Cryptocurrencies, Currency Competition, and the Impossible Trinity

2020 Bank of Canada Annual Economic Conference

Pierpaolo Benigno* Linda M. Schilling** Harald Uhlig***

*University of Bern

**Ecole Polytechnique CREST

***University of Chicago

November 5-7, 2020

Motivation

GLOBAL (CRYPTO-)CURRENCIES ARE ON THE RISE

- Bitcoin (2009):
 - ▶ 32 million bitcoin wallets set up globally by December 2018 (source: bitcoinmarketjournal.com)
- Facebook's Libra 2020:
 - backed by pool of low-risk assets and currencies
 - Wide platform adoption already, 2.38 billion monthly active users as of 2019 (source: statista.com
 - Regulatory concerns.
 - Monetary policy concerns.

Motivation

THE THREE CLASSIC FUNCTIONS OF MONEY:

- Medium of exchange
- Store of value
- Unit of Account

GLOBAL CURRENCIES CHANGE THE LANDSCAPE:

National currency only

- Not a medium of exchange in foreign country.
- Exchange rates might fluctuate.

With Global currency

- Global medium of exchange.
- Exchange rate of global currency across countries: unity.
- Global currency competes locally with national currency.
- National currencies compete transnationally through global currency.

This paper: a question and answers.

Question: What are the monetary policy implications of introducing global currencies ?

Answer:

- Old: "Impossible Trinity" (Mundell-Fleming). With free capital flows, one cannot both have independent monetary policy and a pegged exchange rate.
- New, here: With free capital flows and a global currency circulating alongside national currencies, the monetary policy interest rates are equalized and the exchange rates are risk-adjusted martingales.
- Crypto-Enforced Monetary Policy Synchronization or CEMPS .
- Escape options unpleasant: towards ZLB or give up national currency.
- Additional restrictions arise, if the global currency is asset backed.
- The "Impossible Trinity" becomes even less reconcilable.

Literature

Currency Competition

 Hayek (1978). Kareken and Wallace (1981), Manuelli and Peck (1990), Garratt and Wallace (2017), Schilling and Uhlig (2018)

Impossible Trinity

Fleming (1962), Mundell (1963)

Exchange Rate Dynamics and Currency Dominance

 Obstfeld and Rogoff (1995); Casas, Diez, Gopinath, Gourinchas (2016)

Monetary Theory, Asset Pricing and Cryptocurrencies

Fernández-Villaverde and Sanches (2016), Benigno (2019), Biais,
 Bisiere, Bouvard, Casamatta, Menkveld (2018), Huberman, Leshno,
 Moallemi (2017)

The Model: A General Structure

- discrete time, $t = 0, 1, 2 \dots$
- 2 countries
- 3 currencies: home H, foreign F, global G.
- Example: H=Dollar, F=Yen, G=Libra.
- Nominal stochastic discount factors in each country.
- Free (or: complete) capital markets.
- Central banks set nominal interest rates for national currencies.
- Money offers liquidity services.

Asset Pricing

Assume: nominal stochastic discount factors:

$$\mathcal{M}_{t+1}$$
 \mathcal{M}_{t+1}^*

Asset Pricing: Let R_{t+1} be the stochastic return between t and t+1 on some asset, denominated in H. Likewise R_{t+1}^* in F. Then

$$1 = \mathbb{E}_t[\mathcal{M}_{t+1}R_{t+1}]$$
 $1 = \mathbb{E}_t[\mathcal{M}_{t+1}^*R_{t+1}^*]$

Example: nominal interest rates (set by CBs):

- it on one-period safe bond in H(ome),
- i_t^* on one-period safe bond in F(oreign)

$$\frac{1}{1+i_t} = \mathbb{E}_t[\mathcal{M}_{t+1}] \qquad (1)$$

$$\frac{1}{1+i_t^*} = \mathbb{E}_t[\mathcal{M}_{t+1}^*] \qquad (2)$$

$$\frac{1}{1+i_{\star}^{*}} = \mathbb{E}_{t}[\mathcal{M}_{t+1}^{*}] \tag{2}$$

Exchange Rates and Complete Capital Markets

Define: exchange rates

- S_t : price of one F in terms of H ("Dollar per Yen"),
- $S_t^* = S_t^{-1}$: price of one H in terms of F ("Yen per Dollar"),
- Q_t : price of one G in terms of H ("Dollar per Libra"),
- Q_t^* : price of one G in terms of F ("Yen per Libra"),

