification details.
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4.3 Volatility and allocation during the slowdown episodes

We explore the role of volatility of sector-level productivity in explaining the cross-sector

allocative efficiency during the 1970s and 2000s. First, using a variety of measures, we

document that the 1970s and 2000s experience an increase in sector-level volatility. Next,

we exploit the variations in volatility over time and across sectors to provide evidence linking

the increase in volatility to the deterioration in allocative efficiency.

Previous theoretical and empirical studies have demonstrated a mechanism that corre-

lates higher time-series volatility with a decline in allocative efficiency. In the presence of

a non-convex adjustment cost, there exists an inaction region in which firms do not adjust

their inputs as a response to a productivity shock. With higher volatility, this inaction region

expands because the option value of waiting rises, leading to a widening gap between actual

capital/labor allocation and the optimal levels suggested by productivity.16 Bloom et al.

(2018), for instance, illustrate this mechanism with a quantitative model. Their findings re-

veal that after a shock, which increases the volatility of the productivity process, allocative

efficiency declines and only gradually returns to pre-shock levels. Similarly, evidence pre-

sented by Asker et al. (2014) suggests that the high volatility of firms’ productivity processes

can partly account for the low allocative efficiency observed in less developed countries.

Productivity slowdown episodes are accompanied by high volatility. As a first

pass of the data, we calculate the sectoral growth volatility in employment, real value-added

output, and TFP, using the standard deviation of their respective annual growth rates over

a rolling 5-year window. As shown in Panel (a) of Figure 5, volatility begins to rise at the

onset of the 1970s, remaining high throughout the decade. At the highest point, standard
16The existing literature identifies two impacts of an increase in volatility. The first, known as the option

value effect, widens the inaction regions and results in a larger disparity between actual and optimal alloca-
tions. The second, known as the volatility effect, triggers a medium-term surge in aggregate net hiring and
investment. Research indicates that in the medium term, the volatility effect tends to be more dominant,
leading to an overshoot in aggregate labor and investment. However, it is important to highlight that we
do not observe a similar overshoot in allocative efficiency. As shown in Figures 6 and 7 of Bloom et al.
(2018), labor misallocation worsens after a shock and gradually recovers back to pre-shock levels, but it
doesn’t overshoot them. In contrast, aggregate labor and investment both exceed their pre-shock levels 3 to
6 quarters after the shock.
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deviations were nearly double those of the 1960s. Volatility then gradually decreases between

the 1980s and the early 2000s, after which it starts to ascend again.

Figure 5: Sector-level shocks were more volatile during the 1970s and 2000s
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Notes: Panel (a) plots the cross-sectional s.d. of sectoral growth rates in employment, real value-added output, and

TFP. Panel (b) plots the cross-sectional dispersion (inter-quartile range) in TFP shocks, computed as the residual terms

from regression logAi,t = ρ logAi,t−1 + µt + χi + ϵi,t.

Next, we construct a measure of volatility based on dispersion in sector-level TFP. Follow-

ing Bloom et al. (2018), we first calculate TFP shocks as the residual (εi,t) from a regression

equation for sector-level log TFP, logAi,t = ρ logAi,t−1 + µt + χi + εi,t, and use the cross-

sectional dispersion of εi,t to measure the volatility of sectoral TFP processes.17 Panel (b)

of Figure 5 shows the inter-quartile range of εi,t within each year. The 1970s and 2000 are

again marked by greater volatility.18

Prior to discussing our empirical findings, a few remarks are in order. Decisions related

to adjusting inputs are typically made at the firm level. Then how does a firm’s behavior

reduce cross-sector allocative efficiency when sector-level volatility increases? To provide

some intuition, consider an environment where a sector consists of many firms, each making

decisions about capital and labor inputs in the presence of adjustment costs. A firm’s
17This regression controls for the sector- and year-fixed effects, which removes permanent differences in

sectoral TFP levels and removes average growth rate differences across years.
18Appendix Figure A.3 plots an alternative measure of sector-level volatility, in which we first compute

the over-time dispersion of εi,t within a rolling window for each sector and then calculate the median value
of these dispersions among all sectors. We find a similar dynamic as Figure 5, Panel (b), particularly in the
rising volatility during the 1970s and 2000s.
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productivity is a multiplicative composite of a sector-level shock, Ai,t, and a firm-specific

shock. As such, an increase in the level of sector productivity Ai,t enhances the productivity

of all firms in sector i. Likewise, a rise in the volatility of Ai,t also increases productivity

volatility for all firms in that same sector.19

Imagine a situation where Ai,t—sector i’s productivity level—increases relative to other

sectors. This change should cause an increase in the optimal level of capital and labor for all

firms in sector i. Absent any friction, all firms in this sector would be expected to increase

their capital and labor. However, some firms, finding themselves within the inaction region,

decide against adjusting their resources, while firms outside of their inaction regions adjust

to the new optimal levels of capital and labor. When we aggregate the behavior of all

firms in sector i, a gap emerges between the actual and optimal levels of capital and labor.

Specifically, sector i as a whole will employ less capital and labor than what the increased

productivity level would optimally require. Additionally, increased volatility exacerbates this

gap: as volatility rises, more firms fall into the inaction region due to the increased option

value and fail to adjust their inputs accordingly. In essence, increased sector-level volatility

widens the gap between the actual and optimal resource allocations in response to changes

in productivity, leading to reduced cross-sector allocative efficiency.

Relationship between volatility and allocative efficiency. Our next step is to sys-

tematically evaluate the relationship between volatility and allocative efficiency by exploiting

variations in volatility over time. The results are shown in Table 3. Columns (1)–(3) regress

aggregate allocative efficiency log(Et) on the volatility of TFP shocks in year t, t − 1, and

t−2, while controlling for log(Et−1). The inclusion of t−1’s and t−2’s measure of volatility

is motivated by the insight that the history of TFP shocks might have a long-lasting im-

pact on allocation in the presence of adjustment costs. The inclusion of log(Et−1) aims at

controlling for the long-run trend.
19This environment is akin to that of Bloom (2009), where the author investigates scenarios in which input

adjustment decisions occur at a lower level (the establishment level) than what is observable in the data (the
firm level). He concludes that increases in volatility at the macro, firm, and establishment levels all yield
qualitatively comparable effects.
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Table 3: Relationship between volatility and allocative efficiency

(1) (2) (3) (4) (5) (6)

Dispersion of TFP shocks in year t -0.072** -0.087** -0.080** -0.081** -0.097** -0.095**
(0.031) (0.037) (0.037) (0.032) (0.038) (0.039)

Dispersion of TFP shocks in year t− 1 0.003 0.009 0.005 0.007
(0.043) (0.046) (0.041) (0.046)

Dispersion of TFP shocks in year t− 2 -0.006 0.002
(0.027) (0.030)

Allocative efficiency in year t− 1 0.973*** 0.981*** 0.976***
(0.013) (0.012) (0.012)

Dependent variables log(Et) log(Et) log(Et) ∆ log(Et) ∆ log(Et) ∆ log(Et)
N 63 62 61 63 62 61
R2 0.993 0.993 0.993 0.093 0.137 0.128

Observed slowdown in 1970s -0.12 -0.12 -0.12 -0.12 -0.12 -0.12
Predicted slowdown in 1970s -0.10 -0.10 -0.10 -0.07 -0.08 -0.08
Observed slowdown in 2000s -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
Predicted slowdown in 2000s -0.02 -0.03 -0.03 -0.03 -0.03 -0.03

Notes: The top half of the table presents the regression results. Columns (1)–(3) regress logarithms of Et on the cross-

sectional dispersion in TFP shocks from years t, t−1, t−2 while also controlling for the logarithms of Et−1. Columns (4)–(6)

regress the log difference in Et on the cross-sectional dispersion in TFP shocks of years t, t − 1, t − 2. Robust standard

errors are reported and in parentheses. The bottom half of the table presents the predicted productivity slowdown using the

estimated models. The four rows correspond to the same two productivity slowdown periods in Table 1: 1970–79 (1970s) and

2000–07 (2000s). The predicted growth rates are computed as ∆log L̂Pt = ∆ logLP∗
t +∆ log Êt, where ∆logLP∗

t are taken

from previous estimates in Table 2. The observed and actual growth rates are calculated as the long difference between the

beginning and end of each period. They are adjusted to reflect the growth rate over periods of the same length (ten-year

window). The slowdown in productivity growth (observed and predicted) is calculated as the changes in growth rates from

the previous periods.

The results confirm that higher volatility in year t is associated with a significantly less

efficient allocation, with an estimated coefficient of -0.072 to -0.087. In Columns (4)–(6),

we find very similar results when using the changes in allocative efficiency as the dependent

variables. Again, the estimated correlations range from -0.081 to -0.097 and remain highly

significant.20

These regression results indicate that the impact of increased volatility on productivity
20We note two things about the estimation results. First, R2 is high in Columns (1)–(3) due to controlling

for the lagged value of the dependent variable (allocative efficiency in year t − 1). Second, the estimated
coefficients for TFP dispersion are similar in Columns (1)–(3) and Columns (4)–(6) despite the use of different
dependent variables. This similarity exists because the estimated coefficients for the lagged dependent
variable in Columns (1)–(3) are close to 1, effectively making the regression models similar in these columns
and resulting in similar estimates.
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growth can be economically significant. For instance, compared to the 1960s, the inter-

quartile range of TFP shocks increased by 0.052 in the 1970s. This increase, according to

the estimates in Table 3, translates into a decline in the left-hand-side variable, logEt, by

a size ranging from 0.004 to 0.005. Furthermore, in the data, the average annual growth

rate of labor productivity was approximately 0.015 during the 1970s. This means that if

the volatility of TFP shocks in the 1970s had stayed the same as the previous decade, the

annual productivity growth rate would have been approximately 30 percent higher.

Next, we quantify to what extent volatility slows down productivity growth. To answer

this question, we first obtain the predicted value for Êt using estimates from Table 3, then

calculate predicted growth rates using the following equation: ∆ log L̂Pt = ∆ logLP∗
t +

∆ log Êt.21 As shown at the bottom of Table 3, model-predicted slowdown during the 1970s

ranges somewhere between 8 pp and 10 pp when we apply the full set of regressors (Columns

3 and 6), accounting for more than two-thirds of the observed 12 pp slowdown in the data.

Further, the model-predicted slowdown during the 2000s is 3 pp, accounting for the entire

observed slowdown in the data. According to Table 2, ∆ logLP∗
t slows down by 3 pp during

the 1970s and by 1 pp during the 2000s, indicating that the remaining 5–7 pp and 2 pp,

respectively, are predicted by the increase in volatility. Based on these findings, volatility

plays an even greater role than fundamentals in driving the productivity slowdown.

Evidence at the sector level. As of now, we have established the correlation between

volatility and aggregate allocation efficiency. Similarly, allocative efficiency should also de-

cline in sectors facing high volatility. We next provide evidence linking these two phenomena

by exploiting differences in volatility across sectors.

Before we delve into the results, it would be helpful to clarify how we measure the

changes in sectoral allocative efficiency. It is important to remember that Ei,t could be

greater or less than 1 with Ei,t = 1 indicating that resources allocated to this sector are at

21For the regressions in Columns (4)–(6), we first obtain the predicted growth rates ∆ log Êt, and using
the first year of Et as a starting point, we compute Êt recursively for each year. The growth rate under
optimal allocation, ∆ logLP∗

t , is taken from Table 2.
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the optimal level. Moreover, a decrease in Ei,t does not indicate worsening allocation. For

instance, a shift from Ei,t = 1.2 to Ei,t = 0.9 actually indicates an improvement in allocation

efficiency, as the gap between Ei,t and 1, which represents how distant the sector is from

optimum, decreases from 0.2 to 0.1. As such, the appropriate measure for sectoral allocation

efficiency is the absolute difference between Ei,t and 1, which in logarithmic terms can be

expressed as | logEi,t|. Accordingly, the change in sectoral allocative efficiency is captured

by | logEi,t| − | logEi,t−∆t|, wherein a positive value indicates a deterioration in allocation

over the period [t−∆t, t].

Table 4: Sector-level relationship between volatility and allocative efficiency

Dependent variable | logEi,t| − | logEi,t−∆t| ∆t = 2 ∆t = 4

Dispersion of TFP shock in [t−∆t, t] 0.141** 0.168* 0.154* 0.235** 0.253** 0.224*
(0.0713) (0.0866) (0.0925) (0.101) (0.124) (0.134)

Sector FEs N Y Y N Y Y
Year FEs N N Y N N Y
N 1593 1593 1593 1593 1593 1593
R2 0.021 0.060 0.104 0.029 0.081 0.127

∆t = 6 ∆t = 8

Dispersion of TFP shock in [t−∆t, t] 0.317*** 0.437*** 0.396*** 0.541*** 0.722*** 0.671***
(0.0895) (0.120) (0.134) (0.123) (0.173) (0.191)

Sector FEs N Y Y N Y Y
Year FEs N N Y N N Y
N 1593 1593 1593 1593 1593 1593
R2 0.056 0.139 0.188 0.070 0.181 0.231

Notes: This table regresses changes in allocative efficiency over [t − ∆t, t] on growth volatility—measured by the dispersion

of TFP shocks—at the sector level. The regressions with or without sector- and year-fixed effects are presented in different

columns. In addition, we also show the regression results with rolling windows of different lengths, where ∆t = 2, ∆t = 4,

∆t = 6, and ∆t = 8 correspond to 3-year, 5-year, 7-year and 9-year rolling windows, respectively. Robust standard errors are

reported in parentheses.

