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Abstract 
We investigate the causal structure of financial systems by accounting for contemporaneous 

relationships. To identify structural parameters, we introduce a novel non-parametric approach 

that exploits the fact that most financial data empirically exhibit heteroskedasticity. The 

identification works locally and, thus, allows structural matrices to vary smoothly with time. 

With this causality in hand, we derive a new measure for systemic relevance. An application on 

volatility spillovers in the US financial market demonstrates the importance of structural 

parameters in spillover analyses. Finally, we highlight that the COVID-19 period is mostly an 

aggregate crisis, with financial firms’ spillovers edging slightly higher. 
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1 Introduction

Most econometricians base their studies on questions concerning the causality of economic

associations. When interpreting the results, though, they shy away from the term “causal-

ity” because correlations, significant or not, do not imply causation. Econometricians do

so because if it is clear what is the cause and what is the effect, causality is implicitly ev-

ident. This particular idea of quantifying causality was first mentioned by Wright (1921)

with the usage of path diagrams, which illustrate the chain of causation. However, di-

rections of causality are not always apparent. For example, if we are interested in both

directions, and all variables are cause and effect simultaneously, identification without

prior information proves to be difficult.

In this study, we want to answer the question concerning two-way causality to unveil

the Systemic Relevance of financial firms. Take the case of two banks that connect via

their asset and liability structures. Namely, bank i owes money to bank j, such that a

default of i will cause j to default. Further, assume that j is debt-free and that the reverse

is not true. For example, for default probabilities, we observe that when i’s risk increases,

j’s does as well. If this response occurs in the same period, we measure only an undirected

correlation. The absence of the opposite effect, then, only lowers this correlation, and we

remain in the dark about the direction of causality. However, for policymakers, it is crucial

knowledge that i is the systemically more critical bank. Thus, they require methods to

disentangle the two effects.

While pairwise associations between a single bank and the market are a useful be-

ginning to understand systemic issues, they are of limited value because the network

architecture remains latent (see Acemoglu et al., 2015). More precisely, the question of a

system’s financial stability is closely related to the estimation of a unified casual network.

In principle, multivariate time series analysis estimates this full set of dependencies. How-

ever, responses can be captured only when they occur lagged. Less-frequent data almost

always miss out on prompt responses and, thus, we measure responses only as undirected

co-movements or correlations. Employing correlations neglects the causality not only of

the first response but also of all following ones. Consequently, long-term dependencies, e.g.,

forecast error variance decompositions (FEVDs), are also not fully understood. Overall,

a key challenge to measuring a unified causal network is the identification of contempora-
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neous responses.

In this paper, we introduce a novel approach that identifies contemporaneous depen-

dencies. This approach exploits the fact that most financial data exhibit heteroskedasticity.

That is, the covariance matrix of the error terms varies over time. The evolution is free of

any functional form and is only parameterized by fitting a local time trend. To decompose

the covariance matrix into its structural components, we impose two separate assumptions

on the time variation of the connectedness parameter and the idiosyncratic volatility of

structural shocks. This way, we can identify structural parameters if the connectedness of

shocks alternates reasonably more slowly than their idiosyncratic volatility. While the as-

sumptions are slack, the necessary local approximations add to uncertainty and do require

frequent data. Unlike previous work, this local identification improves on the assumption

of connectedness by allowing it to be dynamic. Eventually, we introduce a new intuitive

centrality measure, which is compatible with the systemic importance of financial firms.

The estimation of structural parameters and return volatility spillovers offers new in-

sights into US financial firms. The results suggest that average idiosyncratic risks of banks

shrank over the sample, with connectedness edging a bit higher in the end. Moreover,

peaks in spillovers coincide with financially stressful events. That is, all peaks but the

global financial crisis (GFC) of 2007-09 also have increased spillovers from the market to

financial firms. Factoring in contemporaneous responses leads to more accurate and rea-

sonable results, in particular, for the bailout of the American International Group (AIG)

in September 2008. The snapshot analysis reveals that all firms received strong spillovers

from AIG. Finally, we highlight the Systemic Relevance of institutions over the last two

decades. As of June 2020, we find that JPMorgan Chase is the systemically most relevant

institution, suggesting that it warrants further monitoring by the supervisory authorities.

Our study is related to two strands of the literature: the empirical studies of connect-

edness, and the identification of structural shocks.

While earlier literature measures dependencies as pairwise associations, e.g., Adrian

and Brunnermeier (2011) and Brownlees and Engle (2012), the whole concept of con-

nectedness as a network was first addressed by Diebold and Yılmaz (2014). Their main

claim is the interpretation of FEVDs as networks. However, this framework considers only

contemporaneous relations as undirected correlations. If most significant reactions occur

contemporaneously, this method is prone to misspecifications since it estimates only slower
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reactions. For daily market-based data, we expect a majority of severe responses on the

same day, i.e., contemporaneously. Similarly, causality has been tackled by Billio et al.

