PLATFORMS AND TOKENS

Markus Brunnermeier, Jonathan Payne

Princeton University

Bank of Canada Annual Conference 5th November, 2020

INTRODUCTION

- $\star\,$ How to regulate private "digital currencies"
 - $\star\,$ Regulation of fees for exchanging tokens with dollars? ("interoperability" with dollars)
 - * Regulation of fees for exchanging tokens between platforms? ("interoperability" b/n platforms)
- \star We build a model to:
 - $\star\,$ Understand how platforms design/manage private digital currencies ("IO approach")
 - $\star\,$ Focus on interaction between ${\bf market}\ {\bf design}\ {\rm and}\ {\bf currency}\ {\bf design}$
 - $\star\,$ Study the impact of monetary policy and interoperability regulation on the design problem
- \star Policy implications:
 - 1. \uparrow CB money growth rate $\Rightarrow\downarrow$ private platform markups
 - 2. Introducing perfect "digital interoperability" between currencies (e.g. CBDC) implies:
 - $\star\,$ Private platform create "stable tokens" (i.e. tokens with a fixed exchange rate to money)
 - $\star\,$ Private platform moves from "low markups & high volume" \rightarrow "high markups & low volume"

LITERATURE REVIEW

★ Digital Currencies

Gans & Halaburda (2013), Fernadez-Villaverde (2018), Cong, Li & Wang (2019); Rogoff & You (2019); Chiu et al. (2019); Benigno et al. (2019); Brunnermeier et al. (2020), Piazzesi et al. (2019); Keister & Sanches (2020); Uhlig (2019)

$\star\,$ This talk: focuses on private centralised digital currencies

\star Currency Competition

Hayek (1976); Kareken & Wallace (1981); Brunnermeier & Sannikov (2018)

 $\star\,$ This talk: focuses on currency competition across platforms (solving an IO problem)

\star Platform & Intermediaries

Rubinstein & Wolinsky (1987), Rochet & Tirole (2002, 2003, 2006), Spulber (1999, 2018)

 $\star\,$ This talk: focuses on integrating market and currency design

MODEL SETUP

- $\star\,$ Continuous time, infinite horizon
- \star One "input" good; one final consumption good (numeraire)
- $\star\,$ Continuum of buyers endowed with wealth a and of sellers endowed with "input" good:
- \star Two Platforms \mathcal{P} with platform-specific currencies \mathcal{C} :

Platform ${\mathcal P}$	Currency ${\mathcal C}$
0	0
1	1

MODEL SETUP

- $\star\,$ Continuous time, infinite horizon
- \star One "input" good; one final consumption good (numeraire)
- $\star\,$ Continuum of buyers endowed with wealth a and of sellers endowed with "input" good:
- $\star\,$ Two Platforms ${\cal P}$ with platform-specific currencies ${\cal C}\colon$

Platform ${\mathcal P}$		Currency <i>C</i>	
0	p^0	$\epsilon^{10} \bigcirc 0$ exchange	μ^{M0}
1	$p^1(1+\psi^1)$ mark-up	$1 e^{01}$ fee	μ^{M1} token growth

MODEL

BUYER PROBLEM: FOCS

- * bang-bang: spend all of (i) token (ii) money on "input" good or consume endowment
- ★ The buyer's choice of $\theta := \theta^1$ satisfies:

$$\mu^{q1} - \mu^{q0} = - \underbrace{(\rho + \lambda)\xi \partial_{\theta} E \left[\text{Benefit}(\theta)\right]}_{\text{Marginal benefit of having more currency 1 when buying goods}$$

currency 1 when buying goods

where E [Benefit(θ)] is the expected profit (per unit a) from goods purchases across platforms (expectation with respect to platform ammenity $\zeta^{\mathcal{P}i} \sim \mathrm{Gu}(\gamma + 1, -(\gamma + 1)\mathcal{E}))$:

PRECAUTIONARY MOTIVE FOR HOLDING TOKENS

- $\star\,$ Buyers choose their portfolio to minimize expected exchange rate costs
- \star We also have that:
 - * $\uparrow \psi^1$ (markup on platform 1) $\Rightarrow \downarrow \theta$ (less precautionary motive because platform is less attractive)
 - $\star \uparrow \epsilon^{01}$ (into token fee) $\Rightarrow \uparrow \theta$ (more precautionary motive because entry costs are higher)

PLATFORM PROBLEM

* The platform (with full commitment) chooses $(\psi^1, \mu^{M1}, \epsilon^{01}, \epsilon^{10})$ to select the market equilibrium that maximizes profit each period (since the equilibrium is stationary):

$$\max_{\psi^{1},\mu^{M1},\epsilon^{01},\epsilon^{10}} \left\{ \underbrace{\sum_{\mathcal{C}} \left(\frac{1+\psi^{1}}{1-\epsilon^{1\mathcal{C}}}\right) p^{1} X^{b1\mathcal{C}} - p^{1} X^{s1}}_{\text{Markup & Into-Token Fee Rev.}} + \underbrace{\left(\frac{1}{1-\epsilon^{01}}-1\right) p^{0} X^{b01}}_{\text{Out-of-Token Fee Rev.}} + \underbrace{\underbrace{\mu^{M1} \theta}_{\text{Seiglorage Rev.}}}_{\text{Seiglorage Rev.}} \right\}$$

subject to:

- ... goods market ... currency market ... portfolio choice ... purchase decision
- $\ldots belief\ consistency$

