The Limits of onetary Economics

Ricardo Lagos NYU

Shengxing Zhang LSE

Intro

Model

Equilibrium

Cas

Motivation

Is the medium-of-exchange role of money

hless Limit	Welfare	MIU	Con

relevant for Monetary Economics?

Monetary Economics without M

Current wisdom:

Medium-of-exchange considerations are irrelevant for monetary transmission in modern high-velocity credit economies

Cashless Limit

Welfare

MIU

Medium-of-exchange considerations are irrelevant for monetary transmission in modern high-velocity credit economies

Two results:

- Monetary equilibrium is continuous under a certain "cashless limit" \bigcirc
- Money plays small quantitative role in high-velocity calibrations

Intro

- Generically, as velocity becomes arbitrarily large, the monetary equilibrium does not converge to the equilibrium of the economy without money
- Magnitude of effect of monetary policy on consumption and welfare in the \bigcirc cashless limiting economy depends on a sufficient statistic: $(1 - \theta)\epsilon$
 - 1θ : deposit spread that intermediaries impose on lenders

Equilibrium

 ϵ : price elasticity of demand for the goods purchased with cash or credit

Intuition

- The option to engage in monetary trade disciplines the market power of credit/payment/settlement intermediaries
- \bigcirc Off-equilibrium *latent money demand* \Rightarrow small volume of monetary trade feeds back into prices negotiated in all pure-credit non monetary transactions

Rate of return on money affects prices in transactions that do not involve money

Intro

Model

Equilibrium

Economic environment

- consumers, producers, bankers; infinite horizon
- two stages $i \in \{1,2\}$ per period; good *i* consumed and produced in stage *i*
- good 1:
 - producer marginal cost: K ●
 - consumer demand: $u'^{-1}(\cdot)$
 - first-best: c^* such that $u'(c^*) = \kappa$
- assets:
 - money $M_{t+1} = \mu M_t$
 - inside bond (claim to good 2 issued in stage 1)
 - relative price of good 1 in terms of the bond: φ
- stage-1 market structure:
 - two contemporaneous markets: goods-and-money | bonds-and-money
 - $\alpha \in [0,1]$ producers access both markets (the rest only access goods market, so must settle sales in cash)
 - bankers intermediate credit: $1 \theta \in [0,1]$ is their (Nash) bargaining ● power with producers (*deposit spread*)
 - All consumers can access both markets, and face no borrowing limit or markups in the credit market

shless	I imit

Nonmonetary economy

• In equilibrium: $\Pi^n = 0 \Rightarrow \varphi^n = \frac{\kappa}{\alpha \theta}$

 $u'(c^n) = \frac{\kappa}{\alpha\theta} \Rightarrow \text{consumption too low unless } \alpha\theta = 1$

Welfare

MIU

- (producer markup induced by deposit spread and imperfect access to credit)

Monetary economy

producer

- Expected per-unit profit: $\Pi^m \equiv \alpha (1 + \theta \rho) \varphi^m + (1 - \alpha) \varphi^m - \kappa$
- In equilibrium: $\Pi^m = 0 \Rightarrow \varphi^m = \frac{\kappa}{1 + \alpha \theta \rho}$
- ρ : interest rate on the inside bond
- $\varphi^m \equiv p_{1t}/p_{2t}$ (rel. price of good 1 in terms of good 2)

$$u'(c) = \frac{1+\rho}{1+\alpha\theta\rho} \kappa \Rightarrow \text{consur}$$

Welfare

MIU

mption too low unless lpha heta = 1 or ho = 0

Model Equilibrium Intro

producer

- Expected per-unit revenue:
 - $R^m \equiv \varphi^m + \alpha \theta \rho \varphi^m$ monetary economy
 - $R^n \equiv \alpha \theta \varphi^n$ nonmonetary economy
- To see the seller's *latent threat*, set $\theta = 0$; then

$$R^n = 0 < \varphi^m = R^m$$

Producers' off-equilibrium threat to sell for money disciplines intermediaries' market power

shless Limit	Welfare	MIU	Con

Model

Equilibrium

Cashless limit

SME as $\alpha \rightarrow 1$ $\rho = \iota$ $\varphi^m \to \frac{1}{1+\theta\iota}\kappa$ $c \to u'^{-1} \left(\frac{1+\iota}{1+\theta\iota} \kappa \right)$ $P_t \to \infty$ $Z \rightarrow 0$ $V \to \infty$