(2012), who provide a binary network with entries based on positive Granger causality

tests. These tests are carried out for multiple lags and, hence, also ignore contempora-

neous directions. In contrast, Barigozzi and Brownlees (2019) use equation-wise LASSO-

type techniques to estimate a sparse causal contemporaneous directed network. Yet, a

non-sparse version remains undetected. De Santis and Zimic (2017) directly estimate a

network by employing a structural vector autoregression (SVAR), which is, however, only

set-identified.

With the growing literature on economic networks and the resurrection of graph the-

ory, it is straightforward to think about causality again. Causal relationships go back to

Sewall Wright’s (1921) paper on correlation and causation, in which he uses path diagrams

to explain causality. His pioneering work demonstrates that correlation approaches mostly

miss out on the knowledge we possess. That is, a priori ideas about the chain of causation

support that correlation measures causality. In economics, the question of contemporane-

ous causal relations is equivalent to the identification of structural shocks. Such shocks

are generally interpreted as unexpected, uncorrelated, and exogenous innovations with

economic interpretation. They are identified when we possess the right knowledge, e.g.,

when we impose some restrictions. For example, in the case of unambiguous directions or

one-way causality, causal assumptions are not about the links but rather about the missing

links. In the SVAR literature, triangularization as in Sims (1980) and long-run restrictions

as in Blanchard Olivier and Quah (1989) are the most prominent examples of the exclu-

sion of effects. These equality constraints, however, are too restrictive for many economic

applications. Therefore, set-identification of structural shocks by inequality restrictions,

e.g., Uhlig (2005), are popular in applications.1

Another strand of the literature uses counterfactual reasoning. Typically, economists

use knowledge about causality to get an idea of what an alternative (counterfactual) world

would have been like. While this reasoning is deductive, the literature on heteroskedastic-

ity identification uses induction to quantify causation. Precisely, observing two states of

the world, “factual” and “counterfactual” in the form of changing volatility, can identify

1Fry and Pagan (2011) point out the advantages and disadvantages of identification via inequality
restrictions and highlight explicitly that the estimations are not interpretable with probabilistic language.
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structural shocks (see Rigobon and Sack, 2003). This reasoning generated attention since

the presence of heteroskedasticity in the form of time-varying volatility is uncontroversial

in most applications. Prominent extensions such as Markov-switching processes by Lanne

et al. (2010) and generalized autoregressive conditional heteroskedasticity (GARCH) by

Milunovich and Yang (2013) model heteroskedasticity parametrically absent external in-

formation. To avoid restrictive functional form assumptions from Markov-switching and

GARCH models, Lewis (2017) uses non-parametric heteroskedasticity to identify a finite

set of possible solutions. In contrast, the non-parametric approach in our paper point-

identifies structural parameters and, additionally, allows for time variation in the response

matrix.

The remainder of the paper is organized as follows. Section 2 first sets up the mathe-

matical framework, states identifying assumptions, and offers a likelihood-based extremum

estimator. In Section 3, we introduce a causal network model and show how we claim to

quantify causality. In Section 4, we give further insights into causal financial connect-

edness in the US and focus on the spillovers between financial institutions and market

components. Section 5 concludes.

2 Theoretical considerations

In the application, we consider a structural VAR model, but, more broadly, we first in-

troduce an N dimensional vector process ut with contemporaneous interdependence. ut

can be either directly observed or obtained from a reduced-form model. For a time series

yt, we would have A(L)yt = ut, where A(L) is a matrix function of the lag operator L.

Contemporaneous interdependence is described by

A0,tut = Btεt, ∀t = 1, ..., T, (1)

where the structural matrix A0,t is a real valued parameter matrix of size (N ×N) with

full rank and unit diagonal. Bt is a diagonal matrix with real valued positive entries. The

structural shocks εt have a multivariate distribution with mean zero and unit variance.

The unit diagonal of A0,t and the diagonal structure of Bt ensure that all connections of

the N variables are in the off-diagonal of A0,t. Heteroskedasticity is now included by Btεt

and is, without further restrictions, unconditional. Moreover, since A0,t is also assumed
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to be unconditional, we can use multiple estimation techniques (e.g., general methods of

moments, likelihood methods, or general least squares).

Note that the basic structural equation reads ut = Stεt with St as the structural

matrix. Both problems can be regarded as equivalent since diagonality of Bt and the

unit diagonal of A0,t ensure that there exists a unique decomposition of St = A−10,tBt.
2

The decomposition into A0,t and Bt allows us to impose different assumptions and will

be essential for heteroskedasticity identification. The restrictions we consider focus on

the time evolution of matrix entries and are generally in line with recent literature on

time-varying parameters.3

Time Variation Assumptions. For all t ∈ (1, ..., T ), parameters θt = (A0,t, B
−1
t ) are

bounded random and/or deterministic processes independent of εt. They satisfy

(A0) smoothness: for 1 ≤ k ≤ t and k →∞: supd:|d|≤k ||θt − θt+d|| = Op(k/t).