Table 4 presents the correlation estimates between each sector’s volatility, measured by

the dispersion in productivity shock εi,t over a rolling window from t − ∆t to t, and the

associated changes in allocative efficiency within that same window. With a three-year

rolling window (∆t = 2), the estimated coefficient on the dispersion of TFP shocks stands

at 0.14, and this value increases somewhat upon controlling for one or both sets of sector-

and year-fixed effects. For longer rolling windows (∆t = 2, 4, 6, 8), a consistently significant

26



relationship is found between heightened volatility and decreased allocative efficiency. Taken

together, results in this table suggest that volatility increases are linked to notable declines

in allocative efficiency at the sector level.

Table 5: Direction of movement in Ei,t is correlated with the sign of productivity shocks

Dependent variable I(Ei,t < Ei,t−∆t) ∆t = 2 ∆t = 4 ∆t = 6 ∆t = 8

Dummy indicator of positive accumulative TFP shocks 0.204*** 0.214*** 0.119*** 0.116***
(0.0251) (0.0248) (0.0247) (0.0250)

N 1593 1593 1593 1593
R2 0.170 0.196 0.205 0.231

Dummy indicator of positive median TFP shocks 0.195*** 0.162*** 0.0997*** 0.0882***
(0.0250) (0.0247) (0.0240) (0.0238)

N 1593 1593 1593 1593
R2 0.167 0.179 0.202 0.227

TFP shocks (accumulative) 0.258*** 0.234*** 0.133*** 0.137***
(0.0765) (0.0691) (0.0492) (0.0408)

N 1593 1593 1593 1593
R2 0.110 0.137 0.175 0.210

TFP shocks (median) 0.886*** 0.923*** 0.591* 0.820**
(0.305) (0.288) (0.316) (0.367)

N 1593 1593 1593 1593
R2 0.106 0.133 0.172 0.206

Notes: This table examines the correlation between the sign of productivity shocks and the direction of the movement in Ei,t.

The left-hand-side variable is a dummy variable indicating if there is a decline in Ei,t over [t−∆t, t]. On the right-hand side,

we include a dummy variable indicating a positive accumulative or median TFP shock and the actual values of the shocks. All

regressions include a set of sector- and year-fixed effects. Robust standard errors are reported and in parentheses.

The mechanism highlighted here also has predictions about the direction of Ei,t’s move-

ment in relation to the sign of the productivity shock. As discussed previously, absent any

frictions, a sector receiving a positive productivity shock should witness an increase in cap-

ital and labor. However, due to adjustment costs, the actual resource inflow to this sector

usually lags behind the optimal level. This likely leads to a decrease in the value of Ei,t after

a positive productivity shock.

We test this prediction in Table 5. The top panel regresses a binary variable I(Ei,t <
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Ei,t−∆t), indicating a reduction in Ei,t, on another binary variable, reflecting whether the

sector has seen a positive accumulative TFP shock over the time interval [t − ∆t, t], with

sector- and year-fixed effects as controls.22 A three-year rolling window yields an estimated

correlation of 0.2, which slightly diminishes with longer windows but remains highly signif-

icant. This positive and significant estimate is consistent with our prediction that a rise

in TFP correlates with a reduction in the value of Ei,t. The second panel substitutes the

accumulative TFP shocks with the median value of the TFP shocks over the time interval

[t−∆t, t] and returns similar outcomes, despite slightly lower point estimates. This pattern

is once again validated when using the actual TFP shock values as dependent variables. As

shown in the bottom two panels, a greater positive TFP shock (median or accumulative) is

associated with an increased likelihood of a decrease in Ei,t.

In summary, the two exercises in this section provide insights into the movement of each

Ei,t as the cross-sectional distribution of Ei,t determines aggregate allocative efficiency. The

magnitude, as well as the direction of changes in Ei,t, are closely linked to the underlying

TFP shocks.

Evidence from factor utilization. Next, we present additional evidence based on factor

utilization rates. Recent studies documented that dispersions of capacity utilization rates are

an essential contributor to dispersions of the marginal product of capital and labor (Gorod-

nichenko et al., 2021). Using a model of investment with adjustment costs, Abel and Eberly

(1998) showed that factor utilization rates represent the position in the inaction region. As

volatility increases, the inaction region expands, resulting in a broader range of utilization

rates in the cross-section. Consequently, the two episodes of productivity slowdown should

be accompanied by increased dispersion of utilization rates, which we investigate next.

To do so, we first construct measures of factor utilization rates. For capital, a common

approach uses energy consumption to calculate utilization-adjusted capital service (Burnside

et al., 1995). According to the estimation in Burnside et al. (1995), the actual capital service

used, K̂i,t, can be written as a Leontief function of capital stock and energy consumption.
22The accumulative TFP shock is defined as the sum of TFP shocks ϵi,t over the period [t−∆t, t].
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Using the specification in Oberfield (2013), we let K̂i,t = min{Ei,t/bi, ui,tKi,t}, where ui,t is

the capital utilization rate, Ei,t is energy consumption, and bi represents the energy intensity

of capital usage in each sector determined by its fundamental technology. The difference

between growth rates of K̂i,t and Ki,t, therefore, represents changes in capital utilization

rates: ∆ log uk
i,t = ∆ log K̂i,t −∆ logKi,t.

For labor utilization rates, we follow the tradition of growth accounting literature and

define the rate as the average hours worked per employed person (Basu et al., 2006; Fernald,

2014). This then allows us to compute changes in labor utilization rate ∆ log ul
i,t for each

sector on a yearly basis. The cross-sectional dispersions in ∆ log uk
i,t and ∆ log ul

i,t are used

to measure the dispersion in factor utilization rates.23

Figure 6: Cross-sectional dispersions of factor utilization rates
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(b) Inter-quartile range

0

.05

.1

.15

1960 1970 1980 1990 2000 2010

Notes: This table plots the cross-sectional dispersions in capital and labor utilization rates every year. Panels (a) and (b)

plot the standard deviation and inter-quartile range, respectively. The time series are HP-filtered with a smoothing parameter

of 6.25.

Figure 6 displays the HP-filtered time-series of the standard deviation (Panel a) and

inter-quartile range (Panel b) of the utilization rates every year. Labor utilization dispersion

is relatively small and stable, whereas capital utilization dispersion varies significantly over

time. Notably, during the 1970s and 2000s, the dispersion of capital utilization rates increases

significantly compared to the previous decades. Despite being suggestive, this figure provides
23A caveat to this analysis is we can only calculate changes in capital utilization rates but not levels; hence

we are unable to quantify to what extent utilization rates contribute to the cross-sectional variations, in Ei,t,
as in Gorodnichenko et al. (2021).
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further evidence of the mechanism we highlight.

5 Extensions and robustness checks

This section discusses extensions and robustness checks of the baseline results. We consider

(i) an extension of the Cobb-Douglas framework to CES production systems, (ii) an alterna-

tive timing of the productivity slowdown, (iii) a closer look at manufacturing industries using

more granular data, (iv) post-2010 development in allocative efficiency, (v) heterogeneity in

capital and labor composition across sectors, (vi) non-zero profits, and (vii) alternative spec-

ifications to estimate output elasticities. To avoid repetition, for each exercise, we provide a

summary of the results in the main text and include more details in the Appendix Section

A.

5.1 CES production system

Our baseline results use the Cobb-Douglas production system, a valuable benchmark. How-

ever, recent papers have shown that the measurement of allocative efficiency depends on the

elasticity of substitution between sectors and inputs (see Epifani and Gancia, 2011; Osotime-

hin and Popov, Forthcoming). This section extends the benchmark value-added economy to

a more flexible CES production system.

The final good is a CES aggregation of intermediate goods: Y = (
∑

i ωiY
1− 1

ρ

i )
ρ

ρ−1 . The

intermediate good Yi is produced using capital and labor, Yi = Ai(νiK
1− 1

ε
i +(1−νi)L

1− 1
ε

i )
ε

ε−1 .

In these production functions, (ωi, νi) are the CES weights and (ρ, ϵ) are the elasticity

of substitution. Similar to before, the planner solves the following optimization problem:

max Y, s.t
∑

i Ki = K,
∑

i Li = L. Appendix Section B.3 details the model solution.

To evaluate our results in the CES framework, we first estimate the elasticity of substi-

30



tution parameters, ρ and ϵ, using the following specification:

log
pi,tYi,t

pN,tYN,t

= βρ log
Yi,t

YN,t

+ χi + ui,t, (7)

log
RiKi

wiLi

= βϵ log
Ki

Li

+ χi + ui,t, (8)

where βρ =
ρ

ρ−1
, βϵ =

ϵ
ϵ−1

, χi represents the sectoral fixed effects and ui,t is the error term.24

In Equation (7), pi,tYi,t is the nominal value-added output for sector i ∈ {1, ..., N} and Yi,t

is the corresponding real value-added output. In Equation (8), RiKi and wiLi are capital

and labor income in nominal terms while Ki and Li are real capital stock and the number of

workers in each sector.25 After obtaining the elasticity of substitution parameters, the CES

weights in the production functions can be calculated using the expenditure shares over a

rolling window, as in the Cobb-Douglas case.

The point estimate for the elasticity of substitution between sector goods is ρ = 0.96,

smaller than but not significantly different from one. The elasticity of substitution ρ mea-

sures how easy it is for consumers to substitute across a broad set of goods or services.

Not surprisingly, the estimates would vary somewhat across different sectoral classification

schemes. Aum et al. (2018) categorized all non-agriculture industries into ten broad sectors.

Their estimated elasticity was 0.77 across these sectors. Oberfield and Raval (2021) showed

that the estimates of elasticity across two-digit manufacturing sectors centered around one

from various specifications. In Herrendorf et al. (2013), the benchmark specification esti-

mated the elasticity between broad sectors—agriculture, service, and manufacturing—to be

around 0.9. Atalay (2017) suggested that a value smaller but closer to one best characterizes

the demand elasticity from consumers. Both Atalay (2017) and Oberfield and Raval (2021)

chose elasticity equal to one in their baseline parametrization. Overall, our estimate is within

the range of estimates in the literature.
24Both specifications are derived from the cost-minimization conditions following the approach in Aum

et al. (2018). The conditions that generate Equations (7) and (8) are log( PiYi

PNYN
) = log( ωi

ωN
) + ρ−1

ρ log( Yi

YN
)

and log RiKi

wiLi
= log λi

1−λi
+ ϵ−1

ϵ log(Ki

Li
), respectively.

25The identification strategy exploits the relationship between changes in input expenditure and changes
in input quantity over time. Given the expenditure of inputs, input price and quantity provide essentially
the same information. Therefore, the above specification is equivalent to one that regresses expenditure on
prices (Atalay, 2017) or regresses quantity on prices (Oberfield and Raval, 2021).
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Our estimated elasticity of substitution between capital and labor is ϵ = 0.81, suggesting

that capital and labor are gross complements in the sectoral production functions. Several

recent papers also estimated the elasticity of substitution between capital and labor at the

sectoral/industry level. Among them, Herrendorf et al. (2015) considered three broad sectors,

agriculture, manufacturing, and service, and the estimated elasticity of substitution between

capital and labor were 1.58, 0.8, and 0.75 in these three sectors, respectively. Alvarez-

Cuadrado et al. (2017) found a slightly lower value for the manufacturing (0.78) and service

(0.57) sectors. By aggregating up elasticities at the plant level, Oberfield and Raval (2021)

obtained an elasticity of 0.72 for manufacturing sectors in 1987 and suggested that it has

been trending down since. Aum et al. (2018) combined labor with two types of capital—

computer and non-computer—using a nested CES structure and found that the estimated

elasticity between computer capital and labor ranged from 1.2 to 1.8.26

Given the empirical challenges associated with estimating the elasticity of substitution

and the lack of consensus in the literature, applying a range of values for these parameters

would be necessary. We set our baseline specification to ρ = 0.96 and ϵ = 0.81, which are

estimates from our data. We also consider the case of a lower value for the elasticity between

sectoral goods, ρ = 0.77 (Aum et al., 2018). For the elasticity between capital and labor, we

take the estimated value from Oberfield and Raval (2021) (0.72) and from Karabarbounis

and Neiman (2014) (1.25), which reflect different views of whether capital and labor are

gross substitutes or complements. Therefore we have six combinations of values for ρ and ϵ.