Assume: Complete Markets,

$$\mathcal{M}_{t+1} = \mathcal{M}_{t+1}^* \frac{S_t}{S_{t+1}} \tag{3}$$

Applications: Carry-Trade and Uncovered Interest Parity

$$\frac{1}{1+i_t} = \mathbb{E}_t[\mathcal{M}_{t+1}] = \mathbb{E}_t\left[\mathcal{M}_{t+1}^* \frac{S_t}{S_{t+1}}\right]$$
(4)

$$\tilde{\mathbb{E}}_{t}[S_{t+1}] := \frac{\mathbb{E}_{t}[\mathcal{M}_{t+1}S_{t+1}]}{\mathbb{E}_{t}[\mathcal{M}_{t+1}]} = \frac{1+i_{t}}{1+i_{t}^{*}}S_{t}$$
 (5)

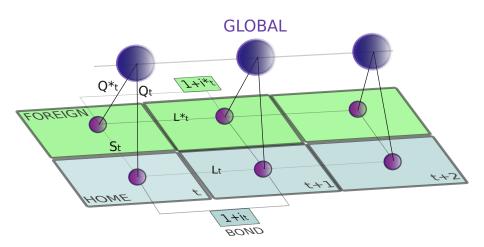
$$\tilde{\mathbb{E}}_{t}^{*}[S_{t+1}^{*}] := \frac{\mathbb{E}_{t}[\mathcal{M}_{t+1}^{*}S_{t+1}^{*}]}{\mathbb{E}_{t}[\mathcal{M}_{t+1}^{*}]} = \frac{1+i_{t}^{*}}{1+i_{t}}S_{t}^{*}$$
(6)

Liquidity Services: Money as Medium-of-Exchange

Assume:

- If H is used at home: one H provides $L_t \ge 0$ units of liquidity services.
- If G is used at home: one G provides L_tQ_t units of liquidity services.
- If F is used abroad: one F provides $L_t^* \ge 0$ units of liquidity services.
- If G used abroad: one G provides $L_t^*Q_t^*$ units of liquidity services.

Currency pricing (assuming H and F are used in their countries):


Home:
$$1 \geq L_t + \mathbb{E}_t[\mathcal{M}_{t+1}]$$
 (7)
$$1 \geq L_t + \mathbb{E}_t \left[\mathcal{M}_{t+1} \frac{Q_{t+1}}{Q_t} \right]$$
 (8)

Foreign:
$$1 \geq L_t^* + \mathbb{E}_t[\mathcal{M}_{t+1}^*]$$
 (9)

$$1 \geq L_t^* + \mathbb{E}_t \left[\mathcal{M}_{t+1}^* \frac{Q_{t+1}^*}{Q_t^*} \right]$$
 (10)

- "=": if currency is used at home resp. abroad.
- ">": implies "not used".
- Literature: Lagos-Wright, MIU, CIA ... : see paper.

A satellite perspective:

Main Result

Suppose:

- The national currencies are used in their countries.
- Global currency is valued $Q_t, Q_t^* > 0$.
- Global currency used in both countries.

Proposition (Crypto-Enforced Monetary Policy Synchronization)

- The nominal interest rates on bonds are equal $i_t = i_t^*$
- The liquidity services in Home and Foreign are equal $L_t = L_t^*$
- The nominal exchange rate between home and foreign currency follows a martingale under the risk-adjusted measures

$$\widetilde{\mathbb{E}}_t[S_{t+1}] := \frac{\mathbb{E}_t[\mathcal{M}_{t+1}S_{t+1}]}{\mathbb{E}_t[\mathcal{M}_{t+1}]} = S_t$$
 (11)

$$\tilde{\mathbb{E}}_{t}^{*}[S_{t+1}^{*}] := \frac{\mathbb{E}_{t}[\mathcal{M}_{t+1}^{*}S_{t+1}^{*}]}{\mathbb{E}_{t}[\mathcal{M}_{t+1}^{*}]} = S_{t}^{*}$$
(12)