Further,

(A1) locally linear volatility: B−1t has a time derivative or time trend different from

zero.

(A2) locally constant connectedness: A0,t has a slower alteration rate, i.e., for

some c > 0: supd:|d|≤k ||A0,t −A0,t+d|| = Op(k/t
1+c) = op(k/t).

The smoothness condition (A0) implies that parameters drift slowly with time, which

enables consistent estimation and allows for local approximations. Moreover, (A1) and

(A2) ensure identification of parameters. In fact, the identifying assumption is the differ-

ence in the convergence (alteration) rate. By (A0), the heteroskedastic volatility parameter

Bt is assumed to have an asymptotic derivative, which (A1) ensures is different from zero.

In contrast, (A2) states that A0,t changes more slowly, such that its derivative or time

trend is negligible. In a nutshell, we expect volatility depicted by BtB
′
t to evolve faster

than connectedness in A0,t.

Assumption (A0) is a generalization of the standard assumptions for locally stationary

processes. Namely, in the work of Dahlhaus et al. (2006), the parameter θt = θ(t/T ) is

assumed to be smooth, deterministic and piecewise differentiable. In contrast, (A0) also

2Note that this decomposition will later be problematic due to the normalization. Without further
restrictions, the identification will only be up to column reordering of A0,t.

3See, e.g., Giraitis et al. (2016).

5



allows for stochastic parameter processes but ensures the necessary degree of persistence in

the entries.4 Assumptions (A1) and (A2) are further specifications under the smoothness

condition. While B−1t is linear with a non-zero gradient for sufficiently small segments,

A0,t is constant on the same segment. Intuitively, variations in Bt dominate variations in

A0,t, and thus we can neglect the variations of the latter. In sections 2.1 and 2.2, we make

clear how this preponderance comes into play.

Different from previous studies, this study uses conditions that are more flexible and

further allow A0,t to be time-varying. Whereas this approach also functions under static

A0,t, we are later forced to adopt time variation due to the estimation procedure. Relax-

ation of the time-invariant assumption, however, tackles the most prominent critique of

identification via heteroskedasticity, which states that time variation in Bt is expected to

accompany time variation in A0,t.

2.1 Identification via non-parametric heteroskedasticity

Since this approach is intended to work under parsimonious conditions, identification and

estimation of parameters have two conceptional tasks. First, identification of structural

parameters should proceed absent any equality restrictions and parametric assumptions,

and second, time-varying parameter estimation should be prior-free. To overcome these

challenges, we double use the locally constant and locally linear assumptions for both tasks.

That is, identification works under assumptions (A1) and (A2), and estimation requires

(A0) and (A2). In doing so, we take the idea of Rigobon and Sack (2003), who point out

that structural parameters are identifiable when models exhibit heteroskedasticity. More

precisely, since Bt must have at least two distinct values in (1), it is time-varying.

In the past, time-varying Bt have been modeled similarly with different approaches.

For example, Lanne et al. (2010) use a two-state Markov-switching model, and Milunovich

and Yang (2013) estimate Bt with a parametric GARCH model. Both papers establish

an identification scheme by parametrizing heteroskedasticity in their models. However, it

comes at the cost of functional form assumptions, which makes estimations sensitive to

their compliance. For example, we find structural GARCH estimation numerically unsta-

ble due to the possible dissents between GARCH estimation and structural identification.

Therefore, this paper aims to avoid the parametrization of heteroskedasticity.

4Since Bt is diagonal, its inverse is a diagonal matrix with the entries inverted.
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The missing parametric assumptions from the non-parametric approach challenge struc-

tural identification. To gain additional information in parametric form, we exploit the

assumption of asymptotic differentiability and, thereby, we remain in a non-parametric

environment. Precisely, this assumption allows us to apply a derivative process to model

heteroskedasticity and fit a locally weighted kernel estimator. The local optimization of

an objective function with respect to the functional value and its derivative gives us ad-

ditional knowledge about the drift of the parameters. Such drifts can be estimated and,

therefore, parametrized.

To benefit from infill asymptotics, we approximate continuity of time by rescaling the

time domain [1, ..., T ] to the unit interval. We replace A0,t, Bt and Σt by A0,t/T , B(t/T )

and Σ(t/T ). Note that while we have a functional notation for B(t/T ) and Σ(t/T ), we

leave time as a subscript character for A0,t/T since the relevant asymptotic derivative

∂A0,t/∂t = 0. In particular, we use a Taylor-type expansion around τ for a piecewise

differentiable function f(·),

f(t/T) = fτ + (t/T − τ)ḟτ + 1/2(t/T − τ)2f̈τ + · · · .

