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Abstract 
We distinguish between the goods and services sectors in an otherwise standard unobserved 
components model of US inflation. Our main finding is that, while both sectors used to 
contribute to the overall variation in aggregate trend inflation, since the 1990s this variation 
has been driven almost entirely by the services sector. Two changes in sector-specific inflation 
dynamics are responsible for this finding: (i) a large fall in the variance of trend goods inflation; 
and (ii) the disappearance of comovement between trend goods and trend services inflation. 
Extensions to our baseline analysis by excluding energy prices and decomposing trend inflation 
into a common and a relative price component suggest a possible role of monetary policy in 
explaining our empirical findings. We also document similar changes in inflation dynamics 
internationally when extending our analysis to Australia and Canada. 
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1 Introduction

A key aim of monetary policy is managing the persistent (or permanent) component of

inflation (see, e.g., Mishkin (2007) and Draghi (2015)), a quantity often referred to as trend

inflation. Indeed, a casual reading of any recent monetary policy report from the Federal

Reserve Board makes it clear that, in addition to headline inflation, the Federal Reserve

focuses on underlying (or core) measures of inflation that exclude, for instance, food and

energy prices. This strategy is predicated on the belief that fluctuations in components

such as food and energy are ultimately transitory and, consequently, should be excluded

from monetary policy considerations about the trend (or long-run) path of inflation. A

more recent development is that the two main components of inflation, namely the goods

and services sectors, have been experiencing considerably different dynamics over the past

three decades. Our goal in this paper is to understand how such contrasting behavior at the

sectoral level manifests itself at the aggregate level of trend inflation dynamics.

To do so, we develop a two-sector unobserved components model with stochastic volatility

(Two-Sector UC-SV, hereafter) that allows for time-varying comovements between trend

inflation in the goods and services sectors in the US. A key antecedent paper for our work is

that of Stock and Watson (2007), who proposed a univariate unobserved components model

with stochastic volatility (UUC-SV, hereafter). Notably, the UUC-SV model represents

the starting point for many contributions in the trend inflation literature. For instance,

Chan, Koop and Potter (2013) extend the UUC-SV specification by proposing a version

where trend inflation can exhibit bounded-drift dynamics. Stock and Watson (2016) extend

their earlier work by leveraging a more granular dataset – the 17 components of personal

consumption expenditure (PCE) inflation – to examine whether such a strategy improves

in-sample and out-of-sample inferences of trend inflation. Mertens (2016) and Chan, Clark

and Koop (2018) augment the UUC-SV setting by incorporating survey-based data, while

Hwu and Kim (2019) assess the role of correlation between trend inflation and its transitory

counterpart. At a high level, these studies all attempt to sharpen trend inflation estimates.

In other words, their contributions are more closely related to econometric aspects of trend

inflation measurement relative to the original UUC-SV framework. In this paper, we adopt
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Figure 1: Goods and Services Inflation Stylized Facts
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a different, rather structural stance, to build on the work of Stock and Watson (2007). More

specifically, while we preserve some key empirical features present in Stock and Watson

(2007), our main concern is on the role of the goods and services sectors as sources of

aggregate trend inflation dynamics.

To further motivate our decision to examine the implications of trend inflation through

the lens of the goods and services sectors, Figure 1 presents stylized facts about the two

sectors in the US economy.1 The top panel presents price deflators for both sectors, with

the deflators normalized to unity in 1990Q1 for ease of comparison. The middle panel

presents the year-on-year sector-specific inflation rates.2 The bottom panel presents the

1The data are taken from the categories of the US Personal Consumption Expenditure (PCE).
2We express these rates in year-on-year terms, as opposed to quarter-on-quarter, to better visualize broad
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nominal expenditure share on goods and services. We make three broad observations. First,

while goods and services inflation moved roughly in sync till the mid 1980s, there are clear

differences in their rates since the 1990s. From the deflators in the top panel, we can see

that before the 1990s, prices in both sectors tended to grow at roughly the same rate.

However, during the 1990s, a clear divergence emerges. While the price index of services

has doubled since 1990Q1, the price index of goods has grown by only about one-fifth in the

same period.3 Second, from the middle panel, goods inflation appears to be more volatile

than services inflation. Whether goods inflation is more volatile than services is relatively

unclear before the 1990s, it has almost certainly been true since then. Third, the share of

consumption expenditure has switched. While they each had a roughly 50-50 split around

1970, this share is now nearly 70% for services.

Our decision to model the trends in services and goods inflation goes beyond the differ-

ences in sector-specific inflation dynamics. In particular, a strand of the literature tries to

understand the implications of inflation globalization for monetary policy as in Borio and

Filardo (2007), Kamin, Marazzi and Schindler (2006), Bianchi and Civelli (2015) and Kam-

ber and Wong (2020). In this sense, one could view goods and services inflation through the

lens of traded and non-traded inflation. For instance, the flattening of the goods deflator in

the last 30 or so years presented in Figure 1 coincides with the entry of China into the global

consumer goods market, which is often viewed as the prima facie case for linking goods

inflation to globalization in the last 30 years. Therefore, using the goods and services sectors

to examine trend inflation dynamics should provide some perspective on the implications of

globalization for the conduct of monetary policy.

Before we go further, we describe how we interpret trend inflation in our work. Stock and

Watson (2007) decompose inflation into a permanent and a transitory “noise” component.

The permanent component is then labeled “trend inflation”. We adopt a similar transitory

trends.
3The divergence between goods and services inflation has been noticed in previous works, such as Clark

(2004) and Peach, Rich and Antoniades (2004). Nonetheless, these early commentaries may have been
written with a perspective that goods inflation would recover, perhaps when the US dollar depreciated, and
so implied minimal implications for thinking about trend inflation. Hindsight suggests that these divergences
have instead further exacerbated since the early 2000s, motivating our effort to study their implications for
aggregate trend inflation.
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noise component specification in our Two-Sector UC-SV model.4 Consequently, obtaining

trend inflation in such a setting is conceptually closer to a removal-of-noise exercise, which

is useful to obtain a signal about underlying and, ultimately, future inflation. There is also

corroborating evidence that our interpretation of trend inflation is consistent with those

within policy circles.5 However, we acknowledge an alternative strand of literature that

views trend inflation as a time-varying inflation target (e.g., Kozicki and Tinsley (2001),

Ireland (2007), Cogley, Primiceri and Sargent (2010), Coibion and Gorodnichenko (2011) and

Ascari and Sbordone (2014)). While this body of work shares the label “trend inflation”, the

interpretation of trend inflation differs from ours. To be clear, we interpret trend inflation

as a measure that provides a signal of future inflation through the removal of transitory

noise. Hence, no equivalence is assumed a priori between our estimates of trend inflation

and the monetary authority inflation target. We state our interpretation up front since this

distinction does not seem to have been addressed explicitly elsewhere, and can be a source

of confusion.

Our key result is the following: we find that variation in aggregate trend inflation is now

entirely dominated by that in trend services inflation. This finding is a direct manifestation

of several changes in inflation dynamics in both sectors, including (i) a fall in the correlation

between trend goods and trend services inflation, which was moderate and positive in the

1970s, but is essentially zero today; and (ii) a change in the dynamics of goods inflation, where

variation used to be partly permanent, but is now almost entirely dominated by transitory

noise. We highlight two other findings in addition to our main result. First, after examining

the post-Great Recession low inflation period, we find that our estimate of aggregate trend

inflation has been consistently below the Federal Reserve’s 2% inflation target since 2012.

This is the result of a fall in the level of trend goods inflation since 2014, and the level of

trend services inflation being lower than pre-Great Recession levels. Second, our key result

4We experimented with modeling persistence in the transitory component, but these specifications were
rejected by the data. Such issues are discussed in Section A2 of the Online Appendix.

5For example, in the minutes of the meeting of the Federal Open Market Committee held on June 17-
18, 2014, James Bullard from the St Louis Fed asks, “If inflation comes in at 1.9 percent and we’ve got
underlying inflation at 1.75 percent, then should I say that we’ve got above-normal or above-trend inflation,
or am I supposed to compare it with 2 percent, which is the Committee’s official target?” To which Jeremy
Rudd of the Federal Reserve Board replied, “In our judgment, you should be comparing it with 1.75 percent.
We think 13

4 percent is the underlying rate of inflation.”
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is not specific to the US. When we extend our analysis to Australia and Canada, we find

that aggregate trend inflation has also been dominated entirely by the services sector over

the past 20 years.

The rest of the paper is structured as follows. Section 2 describes the Two-Sector UC-SV

model. Section 3 presents the results from our model. Section 4 discusses policy implications

of our results. Section 5 extends our analysis to Australia and Canada to explore whether

our results are US-specific phenomena. Section 6 concludes.

2 A Two-Sector Unobserved Components Model for

Goods and Services Inflation

We begin by describing our Two-Sector UC-SV model.

2.1 Model

In our model, goods inflation (πGt ) and services inflation (πSt ) are decomposed into their

corresponding sector-specific permanent (τGt , τ
S
t ) and transitory noise (ζGt , ζ

S
t ) components.

Our approach is akin to Stock and Watson (2007) and trend inflation work that builds

directly on them, such as Mertens (2016) and Stock and Watson (2016). Formally, we have

πGt = τGt + ζGt , (1)

πSt = τSt + ζSt . (2)

We follow Stock and Watson (2007) and model trends as driftless random walk processes

while abstracting from autoregressive dynamics for the noise processes, i.e.:6

6While modeling inflation’s transitory components as noise may seem controversial, we make such an
assumption for three reasons. First, for the sake of comparison, we wish to keep our approach as close
as possible to Stock and Watson (2007), thereby retaining their interpretation that the estimation of trend
inflation is essentially a noise-filtering exercise, as outlined in the Introduction. Second, we undertake a model
comparison exercise and find that modeling sector-specific transitory components with an AR structure, or
even as a time-varying AR process, does not outperform our baseline specification in a model comparison
exercise. The results for this exercise are reported in the Online Appendix. Third, some of the results
obtained when allowing for persistence appear very counter-intuitive. Consistent with our model comparison
exercise, we conjecture that some of these counter-intuitive estimates for the transitory components are
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τGt = τGt−1 + uτ
G

t , (3)

τSt = τSt−1 + uτ
S

t . (4)

Notably, the driftless random walk is a common modelling strategy in the trend inflation

literature and appeals to the Beveridge and Nelson (1981) (BN) decomposition. The latter

defines the trend component of time series as its long horizon forecast made at time t.

Moreover, the BN decomposition also provides a natural link to trend inflation work that

does not necessarily involve UC models, but rather constructs trend inflation appealing to

the BN decomposition under different modeling frameworks (see, e.g., Cogley, Primiceri and

Sargent (2010) and Kamber and Wong (2020)). Formally, for each sector i, we have

τ it = lim
h→∞

Et
[
πit+h

]
. (5)

It is easy to verify that the driftless random walk assumption implies that the long horizon

forecasts of πGt and πSt are given by τGt and τSt , respectively.

Next, to allow for changes in the (conditional) volatility and correlation of the innovations

to uτ
i

t and ζ it for i = G, S, we specify the following covariance structure:

 (uτ
G

t , uτ
S

t )′

(ζGt , ζ
S
t )′

 ∼ N
 02×1

02×1

  Ωτ,t 02×2

02×2 Ωζ,t

 . (6)

Note that a Cholesky factorization of Ωτ,t and Ωζ,t yields

Ωj,t =

 σ2
jG,t σj,t

σj,t σ2
jS ,t

 =

 1 0

γjt 1

 exp
(
hj

G

t

)
0

0 exp
(
hj

S

t

)
 1 γjt

0 1

 for j ∈ {τ, ζ} .