Furthermore,

$$\tilde{\mathbb{E}}_t[Q_{t+1}] = Q_t \quad \text{and} \quad \tilde{\mathbb{E}}_t^*[Q_{t+1}^*] = Q_t^* \tag{13}$$

Results: Economic Mechanism

A Introduction of Global currency creates global competition between national currencies

- Currency competition at home: Home ⇔ Global
- Currency competition abroad: Foreign ⇔ Global
- Transnational currency competition: Home
 ⇔ Foreign (through Global)

B DIRECT COMPETITION BETWEEN BONDS

- Local competition: Home currency ⇔ home bond
- Local competition: Foreign currency ⇔ foreign bond
- Global competition: Home bond \Leftrightarrow Foreign bond $(i = i^*)$

Escape Options?

Is monetary policy doomed to obey CEMPS? What, if

- ... the home CB lowers its interest rate below that of the foreign CB?

 Result: a race to the bottom and the ZLB, if both the home and the foreign CB try to eliminate G. CEMPS returns: ZLB in both!
- ... the home CB raises its interest rate above that of the foreign CB? Result: the home currency is rendered obsolete as a medium of exchange.

The escape hatches are there, but these options may be even worse!

Asset-backed global currency

Suppose:

- There is a consortium issuing the global currency and ready to buy and sell any amount of the global currency at a fixed price Q_t .
- When selling the amount Δ_t of G at t, the consortium ...
 - ... invests the proceeds $\Delta_t Q_t$ in the safe bonds of the home country.
 - ... receives the interest payments on the bonds in t + 1.
 - ... keeps a per-period asset management fee $\phi_t \Delta_t Q_t$ for some exogenous ϕ_t . [Think: profits paid to the shareholders of the consortium.]
 - ... sets the new price Q_{t+1} , again trading any amount of global currency at that price.
 - ... reinvests remainder in safe home bonds.

Assuming no profits or losses beyond the asset management fee, assets and liabilities have to grow at the same rate,

$$Q_{t+1} = (1 + i_t - \phi_t) Q_t \tag{14}$$

Note: for $i_t \geq \phi_t$, the global currency price increases over time $Q_{t+1} \geq Q_t$.

Monetary Policy Implications

Suppose:

- The national currencies are used in their countries.
- Global currency is valued $Q_t, Q_t^* > 0$.
- The global currency used in both countries.
- The global currency is asset-backed, as described.

Proposition (With Asset-Backed Global Currency)

- $\phi_t < i_t$, then currency H is crowded out and only the global currency is used at home. Moreover, $L_t = \frac{\phi_t}{1+i_t}$.
 - If $\phi_t = i_t$, H and G both coexist at home.
 - If $\phi_t > i_t$, then only currency H is used at home.

Proof.

If $\phi_t < i_t$, then

$$1 - L_t \ge \mathbb{E}_t \left[\mathcal{M}_{t+1} \frac{Q_{t+1}}{Q_t} \right] = (1 + i_t - \phi_t) \mathbb{E}_t [\mathcal{M}_{t+1}] > \mathbb{E}_t [\mathcal{M}_{t+1}]. \quad (15)$$

Additional Constraints on Monetary Policy

If the global currency is asset-backed, as described, ...

- ... then the home CB cannot raise its interest rate beyond the management fee, without abandoning its own currency.
- ... then low management fees imply low interest rates, if the home currency remains in use.
- ... CBs are forced to stick to a narrow range just above the ZLB.
- ... if fees are a portion of the interest payments, then either $i_t=0$ or (if all interest payments are kept), we get a global currency stable coin and co-existence at home.

Conclusion

Question: What are the monetary policy implications of introducing global currencies ?

Answer:

- Old: "Impossible Trinity" (Mundell-Fleming). With free capital flows, one cannot both have independent monetary policy and a pegged exchange rate.
- New, here: With free capital flows and a global currency circulating alongside national currencies, the monetary policy interest rates are equalized and the exchange rates are risk-adjusted martingales.
- Crypto-Enforced Monetary Policy Synchronization or CEMPS .
- Escape options unpleasant: towards ZLB or give up national currency.
- Additional restrictions arise, if the global currency is asset backed.
- The "Impossible Trinity" becomes even less reconcilable.