Table 6 presents the changes in the fundamental productivity growth compared to the

previous decade.27 With the baseline parameterization (ρ = 0.96, ϵ = 0.81), productivity

growth in the 1970s and 2000s slows down by 4 pp and 1 pp, respectively. We note that the

difference between the baseline CES result and the Cobb-Douglas case is small. Further, we
26Researchers have also estimated the elasticity of substitution between capital and labor at the aggregate

level. There exists a relatively wide range of estimates (see Chirinko, 2008, for a summary). For example,
Karabarbounis and Neiman (2014) estimated that capital and labor are gross substitutes with an estimated
elasticity between 1.2 and 1.5 using several cross-country aggregate datasets (see also the estimates in Piketty,
2017). On the other hand, most other papers have found that capital and labor are gross complements,
including Antràs (2004), Klump et al. (2007), and León-Ledesma et al. (2010), among others.

27In Appendix Section A.4, we provide more details, including the evolution of allocative efficiency under
the different values of elasticity over the whole sample period.
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Table 6: Changes in fundamental productivity growth from the previous decade

CD CES
ρ = 0.96 ρ = 0.77

ϵ = 0.81 ϵ = 0.72 ϵ = 1.25 ϵ = 0.81 ϵ = 0.72 ϵ = 1.25
baseline highest elas. lowest elas.

1960–69 – – – – – – –
1970–79 -0.03 -0.04 -0.05 -0.02 -0.05 -0.06 -0.04
1980–89 -0.03 -0.02 -0.01 -0.04 -0.02 0.00 -0.03
1990–99 0.06 0.06 0.06 0.05 0.06 0.06 0.05
2000–07 -0.01 -0.01 -0.01 -0.00 -0.02 -0.01 -0.00

Notes: This table presents the change in fundamental productivity growth compared to the previous decade in the CES

framework. The results are presented under six combinations of parameter values for ρ and ϵ, the elasticity of substitution

parameters in the production system. The baseline parameterization is ρ = 0.96 and ϵ = 0.81. As a comparison, we also

include the results from the Cobb-Douglas case, taken from the last column of Table 2.

find that higher elasticity is generally associated with a more prominent role for allocative

efficiency in explaining the productivity slowdown.28 For the case with the highest elasticity

of substitution (ρ = 0.96, ϵ = 1.25), productivity slowed down by 2 pp during the 1970s.

Further, there was no slowdown in productivity during the 2000s. Even for the scenario

with the lowest elasticity (ρ = 0.77, ϵ = 0.72), allocation can explain at least half of the

productivity slowdown.29

Estimating the elasticity of substitution between capital and labor is notoriously difficult.

For instance, there can be endogeneity issues regarding estimating Equations (7) and (8).

Given the challenges with the estimation, we performed the robustness check under a range

of values found in the literature, and it is reassuring that our results are not very sensitive

to different elasticities.30

28Epifani and Gancia (2011) and Osotimehin and Popov (Forthcoming) show that the elasticity of substi-
tution also matters for the measured level of allocative efficiency.

29Our exercise abstracts from the complementarity between intermediate inputs. With the availability of
better data, we can extend this framework to incorporate this dimension, thereby potentially enhancing the
impact of complementarity (see models in Atalay, 2017, and Osotimehin and Popov, Forthcoming).

30Complementarities, coupled with uneven growth, can also lead to a decline in fundamental productivity
as resources flow into stagnant sectors, i.e., the Baumol’s diseases (Duernecker et al., 2017; Aum et al.,
2018). Baumol’s diseases occur even when resources are allocated optimally across sectors. The degree of
complementarity determines the force of Baumol’s diseases and the magnitude of the aggregate productivity
slowdown. As such, looking back at the decomposition Equation (6), the elasticity of substitution affects
both terms on the right-hand side, which makes it a crucial parameter to estimate for the understanding of
productivity growth.
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5.2 Timing of the slowdown

So far, we have conducted our analysis in decades, focusing on the 1970s and post-2000s

as periods of slowdown. However, the timing of the slowdown may not align precisely with

these decade-long periods. Indeed, while it is widely recognized in previous papers that the

1970s and 2000s were periods of significant slowdown in productivity, the specific periods

studied by these papers vary. For instance, like us, Aum et al. (2018), Decker et al. (2020),

and Vandenbroucke (2021) use the decade approach. In comparison, Byrne et al. (2016)

argue that the post-2000 slowdown begins in 2005, while the 1970s episode spans 1973–1982.

In this section, we examine the start and the end dates of the slowdown episodes more

closely. To do this, we first divide our sample into subperiods based on trends in labor

productivity growth. This process generates five subperiods: 1960–1973, 1973–1982, 1982–

1995, 1995–2005, and post-2005, all of which show a change in trend growth from the previous

one. This division is identical to that used in Byrne et al. (2016). Consistent with Byrne

et al. (2016), we identify 1973–1982 and post-2005 as two periods notable for their slower-

than-normal labor productivity growth rates.

During the periods 1973–1982 and 2005–2010, the annual growth rate in labor produc-

tivity was lower than in preceding periods by 1.88 and 1.08 pp, respectively. Moreover, the

growth rate in allocative efficiency was also lower during these periods, by 0.39 and 0.26

percentage points, respectively, compared to preceding periods. As a result, slower growth

in allocative efficiency contributed 21% and 24% to the slowdown in labor productivity

growth during 1973–1982 and 2005–2010, respectively. Details of the exercise can be found

in Appendix A.5.

The contribution of allocative efficiency calculated using this alternative timing is smaller

than the baseline results for two reasons. First, with this alternative timing, the productivity

growth slowdown becomes more prominent. This is especially true for the post-2005 episode,

while the subperiod 1995–2005 displays extraordinarily fast productivity growth. In our

benchmark analysis, the 2000s decade reflects a blend of these two vastly different periods.
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Second, the slowdown in allocative efficiency does not coincide perfectly with the slowdown

in productivity growth. Particularly in the 1970s episode, this timing difference led to

underestimating the role of allocative efficiency.

Lastly, our analysis shows that the timing of the slowdowns in labor productivity and

allocative efficiency do not match perfectly. Empirically, the timing of the slowdown in

economic activities varies slightly based on which variable we consider. Moreover, the timing

of the slowdown in allocative efficiency is sensitive to model specifications, as we will illustrate

in our robustness-check exercises. A timing difference can lead to either underestimation or

overestimation of allocative efficiency’s contribution. For these reasons, we retain the decade

approach as our baseline specification for its transparency and include a discussion of the

alternative timing as the robustness check.

5.3 Manufacturing industries

In this section, we delve deeper into the manufacturing sector, utilizing the NBER-CES

Manufacturing Industry Database (1958–2018). This database provides industry-level data

for 364 distinct manufacturing industries.31

To begin with, we document that the manufacturing sector exhibits similar slowdown

dynamics as the whole economy. In particular, based on the changes in growth trends

in the manufacturing labor productivity series, we divide the entire sample into four sub-

periods: 1960–73, 1973–82, 1982–2005, and post-2005.32 Additionally, using the NBER-CES

database, we can measure allocative efficiency across these manufacturing industries. The
31We use the term manufacturing industries to differentiate from the broader manufacturing sector that

encompasses all these industries.
32Note that because of the added noise in the measured Et, we find it difficult to derive any valuable in-

sights if we continue to analyze the data by decades (as we did in the baseline exercise), as the high-frequency
fluctuations obscure the underlying trends. Therefore, we first identify periods of labor productivity slow-
down based on changes in its growth trends. As a result, we divide the sample into four subperiods: 1960–73,
1973–82, 1982–2005, and post-2005, and note that 1973–82 and post-2005 are the slowdown episodes. Within
each subperiod, we compute the average annual growth rates by running a linear regression of logLPt (or
logEt) on time. Overall, this method allows us to extract the median-term growth trends without too much
interference from the high-frequency fluctuations.
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dynamics of Et appear noisier than the baseline results, perhaps because the NBER-CES

database is constructed using firm surveys and has a much finer industry classification than

KLEMS. Nevertheless, despite the noise, the result indicates that 1973–82 and post-2005

have significantly slower growth rates in labor productivity as well as allocative efficiency.

During these periods, 45% and 20%, respectively, of the slowdown in labor productivity

growth can be attributed to a lack of improvement in allocative efficiency. Appendix Section

A.6 contains details of this exercise.

We also investigated the correlation between industry-level volatility and cross-industry

allocative efficiency within the manufacturing sector, using the NBER-CES manufacturing

database to measure industry-level volatility, as described in Section 4.3. Our findings re-

vealed heightened levels of volatility in the manufacturing sector during the 1970s and from

2000 onwards. This volatility correlated with a decline in allocation efficiency, as detailed in

Appendix Section A.7. Overall, these insights corroborate and enhance our baseline findings

by applying them to more granular datasets.

5.4 Post-2010 dynamics

Our baseline analysis uses the 2013 version of the KLEMS and WIOT databases, which only

include data up to 2010. However, the slowdown in productivity growth extends beyond

2010. In this section, we examine the post-2010 dynamics using a different version of the

KLEMS dataset, published by the Luiss Lab of European Economics (LLEE) in 2021. The

LLEE KLEMS dataset has a different industry classification and covers a more recent period

up until 2015. However, the LLEE KLEMS has several limitations. For instance, several

key variables needed to measure allocative efficiency only became available after 1997. Also,

several sectors are missing capital stock information altogether. Keeping in mind these

caveats, we use this dataset as a robustness check for the post-2010 dynamics. Appendix

Section A.8 contains details of the exercise.

Our baseline result shows that the allocative efficiency starts to flatten around 2000 after
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experiencing decades of positive growth. Using the new dataset, we find this flattening trend

continues into the post-2010 period. As the growth of allocative efficiency continues to slow,

it accounts for almost all the productivity slowdown in 2000–15.

5.5 Heterogeneity in capital and labor

So far, our empirical analysis relies on the 2013 version of KLEMS and WIOT. Although

the construction of KLEMS data takes into account different compositions of capital types

in each sector, one might wonder if this aggregation would cause mismeasurement.33 The

same concern applies to the measurement of labor.

In this section, we repeat the exercise using alternative input measures. We take capital

inputs of different types from the 2009 version of KLEMS, which covers a shorter period

(1977–2007). The data reports eight asset types: (i) computing equipment, (ii) communica-

tions equipment, (iii) software, (iv) transport equipment, (v) other machinery and equipment,

(vi) total non-residential investment, (vii) residential structures, and (viii) other assets. The

first three asset types constitute the ICT asset group, and the latter five constitute the non-

ICT group. We follow the literature to use labor compensation as a proxy for labor inputs.34

Details of the exercises can be found in Appendix Section A.9.

When extending the analysis to two types of assets, ICT and non-ICT capital, the result

is only available from the end of the 1970s. We find a rapid improvement in allocation during

the 1980s and a gradual deterioration since the beginning of the 2000s. The exercise with

eight types of assets shows a similar trend. In these cases, allocative efficiency accounts for

two-thirds of the productivity slowdown in the two-asset specification and one-third in the

eight-asset specification. Moreover, by replacing employment with wage bills as a measure

of labor input, the level of allocative efficiency is higher, but the trend remains very similar
33See Jorgenson et al. (2014) for details on how the industry-level capital data are constructed.
34These alternative measures, however, come with their own set of challenges. In constructing the returns

to capital by type, KLEMS makes assumptions to split the total capital income into returns of different types,
which may introduce measurement errors. Regarding labor inputs, wage bills may address the composition
problem, but they cannot distinguish the role of price and quantity in measuring allocative efficiency.
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to the baseline result. Our results indicate that approximately half of the productivity

slowdown in the 1970s and the entire observed slowdown in the 2000s can be attributed to

allocative efficiency.

5.6 Positive profits

In KLEMS, capital income equals value-added minus labor income; in other words, the

underlying assumption is that sectors make zero pure profits. This data treatment is partly

motivated by findings that pure profits as a share of value-added output are close to zero

in the US (Rotemberg and Woodford, 1995). However, recent studies show that profits

shares have been rising in the US, which implies that the data overestimated capital income.

Consequently, this leads to an upward bias in capital-output elasticity estimates and capital

weights in measuring aggregate allocative efficiency.

Next, we relax the assumption of zero pure profits to test if such an assumption biases

our results. We first split the raw capital compensation into pure profits and actual capital

income using the estimated profits to capital income ratio of Barkai (2020). There exists

a range of estimates for this ratio over time. We choose two values that are on the upper

end of the range: (i) ratio=1/5 in 2010, the last year of our sample, and (ii) ratio=1/2 in

2007, the highest level over the sample period in Barkai (2020). Appendix Section A.10

includes details of the exercise. Here we provide a summary of the main take-aways: we

find that under the assumption of positive profits, the changes in allocative efficiency are of

a slightly smaller magnitude, which perhaps indicates the presence of bias in the baseline

result. However, our main finding is robust under this alternative assumption. Even with

the highest profit share, allocative efficiency still explains at least half of the productivity

slowdown in the data.35

35Note that in this exercise we abstract from the case where profit rates differ across sectors. This
abstraction is due to data availability as we cannot distinguish between capital return and pure profits at
the sector level.
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5.7 Alternative specifications

We use two specifications to obtain output elasticity estimates, and in the main text, we

report results based on the first specification and a 3-year rolling window. In this paragraph,

we discuss the results of alternative specifications. Details of the exercises can be found in

Appendix Sections A.11, A.12, and A.13. Below we summarize the main findings.