(7)

Therefore, in addition to sector-specific trends, we introduce six new state variables to

capture the evolution of correlation (γτt and γζt ) and volatility (hτ
G

t , hτ
S

t , h
ζG

t , and hζ
S

t )

probably due to overfitting.
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associated with the behavior of goods and services inflation.

The block exogeneity assumption in (6) implies that the type of time-varying correlations

we investigate in this paper are state specific. In other words, changes in sectoral correlation

for the trend and transitory components are assumed to be independent phenomena. Of

course, one could argue for letting the covariance matrix in Equation (6) be unrestricted,

thereby allowing for cross-correlations between trend and transitory components. A draw-

back associated with such an approach is the well-known limitations to identifying covariance

parameters within UC models – or state space models more broadly. In the interests of par-

simony, we do not attempt to estimate correlations apart from the ones in Ωτ,t and Ωc,t.
7

For completeness, below we present the law of motion for the remaining state variables

in our model:

hj
i

t = hj
i

t−1 + uh
ji

t , j ∈ {τ, ζ} , i ∈ {G,S} , (8)

γjt = γjt−1 + uγ
j

t , j ∈ {τ, ζ} , (9)

 (uh
τG

t , uh
τG

t , uh
ζG

t , uh
ζS

t )′

(uγ
τ

t , u
γζ

t )′

 ∼ N
 04×1

02×1

  Ωh 04×2

02×4 Ωγ

 , (10)

where

Ωh =


σ2

hτG
0 0 0

0 σ2

hτG
0 0

0 0 σ2

hc
S 0

0 0 0 σ2

hcS

 , and Ωγ =

 σ2
γτ 0

0 σ2
γζ

 .

Equations (1)-(9) describe a bivariate state space model, with measurement and state equa-

7Conceptually, our multivariate approach is related to Stock and Watson (2016), who use a factor struc-
ture with time-varying loadings to allow for interdependence in trend innovations across a 17-sector model.
For ease of interpretation, instead of using time-varying loadings on a common factor, we model the evo-
lution of the covariance matrix directly. From the perspective of the number of parameters one needs to
estimate, for specification up to four sectors, our parametrization is more parsimonious. In a 17-sector spec-
ification, where numerosity of the parameters in an unrestricted covariance matrix would make estimation
of time-varying correlations prohibitive, their parametrization via a factor approach is more parsimonious
and computationally tractable.
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tions given by Equations (1)-(2) and (3)-(9), respectively.

Similarly to Stock and Watson (2016), we calculate aggregate trend inflation, denoted τt,

by aggregating the sector-specific trend inflation,

τt = ωG,tτ
G
t + ωS,tτ

S
t , (11)

where ωG,t and ωS,t are the expenditure weights of goods and services, respectively, and

ωGt + ωSt = 1. Note that these weights are not estimated; we obtain them from the nominal

expenditure shares reported in Figure 1.

2.2 Data and Estimation

Our Two-Sector UC-SV model constitutes a nonlinear state space model, and so, as is

common in this literature, we conduct estimation using Bayesian methods. The states are

estimated using precision sampling methods described in Chan and Jeliazkov (2009). In

particular, the (log) volatility states – i.e. hτ
G

t , hτ
S

t , h
ζG

t , and hζ
S

t – are estimated combining

precision sampling with the auxiliary mixture sampler of Omori et al. (2007). The priors

are standard relative to the extant trend inflation literature. A detailed description on the

estimation and the priors is given in Section A1 of the Online Appendix. Our data for goods

and services inflation are taken from the seasonally adjusted deflators of the US personal

consumption expenditure (PCE), with the weights based on nominal expenditure shares. We

obtain all the data through the FRED dataset.8 To convert the respective goods, services, or

PCE deflators to inflation rates for our model, we annualized the difference of the logarithm of

the price deflators, which is an approximately annualized quarter-on-quarter percent change

in the deflator. Our sample is from 1959Q1 to 2020Q1.
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Figure 2: Estimated Level and Volatility of Trend Inflation
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quarter inflation. Top Panel: Headline inflation is plotted against the posterior estimate of aggregate
trend inflation. Bottom panels: Estimated standard deviation of innovations to aggregate trend inflation.
Posterior median estimate with associated 67% credible set.

3 Results from the Two-Sector UC-SV Model

In what follows, we begin to present implications from our model to aggregate trend inflation.

The top panel of Figure 2 plots the (smoothed) estimates of aggregate trend inflation from

the Two-Sector UC-SV model together with PCE inflation. We report posterior medians,

8The FRED mnemonics for the goods and services deflators are DGDSRD3Q086SBEA and
DSERRD3Q086SBEA, respectively. If we require the PCE deflator, for example when we estimate the
UUC-SV model, we use DPCERD3Q086SBEA. The FRED mnemonics for nominal expenditures for goods
and services are DGDSRC1 and PCESV, respectively. We construct the weights as the proportion of the
nominal expenditure for goods or services divided by the sum of nominal expenditure for goods and services.
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relegating the associated credible sets to the Online Appendix.9 We point out, however,

that estimation of trend inflation is sufficiently precise, in the sense that posterior credible

intervals are not excessively wide.10 The inflation rates and estimated trend inflation are

both in terms of annualized quarter-on-quarter inflation, consistent with the data that enter

the model.

Overall, our trend inflation estimate broadly mimics the history of US post-war inflation.

In particular, trend inflation peaks during the Great Inflation in the 1970s and begins to

disinflate in the early to mid-1980s. Since then, trend inflation has been persistently low.

We also observe that, while episodes of large swings in quarter-on-quarter headline inflation

occurred after the 1990s, trend inflation remained low and stable. The bottom panel of

Figure 2 presents our estimate for trend inflation (time-varying) volatility. Specifically, we

present the estimated (conditional) standard deviation of the innovations to aggregate trend

inflation with their associated 67% posterior credible set.11 Such a result shows that there

has been a large fall in the variance of the permanent component of aggregate inflation

since the late 1970s. In particular, trend inflation volatility exhibits a hump shape that

captures its rise and subsequent fall during the 1970-1980 window. All in all, our results for

both the level and the volatility of US trend inflation are very much in line with what is

documented in Stock and Watson (2007) based on the UUC-SV model.12 In Section A3 of

the Online Appendix, we also document out-of-sample comparisons relative to the UUC-SV.

In short, our approach produces very similar – and in some instances even slightly superior

– forecasting performance relative to the UUC-SV model.

We now move on to present the key results that we obtain from our Two-Sector UC-

SV model. The discussion starts with the sector-specific levels of trend inflation, with a

particular focus on what our model implies for aggregate and sector-specific trends during

9Point estimates throughout this paper denote posterior medias unless when explicitly stated otherwise.
10Our decision to omit selected credible sets are simply to facilitate the exposition of our results when

reporting such sets would clutter figures with too many estimates. Again, the reader is referred to the Online
Appendix for a complete inspection of uncertainty surrounding our estimates.

11Expanding Equation (11) and applying the variance operator, we can calculate the
standard deviation of the innovations to aggregate trend inflation, where std(∆τt) ≈√
ω2
G,tV ar(u

τG

t ) + ω2
S,tV ar(u

τS

t ) + 2ωG,tωS,tγτt std(uτ
S

t )std(uτ
G

t ).
12Using the UUC-SV model, Eo (2016) also finds the hump-shaped pattern on the variance of innovations

to trend inflation for CPI inflation and GDP deflator inflation.
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Figure 3: Sectoral Trend and Headline Inflation
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Notes: The shaded areas denote NBER recession dates. Trend inflation estimates are obtained as the
posterior median estimates from our model. Units in terms of annualized quarter-on-quarter inflation.

the aftermath of the Great Recession of 2007-09. We then turn to presenting the sources of

aggregate trend inflation volatility, where we show how variation in aggregate trend inflation

has become entirely dominated by variation in trend services inflation.

3.1 Sector-Specific Inflation Dynamics from the Two-Sector Model

Figure 3 presents our trend estimates for sector-specific and aggregate inflation.13 The top

panel presents the estimated trends in both sectors, while each bottom panel reproduces these

13Again, to conserve space, we report the associated credible sets of the respective trend inflation estimates
in the Online Appendix. We do note, however, that the credible sets associated with our estimate of aggregate
and sector-specific trend inflation are fairly precisely estimated.
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estimates alongside inflation in each sector. All results are once again in terms of annualized

quarter-on-quarter inflation. Notably, the dynamics of sector-specific and aggregate trend

inflation are quite different when we contrast the 1970s to early 1980s period with the period

from the mid-1980s onwards. In particular, during the 1970s, both trend services and trend

goods inflation are roughly equivalent to actual goods and services inflation, respectively.

In contrast, the latter part of our sample witnesses marked differences in the dynamics of

sector-specific trend inflation. More precisely, since the 1990s or so, while goods inflation

has been fluctuating at a relatively higher frequency, its sector-specific trend has moved

very little. The dynamics of trend services inflation, on the other hand, continued to track

services inflation quite closely. The sharp changes in the dynamics of goods inflation will

manifest themselves in various guises as we present more results later on.

Returning to the top panel of the level of trend inflation in each sector, over the full

sample, trend services inflation has often been above trend goods inflation, apart from the

two periods in the 1970s where inflation accelerated greatly. These two periods coincide

with the first and second oil shocks in 1973-1974 and 1979-1980, respectively. Given that

much of energy consumption is classified as goods, the period of the two oil price shocks

probably saw these large oil price increases feed directly into trend goods inflation. Indeed,

as observed in Figure 3, trend goods inflation tracked goods inflation almost one for one

during the 1970s. The two oil price shocks probably underlie why trend goods inflation

briefly exceeded the level of trend services inflation in the 1970s. Since the 1980s, however,

trend services inflation has been consistently above trend goods inflation. The gap between

the level of trend services and trend goods inflation has been quite stable since the 1990s,

although we note that since the Great Recession of 2007-09, it appears that the gap between

sectoral trends may be widening. While calculating the optimal inflation rate is out of the

scope of our paper, we note in passing that if such a gap remains or continues to widen, this

may have implications for finding the optimal level of inflation (or the inflation target). For

example, in general equilibrium settings such as Wolman (2011), the dispersion of inflation

across both sectors matters for welfare-related calculations.

12



Figure 4: Aggregate and Sectoral Trend Inflation since the Great Recession
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Notes: The shaded areas denote NBER recession dates. Trend inflation estimates are obtained as the
posterior median estimates from our model. Units in terms of annualized quarter-on-quarter inflation.
Dotted lines represent 67% credible sets.

Low Inflation Since the Great Recession

We now focus on the period since 2007 to shed light on the low inflation outcomes since the

Great Recession. Inflation has been notably low – even compared to that before the Great

Moderation – over the past decade, with the debate centered on whether this low-inflation

episode is more of a permanent or transitory phenomenon (see, e.g., Andolfatto and Spewak

(2019)). The period of low inflation has sparked deflationary concerns, especially if some

of these falls were permanent. One reason for concern is the perceived role of monetary

policy to stabilize trend inflation, perhaps anchored to an explicit numerical inflation target.

Since 2012, the Federal Reserve has adopted an explicit numerical inflation target of 2%. To

13



explore such issues, the top and bottom panels of Figure 4 present, respectively, our previous

estimates of aggregate and sector-specific trend inflation – with their associated 67% credible

intervals – from 2007Q4 until 2020Q1. We also mark out in our panel for aggregate trend

inflation the 2% inflation target.

Our posterior median estimate of aggregate trend inflation has always been under 2%

since the Great Recession, and it has remained so even after the introduction of an explicit

inflation target by the Federal Reserve in 2012. The upper bound of our credible interval for

aggregate trend inflation has almost always been under or at 2% from 2009 onwards, often

with more than 80% of the posterior density estimate being under 2% since 2009. While

we note that 2% is sometimes marginally within the credible set towards the end of the

sample, we urge caution with any such interpretation for two reasons. First, the posterior

median is still below 2%, and so our point estimate of aggregate trend inflation still sits

under the inflation target.14 Second, the revelation of future data may lead to two-sided (or

smoothing) algorithms – such as the one adopted in this paper – to potentially revise these

trends inflation estimates. In particular, revisions from smoothing algorithms tend to be

more drastic the closer the observations are to the end of the sample.