For clarity, we denote the functional value at τ with a subscript, f(τ) = fτ . The number

of dots above fτ denotes the respective derivative at τ , e.g., f̈τ =
(
∂2f/∂t2

)
(τ). In order

to keep assumptions as parsimonious as possible, we use a Taylor series of degree one,

which is sufficient for exact identification. Fitting any other degree larger than one makes

the assumptions over-identifying and, hence, testable. A higher degree is easily achievable

by following the same steps as in this paper.

We target the inverse covariance matrix (also called the concentration or precision

matrix) in the Taylor expansion since it obtains a more elegant representation than the

covariance matrix. Its entries relate to the contemporaneous correlations between two

variables conditional on others. More importantly, A0,t/T is non-inverted at the cost of

an inverse B(t/T ), which is easier to take derivative since it is diagonal. Thus, we find it

easier to comply with the assumptions. Lastly, targeting the concentration matrix allows

for a more appealing objective function but does not affect estimation and identification.
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The Taylor expansion for Σ−1(t/T ) = A′0,t/TB(t/T )−2A0,t/T around τ reads

Σ−1τ (t/T ) ≈ Σ−1τ + (
t

T
− τ)Σ̇−1τ , (2)

Σ−1τ = A′0,τB
−2
τ A0,τ (3)

Σ̇−1τ =
∂(A′0,τB(τ)−2A0,τ )

∂τ
(τ)

= Ȧ′0,τB
−2
τ A0,τ − 2A′0,τB

−3
τ ḂτA0,τ +A′0,τB

−2
τ Ȧ0,τ , (4)

where the last equation follows from the chain rule and the diagonality of Bτ . To build

intuition for the derivative of a function under the assumptions (A0) and (A2), we illustrate

the (infill) asymptotics of the time-varying process. For two arbitrary points τ and τ+t/T ,

the functional difference in the limit becomes the derivative,

lim
T→∞

θ(τ + t/T)− θ(τ)
t/T

=
∂θ

∂τ
(τ).

By assumption (A0), this limit exists, and therefore the derivative is asymptotically de-

fined. Additionally, (A2) ensures that the derivative of A0,τ goes to zero with convergence

rate T . For the sake of clarity, derivatives of A0,τ will be dropped since assumption (A2)

ensures asymptotical negligibility. Equation (4) becomes

Σ̇−1τ = −2A′0,τB
−3
τ ḂτA0,τ . (5)

Intuitively, the assumptions allow us to attribute all variation in Στ to variations in Bτ ;

hence, they provide additional information about A0,t. The mapping from the structural

parameters to the reduced-form ones is consequently given by (3) and (5), where there are

N(N + 1) reduced-form parameters in (Σ−1τ , Σ̇−1τ ) and N(N + 1) structural parameters in

(A0,τ , Bτ , Ḃτ ).

In the Appendix, Proposition 1 proves identification of the mappings up to sign reversal

and column reordering. The sign reversals can be thought of as stemming from the square

component B−2τ . We can easily solve this issue by restricting its elements to be positive,

which in turn imposes sign restrictions on Ḃτ . The labeling of shocks can then, if needed,

be checked by the narrative of the story. Also, note that the identification, which is

only up to column reordering of A0,τ , parallels the result in Lewis (2017). However, in a
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network context, we can impose magnitude restrictions to make it uniquely identified. In

Proposition 2 we show that these restrictions are sufficient for global identification.

In a nutshell, identification results from the mappings in (3) and (5) and, therefore,

estimation of the structural parameters is possible if we can find estimates for Σ−1τ and Σ̇−1τ .

Note that, in contrast to previous approaches, identification works for one observation τ

and thus is independent of others. Not only does this peculiarity allow for time variation

in both parameters, but it also leads to a local estimation function, which is well tractable.

The identification works under the condition ḃi/bi 6= ḃj/bj for all i 6= j, which assumes

that the relative derivatives of the structural variances are never the same for two variables.

Considering that it is highly unlikely that relative marginal changes of structural variances

match the same value, we assume that it holds for most heteroskedasticity applications

with (A1) and (A2) fulfilled. Nevertheless, we are aware that weak identification might

become an issue if two relative derivatives come close. Weak identification can stem from

two sources. First, if assumption (A2) is not fulfilled, we erroneously ascribe time variation

of A0,τ to Bτ . This case in particular is problematic because we are unable to make clear

predictions about the resulting bias. Second, if heteroskedasticity in the form of Bτ is

insufficiently fulfilled, global identification in the context of Proposition 2 is invalid.5

2.2 Extremum estimator

In this section, we propose an estimator for the locally constant, locally linear assump-

tions. Recall that, in contrast to previous heteroskedasticity literature, we only require

parameters at one observation for identification. This idiosyncrasy allows us to estimate

the structural parameters point-wise. In doing so, we tackle a weakness of previous papers

that need to assume that A0,t is constant over multiple periods.