PLATFORM TRADE-OFFS

 $\star\,$ Platform profit (substituting in the currency market):

$$\underbrace{\sum_{\mathcal{C}} \left(\frac{1+\psi^{1}}{1-\epsilon^{1\mathcal{C}}}\right) p^{1} X^{b1\mathcal{C}} - p^{1} X^{s1}}_{\text{Markup & Into-Token Fee Rev.}} + \underbrace{\left(\frac{1}{1-\epsilon^{01}}-1\right) p^{0} X^{b01}}_{\text{Out-of-Token Fee Rev.}} + \underbrace{\underbrace{\mu^{M1} \theta}_{\text{Seigiorage Rev.}}}_{\text{Seigiorage Rev.}}$$

 $\star\,\uparrow\psi^1$ (platform markup) $\Rightarrow\downarrow X^{b1\mathcal{C}}\Rightarrow\downarrow\theta\Rightarrow\downarrow$ seigniorage revenue

 $\star \uparrow \mu^{M1} \text{ (token growth)} \Rightarrow \text{token "inflation"} \Rightarrow \downarrow \theta \Rightarrow \downarrow X^{b1\mathcal{C}} \Rightarrow \downarrow \text{ markup revenue}$

 $\star \uparrow \epsilon^{01}/\epsilon^{10} \Rightarrow \uparrow \theta \text{ and } \downarrow \chi^{\mathcal{PC}} \Rightarrow \text{ambiguous impact on } X^{b1\mathcal{C}}$

Brunnermeier & Payne

Increasing ψ^1 Decreases Trade Volume

Parameters: $\rho = 0.05, \, \lambda = 1.0, \, \gamma = 1, \, z = 2, \, \epsilon^{01} = \epsilon^{10} = 1, \, \mu^1 = \mu^0 = 0.05, \, \varphi = 1.0$

Brunnermeier & Payne

PLATFORMS AND TOKENS

INCREASING μ^{M1} Makes Currency Less Attractive

Parameters: $\rho = 0.05, \ \lambda = 1.0, \ \gamma = 1, \ z = 2, \ \epsilon^{01} = \epsilon^{10} = 1, \ \mu^0 = 0.05, \ \psi^1 = 0.05, \ \varphi = 1.0$

Brunnermeier & Payne

TWO POLICY EXPERIMENTS

- 1. Increasing the growth rate of central bank money
- 2. Imposing perfect interoperability (or "CBDC legal tender")

Policy Experiments

1. INCREASING THE GROWTH RATE OF CB MONEY

 \star Focus on special case (for simplicity)

 $\star\,$ no currency exchange at platforms ("no interoperability"): $\epsilon^{01}=\epsilon^{10}=1$

$$\star$$
 "stable coins" $(q^1 = q^0) \Longrightarrow \mu^{M1} = \mu^{M0}$

 \star Platform chooses ψ^1 to balance markup and seignorage revenue

$$\max_{\psi^1} \left\{ \psi^1 p^1 \phi^{s\mathcal{P}}(p^0, p^1) + \mu^{M0} \theta \right\} \quad s.t. \quad \text{goods market clearing}$$

 $\star ~\uparrow \mu^{M0} \Rightarrow \uparrow$ marginal benefit of increasing θ

* Platform $\downarrow \psi^1$ to make the platform more attractive and $\uparrow \theta$ (i.e. the platform reoptimizes from markup revenue to seigiorage revenue)

* End result is that platform profit increases (outside currency option is worse)

POLICY EXPERIMENTS

1. CB MONEY GROWTH LOWERS MARKUPS

Parameters: $\rho=0.05,\,\lambda=1.0,\,\gamma=0.5,\,z=2,\,\epsilon^{01}=\epsilon^{10}=1,\,\varphi=1.0$

Brunnermeier & Payne

Policy Experiments

2. Interoperability: Platform Problem

* Interoperability: $\epsilon^{01} = \epsilon^{10} = 0$

 $\star \epsilon^{01} = 0$: there is a central bank digital currency (CBDC) that is legal tender on all platforms

- $\star~\epsilon^{10}=0:$ regulate against private currency "exit fees"
- $\star\,$ Platform chooses $q^1=q^0$ ("stable coins") which requires $\mu^{M1}=\mu^{M0}$
 - $\star\,$ Buyers are indifferent about which currency to pay with and so hold currency with higher return
 - * In equilibrium platform chooses $\mu^{M1} = \mu^{M0}$ ("stable coins") and buyers choose $\theta = 1$

POLICY EXPERIMENTS

2. Interoperability: Higher Markups and Lower Volume

Red line depicts Interoperability ($\epsilon^{01} = \epsilon^{10} = 0$); Blue line depicts No-Interoperability ($\epsilon^{01} = \epsilon^{10} = 1$); Parameters: $\rho = 0.05$, $\lambda = 1.0$, $\gamma = 0.5$, z = 2, $\epsilon^{01} = \epsilon^{10} = 1$, $\varphi = 1.0$

Brunnermeier & Payne

Platforms and Tokens

CONCLUSION

- $\star\,$ Constructed new model of market and currency design by platforms
- \star Platform faces trade-off between:
 - \star Extracting seigniorage revenue (e.g. high token growth or relatively high "into-token" fees)
 - * Extracting markup revenue (e.g. high markups or relatively low "into-token" fees)
- \star Increasing the central bank money growth rate leads to lower markups
- \star Introducing perfect "digital interoperability" between currencies (e.g. CBDC) implies:
 - $\star\,$ Private platform create "stable coins"
 - $\star\,$ Private platform moves from "low markups & high volume" $\rightarrow\,$ "high markups & low volume"

CONCLUSION

NEXT STEPS

- $\star\,$ Long term contracting between platforms and sellers
- \star Competition between private platforms

THANK YOU