Turning to the sector-specific trend inflation, the fall in aggregate trend inflation, at

least in the immediate aftermath of the Great Recession, is to a large extent due to a fall

in trend services inflation. We note that while trend services inflation has been gradually

rising since 2011, this level is low relative to that before the Great Recession (see Figure 3).

On the other hand, trend goods inflation appeared stable during and through the immediate

aftermath of the Great Recession, but experienced a large fall around 2013, and has stayed

either negative or very close to 0% since. Such a fall has partially offset the modestly rising

trend services inflation. It is worth noting that, while the timing of a fall in trend goods

inflation may have been in part driven by the collapse in crude oil prices from late 2014 to

2016, fluctuations in crude oil prices do not mechanically translate into changes for trend

goods inflation. For example, crude oil prices also collapsed during the Great Recession

and bounced back thereafter, although trend goods inflation stayed roughly flat through the

Great Recession and its immediate aftermath.

14Our results are broadly unchanged if reporting posterior means instead of medians.
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Figure 5: Estimated Conditional Standard Deviation and Correlation of Innovations
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Notes: The shaded areas denote NBER recession dates. All estimates denote posterior medians with their
associated 67% posterior credible interval.

All in all, viewing the low aggregate trend inflation outcomes since the Great Recession

through the sector-specific lens suggests richer sector-specific dynamics at play. In particular,

it appears both sectors do contribute to aggregate trend inflation below 2%.

3.2 Sources of Variation in Aggregate Trend Inflation

We now turn to presenting results on the sources of variation in aggregate trend inflation.
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Changing Volatility of Sector-Specific Trend Inflation

We focus first on the estimated volatility of inflation in both sectors. The top two panels of

Figure 5 present the estimated time-varying standard deviation of the innovations to trend

goods and services inflation (i.e. std(uτ
G

t ) and std(uτ
S

t )). Akin to aggregate volatility, both

sectors also display a hump-shaped pattern. That is, the volatility of sector-specific trend

inflation starts as low to moderate at the start of the sample, rises in the period of the Great

Inflation in the 1970s and falls around the early 1980s, remaining low ever since.

While it is true that both the volatility of trend services and trend goods inflation display

a hump-shaped pattern, such a pattern is much sharper and more pronounced in the goods

sector, so much so that our posterior estimates for std(uτ
G

t ) are about twice that of std(uτ
S

t )

at the height of the Great Inflation. Towards the end of the sample, the standard deviation

of trend goods inflation is close to zero, and only about one-fifth of the standard deviation

of trend services inflation. Notably, the standard deviation of innovations of trend goods

inflation being close to zero more recently is consistent with the near-constant dynamics for

trend goods inflation over the past 20 years, as documented earlier in Figure 3.

For completeness, we present the volatility of the transitory noise component in both

sectors. The middle two panels of Figure 5 presents the estimated time-varying standard

deviation of the sector-specific transitory noise components. Overall, we see little discernible

pattern with the volatility of the transitory component of services inflation. In contrast, the

volatility of the transitory component of goods inflation appears to be changing over time.

In fact, our results suggest that transitory goods inflation has become increasingly more

volatile over the years, peaking at the Great Recession, subsequently returning to the values

observed in the Great Moderation toward the end of the sample. This is an important point

to note, because the volatility of overall goods inflation has historically been a significant

order of magnitude larger than the overall volatility of services inflation.15

Nonetheless, we note that, while we document volatility changes associated with perma-

nent and transitory components of goods inflation, the overall volatility of goods inflation

has remained fairly stable over time. In other words, the sum of the conditional standard

15In Section A5 of the Online Appendix, we show that much of this transitory noise component reflects
energy prices.
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deviation of the permanent and transitory components of goods inflation is more or less

time invariant.16 Our findings thus suggest that what has changed is the composition of

overall variation in goods inflation in terms of what is mapped to permanent and transitory

movements. In particular, permanent changes represent a smaller proportion of the overall

variation in goods inflation more recently.

Changing Correlation of Trend Innovations

The bottom panel of Figure 5 presents the estimated time-varying correlation between the

trend innovations.17 Our estimates indicate that correlation was modest before the 1970s,

but steadily rose during the Great Inflation. Thereafter, with the 1980s disinflation, the

correlation in both sectors fell steadily, and indeed, continued to fall even after the 1990s.

We find this correlation is essentially close to zero in the last decade or so, which means

that trend services and trend goods inflation are essentially uncorrelated. We note, from

the bounds of our credible interval, that the correlation between the trend innovations does

not appear to be very precisely estimated, in the sense that our credible interval often

encompasses zero. Even so, our model supports, with a high degree of probability, that this

correlation is not only moderate to high, but probably was not zero during the period of the

Great Inflation in the 1970s.

The fact that the Great Inflation was the only period where we find a significant correla-

tion between the innovations to trend goods and trend services is indicative that the effects

of common shocks might be less salient nowadays relative to, say, sector-specific shocks.

Such a result has been documented in studies by, e.g., Foerster, Sarte and Watson (2011)

and Garin, Pries and Sims (2018). In terms of common shocks, monetary policy stands out

as a plausible candidate and is consistent with Cecchetti et al. (2007)’s account that the

conduct of monetary policy is the source of the large fall in the variance of the permanent

component during the early 1980s documented in Stock and Watson (2007). Energy price

16Given the innovations to trend and the transitory component are orthogonal, the variance of the inno-
vations to overall sector-specific inflation is just the sum of the variances of both components.

17It is easy to show from Equation 7 that time-varying correlation estimates, ρjt , can be computed by

setting ρjt =
γj
t exp

(
hjG

t

)
{
exp
(
hjG

t

)[
γj2

t exp
(
hjG

t

)
+exp

(
hjS

t

)]}0.5 for j ∈ {τ, ζ} .
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shocks are another plausible candidate for these common shocks, given the timing of the

Great Inflation. In Section 4.1, we investigate further the sources of these common shocks,

but for now, just to preempt some further results, we can rule out energy price shocks as

being the source of common shocks behind comovements between services and goods trends.

3.2.1 Decomposing the Variation of Aggregate Trend Inflation

We now explore the key sources of time variation which we uncover from the Two-Sector

UC-SV model in explaining variation in aggregate trend inflation. Equations (3) and (4)

imply

∆τ it = uτ
i

t , i = {G,S} . (12)

By expanding on Equation (11), the variance of aggregate trend inflation from the Two-

Sector UC-SV model can be written as

V ar(∆τt) ≈ ω2
G,tvar(u

τG

t ) + ω2
S,tvar(u

τS

t ) + 2ωG,tωS,tCov(uτ
G

t , uτ
S

t ) (13)

where the approximation accounts for the possibility that the weights (i.e. ωG,t and ωS,t)

may change from t − 1 to t. However, any approximation error is likely to be trivial given

that we know from the bottom panel of Figure 1 that quarter-on-quarter change in weights,

if any, is very small. Equation (13) thus shows that the variance of the innovation to

aggregate trend inflation can be approximated by decomposing it into a linear sum of three

components consisting of the variance of the innovations to the goods and services sector,

and the covariance term to account for the correlation between the two sectors. Recall that

the two key sources of time variation in the Two-Sector UC-SV are (i) the variance of the

innovation to the trend component of goods and services; and (ii) the correlation between

trend innovations to both sectors. These sources of time variation which we uncover from our

Two-Sector UC-SV will, therefore, by construction, have implications for the composition of

the overall variance of aggregate trend inflation, since all such elements appear in Equation

(11).

Figure 6 presents our decomposition of the estimated variance of aggregate trend inflation

into the three linear components implied by Equation (13), which we denote Goods, Services,
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Figure 6: Decomposition of Volatility of Aggregate Trend Inflation
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Notes: The shaded areas denote NBER recession dates. Trend inflation is in units of annualized quarter-on-
quarter inflation. Goods, services, and covariance refer to the decomposition of the components of aggregate
trend inflation as presented in Equation (13).

and Covariance. From the height of the stack bars, we once again observe a hump shape,

where the hump represents a high variance for aggregate trend inflation during the Great

Inflation and the subsequent disinflation, as we documented in the bottom panels of Figure

2. Also, it is clear that all three components have always contributed to the total variance of

aggregate trend inflation, and especially so during the Great Inflation. Nevertheless, since the

1990s, the goods and covariance components no longer contribute to variation in aggregate

trend inflation. The contribution of the variance of services sector today is slightly larger

relative to the Great Inflation, in part reflecting the increase in the expenditure weights

offsetting some of the fall in the variance in the innovations to trend services. However, in

sum, the large drop in the contribution of trend goods and the covariance terms has meant

that since the 1990s, not only has absolute aggregate trend inflation volatility fallen, but

this now reduced variance has become almost entirely dominated by the variance of trend

services inflation.
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4 Discussion and Interpretation of Results

To recap, our key result is that variation in aggregate trend inflation has, since around the

1990s, seen a composition shift from being partly driven by both trend goods and services

inflation to being fully dominated by variation in trend services inflation. Moreover, we

showed two key changes in sector-specific inflation dynamics that can help reconcile our

result: (i) a large fall in the variance of trend goods inflation to the point there is almost no

variation in trend goods inflation; and (ii) a decrease in the correlation between innovations

to trend goods and services inflation to the point that there is now no correlation.

In this section, we first extend our analysis to understand whether common factors, such

as energy price shocks or the conduct of monetary policy, can explain changes in the inflation

dynamics. Investigating the role of possible common shocks is a natural step when one

considers that changes in sector-specific dynamics are in part due to a decline in comovements

between trends in both sectors. Subsequently, we discuss some policy implications that arise

from our results, reconciling them with some of the broader literature.

4.1 Was there a Role for Energy Prices or Monetary Policy?

As mentioned throughout this paper, we find that a fall in the correlation of innovations to

trend goods and services partly drives our key result. Given that the timing of such a fall

coincided with the 1970s oil shocks, one could naturally posit that energy shocks may be

influencing our results. To investigate the role of energy, we reconstructed indices for both

the goods and services sectors excluding energy, or ex-energy for short. The idea is that if

energy is a key driver of our findings, we should see a large deviation from our baseline results

once we reconduct the estimation using ex-energy variants of goods and services inflation.

Energy comprises about 6% in the PCE basket, with almost all of it (over 90%) classified as

energy goods, with a much smaller role for energy services. We construct sectoral inflation

rates excluding energy components in each sector through chain weighting. The components

we exclude in constructing these ex-energy indices are “Gasoline and other energy goods” in

the goods sector and “Gas and electric utilities” in the services sector.18

18These are categories in the National Income and Product Accounts (NIPA) data, which we use to
construct these ex-energy indices. We relegate details on how we reconstruct these ex-energy indices as well
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Figure 7: Results from Excluding Energy
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Notes: The shaded areas denote NBER recession dates. All estimates denote posterior medians with their
associated 67% posterior credible interval. Goods, services, and covariance refer to the decomposition of
the components of aggregate trend inflation as presented in Equation (13).

Figure 7 presents various results from our model, where we re-estimate our Two-Sector

UC-SV model with goods excluding energy and services excluding energy. The top two

panels present estimates of the time-varying standard deviation for trend goods excluding

energy and trend services excluding energy. The middle panel presents the time-varying

correlation of the innovations to trend goods and services when we exclude energy. Qualita-

tively, these results are very similar to those that we obtain in Figure 5. We note, however,

that quantitatively the estimate of the volatility of trend goods inflation is slightly smaller at

the peak when we exclude energy. This is somewhat unsurprising, as energy consumption is

as less important results when we exclude energy to Section A5 of the Online Appendix.
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mostly related with the goods sector. In addition, results for the decomposition of aggregate

trend inflation, when excluding energy prices, are also qualitatively very similar to what we

obtain in Figure 6. We therefore conclude that our key insights are robust to the exclusion

of energy goods and energy services.