First, we consider various lengths of the rolling window within which we calculate the

average expenditure shares. We find that the evolution of allocative efficiency with longer

rolling windows is slightly smoother than the baseline, but the resulting implications for

productivity slowdown are virtually unchanged.

Second, the critical identification assumption in the first specification is that, on average,

the wedges are not biased towards any factor. Therefore on average, expenditure shares

reflect the actual output elasticities. This assumption is necessary to our methodology, but

we would like to check if it drives our results. To do so, we consider alternative cases where

the wedge is (significantly) higher for one factor than the other. The finding shows that the

level of Et can be either higher or lower than the baseline result. However, the trends of

Et remain very similar to the baseline case. As a result, allocative efficiency still plays a

prominent role in explaining productivity slowdown.

Third, we assume that expenditure shares in the later years are undistorted and apply

them to the earlier years of the sample. We choose two base years for this exercise: (i)

2010, the last year of our sample, and (ii) 2005, to avoid the impact of the Great Recession.

Under this specification, we find that the deterioration in allocation is slightly less prominent

than the baseline during the 1970s. However, allocative efficiency remains a quantitatively

significant force as it still explains more than half of the productivity slowdown in the data.

Taking stock. To summarize, the theoretical framework we use in this paper relies on

relatively strong parametrical assumptions. This section scrutinizes these assumptions to

ensure that they do not drive our results. There are two key takeaways. First, while the
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measure of allocative efficiency is affected by different assumptions and specifications, we

find that the level of these measures is more sensitive than the change (growth rate) of these

measures. Second, our main results are robust. Allocative efficiency plays a significant role

in driving aggregate productivity growth in all the cases we have considered.36

6 Conclusion

This paper quantifies how much of the slowdown in productivity growth can be explained

by factor allocation. We apply a tractable decomposition framework to the US economy and

show that allocative efficiency explains approximately two-thirds of productivity slowdown

in both the 1970s and 2000s. Providing additional evidence on the role of volatility, we

find that the slow growth in allocative efficiency in both slowdown episodes is partly due to

increased volatility.

These findings demonstrate the critical role of volatility in affecting allocation and ag-

gregate productivity growth. In theory, the worsening allocative efficiency in highly volatile

times stems from firms optimizing their production in the presence of adjustment costs.

In this case, a departure from the unconstrained optimal allocation might be constrained-

efficient. Policies that directly target firms’ investment and hiring decisions are not neces-

sarily welfare-enhancing. In contrast, policy initiatives that reduce the volatility firms face

or lower their adjustment costs are unambiguously conducive to growth.

We hope that our method may help study other issues related to allocation and growth.

One particular direction of work comes to mind. Several countries have experienced fast

growth and significant catching up to the frontier in recent decades. The improvement in

allocation efficiency has played an essential role in this process (Song et al., 2011; Buera and

Shin, 2013). In general, however, there is significant heterogeneity in convergence patterns
36Our methodology in measuring allocative efficiency closely follows Hsieh and Klenow (2009) and Oberfield

(2013). Recent papers have raised concerns about the framework’s assumptions of constant returns to scale
production functions and full pass-through (CES demand system). Ruzic and Ho (2021), for instance, find
that allowing for industry-specific markups and returns to scale parameters can alter the conclusions of Hsieh
and Klenow (2009).

40



across countries, even within the group of advanced economies (Cette et al., 2016). On

average, developing countries as a whole have not made much progress in closing the income

gaps in relation to the US (Johnson and Papageorgiou, 2020). How much of these patterns

are explained by variations in allocation efficiency growth across countries? Extending the

current framework to a cross-country setting could provide insights into this question.
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Appendix

A Empirical appendix

A.1 KLEMS and WIOT sector codes

Table A.1 shows the sector definition in KLEMS and WIOT. Sectors highlighted in red are
included in our empirical analysis. For the manufacturing sector definition, we include all
subsectors listed under the “D Manufacturing” header. The service sector encompasses all
subsectors under “G Wholesale and Retail Trade,” “I Transportation, Storage and Commu-
nication,” “K Real Estate, Renting and Business Activities,” as well as sectors H, J, M, and
N.

Table A.1: List of sectors in KLEMS and WIOT (2013 version)

AtB Agriculture hunting forestry and fishing
C Mining and quarrying
D Manufacturing

15t16 Food products, beverages and tobacco
17t19 Textiles, textile products leather and footwear
20 Wood and products of wood and cork
21t22 Pulp paper, paper products, printing and publishing
23 Coke refined petroleum products and nuclear fuel
24 Chemicals and chemical products
25 Rubber and plastics products
26 Other non-metallic mineral products
27t28 Basic metals and fabricated metal products
29 Machinery nec
30t33 Electrical and optical equipment
34t35 Transport equipment
36t37 Manufacturing nec; recycling

E Electricity gas and water supply
F Construction
G Wholesale and retail trade

50 Wholesale trade and commission trade except of motor vehicles and motorcycles
51 Sale, maintenance and repair of motor vehicles and motorcycles; retail sale of fuel
52 Retail trade except of motor vehicles and motorcycles; repair of household goods

H Hotels and restaurants
I Transport and storage and communication

60t63 Transport and storage
64 Post and telecommunications

J Financial intermediation
K Real estate, renting and business activities

70 Real estate activities
71t74 Renting of m&eq and other business activities

M Education
N Health and social work

1



A.2 Improvement in allocative efficiency in the long run

This section delves deeper into the improvement in allocative efficiency over the sample pe-
riod. Figure A.1 plots the sectoral allocative efficiency Ei,t, averaged over 1960–65 (beginning
of our sample) and 2000–05 (highest overall allocative efficiency years). Recall that Eit is
the measure of how far away the actual allocation is from the optimal allocation, such that

Ei,t =

(
χk
i,t

χk∗
i,t

)αi,t
(
χl
i,t

χl∗
i,t

)1−αi,t

.

If Ei,t > 1, the actual amount of capital and labor allocated to this sector is above the optimal
level. Conversely, if Ei,t < 1, the actual allocation is below the optimal level. Further, if
χk
i,t

χk∗
i,t

> 1(< 1), sector i is over-(under-)capitalized. Similarly, χl
i,t

χl∗
i,t

> 1(< 1) means that sector
i has abundant (not enough) labor.

Figure A.1: Sector-level allocative efficiency Ei,t, 1960–65 to 2000–05
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Notes: This figure plots sector-level allocative efficiency measures Ei,t, averaged over 1960–1965 (green)
and 2000–2005 (grey).

Figure A.1 shows that Ei,t of manufacturing sectors were almost all below 1 (except for
sector D36t37) during 1960–65, indicating that manufacturing sectors needed more capital
and labor. In comparison, among service sectors, some had too much capital and labor
(Ei,t > 1) and others did not have enough (Ei,t < 1). From 1960–65 to 2000–05, Ei,t has
moved closer to 1 for most sectors in the economy. This means that manufacturing sectors
have received more capital and labor (Ei,t increased). For the service sectors, this means
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some sectors received more capital and labor while others gave away capital and labor.

Figure A.2: Sector-level capital and labor allocation, 1960–65 to 2000–05
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, Panel b)

allocative efficiency, averaged over 1960–1965 (green) and 2000–2005 (grey).

Figure A.2 displays the allocation of capital (χ
k
i,t

χk∗
i,t

) and labor (χ
l
i,t

χl∗
i,t

) separately for each sec-
tor. Not surprisingly, the manufacturing sector’s capital was significantly below the optimal
level in the early years. Labor was also scarce in manufacturing sectors, but labor allocation
was closer to the optimal level than capital.

Taken together, Figures A.1 and A.2 indicate that manufacturing sectors, particularly
their capital allocation, were far below optimal in the early years but improved over time,
which contributed to a long-term improvement in allocation efficiency.

A.3 Alternative measure of sector-level volatility

In our paper, we follow Bloom et al. (2018) to construct a measure of sector-level volatility
(“microeconomic uncertainty”). To do so, we first run a regression for sector-level log TFP:
logAi,t = ρ logAi,t−1 + µt + χi + εi,t. Then, the variance of εi,t, the innovation of the
productivity process, is a measure of volatility faced by the sectors.
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There are two ways to measure the variance of εi,t. First, it can be calculated as the
cross-sector dispersion in ε in any given year. Second, it can be calculated as the dispersion
in ε over time for any given sector. In the main text, we use the first approach (see Panel
(b) of Figure 5), and, as a robustness check, we apply the second approach in Figure A.3.

Figure A.3: Dispersion of TFP shock in a rolling 7-year window
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Notes: This figure plots the dispersion of the sector-level TFP shock, calculated as the variance of εi,t,
which is the residual term from regression logAi,t = ρ logAi,t−1 + µt + χi + ϵi,t. To plot this figure,
we first compute, for each sector, the inter-quartile range or the standard deviation of the εi,t within
each 7-year rolling window centered around the current year. We then compute the median value of
the inter-quartile range (Panel a) or the standard deviation (Panel b) across sectors and plot the time
series of the median value.

More formally, in Figure A.3, we first compute, for each sector, the standard deviation
or inter-quartile range of the εi,t within each 7-year rolling window centered around the
current year. We then compute the median value of the inter-quartile range (Panel a) or the
standard deviation (Panel b) across sectors and plot the time series of the median value in
Figure A.3. The figures exhibit very similar dynamics as Figure 5, Panel (b) in the main
text, particularly regarding the rise in volatility during the 1970s and 2000s.

A.4 CES production system

Figure A.4 displays the evolution of Et under different values of elasticity for ρ, ϵ. The blue
line shows the result under our baseline parametrization where ρ = 0.96, ϵ = 0.81. Two
patterns emerge from this figure. First of all, in terms of the level of measured allocative
efficiency, this value is in general lower with a higher elasticity of substitution. Among
the six combinations of the parameter values, the lowest allocative efficiency occurs with
ρ = 0.96, ϵ = 1.25. This pattern is consistent with findings in Epifani and Gancia (2011) and
Osotimehin and Popov (Forthcoming). Further, the percent changes in allocative efficiency
are also larger for the high-elasticity cases. Secondly, for all six cases, there exists a signif-
icant deterioration in allocation during the 1970s and either stagnation or deterioration in
allocation during the 2000s.

In Table A.2, we present the contribution of allocative efficiency to productivity growth,
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defined by ∆logEt

∆logLPt
, by decades for the different combinations of (ρ, ϵ). Again, we observe

a similar pattern as in Table 1. During the 1970s and 2000s, the contribution of the im-
provement in allocative efficiency (∆ logEt) to productivity growth ∆ logLPt is considerably
smaller than the other decades. In fact, in most specifications, the contribution was negative
during these two decades. In Table 6 in the main text, we formally evaluate the slowdown
in productivity under these different parameterizations.

Figure A.4: Evolution of Et over time under different values of elasticity
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Notes: This figure shows the evolution of allocative efficiency under different values of elasticity of substi-
tution. The baseline parametrization is ρ = 0.96, ϵ = 0.81, which we estimated directly from the data. We
also consider a lower value of ρ = 0.77 (Aum et al., 2018). For the value of ϵ, we consider two alternative
estimates: 1.25 (Karabarbounis and Neiman, 2014) and 0.72 (Oberfield and Raval, 2021).

Table A.2: Contribution of allocative efficiency to productivity growth ( ∆logEt

∆logLPt
)

CD CES
ρ = 0.96 ρ = 0.77

ϵ = 0.81 ϵ = 0.72 ϵ = 1.25 ϵ = 0.81 ϵ = 0.72 ϵ = 1.25
baseline highest elas. lowest elas.

1960–69 0.32 0.27 0.23 0.34 0.22 0.20 0.26
1970–79 -0.05 -0.11 -0.05 -0.13 -0.10 -0.03 -0.12
1980–89 0.30 0.18 0.13 0.29 0.15 0.12 0.23
1990–99 0.13 0.05 0.02 0.20 0.05 0.03 0.17
2000–07 0.03 -0.05 -0.09 0.08 -0.01 -0.05 0.07

Notes: This table shows the contribution of allocative efficiency to productivity growth ∆ logEt

∆ logLPt
in the

CES framework. ∆ logEt and ∆ logLP are based on the long differences in allocative efficiency and labor
productivity between the end and the beginning of each period. They are adjusted to reflect the growth
rate over periods of the same length (ten-year window). The results are presented under six combinations
of parameter values for ρ and ϵ, the elasticity of substitution parameters in the production system. The
baseline parameterization is ρ = 0.96 and ϵ = 0.81. As a comparison, we also include the results from the
Cobb-Douglas case, taken from the last column of Table 1.
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A.5 Timing of the slowdown

In the main text, we examine the data in decades, focusing on the 1970s and post-2000s
as periods of slowdown. In this section, we will examine the start and end dates of the
slowdown episodes more closely.