Let l(ut|θτ ) be the likelihood of the reduced-form vector ut to occur under the param-

eters of θτ . With a slight abuse of notation, θτ now consists of the structural parameters

(A0,τ , Bτ ) and the derivative Ḃτ .

By plugging in the structural parameters in the log likelihood for normally distributed

5For a more detailed discussion about weak identification in the setup of heteroskedasticity, we refer to
Lewis (2018).
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errors, we get

l(ut|θτ ) = −N
2

ln|2π| − 1

2
ln|Στ (

t

T
)| − 1

2
u′tΣ

−1
τ (

t

T
)ut,

= −N
2

ln|2π|+ ln|A0,τ |+
1

2
ln|B−2τ (IN − 2(

t

T
− τ)ḂτB

−1
τ )|

−1

2
u′tA

′
0,τB

−2
τ A0ut −

1

2
u′tA

′
0,τ (−2)(

t

T
− τ)ḂτB

−3
τ A0,τut,

with | · | denoting the matrix determinant. Note that we take the log likelihood of any

time point t with parameters at τ . This step is necessary for local estimation techniques

and requires us to have approximations for t 6= τ . In particular, we use (2) to get an idea

of other time points. Although the setup implies unconditional covariance matrices, we

plug in the conditional moments in the likelihood.

Due to the nature of Taylor approximations and local smoothing estimators, we choose

an extremum estimator as in Giraitis et al. (2016). This estimator is similar to Fan et al.’s

(1995) locally weighted quasi maximum likelihood (QML) estimator. In contrast to a

standard QML, the extremum estimator estimates locally due to different weights for log-

likelihood realizations. Precisely, it weights residual log likelihoods with a pre-specified ker-

nel Kh(x) = K(x/h)/h and bandwidth h. The kernel is a symmetric continuous bounded

function with compact support and normalized to one. Moreover, the bandwidth h sat-

isfies h → ∞ and h = o(T 1/2). The log likelihood at t has weight Kh(t/T − τ) for the

estimate at τ such that the extremum estimator reads

Lτ (θτ ) =

T∑
t=1

Kh(
t

T
− τ)l(ut|θτ ). (6)

We reformulate (6) with the properties of the Kronecker product, determinant, and inner

product to obtain

Lτ (θτ ) = c+ ln|A0,τ | − ln|Bτ |+
T∑
t=1

Kh(
t

T
− τ)

1

2
ln|IN − 2(

t

T
− τ)ḂτB

−1
τ |

−1

2
trace(Σ̃τA

′
0,τB

−2
τ A0,τ ) + trace( ˜̇ΣτA

′
0,τ ḂτB

−3
τ A0,τ ), (7)
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with

Σ̃τ = UWU ′, W = diag(Kh(
1

T
− τ), ...,Kh(

T

T
− τ)),

˜̇Στ = UDWU ′, D = diag((
1

T
− τ), ..., (

T

T
− τ)),

where c is a constant term encompassing −N
2 ln|2π|, and U = [u1, ..., uT ] is the matrix

of realizations of ut. Note that Σ̃τ and ˜̇Στ represent the local (least square) estimates

with a kernel weighting. Finally, optimizing (7) with respect to (A0,τ , Bτ , Ḃτ ) obtains the

estimates for the structural parameters.

To build intuition, take, for example, the case of an equally weighted kernel, i.e., full

sample or rolling windows. The estimator then assumes that the connectedness matrix A0

is constant over the sample. Similarly, it assumes that the volatility matrix B is a linear

function in this sample. In contrast to first heteroskedasticity identification schemes, the

approach does not need any specification about regime changes; rather, it works with the

slope coefficient of the volatility parameter. Re-scaling to an incremental basis with the

infill asymptotics, then, allows us to approximate this procedure at all time points. The

Taylor expansion of Στ (t/T ) around τ yields an error at observations different from τ . In

the local polynomial estimation, this error is asymptotically negligible by the smoothness

assumption (A0) but adds up to the estimation uncertainty.6

3 Causal networks and measures of connectedness

3.1 The causality of forecast error variance decompositions

We model a group of financial firms and stack respective observables with all other poten-

tial causes in an N dimensional time series vector yt. Then, business between firms in the

form of contractual obligations creates dependencies. Further, and maybe most impor-

tant, intangible factors, such as trust in the context of lending and liquidity, add to the

relationship. These dependencies show, for example, how gains, losses, and risks of firms

are dependent on the financial success of others. The full set of financial dependencies

spans a structure that we want to estimate to deduce systemic issues. We interpret this

6The term
∑T
t=1Kh( t

T
− τ)(l(ut|θt) − l(ut|θτ )) is asymptotically negligible due to similar arguments

as in Giraitis et al. (2016). Clearly, the kernel automatically gives less weight to τ∗ distant from τ and
comprises the approximation errors for Στ∗ . Note that by construction, Σt also fulfills (A0).
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structure as a network and want to label its entries with causality. More precisely, we aim

to obtain various key figures resulting from the estimation of a unified set of dependencies.