At the same time, robustness to excluding energy components suggests that changes

in trend inflation dynamics may be related to different common drivers. At a minimum,

correlation reflects the presence of common drivers. In particular, Cecchetti et al. (2007)

interprets the fall in overall trend inflation volatility reported in Stock and Watson (2007) as

reflecting the conduct of monetary policy. To evaluate this hypothesis, we go a step further

and conduct an exercise to identify the ‘pure’ component of inflation. More precisely, we

adopt the idea of decomposing inflation into a pure inflation and a relative price change

component as proposed by Reis and Watson (2010) and apply it to our estimates of sectoral

trends. Pure trend inflation is the common component in inflation changes that has an

equiproportional effect on all inflation rates of goods and services in the long run. The idea

behind pure inflation is that if the monetary authority increases the money supply by x%,

then all prices should go up by x% in the long run. This intuition is closely related to the

quantitative theory of money, and thus provides us with a mechanism to identify the role for

the conduct of monetary policy and link it to changes in our estimates for aggregate trend

inflation. In developing the decomposition framework, we follow Reis and Watson (2010)

and Wolman (2011) and cast each sector-specific trend as the sum of two components as

follows:

τGt = ft + τG∗t , (14)

τSt = ft + τS∗t , (15)

where ft denotes pure trend inflation that is common to both sectors, and τG∗t and τS∗t

capture the relative trend inflation for goods and services, respectively. These three latent
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Figure 8: Decomposition into Pure Inflation and Relative Price Components
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on-quarter inflation.

components evolve as follows:

ft = ft−1 + νft , (16)

τG∗t = τG∗t−1 + ντ
G∗

t , (17)

τS∗t = τS∗t−1 + ντ
S∗

t . (18)

In the interest of brevity, we leave details on how we implement the identification of the

pure inflation component to Section A4 of the Online Appendix. But we briefly state that

because Equations (14) to (18) imply a state space representation, by treating our estimates

for sector-specific trends as observables, we can extract the pure inflation component applying
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a Kalman smoother.19 We perform the signal extraction exercise based on the posterior

medians of the sectoral trend inflation rates and their associated variances and covariance

over time.

Figure 8 presents results based on the state space representation in Equations (14) to

(18). The top panel of Figure 8 shows that the level of pure inflation appears to closely align

with aggregate trend inflation over time. This indicates that the pure inflation component

was largely responsible for the two high inflation episodes in the 1970s.20 We therefore

interpret this as evidence that the conduct of monetary policy was – to a considerable extent

– responsible for the Great Inflation episode in the 1970s. This interpretation is also in line

with other studies, such as Orphanides (2004) and Boivin and Giannoni (2006).

The bottom panel of Figure 8 reports results from a variance decomposition akin to

Equation 13 applied to our representation of sectoral trends in terms of a pure inflation and

a relative price component. It shows that a large fall in the variance of trend inflation in the

late 1970s and early 1980s was ultimately associated with the decrease in the variance of the

pure inflation component. This suggests, in line with Cecchetti et al. (2007), that monetary

policy played a prominent role in the disinflation episode that took place in the beginning

of the 1980s.

4.2 Policy Implications

We discuss two policy implications that derive from our findings: first, the inferences of

underlying inflation in a policy environment, and second, the reconciling of our results by

lending some perspective to the globalization of inflation debate.

19We adopt a Kalman smoother here, rather than its (one-sided) filter version, to remain consistent with
our estimation approach discussed in Section 2.2. In other words, we estimate our Two-Sector UC-SV model
using Bayesian methods which provide, by construction, smoothed (or two-sided) estimates for all state
variables.

20Reis and Watson (2010) find, using their dynamic factor model, the increase in headline inflation in the
early 1970s and its declines in the 1990s were mostly attributed to their estimated changes in the relative
price factor. However, they do not allow for stochastic volatility in the model, so the standard deviation
of changes in the pure inflation component is estimated to be 0.3 percent, whereas our estimated standard
deviations once allowing for stochastic volatility range from 0.2 percent since 2000 to 0.9 percent in the
1970s and 1980s. Thus, their constant variance specification might underestimate variations of pure inflation
components and its role in the increase of inflation in the 1970s and 1980s. See the bottom panel of Figure 8
for the variance decomposition in our model.
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Our key result, that aggregate trend inflation is now entirely dominated by trend services

inflation, does imply one straightforward implication within policy environments such as

central banks: namely, gaining a read on underlying inflation. To be precise, we define

underlying inflation as just inflation excluding transient noise, which is consistent with the

interpretation of trend inflation in our model. Such a quantity is naturally related to forecasts

of inflation, given that transient noise is expected to dissipate, and therefore if current

inflation is above (below) underlying inflation, one should expect inflation to fall (rise) in

the future. This is one reason why the Federal Reserve tracks PCE excluding food and

energy inflation. They typically regard food and energy inflation to be ultimately transitory

and therefore it should not feed into underlying inflation. The perspective of underlying

inflation as filtering inflation of transitory noise is not entirely new and has been taken

as the objective of part, though we note not all, of the core inflation literature (see, e.g.,

Bryan and Cecchetti (1994) and Cogley (2002)). In this paper, we use the term underlying

inflation rather than core inflation, given the latter term has a wide variety of definitions

and interpretations within the broader literature.

We find that while goods inflation remains volatile, variation in goods inflation no longer

contributes to variation in aggregate trend inflation. This means that a policymaker observ-

ing a movement in goods inflation in real time should conclude that such a fluctuation likely

represents transient noise with regards to obtaining a read on whether underlying inflation

has changed. On the other hand, a fluctuation in services inflation is more likely to represent

a signal of a change in underlying inflation. We note that our results are also consistent with

work from the Federal Reserve. For example, Tallman and Zaman (2017), in a forecasting

exercise, shows a link between economic slack and services, but not goods, inflation. Luciani

(2020) also shows that inflation dynamics in the goods sector tend to reflect sector-specific

idiosyncratic dynamics. In this regard, our results are consistent with the fact that it is

variation in the services sector which provides a signal of a change in the overall inflation

environment and that variation in goods inflation is perhaps too noisy for such purposes.

Finally, we briefly touch on how our results may provide some perspective on the role

of globalization of inflation hypothesis. At the heart of the hypothesis is that inflation is

increasingly globally determined, an idea typically attributed to Borio and Filardo (2007).

25



As we discussed in the Introduction, the goods and services dichotomy can be viewed as

an approximation to the tradeable and non-tradeable split in consumer expenditures. If

one is willing to accept the goods and services as the traded and non-traded inflation split,

with goods representing the component of inflation which is driven by international factors,

our results would suggest that very little of this variation feeds directly into variation in

trend inflation. To the extent that trend inflation is a quantity which central banks seek to

stabilize, our results suggest that much of this variation in trend inflation is still very much

domestically driven by the services sector.

5 International Evidence

We apply our model to international data to explore whether the results we obtain are more

generalizable. To this end, we estimated our model using Australian and Canadian data.21

For Australia, our sample covers 1976Q1-2020Q1, and for Canada, 1961Q2-2020Q1.22 We

stress that we did not set out to just explore Australia and Canada. In fact, such a sample

choice is purely driven by limitations of the data coverage for other comparable economies.

We point out, though, that Australia and Canada do possess some interesting features which

at least mark them out as useful points of comparison relative to our benchmark results for

the US. First, both Australia and Canada had similar inflation experiences to the US, in

the sense that the Great Inflation saw very high inflation rates in both countries, and these

inflation rates fell and became very stable in the 1990s. In particular, both the Reserve

Bank of Australia and Bank of Canada adopted an explicit inflation target in 1997 and

1992, respectively, whereas the inflation target for the US was always implicit until it was

made explicit in 2012. Therefore, a comparison with the US can provide some perspective

on whether our key results are US-specific or extend to different inflation targeting regimes.

21A major challenge for seeking international evidence is that few economies retain long time series of
goods and services inflation which are either constructed using consistent methodology or have been rendered
consistent by their respective statistical agencies to the level of the US data. For example, for the UK, we
are unable to go back beyond 1981, and for New Zealand, 1987. It is important to have long time series
because the thrust of our key results is to make comparisons relative to the period of the Great Inflation in
the 1970s. At a minimum, we require the sample coverage of the international data to at least include the
rise and then fall of inflation to at least be compared to the key results which we obtain for the US.

22We leave details on how we construct the goods and services deflator, as well as some more auxiliary
results, for both economies to the Online Appendix.
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Figure 9: Aggregate and Sectoral Trend Inflation for Australia and Canada
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Notes: Trend inflation estimates are obtained as the posterior median estimates from our model. All units
are in terms of annualized quarter-on-quarter inflation.

Second, as small open economies that do not have much pricing power in the international

goods market, the difference in the inflation dynamics of goods and services sectors reflecting

the traded-nontraded goods dichotomy is perhaps much sharper for both Australia and

Canada. This feature at least allows us to form a firmer view on the globalization of inflation

hypothesis through the lens of our framework.

Figure 9 presents both aggregate and sector-specific inflation estimates for Australia

and Canada. We also plot the annualized quarter-on-quarter inflation rate alongside the

aggregate trend inflation estimate for the sake of comparison. Note that the sector-specific

and aggregate inflation rates are constructed from the consumption deflators implied by
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the household consumption expenditure in the national accounts, to be consistent with the

analysis for the US. Unsurprisingly, aggregate trend inflation is a smoother version of headline

inflation. Even so, we once again find that while trend inflation tracked headline inflation

more closely, especially during the 1970s, trend inflation is a lot smoother since the 1990s.

When we turn to the sector-specific trend inflation estimates in the bottom two panels, we

observe that while both trend services and trend goods inflation were reasonably volatile in

the 1970s, since the 1990s, trend goods inflation has become less volatile. Trend services is

more volatile than trend goods in an absolute sense since the 1990s. Even so, trend services

inflation since the 1990s is less volatile when compared to its volatility before the 1990s. We

also note that, while the estimated aggregate and sector-specific trend inflation dynamics in

Australia and Canada have features that are broadly in line with the US, Canada’s trend

inflation dynamics do mirror the US a lot more closely. This could reflect their geographic

proximity or the fact that Canadian trade is very integrated with the US. For example, even

though we find that the volatility of goods inflation has fallen markedly in both Australia

and Canada, trend goods volatility in Australia still features some variation, whereas trend

goods inflation in Canada – similar to the US – appears to exhibit very little since around

the mid-1990s. Their aggregate and sector-specific trend inflation volatility do not differ

relative to the US.

Figure 10 presents the decomposition of the variance from the innovations to trend in-

flation for both Australia and Canada using Equation (13). Similar to the US, we find that

while all three components contributed to the variation in aggregate trend inflation during

the 1980s, and even part of the 1990s for Australia, variation in aggregate trend inflation in

both Australia and Canada since around the 1990s has been dominated by variation in trend

services inflation. In particular, this result is once again driven by the goods and covariance

component no longer contributing to the overall variation in aggregate trend inflation.

That we find that our key result of variation in aggregate trend inflation is now dominated

by only the services sector for both Australia and Canada suggests that our key result is not

a US-specific phenomenon. As we mentioned at the outset of the section, both Australia

and Canada are small open economies which are, more so than the US, price takers in the

international goods market, and their services sector likely reflect the domestic economic
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Figure 10: Decomposition of Volatility of Aggregate Trend Inflation for Australia and Canada
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Notes: Trend inflation is in units of annualized quarter-on-quarter inflation. Goods, services and covariance
refer to the decomposition of the components of aggregate trend inflation as presented in Equation (13).

environment. That we find that the variation in aggregate trend inflation is dominated by

trend services inflation in two small open economies such as Australia and Canada would

further support that in terms of viewing the globalization of inflation hypothesis, variation

in goods inflation largely reflects transitory noise for overall trend inflation.