To begin with, Panel (a) in Figure A.5 shows the log of labor productivity from 1960 to
2019, divided into five periods: 1960–1973, 1973–1982, 1982–1995, 1995–2005, and post-2005.
These periods match the identified slowdown episodes in Byrne et al. (2016) and are consis-
tent with changes in growth trends in our labor productivity time series. The two periods of
1973–1982 and post-2005 are notable for their slower-than-normal labor productivity growth
rates. Panel (b) shows the time series of allocative efficiency Et divided into the same subpe-
riods as in Panel (a). There, 1973–1982 and post-2005 also experienced slower-than-normal
growth in allocative efficiency Et.

Table A.3 evaluates the contribution of allocative efficiency to productivity slowdowns.
Columns (1)–(3) display the average annual growth rates for each subperiod in LP (data),
LP∗ (“fundamental”), and Et, calculated as the slope of the fitted linear functions shown in
the previous figure. Columns (4)–(6) show the changes in annual growth rates in percentage
points from the preceding periods. During the periods 1973–1982 and 2005–2010, the annual
growth rate in labor productivity was lower than in preceding periods by 1.88 and 1.08 per-
centage points, respectively. Moreover, the growth rate in allocative efficiency was also lower
during these periods, by 0.39 and 0.26 percentage points, respectively, compared to preced-
ing periods. As a result, slower growth in allocative efficiency contributed 21% (0.39/1.88)
and 24% (0.26/1.08) to the slowdown in labor productivity growth during 1973–1982 and
2005–2010, respectively.

Figure A.5: Productivity slowdown and allocative efficiency, alternative timing
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Notes: This figure shows log labor productivity (Panel a) and allocative efficiency measures (Panel b) over
time. The time series in both panels are divided by red vertical lines at the years 1973, 1982, 1995, and
2005. The black lines are linear fits of the time series within each of these subperiods.
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Table A.3: Productivity slowdown and the role of allocative efficiency, alternative timing

Average annual Changes in growth rates
growth rates (percent) from previous period (pp)

(1) (2) (3) (4) (5) (6)
labor productivity labor productivity

Period data “fundamental” Et data “fundamental” Et

1960–73 2.37 1.57 0.80 – – –
1973–82 0.49 0.08 0.41 -1.88 -1.49 -0.39
1982–95 1.66 1.37 0.29 1.17 1.29 -0.13
1995–05 2.81 2.60 0.21 1.15 1.22 -0.08
2005–10 1.73 1.77 -0.05 -1.08 -0.82 -0.26

Notes: Columns (1)–(3) display the annual growth rate (percent) in LPt (data), LP∗
t (“fundamental”), and

Et, calculated by regressing logLPt, logLP∗
t and logEt on time. Columns (4)–(6) show changes in these

growth rates (in percentage points) from the previous periods. The periods highlighted in bold indicate a
slowdown in observed labor productivity compared to the previous period.

A.6 Manufacturing sector productivity slowdown

In Figure A.6, Panel (a) shows the evolution of log labor productivity divided into four
subperiods: 1960–73, 1973–82, 1982–2005, and post-2005. As there is no significant trend
break during 1982–2005, we consider this period of rapid productivity growth as a whole.
Moreover, Panel (b) shows the dynamics of Et, which appears to be noisier than the baseline
results, perhaps because the NBER-CES dataset is constructed using firm surveys and has
a much finer industry classification. Nevertheless, despite the noise, the figure indicates that
1973–82 and post-2005 have significantly slower growth rates in labor productivity as well
as allocative efficiency.

Figure A.6: Manufacturing labor productivity and allocative efficiency over time

(a) Labor productivity
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Notes: This figure shows log labor productivity (Panel a) and allocative efficiency measures (Panel b) over
time. The time series in both panels are divided by red vertical lines for the years 1973, 1982, and 2005.
The black lines are linear fits of the time series within each of these subperiods.

Table A.4 examines the role of allocative efficiency more formally. Columns (1)–(3) show
that the average growth rate in observed labor productivity was only 0.22% and 0.39% during
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the periods 1973–82 and 2005–16, respectively. At the same time, the annual growth rates
in allocative efficiency in these two periods were negative. As shown in Columns (4)–(6),
compared with the preceding periods, labor productivity growth rates during 1973–82 and
2005–16 are lower by 1.61 and 1.68 percentage points, respectively, while allocative efficiency
growth rates are 0.73 and 0.33 percentage points lower. The lack of improvement in allocative
efficiency contributes to 45% (0.73/1.61) and 20% (0.33/1.68) of the slowdown in observed
labor productivity growth in these periods.

Table A.4: Manufacturing-sector productivity slowdown: The role of allocative efficiency

Average annual Changes in growth rates
growth rates (percent) from previous period (pp)

(1) (2) (3) (4) (5) (6)
labor productivity labor productivity

Period data “fundamental” Et data “fundamental” Et

1960–1973 1.83 1.73 0.10 – – –
1973–1982 0.22 0.85 -0.63 -1.61 -0.89 -0.73
1982–2005 2.07 1.87 0.20 1.85 1.02 0.83
2005–2016 0.39 0.51 -0.13 -1.68 -1.36 -0.33

Notes: Columns (1)–(3) display the annual growth rate (percent) in LPt (data), LP∗
t (“fundamental”), and

Et, calculated by regressing logLPt, logLP∗
t and logEt on time. Columns (4)–(6) show changes in these

growth rates (in percentage points) from the previous periods. The periods highlighted in bold indicate a
slowdown in observed labor productivity compared to the previous period.

A.7 Relationship between volatility and allocative efficiency: Evi-
dence from manufacturing industries

In this section, we will study the volatility of industry-level shocks and investigate its re-
lationship with the efficiency of resource allocation using the NBER-CES manufacturing
industry database.

We construct measures of industry-level volatility using the NBER-CES manufacturing
database and follow the methodology in Section 4.3. Panel (a) of Figure A.7 plots the cross-
sectional standard deviation of industry-level TFP, employment, and value-added output
growth rates. Panel (b) shows the variance of industry-level TFP shocks unforecasted by an
AR(1) model. This figure is analogous to Figure 5 in the main text. Similar to Figure 5, we
observe elevated volatility during the 1970s and post-2000.

Table A.5 examines the relationship between the industry-level volatility measures cross-
industry allocative efficiency Et in the manufacturing sector. More formally, we regress
changes in allocative efficiency (∆ logEt) measures on measures of industry-level volatility,
measured as the cross-sectional dispersion (IQR) of εi,t.

The estimated relationship between volatility and changes in allocative efficiency is neg-
ative and statistically significant at the 5 percent level when controlling for the volatility of
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Figure A.7: Volatility of sector-level shocks, manufacturing only

(a) S.D. in sectoral growth rates
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Notes: These figures are based on the NBER-CES manufacturing database. Panel (a) plots the cross-
sectional s.d. of sectoral growth rates in employment, real value-added output and TFP. Panel (b) plots
the cross-sectional dispersion (inter-quartile range) in TFP shocks, computed as the residual terms from
regression logAi,t = ρ logAi,t−1 + µt + χi + ϵi,t.

Table A.5: Relationship between allocative efficiency and volatility measures, manufactur-
ing sector only

(1) (2) (3)

year t -0.190 -0.347** -0.351**
(0.161) (0.156) (0.158)

year t− 1 0.305* 0.287
(0.179) (0.195)

year t− 2

N 58 57 56
R2 0.046 0.142 0.142

Notes: This table reports results from regressing log difference in Et on the volatility of the industry-level
shock of t, t− 1, t− 2. Industry-level volatility is measured as the cross-sectional dispersion (IQR) of εi,t.

t− 1 and t− 2. With industry-level volatility, the estimated correlation is around 0.2–0.35.
Compared with the estimates of Columns (4)–(6) in Table 3 using the KLEMS data, the
estimates found in this table are twice or three times as large.

Overall, the manufacturing sector experienced elevated levels of volatility during the
1970s and again since 2000. Additionally, industry-level volatility is associated with declining
allocation efficiency. Using this more granular dataset focusing on the manufacturing sector,
the results confirm and expand our baseline findings using the KLEMS dataset.
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A.8 Post-2010 dynamics

Our baseline analysis is based on the 2013 version of the KLEMS and WIOT datasets, which
only include data up to 2010. However, as shown in Figure A.8, the slowdown in productivity
growth extends beyond this point.

Figure A.8: Productivity slowdown and allocative efficiency, post-2010 dynamics
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Notes: This figure shows log labor productivity (Panel a) and allocative efficiency measures (Panel b)
over time. The green line in Panel (b) is the same as the baseline result while the red line is based on the
KLEMS 2021 data.

To study the post-2010 dynamics, we use a different version of the KLEMS database
published by the Luiss Lab of European Economics (LLEE) in 2021. The LLEE KLEMS
dataset is based on a different industry classification, covering a more recent period extending
to 2015. However, it has some limitations. For example, several key variables needed to
measure allocative efficiency only became available after 1997. In addition, several sectors
are missing capital stock information altogether. Keeping these caveats in mind, we use this
dataset as a robustness check for the post-2010 dynamics.

Recall that our baseline result finds that Et, shown as the green line in Panel (b) of
Figure A.8, starts to flatten around 2000 after experiencing decades of positive growth. As
demonstrated by the red line calculated using the new dataset, this flattening trend continues
into the post-2010 period.

In Table A.6, we extend the baseline results to 2015. The pre-2010 results are based
on the KLEMS 2013 data and are identical to Panel (a) of Table 2 in the main text. The
post-2010 results are based on the LLEE KLEMS dataset. This table suggests that taking
the 2000–15 period as a whole, it exhibits a very similar pattern to the period of 2000–07.
Notably, growth rates in allocative efficiency continue to slow, and they can now account for
the entirety of the productivity slowdown during this period. Lastly, note that, considering
the short length of the time series and the issues of the data sets as discussed, this should
be viewed only as suggestive evidence.
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Table A.6: Slowdown in productivity growth and the role of allocative efficiency, post-2010
experience

Growth rates by periods Changes in growth rates
(long log-difference) from preceding period

(1) (2) (3) (4) (5) (6)
labor productivity labor productivity

Period data “fundamental” Et data “fundamental” Et

1960–69 0.24 0.16 0.08 – – –
1970–79 0.13 0.13 -0.01 -0.12 -0.03 -0.08
1980–89 0.15 0.10 0.04 0.02 -0.03 0.05
1990–99 0.19 0.16 0.03 0.05 0.06 -0.02
2000–15 0.16 0.17 -0.01 -0.03 0.01 -0.03

Notes: Columns (1)–(3) present the growth rates in LPt (labor productivity, data), LP∗
t (labor productivity,

fundamental), and Et. These growth rates are based on the long differences in labor productivity between
the end and the beginning of each period. They are adjusted to reflect the growth rate over periods of
the same length (ten-year window). Columns (4)–(6) present the changes in these growth rates from the
preceding periods.

A.9 Alternative measure for capital and labor

Before discussing the results, we first list the asset types provided in the 2009 version of
KLEMS. More details can be found in Jorgenson et al. (2014). In this exercise, we consider
the most detailed asset classification (eight types) and a broader classification (two types,
ICT versus Non-ICT).

• ICT assets

– Computing equipment

– Communications equipment

– Software

• Non-ICT assets

– Transport equipment

– Other machinery and equipment

– Total non-residential investment

– Residential structures

– Other assets

We first extend our theoretical framework to include more than one asset type. More
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formally, the planner’s optimization problem can be written as

max Yt =
N∏
i=1

Y
θi,t
i,t , s.t. Yi,t = Ai,t

S∏
s=1

K
sαs

i,t

i,t L
1−

∑
s α

s
i,t

i,t , ∀s,
∑
i

Ks
i,t = Ks

t ,
∑
i

Li,t = Lt,

where s ∈ {1, ..., S} represents the different asset types. The optimal allocation of capital
and labor is such that Ks∗

i,t = χks∗
i,t K

s
t and L∗

i,t = χl∗
i,tLt, where χks∗

i,t =
θi,tα

s
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. Lastly, the sufficient statistic for allocative efficiency can be written as

Et =
∏N

i=1{
∏

s[(
χks
i,t

χks∗
i,t

)α
s
i,t ](

χl
i,t

χl∗
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Figure A.9: Evolution of Et over time, alternative measures of inputs
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Notes: This figure shows the evolution of allocative efficiency under different measures of capital and labor
inputs. The baseline result is the measure with one type of capital and total employment. The other three
alternative measures are 1) the use of wage bills (labor compensation) instead to measure labor inputs, 2)
the consideration of two types of capital (ICT and non-ICT), and 3) the consideration of eight different
types of assets.

Figure A.9 displays the evolution of allocative efficiency under the alternative measures
of the capital and labor inputs. The blue line is the benchmark result where we consider only
one type of capital and measure labor inputs using employment. Replacing employment with
wage bills as measures for labor input, allocative efficiency is slightly higher, but the trend
remains very similar to the benchmark result. When considering two types of assets—ICT
and non-ICT—the time series only start from the end of the 1970s. The allocative efficiency
increases rapidly during the 1980s, stays relatively stable during the 1990s, and starts to
decline in the beginning of the 2000s. A similar trend is found when considering eight asset
types instead of two, although the level of allocative efficiency is now slightly higher than
the two-asset case.