Model

Equilibrium

Cashless limit

SME as $\alpha \rightarrow 1$ $\rho = \iota$ $\varphi^m \to \frac{1}{1+\theta\iota}\kappa$ $c \to u'^{-1} \left(\frac{1+\iota}{1+\theta\iota} \kappa \right)$ $P_t \to \infty$ $Z \rightarrow 0$ $V \to \infty$

Discontinuity: cashless limit \neq nonmonetary economy

 $\lim_{\alpha \to 1} \left[\varphi^n - (1 + 1) \right]$

MIU

SME as $\alpha \to 1$

NME as $\alpha \to 1$

 $\rho = \iota$

$$\rho^{m} \to \frac{1}{1+\theta \iota} \kappa$$

$$c \to u'^{-1} \left(\frac{1+\iota}{1+\theta \iota} \kappa \right)$$

$$P_t \to \infty$$

$$Z \rightarrow 0$$

$$V \to \infty$$

$$\rho)\varphi^{m}\Big] = \frac{1-\theta}{\theta} \frac{1}{1+\theta\iota} \kappa > 0$$

$$\varphi^{n} \to \frac{\kappa}{\theta}$$
$$c^{n} \to u'^{-1} \left(\frac{\kappa}{\theta}\right)$$

Is the discontinuity quantitatively relevant?

Theorem. Let $\tau(\iota)$ denote the compensating variation associated with a deviation in the nominal policy rate from 0 (the Friedman rule) to ι in the cashless limit of the stationary monetary economy. Then,

> $d\tau(\iota$ dı

 $1 - \theta$: deposit spread that intermediaries impose on lenders ϵ : price elasticity of demand for the goods purchased with cash or credit

$$\frac{1}{2} \approx -(1-\theta)\epsilon$$

Equilibrium Model **Cashless Limit** Welfare MIU Intro Connection with the money-in-the-utility-function approach

The stationary equilibrium conditions of our model can be obtained from a reducedform MIU representation with:

$$U\left(\boldsymbol{c}_{t},\boldsymbol{h}_{t},\frac{m_{t}}{p_{t}}\right) \equiv u\left(c_{1t}\right) + v\left(c_{2t}\right) + A\frac{m_{t}}{p_{t}} - \psi h_{1t} - h_{2t}$$

 \Rightarrow monetary considerations are irrelevant

• A and ψ are treated as "deep" parameters, and U is separable in real balances

Equilibrium MIU Model **Cashless Limit** Welfare Intro Connection with the money-in-the-utility-function approach

The stationary equilibrium conditions of our model can be obtained from a reducedform MIU representation with:

$$U\left(\boldsymbol{c}_{t},\boldsymbol{h}_{t},\frac{m_{t}}{p_{t}}\right) \equiv u\left(c_{1t}\right) + v\left(c_{2t}\right) + A\frac{m_{t}}{p_{t}} - \psi h_{1t} - h_{2t}$$

- \Rightarrow monetary considerations are irrelevant
- \Rightarrow our mechanism is not captured by conventional MIU formulations

• A and ψ are treated as "deep" parameters, and U is separable in real balances

• But our theory implies $A = A(\iota)$ and $\psi = \psi(\iota)$ (a Kareken-Wallace-Lucas critique)

- Monetary equilibrium is *not* continuous in the cashless limit if there is market power in credit/payment/settlement intermediation
- In the cashless limit: $\frac{\Delta \text{welfare}}{\Delta t} \approx (1 \theta) \epsilon < 0$

arbitrarily small aggregate real money balances

Medium-of-exchange considerations are important for monetary transmission — even in near-cashless economies where credit supports a large volume of transactions with

The Limits of onetary Economics

Ricardo Lagos NYU

Shengxing Zhang LSE