We nonetheless accept that the distinction between what is traded and non-traded as

corresponding to the goods and services split may be too crude an approximation. Further-

more, whether a good or a service is, in reality, regarded as traded is less likely an absolute,

but more likely a matter of degree, where each good and service possesses both a traded

and non-traded component. Nevertheless, to the extent that our crude approximation of
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the goods and services split reflects the traded and non-traded dichotomy, our suggestive

evidence is that variation in trend inflation is still largely non-traded, and thus domestically

determined. Such results are consistent with Kamber and Wong (2020), who find foreign

shocks explain very little of the variance to trend inflation in a group of developed and

emerging market economies.23

6 Conclusion

We developed an empirical two-sector model of trend inflation to understand the role of the

goods and services sectors as drivers of trend inflation. Our main finding is that variation

in aggregate trend inflation is now entirely dominated by that in services inflation. This

is a relatively recent occurrence, as before the 1990s both the goods and services sectors

contributed to variations in aggregate trend inflation. Our core result is driven by two

changes in sector-specific inflation dynamics. First, the variance of trend goods inflation has

fallen sharply compared with the period of the Great Inflation in the 1970s, featuring little to

no volatility since around the 1990s. Second, while the Great Inflation in the 1970s featured

a moderate correlation between innovations to trend goods and trend services inflation, this

correlation essentially disappeared during the 1990s.

We document two further results when extending our analysis. First, we rule out energy

prices as a possible driver of our results. Instead, we find suggestive evidence consistent

with monetary policy as a possible explanation for our results. Second, we document similar

inflation dynamics when we extend our analysis to Australia and Canada. Since Australia

and Canada are small open economies, and thus likely candidates for viewing the goods and

services split as reflecting their traded and non-traded sectors, our result on the variation

in trend inflation now being dominated by trend services supports the notion that trend

inflation is largely driven by the domestic sector.

Finally, we document one area for future work. Throughout this paper, we have assumed

the weights of the services and goods sector are determined exogenously. While this is prob-

23We note that the sample for Australia and Canada that Kamber and Wong (2020) use does not include
the Great Inflation, which means our results in the latter part of our sample are entirely consistent with
their work.
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ably an innocuous assumption within our context, it does not explain why the services sector

has risen in terms of its importance. To illustrate, using a multi-sector growth model, Ngai

and Pissarides (2007) show that, when two sectors are complements, the sector with higher

productivity growth will have lower sectoral inflation and a lower share of nominal expendi-

tures than the other sector with lower productivity growth. Such a theoretical prediction is

consistent with the dynamics of the sectoral trends we estimated and the historical nominal

expenditure shares used in our exercise. In other words, trend services inflation has been

higher than trend goods inflation, while the nominal share of expenditure on services has

increased over time. An avenue for endogenizing changes in the weights within an empirical

setting could be via the modeling approaches developed by Kim, Piger and Startz (2008) or

Leiva-León and Uzeda (2020).
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A1 Estimation Details

Estimation of the states in our model is carried out using precision sampling methods as in

Chan and Jeliazkov (2009). Under this approach, the signal extraction exercise operates on

a parametrization of the model in Section 2.1 where all observables and state variables are

stacked over t = 1, ..., T . For convenience, below we reproduce the stacked representation of

the two-sector UC model that we base our posterior sampler upon. Formally, we have

y = τ + ζ (A1)

Lττ = τ0 + uτ (A2)

Lhh = h0 + uh (A3)

Lγγ = γ0 + uγ (A4)


ζ

uτ

uh

uγ

 ∼ N



0

0

0

0

 ,


Σζ 0 0 0

0 Στ 0 0

0 0 Σh 0

0 0 0 Σγ



 , (A5)

1



where:

y
(2T×1)

=

 (πG1 , · · · , πGT )′

(πS1 , · · · , πST )′

 , τ
(2T×1)

=

 (τG1 , · · · , τGT )′

(τS1 , · · · , τST )′

 , h
(4T×1)

=


(hζ

G

1 , · · · , hζ
G

T )′

(hζ
S

1 , · · · , hζ
S

T )′

(hτ
G

1 , · · · , hτGT )′

(hτ
S

1 , · · · , hτST )′

 ,

γ
(2T×1)

=

 (γζ1 , · · · , γ
ζ
T )′

(γτ1 , · · · , γτT )′

 ζ
(2T×1)

=

 (ζG1 , · · · , ζGT )′

(ζS1 , · · · , ζST )′

 uτ
(2T×1)

=

 (uτ
G

1 , · · · , uτGT )′

(uτ
S

1 , · · · , uτST )′

 ,

uh
(4T×1)


(uh

ζG

1 , · · · , uhζ
G

T )′

(uh
ζS

1 , · · · , uhζ
S

T )′

(uh
τG

1 , · · · , uhτGT )′

(uh
τS

1 , · · · , uhτST )′

 , uγ
(2T×1)

=

 (uγ
ζ

1 , · · · , u
γζ

T )′

(uγ
τ

1 , · · · , u
γτ

T )′

 .

Initialization conditions are treated as additional parameters in our MCMC algorithm and

collected as follows:

τ0
(2T×1)

=

 τG0

τS0

⊗


1

0
...

0

 , h0
(4T×1)

=


hζ0

G

hζ0
S

hτ0
G

hτ0
S

⊗


1

0
...

0

 , γ0
(2T×1)

=

 γζ0

γτ0

⊗


1

0
...

0

 ,
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where ⊗ denotes the Kronecker operator. Next, the matrices pre-multiplying the vector of

states are sparse structures defined as follows:

Lτ
(2T×2T )

= Lγ =

 H 0

0 H

 , Lh
(4T×4T )

=


H 0 0 0

0 H 0 0

0 0 H 0

0 0 0 H

 , such that

H
(T×T )

=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

. . . . . .

0 0 · · · −1 1


.

Finally, each covariance matrix in the system is given by

Σ`
(2T×2T )

=



exp(h`
G

1 ) · · · 0 γ`1 exp(h`
G

1 ) · · · 0
...

. . .
...

...
. . .

...

0 · · · exp(h`
G

T ) 0 · · · γ`T exp(h`
G

T )

γ`1 exp(h`
G

1 ) · · · 0 γ`
2

1 exp(h`
G

1 ) + exp(h`
S

1 ) · · · 0
...

. . .
...

...
. . .

...

0 · · · γ`T exp(h`
G

T ) 0 · · · γ`
2

T exp(h`
G

T ) + exp(h`
S

T )


,

(A6)

for ` = ζ and τ,

Σh
(4T×4T )

=


σ2
hζG

IT 0 0 0

0 σ2
hζS
IT 0 0

0 0 σ2
hτG

IT 0

0 0 0 σ2
hτG

IT

 , (A7)

Σγ
(2T×2T )

=

 σ2
γζ
IT 0

0 σ2
γτ IT

 , (A8)
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where IT denotes a T dimensional identity matrix.

A1.1 Priors

There are three blocks of model parameters in our baseline Two-Sector UC model, i.e.:

z0 =



τG0

τS0

hζ0
G

hζ0
S

hτ0
G

hτ0
S

γζ0

γτ0



, Ωh = diag
(
σ2
hζG

, σ2
hζG

, σ2
hτG

, σ2
hτG

)
, and Ωγ = diag

(
σ2
γζ , σ

2
γτ

)
.

We assume standard independent priors for each of these three blocks of parameters. More

precisely:

z0 ∼ N (ẑ0,Σz0) ,

σ2
γ` ∼ IG

(
νγ` , Sγ`

)
,

σ2
h`i
∼ IG

(
νh`i , Sh`i

)
for ` = ζ and τ and i = G and S.

The choice of prior densities adopted in this paper are in line with previous studies on trend

inflation that also rely on UC-SV models (e.g., see Chan, Koop and Potter, 2013, 2016). We
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calibrate our priors as follows:

ẑ0 =
(
πG1 , π

S
1 , 0, · · · , 0

)′
,

Σz0 = 100× I8,

νγ` = T
10
,

Sγ` = 0.12(νγ` − 1),

νh`i = T
10
,

Sh`i = 0.172(νh`i − 1) for ` = ζ and τ and i = G and S.

Notably, the values assigned to Σz0 and to the shape parameters of the inverse-gamma

densities – νγ` and νh`i – reflect relatively uninformative priors.

A1.2 Posterior Sampler

Now let Z = {τ , h, z0, Ωh, Ωγ} denote the set of states and parameters in our Two-

Sector UC model, where notation Z−j represents all elements in Z except for j. An MCMC

algorithm for estimating such a model entails sequentially sampling from the following con-

ditional posterior distributions:

(1) f(τ |y,Z−τ ),

(2) f(h|y,Z−h),

(3) f(γ|y,Z−γ),

(4) f(z0|y,Z−z0),

(5) f(Ωh|y,Z−Ωh
),

(6) f(Ωγ|y,Z−Ωγ ).

Steps 1 through 3 above denote the state simulation block in our MCMC – i.e. drawing

the time-varying parameters. The remaining steps correspond to drawing from the full

conditional posteriors for the fixed parameters. Hence, we refer to steps 4 through 6 as the

parameter sampling block in our algorithm. Below, we describe these two main blocks in

5



greater detail.

A1.2.1 State Simulation

• Sampling τ

First note that Equations (A1) and (A2) denote a linear Gaussian state space representa-

tion. Therefore, standard multivariate regression results (see, e.g., Koop, Poirier and Tobias

(2007)) can be used to show that the conditional posterior for τ is also Gaussian. More

precisely, we have:

τ |y,Z−τ ∼ N
(
dτ , Dτ

)
, where

dτ = Dτ

(
Σ−1
ζ y + L′τΣ

−1
τ τ0

)
,

Dτ =
(
Σ−1
ζ + L′τΣ

−1
τ Lτ

)−1
.

(A9)

As shown in the second equation in (A9), sampling τ entails inverting the 2T×2T matrix(
Σ−1
ζ + L′τΣ

−1
τ Lτ

)
to construct the covariance matrix Dτ . We do so by applying precision

sampling techniques proposed in Chan and Jeliazkov (2009), which provides an efficient way

to expedite computation.1

To illustrate how we employ their algorithm, we introduce the following notation: given

a lower triangular 2T × 2T non-singular matrix C and a 2T × 1 vector b, let C \ b denote

the unique solution to the triangular system Cx = b obtained by forward substitution, i.e.,

x = C \ b = C−1b. Sampling τ is then conducted by following the four operations below:

(1) Chol(D
−1

τ ) = CC′,

(2) x = C \
(
Σ−1
ζ y + L′τΣ

−1
τ τ0

)
,

(3) dτ = C′ \ x,

(4) τ = dτ + C′ \ e e ∼ N (0, I2T ) .

The first step describes the Cholesky decomposition of the inverse covariance (or precision)

matrix D
−1

τ . Step 2 requires solving a triangular system by forward substitution, given that

1A detailed comparison between precision- and Kalman filter-based techniques for state simulation –
pointing out the benefits of the former over the latter – can be found in McCausland, Miller and Pelletier
(2011).
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C is a lower triangular matrix. Step 3 is analogous to Step 2, except that the solution

of the triangular system, C′ \ x, is now obtained by backward substitution, since C′ is an

upper triangular matrix. It is then straightforward to see that Steps 2 and 3 combined, by

construction, yield:

dτ = C′−1
(
C−1

(
Σ−1
ζ y + L′τΣ

−1
τ τ0

))
= (CC′)

−1 (
Σ−1
ζ y + L′τΣ

−1
τ τ0

)
= D

−1

τ

(
Σ−1
ζ y + L′τΣ

−1
τ τ0

)
.