Table A.7 presents the changes in growth rates of observed productivity, fundamental
productivity, and allocative efficiency compared to previous decades. The results using wage
bills indicate that approximately half of the productivity slowdown in the 1970s and the
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Table A.7: Productivity slowdown and the role of allocative efficiency, alternative measures
of inputs

Changes in growth rates compared to the preceding periods (pp)

two K types eight K types wage bills
Period data fundamental Et fundamental Et fundamental Et

1960–69 – – – – – – –
1970–79 -0.12 – – – – -0.06 -0.06
1980–89 0.02 – – – – -0.02 0.04
1990–99 0.05 0.08 -0.03 0.09 -0.04 0.05 0.00
2000–07 -0.03 -0.01 -0.02 -0.02 -0.01 0.00 -0.03

Notes: This table presents the productivity growth rates under the optimal allocation (∆ logLP∗) and the
changes in these growth rates from the previous decade (“change”). The baseline result is the measure with
one type of capital and where labor inputs are measured using employment. The other three alternative
measures are 1) the use of wage bills (labor compensation) instead to measure labor inputs, 2) the consid-
eration of two types of capital separately (ICT and non-ICT), and 3) the consideration of eight different
types of capital.

entire observed slowdown in the 2000s can be attributed to allocative efficiency. Since the
capital by type data is only available after 1977, we can only analyze the later slowdown
episode. In these instances, allocative efficiency accounts for two-thirds of the productivity
slowdown in the two-capital specification and one-third in the eight-capital specification.

A.10 Non-zero profits

For the profit versus capital income split, we follow Barkai (2020), in which the author
estimated the profits and capital income between 1984 and 2014. The results showed that
profits as a share of value-added started to increase at the beginning of the 2000s. Over
Barkai’s whole sample period, the ratio of profit to capital income reached the highest level
of 1/2 in 2007. In 2010, the last year of our sample, the ratio of profit to capital income
was approximately 1/5. We repeat our exercises with these two alternative values. More
formally, we reestimate the output elasticity in the production functions after taking out
profits from capital returns. As a result, this adjustment lowers the output elasticity for
capital and increases that for labor.

Figure A.10 shows the changes in measured allocative efficiency under these two alter-
native specifications. Compared to the baseline results where we assume zero profits, the
magnitude of the changes in allocation is generally smaller. However, for the periods of
interest, there still exists an apparent stagnation or deterioration in allocation.

Table A.8 presents a more formal evaluation of the role of allocation under the assumption
of positive profits. When considering a profit to capital income ratio of 1/5, allocative
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efficiency accounts for 7/12 of the observed productivity slowdown in the 1970s and 2/3
of the slowdown in the 2000s. With a profit to capital income ratio of 1/2, these ratios
slightly decrease to 1/2 and 2/3, respectively. Importantly, our main conclusion remains
unchanged: we find that at least half of the productivity slowdown can be attributed to
allocative efficiency.

Figure A.10: Evolution of Et over time, non-zero profits
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Notes: This figure shows the evolution of allocative efficiency under different profit to capital income ratios.
The baseline result is the one with zero profits. The two other values are taken from Barkai (2020): (i) 1/5
for 2010 and (ii) 1/2, the highest point for the period 1984–2014.

Table A.8: Productivity slowdown and the role of allocative efficiency, non-zero profits

Changes in growth rates compared to the preceding periods (pp)

profit
capital income = 1

5
profit

capital income = 1
2

Period data fundamental Et fundamental Et

1960–69 – – – – –
1970–79 -0.12 -0.05 -0.07 -0.06 -0.06
1980–89 0.02 -0.02 0.04 0.00 0.02
1990–99 0.05 0.06 -0.01 0.06 -0.01
2000–07 -0.03 -0.01 -0.02 -0.01 -0.02

Notes: This table presents the productivity growth rates under the optimal allocation (∆ logLP∗) and the
changes in these growth rates from the previous decade (“change”). In the figure we plot three specifications
with different profit to capital income ratios. The baseline result is the one with zero profits. The two other
values are taken from Barkai (2020): (i) 1/5 for 2010, and (ii) 1/2, the highest value during his sample
period.
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A.11 Length of the rolling window

Our baseline specification relies on the assumption that, although the expenditure shares
of the inputs might be distorted each year, they are undistorted on average over time.
Consequently, the output elasticities in the production system are equal to the average input
expenditure shares. In practice, we consider a rolling window of 3 years centered in the
current period—[t − 1, t, t + 1] for the period t—and assign the average expenditure shares
within this rolling window to the output elasticity in year t.

To evaluate the impact of the rolling window length on our analysis, we examine allocative
efficiency using rolling windows of 3, 5, 7, and 9 years, as shown in Figure A.11. The results
indicate that while a longer rolling window leads to a slightly smaller decline in allocative
efficiency, the overall dynamics of measured allocative efficiency remain almost identical
across these different specifications.

Table A.9 provides additional support for our findings, showcasing the changes in growth
rates of observed labor productivity, fundamental labor productivity, and allocative efficiency
compared to previous periods. Importantly, our baseline results remain robust when varying
the length of the rolling window. For instance, even with a 9-year rolling window, allocative
efficiency explains 7/12 of the observed productivity slowdown in the 1970s and 4/3 of the
slowdown in the 2000s.

Figure A.11: Evolution of Et over time, alternative rolling windows
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Notes: This figure shows the evolution of allocative efficiency. The baseline result is the line with a three-
year rolling window.

A.12 Biased wedges

In the first specification, we follow Oberfield (2013) and assume that, on average, the wedges
are not biased towards one factor. In this section, we will test the sensitivity of this assump-
tion. More specifically, we ask: what if, on average, the capital wedge is much higher than
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Table A.9: Productivity slowdown and the role of allocative efficiency, rolling windows of
different lengths

Changes in growth rates compared to the preceding periods (pp)

5-year window 7-year window 9-year window
Period data fundamental Et fundamental Et fundamental Et

1960–69 – – – – – – –
1970–79 -0.12 -0.04 -0.08 -0.04 -0.08 -0.05 -0.07
1980–89 0.02 -0.03 0.05 -0.02 0.04 -0.02 0.04
1990–99 0.05 0.06 -0.01 0.06 -0.01 0.06 -0.01
2000–07 -0.03 -0.01 -0.02 -0.01 -0.02 0.01 -0.04

Notes: This table presents the productivity growth rates under the optimal allocation (∆ logLP∗) and
the changes in these growth rates from the previous decade (“change”) under different lengths of the rolling
windows

the labor wedge, or vice versa? We show two cases in which either capital or labor faces
larger wedges on average than the other.

In Figure A.12, we show the evolution of Et over time under two alternative assumptions.
The blue line represents the case in which the capital wedge is higher, 1−τ̄k

1−τ̄l
= 0.5, for all

sectors, the green line represents the other case, in which the labor wedge is higher, 1−τ̄k
1−τ̄l

=
2.0, and the red line shows the baseline result as a comparison. The figures demonstrate
that biased wedges impact the level of allocative efficiency (Et). A larger capital wedge
is associated with a higher Et, while a larger labor wedge is associated with a lower Et.
However, the trends of Et remain similar across all specifications.

Figure A.12: Evolution of Et over time, biased wedges
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Notes: This figure shows the evolution of allocative efficiency where the wedges are biased on average
towards one factor.

The data presented in Table A.10 suggest that when the capital wedge is larger (1−τ̄k
1−τ̄l

=

0.5), approximately half of the productivity slowdown witnessed in the 1970s is attributable
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to allocative efficiency. This ratio decreases to about one-third for the slowdown experienced
in the 2000s. In contrast, when the labor wedge is larger (1−τ̄k

1−τ̄l
= 2.0), allocative efficiency

accounts for a greater proportion of the productivity slowdown, explaining roughly 5/6 and
2/3 of the observed slowdown during the 1970s and 2000s, respectively. The take-away
message from this exercise is that, even if the wedges are significantly biased towards one
input (capital or labor), allocative efficiency still accounts for at least 1/3 of the observed
productivity slowdown.

Table A.10: Productivity slowdown and the role of allocative efficiency, biased wedges

Changes in growth rates compared to the preceding periods (pp)

1−τ̄k
1−τ̄l

= 0.5 1−τ̄k
1−τ̄l

= 2.0

Period data fundamental Et fundamental Et

1960–69 – – – – –
1970–79 -0.12 -0.06 -0.06 -0.02 -0.10
1980–89 0.02 -0.02 0.04 -0.03 0.05
1990–99 0.05 0.07 -0.02 0.06 -0.01
2000–07 -0.03 -0.02 -0.01 -0.01 -0.02

Notes: This table presents the productivity growth rates under the optimal allocation (∆ logLP∗) and the
changes in these growth rates from the previous decade (“change”) where we assume that wedges are biased
on average towards one factor.

To clarify, our intention is not to suggest that in reality 1−τ̄k
1−τ̄l

= 1/2 or 1−τ̄k
1−τ̄l

= 2. The
purpose of this exercise is to estimate the impact of biases in wedges on our results. The
two quantitative exercises presented assume significant biases in the wedges. For instance,
if we assume 1−τ̄k

1−τ̄l
= 1/2 with τ̄l = 0.2, it implies τ̄k = 0.6. In the US data, the capital

and labor income shares are approximately 1/3 and 2/3, respectively. Under the assumption
of τ̄l = 0.2 and τ̄k = 0.6, the true labor and capital income shares would be 4/5 and 1/5,
respectively, which significantly deviates from the observed values. By considering these
relatively extreme biases, our goal is to provide an upper bound estimation of the potential
impact of these assumptions on our results.

A.13 Using expenditure shares of later years

In this section, we consider one more specification. The assumption behind this specification
is that resources are more efficiently allocated in the later years than in the earlier years;
therefore, the expenditure shares of the later years are more likely to be undistorted and equal
to the real output elasticity in the production functions. Therefore, the output elasticity can
be backed out using the expenditure shares of the later years.

We choose 2010 (the last year in our sample) and 2005 (the last year unaffected by
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the Great Recession) as the base years for computing the expenditure shares.37 Figure A.13
demonstrates that the long-run evolution in allocative efficiency and the dynamics during the
2000s are similar under this alternative to the baseline specification. There is also a noticeable
deceleration in the improvement of allocative efficiency during the 1970s, although it is less
severe than the baseline. Finally, results from Table A.11 show that allocative efficiency
can still explain half (6/12) of the observed productivity slowdown during the 1970s and
essentially all of the observed slowdown during the 2000s.

Figure A.13: Evolution of Et over time, using expenditure shares of later years
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Notes: This figure shows the evolution of allocative efficiency where we assume that the factor expenditure
shares are undistorted in later years. We pick two base years for this exercise: (i) 2010, the last year of the
sample, and (ii) 2005, to avoid the impact of the Great Recession.

Table A.11: Productivity slowdown and the role of allocative efficiency, using expenditure
shares of later years

Changes in growth rates compared to the preceding periods (pp)

2005 shares 2010 shares
Period data fundamental Et fundamental Et

1960–69 – – – – –
1970–79 -0.12 -0.06 -0.06 -0.06 -0.06
1980–89 0.02 0.01 0.01 0.01 0.01
1990–99 0.05 0.04 0.01 0.05 0.00
2000–07 -0.03 0.00 -0.03 0.00 -0.03

Notes: This table presents the productivity growth rates under the optimal allocation (∆ logLP∗) and
the changes in these growth rates from the previous decade (“change”) where we assume that the factor
expenditure shares are undistorted in later years. We pick two base years for this exercise: (i) 2010, the
last year of the sample, and (ii) 2005, to avoid the impact of the Great Recession.

372005 is the last unaffected year before the Great Recession (which started in 2007) when estimating
output elasticities using a three-year rolling window.
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B Model appendix

B.1 Measuring allocative efficiency in the value-added economy

Solving planner’s problem The solution to the planner’s problem requires the equaliza-
tion of MPK and MPL across sectors, such that,

∂ log Y

∂Ki

= λ

∂ log Y

∂Li

= η.

They can be written as

K∗
i =

θiαi

λ

L∗
i =

θi(1− αi)

η
.

Given the resource constraint, we get

K∗
i = χk∗

i,tK

L∗
i = χl∗

i,tL,

where χk∗
i,t =

θiαi∑
i θiαi

and χl∗
i,t =

θi(1−αi)∑
i θi(1−αi)

.
Q.E.D.

Deriving allocative efficiency The final good output under optimal allocation can be
written as
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Similarly, the final output in the data is
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As a result,
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B.2 Measuring allocative efficiency in the input-output economy

Solving planner’s problem The planner’s problem is
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i

K∗
i

(1− αi)(1− σi − λi)

∂C

∂dij
= θi

Y ∗

Y ∗
i

[
Q∗

i

d∗ij
σij − I{i=j}] + θj

Y ∗

Y ∗
j

[
Q∗

j

d∗jj
σjjI{i=j} − 1]

∂C

∂mij

= θi
Y ∗

Y ∗
i

Q∗
i

m∗
ij

λij − P̄j.