This section aims to overcome the fear of using the label “causal” in entries of a net-

work. In the econometrics literature, the term “causality” is tightly connected to the

identification of quasi-experiments through exogenous variations (see Angrist and Pis-

chke, 2009). While experiment-like treatments can be found in many micro-econometric

applications, it proves to be impossible to find policy interventions that comply with time

variation and simultaneity of causal relationships. Thus, we deviate from this approach

and instead opt for a more basic establishment of causation. Specifically, we say a causal

effect occurs if variation in one variable is followed by variation in another, everything else

equal. Thus, we aim to answer the question of how much variation of i can be explained

by variations in j.

Plainly speaking, we quantify contributions of one variable to another. To impart a

network character to this concept, we analyze all effects by decomposing the total varia-

tion in single contributions. The resulting matrix shows the percentage contribution by

each variable. In addition, we allow for different response times by including lagged ob-

servations. That is, the variation can be seen in the forecast variances. Mathematically,

we express the forecast error variance decomposition as7

FEVDt(yi,t+H |yj,t) =
FEVt(yi,t+H |εj,t = 1)

FEVt(yi,t+H |εt = 1N×1)
, (8)

where FEVt(·) is the forecast error variance conditioned on the knowledge at t. FEVt(yi,t+H |εj,t =

1, ε−j,t = 0) is the forecast error variance of i conditioned on a one-standard-deviation

shock to j. FEVt(yi,t+H |εt = 1N×1) is the total forecast error variance of j, i.e., the mean

squared error of i-th H-step-ahead forecast. This ratio, then, explains the contribution of

j on the H-step forecast error variance of i. And with that we can answer the question of

how much variation in i is explained by variations in j.

Diebold and Yılmaz (2014) argue that arranging a new matrix DH
t = [dHij,t] with entries

dHij,t = FEVDt(yi,t+H |yj,t) gives us a network. This network is essential for connectedness

analyses to understand how much variation of a single firm is externally driven. Concep-

tually, it relates closely to the problem of systemic risk and, with the interpretation of

7From now on, we drop the notation of τ and denote all time-varying parameters with subscript t.
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causality, allows for more sophisticated policy decisions by the regulators. To label its

entries with causality, we need to be sure to account for all significant causes. Namely,

leaving out effects translates into misspecifications and false results.

3.2 A causal network model of financial firms

Assuming yt includes all relevant causes, we have to account for only two types of responses,

contemporaneous and lagged. For both response types, we have to argue for their causal

nature as we aim to have a full network allowing simultaneous causation. Again, we

explain the idea of causality with the example of two banks. Assume that bank i causes

j but not vice versa. If the reaction to bank i’s default happens lagged, we can estimate

the responses in a vector autoregression (VAR). The irreversibility of consecutive events

implicitly rules out effects from the future to the past. Even though auto-correlations are

rather a statistical construct, they are sufficient for the interpretation of causality if they

are not confounded.

Similar to Diebold and Yılmaz (2014), we select a VAR(3) with daily observations

of volatility as a baseline model. The common practice is to use the generalized version

of the FEVD, which approximates contemporaneous effects with undirected correlations.

This approach is a good enough approximation if we expect negligible contemporaneous

responses. In most financial setups, it is highly conceivable that the strongest reactions to

adverse shocks occur on the same day. By contrast, a structural VAR obtains contempora-

neous coefficients and therefore implies a decomposition of the covariance matrix. Further,

the structural representation theoretically labels exogenous shocks so that we can see them

as emanating from the respective source. Thus, our model leverages the methodology of

Section 2.1 and incorporates contemporaneous two-way causality via heteroskedasticity.

Retake the example of two banks, but assume that the defaults happen within the same

observation period. Heteroskedasticity translates to observing two states of the world. For

example, in one state i defaults first and j as a result of that. In the other state, we observe

only j’s default. From the first state, we infer that there exists a relationship since both

banks default. From the second, we only see j defaulting, and we infer that there is no

effect from j to i. Thus, the effect must be from i to j. Statistically, if we observe enough

responses for every state, we can estimate them. In other words, we have two worlds with,

by assumption, the same dependency structure. Thus, to reason for causal relationships,
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we see one world as the “counterfactual” of sorts to a factual world. Heteroskedasticity

identification identifies linear causal coefficients.