Finally, Step 4 describes an affine transformation of standard normal random vector e which

ensures, by definition, that after sampling e ∼ N (0, I2T ), the expression in such a step

returns a 2T × 1 random vector τ |y,Z−τ ∼ N
(
dτ , Dτ

)
.

To further expedite computation, in addition to the precision sampling techniques, we

resort to an analytical solution – instead of brute-force methods – to obtain the inverse

matrices Σ−1
ζ and Σ−1

τ which are components of D
−1

τ and show up in Step 2 of the precision

sampling algorithm just described above. In particular, both Σ−1
ζ and Σ−1

τ can be partitioned

into four block-diagonal matrices, as follows:

Σ` =

 Σ`G Σ`G,S

Σ`G,S Σ`S

 , (A10)

where:

Σ`G = diag
(

exp(h`
G

1 ), · · · , exp(h`
G

T )
)
,

Σ`S = diag
(
γ`

2

1 exp(h`
G

1 ) + exp(h`
S

1 ), · · · , γ`2T exp(h`
G

T ) + exp(h`
S

T )
)
,

Σ`G,S = diag
(
γ`1 exp(h`

G

1 ), · · · , γ`T exp(h`
G

T )
)
, for ` = ζ and τ.

Matrix inversion results discussed in, e.g., Anderson (1984) yield:

Σ−1
` =

 (
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1 −

(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

Σ`G,SΣ
−1
`S

−Σ−1
`S

Σ`G,S
(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1 −Σ−1

`S
Σ`G,S

(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

Σ`G,SΣ
−1
`S

 ,
for ` = ζ and τ .

It is worth noting that, despite the long algebraic expressions above, constructing each
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block matrix in Σ−1
` only entails operations between diagonal matrices. As a result, an

analytical solution for Σ−1
` can be readily derived.2 Specifically, we have

(I)
(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

= diag

(
γ`

2

1 exp(h`
G

1 ) + exp(h`
S

1 )

exp(h`
G

1 + h`
S

1 )
, · · · , γ

`2

T exp(h`
G

T ) + exp(h`
S

T )

exp(h`
G

T + h`
S

T )

)
,

(II) −Σ−1
`S

Σ`G,S
(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

Σ`G,SΣ
−1
`S

=

= diag

(
γ`

2

1 exp(2h`
G

1 )

γ`
2

1 exp(2h`
G

1 + h`
S

1 ) + exp(h`
G

1 + 2h`
S

1 )
, · · · , γ`

2

T exp(2h`
G

T )

γ`
2

T exp(2h`
G

T + h`
S

T ) + exp(h`
G

T + 2h`
S

T )

)
,

(III) −
(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

Σ`G,SΣ
−1
`S

= −Σ−1
`S

Σ`G,S
(
Σ`G −Σ`G,SΣ

−1
`S

Σ`G,S
)−1

=

= diag

(
γ`

2

1 exp(h`
G

1 ) + exp(h`
S

1 )

exp(h`
G

1 + h`
S

1 )
, · · · , γ`T exp(h`

G

T )

exp(h`
G

T + h`
S

T )

)
, for ` = ζ and τ.

• Sampling h

To sample log-volatilities h, we combine the auxiliary mixture sampler approach of Omori

et al. (2007) with the precision sampling techniques previously described. To this end, note

first that we can reexpress equations (A1) and (A2) as

 y − τ

Lττ − τ0

 =

 Aζ 0

0 Aτ

 Λhζ 0

0 Λhτ

 ε,
 Aζ 0

0 Aτ

−1  y − τ

Lττ − τ0

 =

 Λhζ 0

0 Λhτ

 ε, (A11)

2We also conducted estimations where Σ−1ζ and Σ−1τ were constructed via brute-force inversion. Results,
as expected, are unchanged, albeit the MCMC sampler takes a bit longer to carry out state simulation.
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where

ε ∼ N (0, I4T ) ,

A` =

 IT 0

diag
(
γ`1, · · · , γ`T

)
IT

 , (A12)

Λh` =

 diag
(

exp(h`
G

1 ), · · · , exp(h`
G

T )
)

0

0 diag
(

exp(h`
S

1 ), · · · , exp(h`
S

T )
)
 , (A13)

for ` = ζ and τ .

Next, let ỹτ and v denote the left- and right-hand side of Equation (A11), respectively.

Squaring and subsequently taking natural logarithms of each element in the 4T × 1 vectors

ỹτ and v leads to the following linear state space representation for h:

ỹ∗τ = h + ṽ, (A14)

Lhh = h0 + uh, (A15)

where the state equation for h comes from (A3). The system above – albeit linear – is

no longer Gaussian. More precisely, each entry in ṽ follows a log chi-square distribution

with one degree of freedom. To bring the state space representation back to Gaussian form,

Omori et al. (2007) suggest approximating the distribution of ṽ as a mixture of ten Normal

densities.3 Formally, let ṽ∗ denote such mixture approximation, i.e.:

ṽ∗ ∼ p1N (α1, Σ1) + · · ·+ p10N (α10, Σ10) ,

where αs, Σs and the component-density probabilities ps for s = 1, · · · , 10 are predetermined

and given in Table 1 in Omori et al. (2007). Therefore, for a given particular component-

density N (αs, Σs), the state space in (A14)-(A15) can be recast in (conditionally) Gaussian

3Their approach extends the seven-component auxiliary mixture sampling from Kim, Shephard and Chib
(1998).
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form as:

ỹ∗τ = h +αs + ṽ∗s , (A16)

Lhh = h0 + uh, (A17)

 ṽ∗s

uh

 ∼ N
 0

0

  Σs 0

0 Σuh

 . (A18)

Given the parametrization above, our MCMC sampler needs to be augmented to sample

both h and the vector of component-density indicators, s. Formally, this entails sequentially

sampling from the following full conditional posterior distributions:4

Step 1 f(s|ỹ∗τ ,Z),

Step 2 f(h|ỹ∗τ ,Z−h, s).

•Step 1

The auxiliary sampler of Omori et al. (2007) allows each element of s = (s1, · · · , sT ) to be

drawn independently from a multinomial distribution parameterized by the full conditional

posterior probabilities Pr
(
st = i|ỹ∗τ,t, Zt

)
given by:

Pr
(
st = i|ỹ∗τ,t, zt

)
=

ψ (ht + αs=i, σ
2
s=i) ps=i∑10

j=1 ψ
(
ht + αs=j, σ2

s=j

)
ps=j

for i = 1, · · · , 10,

where ψ (ht + αs, σ
2
s) denotes a Gaussian density evaluated at mean ht + αs and variance

σ2
s . Again, αs and σ2

s values are given in Table 1 in Omori et al. (2007). ht denotes posterior

draws obtained from (A19) as presented below.

Given Pr
(
st = i|ỹ∗τ,t, Zt

)
posterior draws for st can then be generated via the inverse

4Here, Steps 1 and 2 are consistent with the discussion in Del Negro and Primiceri (2015) that applies
more broadly for models with stochastic volatility.
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transform method for t = 1, · · · , T as follows:5

(a) Generate et ∼ Uniform(0, 1),

(b) Find the smallest i ∈ {1, 2, · · · , 10} that satisfies
∑i

j=1 Pr
(
st = j|ỹ∗τ,t, Zt

)
≥ et,

(c) Return
(
st|ỹ∗τ,t, Zt

)
= i.

•Step 2

h|ỹ∗,Z, s ∼ N
(
dh, Dh

)
, where

dh = Dh

(
Σ−1
s ỹ∗α + L′hΣ

−1
uh

h0

)
,

Dh =
(
Σ−1
s + L′hΣ

−1
uh

Lh

)−1
,

(A19)

where ỹ∗α = ỹ∗τ − h − αs. Draws from the density above are obtained using the precision

sampler of Chan and Jeliazkov (2009).

• Sampling γ

It’s easy to see that the innovations in (A1) and (A2) can be factorized as follows:

 ζ

uτ

 =

 Aζ 0

0 Aτ

 ζ∗

uτ∗

 s.t. (A20)

 ζ∗

uτ∗

 ∼ N
 0

0

 ,
 Λhζ 0

0 Λhτ

 .

Since (ζ, uτ )′ =
(
ζG, ζS, uτ

G
, uτ

S
)′

and using the fact that both Aζ and Aτ have a

5See algorithm 3.2 in Kroese, Taimre and Botev (2013) for a more detailed discussion of the inverse
transform method for discrete random variables.
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block-lower triangular structure – as shown in (A12) – then (A20) can be recast as:


ζG

ζS

uτ
G

uτ
S

 =


ζζ

G

Xγζζ
G + ζS∗

uτ
G

Xγτu
τG + uτ

S

∗

 , (A21)

where Xγ` = diag
(
γ`1, · · · , γ`T

)
for ` = ζ and τ .

Given the block-lower triangular structure of Aζ and Aτ and the modular nature of

MCMC algorithms, one can collect the draws associated with the goods sector in τ and τ0 –

i.e. τG and τG0 , respectively – to back out ζG = yG−τG and uτ
G

= HτG−τG0 . As a result,

these two vectors of innovations can be treated as predetermined controls in the second and

fourth equations in (A21). Similarly, we back out ζS and uτ
S

on the left-hand side of (A21)

by setting ζS = yS − τ S and uτ
S

= Hτ S − τ S0 and treat these vectors of innovations as

regressands in a standard linear regression setting. Consequently, by a simple change of

variables, we can use the second and fourth equations in (A21) to obtain the following state

space representation for γ:6

eS = XeGγ + eS∗ , (A22)

Lγγ = γ0 + uγ (A23)

 eS∗

uγ

 ∼ N
 0

0

 ,
 ΣeS∗

0

0 Σγ

 , (A24)

6To be clear, we refer to the following change of variables: Xγζζ
G and Xγτu

τG can be equivalently

expressed as diag
(
ζG1 , · · · , ζGT

)
γζ and diag

(
uτ

G

1 , · · · , uτGT
)
γτ , respectively.
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where: eS =

 ζS

uτ
S

, eS∗ =

 ζS∗

uτ
S

∗

,

ΣeS∗
=

 diag
(

exp(hζ
S

1 ), · · · , exp(hζ
S

T )
)

0

0 diag
(

exp(hτ
S

1 ), · · · , exp(hτ
S

T )
)
 and

XeG =

 diag
(
ζG1 , · · · , ζGT

)
0

0 diag
(
uτ

G

1 , · · · , uτGT
)  .

Thus, standard regression results can be applied to the system in (A22)-(A24) to obtain

the following expressions for the full conditional posterior for γ:

γ|y,Z−γ ∼ N
(
dγ, Dγ

)
, where

dγ = Dγ

(
X′eGΣ−1

eS
eS + L′γΣ

−1
γ γ0

)
,

Dγ =
(
X′eGΣ−1

eS
XeG + L′γΣ

−1
γ Lγ

)−1
.

(A25)

Again, to obtain draws from the density above, we apply precision sampling methods.

A1.2.2 Parameter Sampling

• Sampling Ωh and Ωγ

Recall that both Ωh and Ωγ are diagonal covariance matrices. Therefore, variance hy-

perparameters for the states h and γ can be sampled one by one from an inverse-gamma

density. Formally, we have:

σ2
γ`|y,Z−σ2

γ`
∼ IG

(
νγ` , Sγ`

)
, where


νγ` = T

2
+ νγ` ,

Sγ` =

T∑
t=1

(
uγ
`

t

)2

2
+ Sγ` for ` = ζ and τ,

(A26)
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and

σ2
h`i
|y,Z−σ2

h`
i
∼ IG

(
νh`i , Sh`i

)
, where


νh`i = T

2
+ νh`i ,

Sh`i =

T∑
t=1

(
uh
`i

t

)2

2
+ Sh`i for ` = ζ and τ and i = G and S,

(A27)

where uh
`i

t and uγ
`

t are the innovations in state equations (8) and (9), respectively, in Section

2.1.