The FOC ∂C
∂dij

= 0 implies

d∗ij =
θiY

∗
j

θjY ∗
i

σijQ
∗
i . (9)
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Therefore,

Y ∗
j = Q∗

j −
N∑
i=1

d∗ij = Q∗
j −

N∑
i=1

θiY
∗
j

θjY ∗
i

σijQ
∗
i ,

Y ∗
j [1 +

1

θj

∑
i

(
θiQ

∗
i

Y ∗
i

σij)] = Q∗
j .

Letting χy∗
j =

Y ∗
i

Q∗
i
, {χy∗

i }Ni=1 solve the following equations:

1

χy∗
i

= 1 +
1

θi

∑
s

(
θs
χ∗y
s
σsi) (10)

or

1− χy∗
j =

∑
i

σij

θiχ
y∗
j

θjχ
y∗
i

.

Letting γ∗
ij =

θiχ
y∗
j

θjχ
y∗
i
σij in Equation (9), then d∗ij = γ∗

ijQ
∗
j . The market clearing condition for

Q∗
i implies

χy∗
i = 1−

∑
s

γ∗
si.

FOC ∂C
∂mij

= 0 implies

m∗
ij = θi

Y ∗

Y ∗
i

Q∗
i

λij

P̄j

(11)

Since
Y ∗ =

∏
i

Y ∗θi
i =

∏
i

(χ∗
iQ

∗
i )

θi ,

we have
m∗

ij = θi
∏
s

(
χy∗
s

χy∗
i

)θs
∏
s

(Q∗
s)

θs
λij

P̄j

. (12)

The FOC ∂C
∂Ki

= 0 and ∂C
∂Li

= 0 lead to

K∗
i = χk∗

i K (13)

L∗
i = χl∗

i L, (14)

where

χk∗
i =

θiαi(1−σi−λi)
(1−

∑
j γ

∗
ji)∑

s
θsαs(1−σs−λs)
(1−

∑
j γ

∗
js)

, χl∗
i =

θi(1−αi)(1−σi−λi)
(1−

∑
j γ

∗
ji)∑

s
θs(1−αs)(1−σs−λs)

(1−
∑

j γ
∗
js)

. (15)

To fully characterize dij and mij,we need to solve for Qi. Replacing dij and mij in the
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production function using d∗ij = γ∗
ijQ

∗
j and (12), we get

Q∗
i = Ai(K

∗αi
i L∗1−αi

i )1−σi−λi(γ∗
i1Q

∗
1)

σi1 · · · (γ∗
iNQ

∗
N)

σiN

N∏
j=1

{θi
∏
s

(
χs

χi

)θs
∏
s

(Q∗
s)

θs
λij

P̄j

}λij

= Ai(K
∗αi
i L∗1−αi

i )1−σi−λi(
N∏
j=1

γ
σij

ij )(
N∏
j=1

Q
∗σij

j )[
∏
s

(Q∗
s)

θs ]λi [θi
∏
s

(
χs

χi

)θs ]λi

N∏
j=1

(
λij

P̄j

)λij

= Ai[(χ
k∗
i K)αi(χl∗

i L)
1−αi ]1−σi−λi(

N∏
j=1

γ
σij

ij )[θi
∏
s

(
χs

χi

)θs ]λi

N∏
j=1

(
λij

P̄j

)λij(
N∏
s=1

Q∗σis+λiθs
s ). (16)

Define

χ∗
Qi = Ai[(χ

k∗
i K)αi(χl∗

i L)
1−αi ]1−σi−λi(

N∏
j=1

γ
σij

ij )[θi
∏
s

(
χs

χi

)θs ]λi

N∏
j=1

(
λij

P̄j

)λij . (17)

The above equation can be written as

Q∗
i = χ∗

Qi(
N∏
s=1

Q∗σis+λiθs
s ). (18)

Q.E.D.

Deriving allocative efficiency Taking the log of Equation (18) gives logQ∗
i = logχ∗

Qi +∑N
j=1[(σij+λiθj) log(Q

∗
j)]. Let q∗ = [log(Q∗

1), . . . , log(Q
∗
N)]

′
N×1, Equation (18) can be written

as
q∗N×1 = b∗N×1 + ΩN×Nq

∗
N×1,

where b∗(i) = logχ∗
Qi and Ω(i, j) = σij + λiθj.

Therefore, q can be solved as q = Cb∗, where CN×N = (I − Ω)−1 and Q∗
n =

∏N
i=1(χ

∗Cni
Qi ).

Rewrite Equation (17) as

χ∗
Qi = z∗iK

αi(1−σi−λi)L(1−αi)(1−σi−λi),

where z∗i = Ai[(χ
k∗
i )αi(χl∗

i )
1−αi ]1−σi−λi(

∏N
j=1 γ

σij

ij )[θi
∏

s(
χs

χi
)θs ]λi

∏N
j=1(

λij

P̄j
)λij .

Then Q∗
n can be rewritten as

Q∗
n =

N∏
i=1

(χ∗Cni
Qi ) = Ã∗

nK
α̃nLβ̃n , (19)
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where Ã∗
n = {

∏N
i=1 z

∗
i
Cni} and α̃n =

∑
i(αi(1−σi−λi)Cni), β̃n =

∑
i((1−αi)(1−σi−λi)Cni).

Aggregate output under optimal allocation can be written as a function of aggregate
capital K and aggregate labor L:

Y ∗ =
∏
i

Y ∗θi
i =

∏
i

(χy∗
i Ã∗

iK
α̃iLβ̃i)θi = Ā∗K ᾱLβ̄, (20)

where Ā∗ =
∏N

i=1(χiÃ
∗
i )

θi is the aggregate TFP under optimal allocation and ᾱ =
∑

n(α̃nθn),
β̄ =

∑
n(β̃nθn).

Replacing Q∗
s in Equation (12) using the expression in (19), we can write the expenditure

on imported good j as

P̄jm
∗
ij = [

∏
s

(χy∗
s Ã∗

s)
θs ]{ θi

χy∗
i

K
∑

s θsα̃sL
∑

s θsβ̃s}λij = (
θiλij

χy∗
i

)Y ∗.

The total expenditure on imported goods is

X∗ = [
N∑
i=1

(
θiλi

χy∗

i

)]Y ∗.

The output net of imported goods is

C∗ = Y ∗ −X∗ = Y ∗[1−
N∑
i=1

(
θiλi

χy∗
i

)].

Next, we write the data output Y as a function of data allocation (without the stars).
The data analog of Equation (16) is

Qi = Ai(K
αi
i L1−αi

i )1−σi−λi(γi1Q1)
σi1 · · · (γiNQN)

σiN

N∏
j=1

{θi
∏
s

(
χs

χi

)θs
∏
s

(Qs)
θs
λij

P̄j

}λij . (21)

Let χQi = Ai[(χ
k
iK)αi(χl

iL)
1−αi ]1−σi−λi(

∏N
j=1 γ

σij

ij )[θi
∏

s(
χs

χi
)θs ]λi

∏N
j=1(

λij

P̄j
)λij . Equation (21)

can be written as

Qi = χQi(
N∏
s=1

Qσis+λiθs
s ).

Let q = [log(Q1), . . . , log(QN)]
′
N×1, we can solve q as

qN×1 = bN×1 + ΩN×NqN×1,

where b(i) = logχQi and Ω(i, j) = σij + λiθj.

Therefore, q can be solved as q = Cb, where CN×N = (I − Ω)−1.
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Then,

Qn =
N∏
i=1

(χCni
Qi ) = ÃnK

α̃nLβ̃n ,

where Ãn = {
∏N

i=1 zi
Cni} and α̃n =

∑
i(αi(1−σi−λi)Cni), β̃n =

∑
i((1−αi)(1−σi−λi)Cni).

We can write the data output as

Y =
∏
i

Y θi
i =

∏
i

(χy
i ÃiK

α̃iLβ̃i)θi = ĀK ᾱLβ̄, (22)

where Ā =
∏N

i=1(χ
y
i Ãi)

θi is the aggregate TFP in the data.

In addition, we assume that the expenditure shares of imported intermediate goods are
not distorted, such that

P̄jmij = λijPiQi =
λijPiYi

χy
i

=
θiλij

χy
i

Y.

Thus,

X = [
N∑
i=1

(
θiλi

χy
i

)]Y

and

C = Y −X = (1−
N∑
i=1

(
θiλi

χy
i

))Y.

Now we can compute the allocative efficiency as

E =
C

C∗ =
[1−

∑N
n=1(

θnλn

χy
n
)]
∏N

n=1(χ
y
nÃn)

θnK ᾱLβ̄

[1−
∑N

n=1(
θnλn

χy∗
n

)]
∏N

n=1(χ
y∗
n Ã∗

n)
θnK ᾱLβ̄

,

where

Ãn

Ã∗
n

=
N∏
i=1

{
Ai(χ

k
i
αiχl

i
1−αi)1−σi−λi(

∏N
j=1 γ

σij

ij )[θi
∏

s(
χy
s

χy
i
)θs ]λi

∏N
j=1(

λij

P̄j
)λij

Ai(χk∗
i

αiχl∗
i
1−αi)1−σi−λi(

∏N
j=1 γ

∗σij

ij )[θi
∏

s(
χy∗
s

χy∗
i
)θs ]λi

∏N
j=1(

λij

P̄j
)λij

}Cni

=
N∏
i=1

{[( χ
k
i

χk∗
i

)αi(
χl
i

χl∗
i

)1−αi ]1−σi−λi

[
∏

s(
χy
s

χy
i
)θs ]λi

[
∏

s(
χy∗
s

χy∗
i
)θs ]λi

N∏
j=1

(
γij
γ∗
ij

)σij}Cni .

Rearranged, we get
E = EklEdEmEy,

where
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- Ekl =
∏N

i=1(((
χk
i

χk∗
i
)αi,t(

χl
i

χl∗
i
)1−αi)1−σi−λi)

∑
n θnCni ,

- Ed =
∏N

i=1(
∏N

j=1(
γij
γ∗
ij
)σij)

∑
n θnCni ,

- Em =
1−

∑N
n=1

θnλn
χ
y
n

1−
∑N

n=1
θnλn
χ
y∗
n

,

- Ey =
∏N

n=1(
χy
n

χy∗
n
)θn,t

∏N
i=1(

∏
s(

χ
y
s

χ
y
i
)θs∏

s(
χ
y∗
s

χ
y∗
i

)θs
)λi

∑
n(θnCni).

In addition, we can show that the value-added aggregate production function that features
a constant returns to scale. That is, ᾱ + β̄ = 1. To show this, we only need to show that
(α̃n + β̃n) = 1. Then it follows that ᾱ + β̄ =

∑
n((α̃n + β̃n)θn) =

∑
n θn = 1.

To show that α̃n + β̃n = 1, let B = I − Ω. Therefore,∑
j

B(i, j) =
∑
j

(1− (σi + λiθj)) = 1− (σi + λi).

The first equality is because of the definition of Ω. The second equality holds because∑
j θj = 1. Note that

α̃n + β̃n =
∑
i

(Cni(1− σi − λi)) =
∑
i

∑
j

C(n, i)B(i, j).

Since by definition, BC = CB = I,
∑

j

∑
i C(n, i)B(i, j) = 1 holds for any n. Therefore,

(α̃n + β̃n) = 1.

B.3 Measuring allocative efficiency in a CES production system

Solving planner’s problem Recall the planner’s problem:

max Y = (
∑
i

ωiY
1− 1

ρ

i )
ρ

ρ−1 ,

s.t
∑
i

Ki = K,
∑
i

Li = L, Yi = Ai(νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i )
ε

ε−1 .

FOC wrt Ki is

[Ki] : ωiY
∗1− 1

ρ

i =
K

∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )ηKY

∗− 1
ρ ,

where the multiplier ηk measures the marginal production for capital in each sector.
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Summing up the LHS of the above equation over all sectors gives

Y ∗ ρ−1
ρ =

∑
ωiY

∗1− 1
ρ

i =
∑ K

∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )ηKY

∗− 1
ρ ,

Y ∗∑ K
∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )

= ηK = ωiY
∗ 1
ρY

∗− 1
ρ

i

Y ∗
i

νiK
∗1− 1

ε
i + (1− νi)L

∗1− 1
ε

i

νiK
∗− 1

ε
i ,

ωi(
Y ∗
i

Y ∗ )
1− 1

ρ =

K
∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )∑

i
K

∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )

,

where the first equation on the second line follows directly from the first line and the second
equation of the second line comes from the FOC w.r.t. Ki. Note that the numerator can be
written as

K
∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i ) =

K
∗ 1
ε
−1

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )K∗

i

=
νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i

νiK
∗1− 1

ε
i

K∗
i =

K∗
i

νiK
∗1− 1

ε
i

νiK
∗1− 1

ε
i +(1−νi)L

∗1− 1
ε

i

.