Additionally to the VAR(3), we nest a network to obtain a structural model. That

is, we extend the VAR(3) of Diebold and Yılmaz (2014) by a contemporaneous directed

network to give it a cleaner causal interpretation. The structural model reads

yt = αt +Gtyt +A1,tyt−1 +A2,tyt−2 +A3,tyt−3 +Btεt, ∀t = 4, ..., T (9)

(IN −Gt)yt = αt +A1,tyt−1 +A2,tyt−2 +A3,tyt−3 +Btεt,

where Gt is an (N × N) adjacency matrix with zero on the diagonal. The network Gt

contains nodes and links representing firms and dependencies, respectively. We assume

it to be directed and weighted, i.e., Gt is non-symmetric and has non-negative values, to

ensure global identification. A1:3,t are real valued time-varying autoregressive matrices

within the boundaries of stationarity. Bt is an (N × N) diagonal matrix representing

the idiosyncratic risks, and εt is the normalized structural shock vector. αt is a vector of

intercepts.

Within this structural model, we ensure global identification since Gt is assumed to

have values between 0 and 1. Recall that it would be sufficient to restrict its entries to be

in (-1,1). However, to ensure a network interpretation, we restrict Gt to be non-negative.

Since A0,t has ones on the diagonal by assumption, we can write the structural equation

ut = A−10,tBtεt,

A0,t = (IN −Gt).

Clearly, the existence of Σt implies that A0,t is invertible. Hence, the geometric series

(IN − Gt)−1 =
∑∞

k=0G
k exists and is finite. Accordingly, the maximum magnitude of

Gt’s eigenvalues, i.e., the spectral radius ρ(Gt), is smaller than 1. With all entries being

non-negative, Gt only has values in [0, 1). Then Gt is an adjacency matrix. Estimating

equation (9) allows us to determine (8). Appendix B shows the calculation of structural

FEVDs and gives insights into their mathematical interpretations.

Networks appear in three forms since various responses help to understand different

kinds of dependencies. First, the “causal” network Gt depicts immediate reactions or
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direct dependencies. It is inexact but perhaps helpful to see this matrix as a within-

seconds reaction type. Second, A−10,t = (IN−Gt)−1 is the “impact” network, which appears

contemporaneously. It quantifies the contagion result at the one-step forecast errors ut.

Loosely speaking, this matrix shows the end-of-the-day outcome of chain reactions. Third,

the “spillover” network shows the dynamic propagation of shocks after H days. In the

upcoming analysis, we focus mainly on the latter as it combines the reactions of the others.

3.3 Measures of connectedness

Visualization of the results proves to be difficult for this analysis since we estimate T − p

matrices for each network. To provide useful insights into systemic issues of the network,

we define connectedness measures in this section. The measures generally apply to all

network matrices: the causal network matrix Gt, the contemporaneous impact matrix

A−10,tBt, and the H-step FEVD DH
t outlined in Appendix B.

In analogy to Diebold and Yılmaz (2014), we add “average connectedness” to analyze

spillover effects over time. For a network matrix M = [mij ], we define

C (M) =
100

N

∑
i

∑
j 6=i

mij . (average connectedness)

The average effect a firm receives multiplied by 100 represents the average connectedness

and provides information about the overall spillover. A value of 50 depicts that 50% of

a firm’s variation is attributable to shocks at other firms. In the empirical section, this

measure applies only to the FEVD and is not further presented for the other two network

matrices.

Moreover, we are concerned with measuring the centrality of firms within the network.

We want to account for characteristics of the network architecture, since considering only

the outgoing or ingoing effects neglects the overall shape of the network. We add a

new model-derived centrality measure in the context of financial risk, which allows for

an economic interpretation. First, note that the impact matrix is a result of contagion

through the causal network Gt. In one period, the reactions through the causal network

Gt mathematically occur infinitely often. Precisely, the contemporaneous reactions of yt

to a shock are depicted by the inverse structural matrix A−10,t = (IN−Gt)−1. As mentioned

before, the inverse is the geometric sum
∑∞

k=0G
k
t .
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Now, for risk mitigation, regulators are primarily interested in the contagion result.

While regulatory interventions relate to changes in the causal network Gt (and potentially

delayed responses), the contagion result is in the impact matrix. Therefore, we account for

this fact by constructing an artificial control experiment.8 That is, we treat one variable

i as the placebo, i.e., all outgoing causal connections of i are set to zero. In algebra, the

placebo variable has a zero column in the causal network Gt. The counterfactual causal

and impact networks are denoted by G∗t,−i and A−1∗0,t,−i Bt = (I −G∗t,−i)−1Bt, respectively.

The difference in the average impact is defined as the “Systemic Relevance” of i:

∆C̄si,t = C̄
(
(IN −Gt)−1Bt

)
− C̄

(
(IN −G∗t,−i)−1Bt

)
, (Systemic Relevance of i)

with C̄ (M) =
100

N

∑
i

∑
j

mij .