• Sampling z0

Let L0 = I8 ⊗ ι0 where ι0 = (1, 0, · · · , 0)′. The state equations (A2), (A3) and (A4) can

then be expressed as

Lz = L0z0 + u, (A28)

where z =


τ

h

γ

 , L =


Lτ 0 0

0 Lh 0

0 0 Lγ

 and u =


uτ

uh

uγ

 ∼ N (0, Σu) , such that

Σu =


Στ 0 0

0 Σh 0

0 0 Σγ

 .

Combining (A28) with the Gaussian prior z0 ∼ N (ẑ0,Σz0) yields

z0|y,Z−z0 ∼ N
(
dz0 , Dz0

)
, where

dz0 = Dz0 (L′0Σ
−1
u Lz + Σz0 ẑ0) ,

Dz0 =
(
L′0Σ

−1
u L0 + Σ−1

z0

)−1
.

(A29)
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A2 Model Comparison

Recall that our baseline model assumes that the transitory component of inflation in each

sector follows a normally distributed serially uncorrelated process. To evaluate the ability of

such a specification to fit inflation data, we conduct a model comparison exercise where we

allow for persistence in the transitory component of (sector-specific) inflation. We propose

two alternatives to model sectoral inflation gap, cit, for i = G and S, namely – and similar

to previous studies (e.g., see Chan, Koop and Potter, 2013, 2016) – gaps are modeled as an

AR(1) and as a time-varying parameter (TVP) AR process, i.e.:

• Two-Sector UC-SV-AR

cit = φict−1 + ζ it , for i = G and S. (A30)

• Two-Sector UC-SV-TVP-AR

cit = φitct−1 + ζ it , (A31)

φit = φit−1 + uφ
i

t , uφ
i

t ∼ N
(
0, σ2

φi

)
for i = G and S. (A32)

Table (A1) reports estimates of the log marginal likelihood, which is the metric for model

comparison we adopt. To compute the log marginal likelihood, we follow Geweke and

Amisano (2011) and carry out a recursive one-step-ahead forecasting exercise.7 Applying

the usual recommendations for interpreting the Bayes factor – i.e. the ratio between the

marginal likelihood from two competing models – as in, e.g., Raftery (1995), one can see

that there is very strong evidence in favor of our assumption to model sector-specific infla-

tion gaps a serially uncorrelated processes, thus reinforcing our choice to follow Stock and

Watson (2007) and Stock and Watson (2016) on how to model the transitory component of

inflation.

7In this forecasting procedure, we start from the fifth observation in our sample for each sectoral inflation
to reduce the sensitivity to priors.
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Table A1: Model comparison results based on predictive simulations

Identifier Log Marginal Likelihood Estimates
Two-Sector UC-SV -2279.4
Two-Sector UC-SV-AR -2593.2
Two-Sector UC-SV-TVP-AR -2876.8

A2.1 Extensions to the Baseline MCMC Algorithm

To accommodate an AR transitory component, we slightly modify the stacked representation

in (A1). In particular, for the Two-Sector UC-AR and Two-Sector UC-TVP-AR models we

express the measurement equation as

y = τ + c, (A33)

where

c
(2T×1)

=

 (cG1 , · · · , cGT )′

(cS1 , · · · , cST )′

 .

• Two-Sector UC-SV-AR

The only additional parameters in the case of the Two-Sector UC-AR model are the AR

coefficients for the sector-specific gaps. The (stacked) representation of the state equation

for c is given by

c = Xcφ+ ζ, (A34)
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where

Xcφ
(2T×2) (2×1)

=



0 0

cG1 0
...

...

cGT−1 0

0 0

0 cS1
...

...

0 cST−1


︸ ︷︷ ︸

Xc

 φG

φS


︸ ︷︷ ︸

φ

.

We employ a Gaussian prior for φ. Specifically, we set φ ∼ N (µφ, Σφ) such that µφ =

(0.5, 0.5)′ and Σφ = 10−3 × I2. Combining such prior with (A34) yields the following full

conditional posterior for φ:

φ|y,Z−φ ∼ N
(
dφ, Dφ

)
, where

dφ = Dφ

(
X′cΣ

−1
ζ c + Σ−1

φ µφ
)
,

Dτ =
(
X′cΣ

−1
ζ Xc + Σ−1

φ

)−1
.

(A35)

• Two-Sector UC-SV-TVP-AR

When assigning a law of motion to the AR coefficients, the model is augmented by an

additional state equation plus two sets of parameters, namely the initial conditions for the

new state variables and variances for the innovations associated with such states. Formally,

we have:

c = Xcφ+ ζ, (A36)

Lφφ = φ0 + uφ, uφ ∼ N (0, Σφ) , (A37)
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where

Xc
(2T×2T )

=

 diag
(
0, cG1 , · · · , cGT−1

)
0

0 diag
(
0, cS1 , · · · , cST−1

)
 , φ

(2T×1)

=

 (φG1 , · · · , φGT )′(
φS1 , · · · , φST

)′
 ,

Σφ
(2T×2T )

=

 σ2
φGIT 0

0 σ2
φSIT

 , Lφ
(2T×2T )

=

 H 0

0 H

 , such that: H
(T×T )

=



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
...

...
...

. . . . . .

0 0 · · · −1 1


.

Initialization conditions for φ are collected as

φ0
(2T×1)

=

 φG0

φS0

⊗


1

0
...

0

 .

Combining (A36) and (A37) yields the following full conditional posterior for φ:

φ|y,Z−φ ∼ N
(
dφ, Dφ

)
, where

dφ = Dφ

(
X′cΣ

−1
ζ c + L′φΣ

−1
φ φ0

)
,

Dτ =
(
X′cΣ

−1
ζ Xc + L′φΣ

−1
φ Lφ

)−1
.

(A38)

Drawing from the density above is carried out using the precision sampling methods discussed

in Section A1.2.1. Finally, sampling {σ2
φG , σ

2
φS} and {φG0 , φS0 } follows the same steps as in

(A26) and (A29), respectively.
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A3 Additional Results from Two-Sector UC-SV

A3.1 Credible Sets of Trend Inflation Estimate

Figure A1 presents the posterior median of our sector-specific and aggregate trend inflation

estimate together with the bounds of the 67% credible set. All results are in terms of

annualized quarter-on-quarter inflation, which corresponds with the units of the data which

enter the estimated model. In general, the estimates appear to be fairly precisely estimated.

A3.2 Comparison Relative to Stock and Watson (2007) UUC-SV

We compare our model to the UUC-SV model by Stock and Watson (2007). For complete-

ness, the Stock and Watson (2007) UUC-SV model is described as follows:

πt = τt + ζt

τt = τt−1 + uτt

ht = ht−1 + uh
j

t , j ∈ {τ, ζ}

uτt ∼ N(0, exp(hτt )), ζt ∼ N(0, exp(hζt )),

where aggregate trend inflation, πt, is decomposed driftless random walk trend, τt and a

transitory noise component, ζt, where both components have laws of motions that allow

for stochastic volatility in their respective innovations. Note that there is zero correlation

between the innovations to trend and transitory noise, as per Stock and Watson (2007) and

Stock and Watson (2016). As should be clear, the key difference between our two-sector

UC-SV model and the Stock and Watson (2007) UUC-SV model is that we split aggregate

inflation into the services and goods sectors. All other features, such as allowing for stochastic

volatility in the variance of the components and the random walk without drift specification

for the random walk component, are identical to our model.

The top panel of Figure A2 compares the trend inflation estimate from the two-sector

model relative to the UUC-SV. The bottom two panels of Figure A2 compares the estimates
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Figure A1: Posterior Distribution of Sector-Specific and Aggregate Trend Inflation
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Notes: Shaded bars are NBER dated recessions. Trend inflation estimates are obtained as the
posterior median estimates from our model. Units in terms of annualized quarter-on-quarter
inflation. Dotted lines represent 67% credible sets.

of aggregate trend inflation volatility from both the UUC-SV model and the two-sector

UC-SV model. All results are in terms of annualized quarter-on-quarter inflation, which

corresponds with the units of the data which enter the estimated model.

We find that the level of the trend inflation estimate from both models largely mimics

one another. In fact, before the Great Recession, the trend inflation estimates from the two-

sector model and the UUC-SV model are indistinguishable from one another. There appears

to be some divergence during and just after the Great Recession where the trend inflation

estimate from our two-sector UC-SV model was slightly lower than the UUC-SV, though

by around 2014, the trend inflation estimates from both models appear to have coincided
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Figure A2: Comparison of Two-Sector UC-SV and UUC-SV

Estimated Aggregate Trend Inflation
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Notes: Shaded bars are NBER dated recessions. All units are in terms of annualized quarter-
on-quarter inflation. Top Panel: Posterior median trend inflation estimate from two-sector
UC-SV and UUC-SV. Bottom panels: Estimated standard deviation of innovations to trend
inflation for two-sector UC-SV and UUC-SV. Posterior median estimate with 67% credible
sets.

once again. On the estimated standard deviation of the innovations to trend inflation, the

bottom two panels of Figure A2 show that the variance of aggregate trend inflation from the

two-sector UC-SV has essentially the same pattern as the UUC-SV. While it is qualitatively

similar, we do note that the estimate of the variance of aggregate trend inflation from the

two-sector UC-SV is slightly larger during the Great Inflation, and about half that of the

UUC-SV around the end of the sample.

We also conducted a pseudo out-of-sample forecasting exercise for 1 to 12 quarter ahead
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Figure A3: Forecasting Performance
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Notes: Results of a pseudo out-of-sample forecasting exercise of inflation for two sample
periods: 1980Q1-2019Q2 and 2000Q1-2019Q2. The results are reported in terms of the
relative root mean squared error (RRMSE) of the inflation forecast of the two-sector
UC-SV model relative to the UUC-SV model. Values below 1 indicate superior forecasting
performance of the two-sector UC-SV model. The solid line reports the RRMSE. The dotted
line indicates the 90% confidence interval of the RRMSE by inverting the Diebold and
Mariano (1995) test statistic. The x-axis represents the forecast horizon in terms of the h
quarter ahead out of sample RRMSE of the forecasts.

PCE inflation.8 Recall that since the transitory component does not feature dynamics, the

h-step ahead forecast of inflation is always the current estimate of trend inflation or

8To be precise, let pt be the natural log of the PCE index. We define annualized quarter-on-quarter
inflation, πt = 400× [pt−pt−1]. When we compute an h-step-ahead forecast, we are forecasting 1

h

∑h
j=1 πt+j

with the model estimated up to time t. This is equivalent to forecasting 1
h400 × [pt+h − pt], which is the

change in the price level from t to t + h, with a scaling factor to account for the annualization and the
horizon.
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Etπt+h = τt ∀ h > 0.

Figure A3 presents the results of the out-of-sample forecasting exercise. We report the

out-of-sample relative root mean squared error (RRMSE) of the two-sector UC-SV relative

to the UUC-SV. Therefore, values below 1 denote superior forecasting performance of the

two-sector model and vice versa. The solid line reports the RRMSE and the dotted lines

are the bounds of the 90% confidence interval of the RRMSE which we construct based

on the Diebold and Mariano (1995) test for forecast accuracy. In general, the forecasting

performance of both models is comparable. Realistically, given the similarities of the ag-

gregate trend inflation estimates from both the two-sector and UUC-SV model, one should

not expect sizeable outperformance of either model. For the forecast evaluation period of

1980Q1 to 2020Q1, the inflation forecasts of both models are statistically indistinguishable

from one another. Nonetheless, we do detect slightly superior forecasting performance of the

two-sector UC-SV model when we shift the forecast evaluation period to 2000Q1-2020Q1.