Let α∗
i =

νiK
∗1− 1

ε
i

νiK
∗1− 1

ε
i +(1−νi)L

∗1− 1
ε

i

, rewrite the above equation as

K
∗ 1
ε

i

νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i ) =

K∗
i

α∗
i

.

We next apply a similar approach to labor:

ωi(
Y ∗
i

Y ∗ )
1− 1

ρ =

L
∗ 1
ε

i

1−νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )∑

i
L
∗ 1
ε

i

1−νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i )

.

Again, the numerator of the above equation can be written as

L
∗ 1
ε

i

1− νi
(νiK

∗1− 1
ε

i + (1− νi)L
∗1− 1

ε
i ) =

L∗
i

(1−νi)L
∗1− 1

ε
i

νiK
∗1− 1

ε
i +(1−νi)L

∗1− 1
ε

i

=
L∗
i

1− αi

.
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To summarize, so far we have derived three equations for the planner’s problem,

α∗
i =

νiK
∗1− 1

ε
i

νiK
∗1− 1

ε
i + (1− νi)L

∗1− 1
ε

i

, ωi(
Y ∗
i

Y ∗ )
1− 1

ρ =

K∗
i

αi∑
i
K∗

i

αi

, ωi(
Y ∗
i

Y ∗ )
1− 1

ρ =

L∗
i

1−αi∑
i

L∗
i

1−αi

.

To further simplify the notation, let K̃∗
i = K∗

i /α
∗
i and L̃∗

i = L∗
i /(1− α∗

i ). Using the last two
equations from the line above, we get K̃∗

i

L̃∗
i

=
∑

i K̃
∗
i∑

i L̃
∗
i

. Further, let K̃∗ =
∑

i K̃
∗
i and L̃∗ =

∑
i L̃

∗
i .

The last two equations from the line above can be written as

K∗
i = ωi(

Y ∗
i

Y ∗ )
1− 1

ρ K̃∗α∗
i ; L∗

i = ωi(
Y ∗
i

Y ∗ )
1− 1

ρ L̃∗(1− α∗
i ).

Substitute K∗
i and L∗

i in the sector i ’s production function:

Y ∗
i = Ai{νi[ωi(

Y ∗
i

Y ∗ )
1− 1

ρ K̃∗α∗
i ]

1− 1
ε + (1− νi)[ωi(

Y ∗
i

Y ∗ )
1− 1

ρ L̃∗(1− α∗
i )]

1− 1
ε}

ε
ε−1

= ωi(
Y ∗
i

Y ∗ )
1− 1

ρAi{νi[K̃∗α∗
i ]

1− 1
ε + (1− νi)[L̃

∗(1− α∗
i )]

1− 1
ε}

ε
ε−1 .

Therefore,

1 = ωi(
Y ∗
i

Y ∗ )
− 1

ρ
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ,

1 = ω1−ρ
i (

Y ∗
i

Y ∗ )
− 1−ρ

ρ [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]1−ρ,

1 = ω1−ρ
i (

Y ∗
i

Y ∗ )
ρ−1
ρ [

Ai{νi[K̃∗α∗
i ]

1− 1
ε + (1− νi)[L̃

∗(1− α∗
i )]

1− 1
ε}

ε
ε−1

Y ∗ ]1−ρ,

ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1 = ωi(
Y ∗
i

Y ∗ )
ρ−1
ρ =

K∗
i

K̃∗α∗
i

,

K∗
i = α∗

i K̃
∗ωρ

i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1.

Similarly, we apply a similar approach to labor:

L∗
i = (1− α∗

i )L̃
∗ωρ

i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1.

Let Hi = Ai{νi[K̃∗α∗
i ]

1− 1
ε + (1− νi)[L̃

∗(1−α∗
i )]

1− 1
ε}

ε
ε−1 , we can rewrite the above equations:

K∗
i = α∗

i K̃
∗ωρ

i [
Hi

Y ∗ ]
ρ−1, L∗

i = (1− α∗
i )L̃

∗ωρ
i [
Hi

Y ∗ ]
ρ−1.

Take them back to sectoral production functions:

Y ∗
i = Ai(νiK

∗
i + (1− νi)L

∗
i )

ε
ε−1
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= Ai(νi(α
∗
i K̃

∗ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1)1−
1
ε

+(1− νi)((1− α∗
i )L̃

∗ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1)1−
1
ε )

ε
ε−1

= ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1Ai(νi(α
∗
i K̃

∗)1−
1
ε+(1−νi)((1−α∗

i )L̃
∗ωρ

i )
ε

ε−1

= ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1Ai{νi[K̃∗α∗
i ]

1− 1
ε+(1−νi)[L̃

∗(1−α∗
i )]

1− 1
ε}

ε
ε−1

= ωρ
i Y

∗1−ρ{Ai{νi[K̃∗α∗
i ]

1− 1
ε + (1− νi)[L̃

∗(1− α∗
i )]

1− 1
ε}

ε
ε−1}ρ.

Take Y ∗
i back to the final good production function:

Y ∗ = (
∑
i

ωi(ω
ρ
i Y

1−ρ{Ai{νi[K̃∗α∗
i ]

1− 1
ε + (1− νi)[L̃

∗(1− α∗
i )]

1− 1
ε}

ε
ε−1}ρ)1−

1
ρ )

ρ
ρ−1 ,

Y ∗ρ−1 =
∑
i

ωρ
i {Ai[νi(K̃

∗α∗
i )

1− 1
ε + (1− νi)(L̃

∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1}ρ−1.

Sum K∗
i and L∗

i up across all sectors:

K =
∑
i

K∗
i =

∑
i

α∗
i K̃

∗ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1,

L =
∑
i

L∗
i =

∑
i

(1− α∗
i )L̃

∗ωρ
i [
Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1

Y ∗ ]ρ−1.

Divide both sides by K̃∗ or L̃∗:

K

K̃∗
=

∑
i α

∗
iω

ρ
i {Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1}ρ−1∑
i ω

ρ
i {Ai[νi(K̃∗α∗

i )
1− 1

ε + (1− νi)(L̃∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1}ρ−1

,

L

L̃∗
=

∑
i(1− α∗

i )ω
ρ
i {Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1}ρ−1∑
i ω

ρ
i {Ai[νi(K̃∗α∗

i )
1− 1

ε + (1− νi)(L̃∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1}ρ−1

.

Recall that K
K̃∗ +

L
L̃∗ = 1. Let α∗ = K

K̃∗ . Then it follows that 1−α∗ = L
L̃∗ . Rewrite the above

equations with α∗:

α∗ =

∑
i α

∗
iω

ρ
i {Ai{νi[K̃∗α∗

i ]
1− 1

ε + (1− νi)[L̃
∗(1− α∗

i )]
1− 1

ε}
ε

ε−1}ρ−1∑
i ω

ρ
i {Ai[νi(K̃∗α∗

i )
1− 1

ε + (1− νi)(L̃∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1}ρ−1

,

1 =

∑
i
α∗
i

α∗ω
ρ
i {Ai{νi(K α∗

i

α∗ )
1− 1

ε + (1− νi)(L
1−α∗

i

1−α∗ )
1− 1

ε}
ε

ε−1}ρ−1∑
i ω

ρ
i {Ai[νi(K

α∗
i

α∗ )
1− 1

ε + (1− νi)(L
1−α∗

i

1−α∗ )
1− 1

ε ]
ε

ε−1}ρ−1
.
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Deriving allocative efficiency We have derived the optimal output as

Y ∗ = {
∑
i

ωρ
i {Ai[νi(K̃

∗α∗
i )

1− 1
ε + (1− νi)(L̃

∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1}ρ−1}

1
ρ−1 .

Now, replacing Ai =
Yi

(νiK
1− 1

ε
i +(1−νi)Li)

ε
ε−1

in this equation yields38

Y ∗ = {
∑
i

ωρ
i {

Yi

(νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i )
ε

ε−1

[νi(K̃
∗α∗

i )
1− 1

ε +(1−νi)(L̃
∗(1−α∗

i ))
1− 1

ε ]
ε

ε−1}ρ−1}
1

ρ−1

= {
∑
i

ωρ
i Y

ρ−1
i { [νi(K̃

∗α∗
i )

1− 1
ε + (1− νi)(L̃

∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1

(νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i )
ε

ε−1

}ρ−1}
1

ρ−1 .

Substitute Yi = (PiYi/ωi

PY
)

ρ
ρ−1Y in the above equation:

Y ∗ = {
∑
i

ωρ
i (
PiYi/ωi

PY
)ρY ρ−1{ [νi(K̃

∗α∗
i )

1− 1
ε + (1− νi)(L̃

∗(1− α∗
i ))

1− 1
ε ]

ε
ε−1

(νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i )
ε

ε−1

}ρ−1}
1

ρ−1

Et =
Y ∗

Y
= {
∑
i

(
PiYi

PY
)ρ{νi(K̃

∗α∗
i )

1− 1
ε + (1− νi)(L̃

∗(1− α∗
i ))

1− 1
ε

νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i

}
ε

ε−1
(ρ−1)}

1
ρ−1

= {
∑
i

(
PiYi

PY
)ρ{

νi(K
α∗
i

α∗ )
1− 1

ε + (1− νi)(L
1−α∗

i

1−α∗ )
1− 1

ε

νiK
1− 1

ε
i + (1− νi)L

1− 1
ε

i

}
ε

ε−1
(ρ−1)}

1
ρ−1 ,

where the last equation is derived by replacing K̃∗ with K/α∗.

B.4 The role of input-output linkages

Recall that incorporating input-output linkages brings about two significant modifications in
measuring allocation. Firstly, it accounts for the allocation of intermediate inputs, and sec-
ondly, it adjusts the sectoral weights to reflect the relative importance of each sector, taking
into account the input-output effects. This section provides a more detailed examination of
the second modification—the sectoral weights in the two economies.

First, focusing on the terms that measure capital and labor allocation, Equation (2) and
the Ekl term in Equation (4), we see that both are the weighted geometric average of sectoral
level allocative efficiency but with different sets of sectoral weights: the weights are θi in the
value-added economy and (1 − σi − λi)

∑
n θnCni in the input-output economy, where C is

the Leontief inverse matrix.
38Note that here Yi,Ki, Li are the data, whereas Y ∗

i ,K
∗
i , L

∗
i are the optimal allocation derived from the

planner’s problem.
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Second, different sectoral weights are used to derive the optimal allocation of capital and
labor: in the value added economy, the sectoral weight is again θi and in the input-output
economy, the weight is θi,t(1− σi,t − λi,t)/(1−

∑
j γ

∗
ji,t).39

Do these weights differ between the two economies? The following paragraphs demon-
strate that these weights are the same between an undistorted value-added economy and
an undistorted input-output economy without imported intermediate goods. Furthermore,
these weights are equal to the respective sectoral value-added shares in both cases.

(i) θi in the value-added economy The FOC of the final good producer gives θi =
PiYi

Y
,

where PiYi is the value-added output of sector i and Y is the total value-added output
(final good price normalized to 1).

(ii) (1− σi − λi)
∑

n θnCnj in the input-output economy Note that without international
trade, matrix C is just the Leontief inverse matrix. Therefore,

∑
n θnCni is equal to

the undistorted Domar weight, sector i ’s sales (gross output) to GDP. Multiplying it
by sector i ’s value-added share (1− σi − λi) yields the value-added share of sector i.

(iii) θi(1−σi−λi)
1−

∑
j γ

∗
ji

in the input-output economy We only need to show that θi
1−

∑
j γ

∗
ji

is equal

to the undistorted Domar weight: θi
1−

∑
j γ

∗
ji

= θi
χ∗
i
=

PiθiQ
∗
i

PiY ∗
i

=
PiQ

∗
i

Y ∗ . The first equality
is derived from the resource constraint on good i. The second equality holds because
of the definition of χ∗

i , such that χ∗
i = Y ∗

i /Q
∗
i . The last equality holds because of the

optimality condition of the final good production: θiY
∗ = PiY

∗
i .

The above discussion presents an equivalence result between the value-added economy
and the input-output economy. However, it is worth noting that this equivalence result
may not hold in cases where the economy experiences distortions or incorporates imported
intermediate goods. We plan to investigate this result in future research.

39To see this, take capital allocation as an example: the optimal shares are equal to θi,tαi,t∑
i θi,tαi,t

and
θi,tαi,t(1−σi,t−λi,t)/(1−

∑
j γ∗

ji,t)∑
s[θs,tαs,t(1−σs,t−λs,t)/(1−

∑
j γ∗

js,t)]
in the value-added and input-output economies, respectively. These opti-

mal shares reflect the relative importance of sectors’ capital in producing the final good, which are θi,tαi,t

and θi,tαi,t(1 − σi,t − λi,t)/(1 −
∑

j γ
∗
ji,t). In other words, since αi,t represents the relative importance of

capital in sector i, the sectoral weights are θi,t and θi,t(1− σi,t − λi,t)/(1−
∑

j γ
∗
ji,t), respectively.
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