The superior forecasts of the two-sector UC-SV model in the period 2000Q1-2019Q2 are sta-

tistically significant for the 10-12 quarter ahead forecast based on the Diebold and Mariano

(1995) test, with gains of up to about 7% at particular horizons. We note from Figure A2

that the trend inflation estimates from both models is slightly different between 2008-2013,

and we view it as a positive that our slightly different trend inflation did not compromise,

and indeed may have even improved, the inflation forecast relative to the UUC-SV.

Overall, we find that the implications for aggregate trend inflation which we obtain

from our two-sector UC-SV model are comparable to those one obtains from the UUC-SV

model by Stock and Watson (2007). We essentially obtain similar estimates for aggregate

trend inflation and the general pattern of the rise, then fall of the permanent component of

aggregate trend inflation. We also obtain comparable forecasts to the UUC-SV.
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A4 Details on Implementing Identification of the Pure

Inflation Component

We just restate the main equations for ease of reference. The sector-specific trend infla-

tion can be represented with two components: pure trend inflation and sectoral permanent

changes in the relative prices as follows:

τGt = ft + τG∗t , (A39)

τSt = ft + τS∗t , (A40)

where ft denotes pure trend inflation that is common to both sectors, and τG∗t and τS∗t

captures the relative trend inflation for goods and services, respectively. These three state

variables evolve as follows:

ft = ft−1 + νft , (A41)

τG∗t = τG∗t−1 + ντ
G∗

t , (A42)

τS∗t = τS∗t−1 + ντ
S∗

t . (A43)

To identify each latent component, we impose some restrictions as in Reis and Watson

(2010).9 Specifically, albeit accounting for three state variables (ft, τ
G∗
t and τS∗t ), the model

in (A39)-(A43) only requires two exogenous shocks, namely a pure trend inflation and a

relative trend inflation shock. This implies that ντ
G∗
t and ντ

S∗
t should be perfectly negatively

correlated in order to characterize a relative price shock as a driver that moves the two

sectoral trends in the exact opposite directions at all points in time. Moreover, since both

pure inflation and relative price shocks have permanent effects on the sectoral trend inflation

rates (τGt and τSt ), to distinguish one from the other, ft is assumed to be independent from

9 Reis and Watson (2010) consider a dynamic factor model to extract k factors. The k factors are
then decomposed into one common component (pure inflation) and k − 1 relative price components. The
imposed restrictions in our decomposition for the two-sector model would be similar to those for their model
with k = 2 sectors. Thus, our model requires one pure trend inflation component and one relative price
component. Also, they find that, among k factors, two factors have unit roots: one is associated with pure
inflation and the other is associated with one of the relative price components. Their empirical finding of
the permanent components is exactly consistent with our trend inflation decomposition framework.
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τG∗t and τS∗t . These imposed restrictions result in a variance-covariance matrix given by:


νft

ντ
G∗
t

ντ
S∗
t

 ∼ N



0

0

0

 ,

σ2
f,t 0 0

0 σ2
τG∗,t −στG∗,tστS∗,t

0 −στG∗,tστS∗,t σ2
τS∗,t


 . (A44)

Table A2: Second Moment Restrictions: perfectly negatively correlated Sector-Specific
Shocks

Second Moments UC Model Pure Inflation Decomposition

σ2
τG,t γ2

t exp (hg,t) σ2
f,t + σ2

τG∗,t

σ2
τS ,t γ2

t exp (hg,t) + exp (hs,t) σ2
f,t + σ2

τS∗,t

στ,t γt exp (hg,t) σ2
f,t − στG∗,tστS∗,t

Next, we extract ft, τ
G∗
t and τS∗t by applying Kalman smoothing recursions to the state

space model given by Equations (A39)-(A43). Note that the estimates (posterior medians)

of τGt , τGt , σ2
τG,t, σ

2
τS ,t, and στ,t are readily available from our Two-Sector UC-SV model.

In particular, the three (time-varying) second moment parameters in the covariance matrix

in (A44) are backed out via a matching moment approach using the implied relationship

between σ2
f,t, σ

2
τG∗,t, σ

2
τS∗,t and σ2

τG,t, σ
2
τS ,t, στ,t reported in Table A2.
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A5 Excluding Energy

A5.1 Constructing the Goods Ex-Energy and Services Ex-Energy

Series

To construct the goods ex-energy and services ex-energy series, we use data from BEA Tables

2.3.4 (Price Indexes for Personal Consumption Expenditures by Major Type of Product) and

2.3.5 (Personal Consumption Expenditures by Major Type of Product), which provides a

breakdown of components of the goods and/or services deflator that is made up of energy

goods and energy services, respectively. We use both price indexes and expenditure weights

Figure A4: Goods and Services Excluding Energy Inflation

1960 1970 1980 1990 2000 2010 2020

-20

-10

0

10

P
er

ce
nt

Goods Inflation Good Ex-Energy Inflation

1960 1970 1980 1990 2000 2010 2020
0

2

4

6

8

10

12

P
er

ce
nt

Services Inflation Services Ex-Energy Inflation

Notes: Inflation in terms of annualized quarter-on-quarter inflation.
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for Goods; Services; Gasoline and other energy goods, which are energy components for

goods; and Energy goods and services, which are energy components for both goods and

services because energy components for services only are not available in the tables. We

extract the energy components for services by taking out the energy goods component from

the component that contains both energy goods and services. We then construct chain-

weighted measures of goods and services inflation rates excluding energy components based

on Whelan’s (2002) suggestion of a Tornqvist formula, which is close to the ideal Fisher

formula.

Figure A4 plots the constructed goods and services excluding energy inflation series which

we constructed. We also plot goods and services inflation as a point of reference. As the

energy component of inflation is largely in goods, and less so in services, it is thus not

surprising that the goods excluding energy inflation series does deviate from goods inflation.

In particular, goods inflation does inherit much of the volatility in energy inflation, which

forms part of our motivation of estimating a model by excluding the energy component. On

the other hand, services excluding energy inflation tracks services inflation very closely, a

reflection of the small energy share in services inflation.

A5.2 Other Results with Ex-Energy Data

Figure A5 presents the estimated sector-specific and trend inflation estimates when we ex-

clude energy components. For goods inflation, the estimates differ most during the late

1970s, and differ slightly during the early to mid-2000s. The difference during the 1979/80

oil shock is sufficiently large for the estimated trend goods inflation that the aggregate trend

inflation estimates are sufficiently different during that period. Otherwise, the sector-specific

and aggregate trend inflation estimates are reasonably similar when one includes or excludes

energy components.

Figure A6 compares the estimated standard deviation of the transitory component when

we estimate the model with and without energy. As we can see, much of the transitory noise

component of goods inflation reflects fluctuations in energy prices. We state nonetheless that

while excluding energy, while it has a meaningful impact on the estimates of the noise com-

ponent of goods inflation, our conclusions on trend inflation in the main text are insensitive
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Figure A5: Estimated Trend Inflation
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on-quarter inflation. Baseline refers to the model estimated in the main text. The dotted
lines are estimates using data that exclude energy components in both goods and services.

to the inclusion or exclusion of energy prices.

As energy prices may interfere with the identification of the pure inflation component,

Figure A7 presents the decomposition when we use the ex-energy series for our estimation.

This is analogous to Figure 9 in the main text. Our results remain almost identical to the

results in the main text, which suggests our conclusions about the role of pure inflation

is robust to the inclusion or non-inclusion of energy components in the goods and services

inflation.
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Figure A6: Estimated Trend Inflation
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Posterior median estimate with associated 67% posterior credible interval.

A6 Australia and Canada Data

A6.1 Construction of Goods and Services Deflators for Australia

and Canada

Australia does not provide a goods and services breakdown. We construct the goods and

services deflators by once again using the Household Final Consumption Expenditure in the
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Figure A7: Decomposition into Pure Inflation and Relative Price Components
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quarterly national accounts, provided by the Australian Bureau of Statistics (ABS).10 The

breakdown of consumption expenditure for goods and services in Australia is not reported.

Instead, categories for consumption expenditure is reported. We classified the following as

services: Rent and other dwelling services, Electricity, gas and other fuel, Furnishings and

household equipment, Health Operation of vehicles, Transport services, Communications,

Recreation and culture, Education services, Hotels, cafes and restaurants, and Insurance

and other financial services. We then obtain the value of goods by subtracting the sum of

these services categories. For both goods and services, we create nominal and real price

10See https://www.abs.gov.au/AUSSTATS/abs@.nsf/DetailsPage/5206.0Mar%202020?OpenDocument

for an example of a March 2020 release of the national accounts.
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Figure A8: Goods and Services Inflation Stylized Facts - Australia
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series by taking the appropriate categories from the ABS tables: the seasonally current

prices (nominal) and seasonally adjusted chain-weighted volume measure (real). We then

create the deflators by dividing the nominal measure by the real measure, then multiplying

by 100. Sector-specific inflation rates are then obtained by once again taking the annualized

difference of the natural logarithms.

Statistics Canada reports, as part of its quarterly national accounts, a breakdown of

goods and services in its household final consumption expenditure.11 This breakdown means

that the structure of the Canadian data exactly mimics the US data. We create sector-

specific deflators by dividing the measure of the current price by the measure of the real

11See http://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610012401
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Figure A9: Goods and Services Inflation Stylized Facts - Canada
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price. The sector-specific inflation rates are then constructed using the annualized difference

of the natural logarithm of the deflator, which once again corresponds approximately to

annualized quarter-on-quarter percentage point change in the sector-specific deflator.

Figures A8 and A9 plots for Australia and Canada, respectively, the constructed deflators

(normalized to 1 for both sectors in 1990Q1), year-on-year inflation from the constructed

deflators and the share of total consumption expenditure, mimicking Figure 1 in the main

text. In general, the patterns for Canada look a lot like the US, in the sense that the goods

deflator has flattened for the later part of the same. The pattern of goods and services

inflation in Australia does look a bit different from US and Canada, in the sense that we do

not see the goods deflator flattening substantially. For both Australia and Canada, we do

32



see the services share rise through the sample, similar to what we observe for the US.

A6.2 Other Australia and Canada Results

Figure A10: Estimated Trend Inflation - Canada

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020
-5

0

5

10

15

P
er

ce
nt

Aggregate Inflation

Headline
Trend

1960 1980 2000 2020
-10

-5

0

5

10

15

P
er

ce
nt

Goods Inflation

1960 1980 2000 2020
-5

0

5

10

15

P
er

ce
nt

Services Inflation

Notes: All units are in terms of annualized quarter-on-quarter inflation. Trend inflation
estimates in terms of the posterior median estimate.

Figures A10 to A13 present various results which we obtain when we estimate our model

on Australian and Canadian data. Figures A10 and A12 present the estimated posterior

median estimate of the sector-specific and aggregate trend inflation together with actual

sector-specific and aggregate inflation.

Figures A11 to A13 present the estimated standard deviation of innovations to trend

goods and trend services, analogous to Figure 6 in the main text. In general, we observe
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Figure A11: Estimated Conditional Standard Deviation and Correlation of Innovations -
Canada
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the hump-shaped pattern in volatility as we see in the US. We also see the conditional

correlation peak during the 1970s and 1980s for Canada and Australia, respectively, before

this correlation disappeared in the 1990s. One difference is that the correlation is not very

precisely estimated for Australia, with the 67% posterior credible set always containing zero.

As mentioned in the main text, the implication of all these results is that like the US, both

Australia and Canada have seen the composition of variation in aggregate trend inflation

change from being shared between goods and services to, since the 1990s, being almost fully

dominated by variation in trend services inflation.
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Figure A12: Estimated Trend Inflation - Australia
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Figure A13: Estimated Conditional Standard Deviation and Correlation of Innovations -
Australia
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