Note that this artificial control experiment corresponds to a regulator’s concessions about

the safety of an institution’s obligations. In particular, because the institution’s obligations

are secured, other institutions do not receive any more risk from it. Then ∆C̄si,t measures

the reduction in average risk exposure if i was a non-emanating variable. Amplifications in

the impact matrix decrease more if institution i is systemically more relevant, and hence

bigger values of this measure relate to a higher Systemic Relevance. Note that it is possible

to extend this idea to the lagged components analogously.

4 Connectedness in the US financial system

4.1 Data

For an analysis of financial dependencies and spillovers, high-frequency balance sheets and

other frequently updated obligations are ideal. However, the lack of such data forces us

to estimate dependencies with publicly observable data. We use market-based data since

they reflect the expectations of many strategically acting investors. As in most studies

about spillovers, we study volatility to track investors’ fear. The resulting connectedness

represents the investor-anticipated dependencies of risk, gains, and losses of firms. More-

over, we expect that investors react more severely according to the dependency structure

8Note that we can construct this experiment because we can construct counterfactuals due to the
causality of the matrix.
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of firms if they see those as critical. We follow Parkinson (1980) and measure volatility

with the extreme value estimation,

σ̃2i,t = 0.3607(phighi,t − p
low
i,t )2,

where p
high/low
i,t denotes the daily maximum and minimum log prices, respectively. The

extreme value estimation is particularly appealing due to its simplicity, and we believe

it to be more robust to recording errors.9 Martens and Van Dijk (2007) point out that

realized ranges like this are more efficient and more robust to microstructure noise.

To identify the contemporaneous network, assumptions (A1) and (A2) must hold.10

First, (A1) implies that the exogenous shock vector B(t)εt ∼ (0, B(t)B(t)′) has covariance

matrix B(t)B(t)′ with a trend component. We expect shocks on realized volatility to have

time-varying variance in the form of stable processes. It is conceivable that this component

comes from an investor sentiment cycle and, thus, we assume (A1) to be satisfied. Second,

(A2) implies that entries in Gt evolve smoothly and have slower alterations than Bt.

We argue that this network is a result of dependencies caused by contractual obligations

between financial firms. Stacks of such obligations constantly grow and shrink as old

contracts mature and new ones are signed. Since one contract is just a small increment of

the stack, the network is assumed to be constant for sufficiently short periods. Thus, we

see both assumptions fulfilled.

To provide an economically meaningful interpretation of the orthogonal shocks, we

aim to include a full market in its unity. Therefore, we focus on the US financial market,

which is arguably the financial market taking the fewest foreign shocks. However, because

numerical optimizations and estimation uncertainty suffer in a high-dimensional setup, we

limit the analysis to the most important institutions and shocks. We include the six largest

banks in the US: JPMorgan Chase, Citigroup, Bank of America, Wells Fargo, Goldman

Sachs, and Morgan Stanley. We also include one smaller bank: Bank of New York Mellon.

Note that smaller banks might still have significant effects on bigger banks if they are

non-primary dealers since they refinance solely via the inter-bank market. Moreover, we

include non-bank financial institutions: American Express, a financial services institute;

9The extreme value estimation requires only daily high and low. Thus, we do not require high-frequency
data.

10(A0) follows from (A1) and (A2).
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and AIG, which played a crucial role in 2008.

As previously argued, the statistical method only orthogonalizes εt. However, we also

want to bolster the shocks with some economic meaning. More precisely, we want to

account for shocks that are common to multiple financial institutions. We include market-

specific effects with the SPDR S&P 500 Trust (SPY), which tracks a broad market index.

Because the index will diversify shocks to individual entities, the exchange-traded fund’s

(ETF) volatility will mainly spike if common shocks happen to all stocks. Additionally,

we include the Energy Select Sector SPDR (XLE) to control for common shocks to the

energy sector. We think that this one is important because our sample includes multiple

shocks to the oil price: the GFC, the 2014 oil glut, and the COVID-19 price decline. With

these two ETFs, we hope to address the orthogonality of shocks in a more meaningful way.

So, if we assume that common shocks exclusively occur to the markets, we can interpret

all other shocks as economically meaningful. Nevertheless, there is, most likely, no helpful

interpretation of shocks to the market since the identified shocks could be a mix of various

macroeconomic factors. Figure 1 shows the average log volatility over time.
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Figure 1: Average volatility over time of the nine financial firms as in Table 1, the Energy Select
Sector SPDR (XLE), and the SPDR S&P 500 Trust (SPY). Volatility is measured by the extreme
value estimator as in (4.1).

Table 1 shows descriptive statistics of the nine financial institutions. In general, all

institutions increased their total assets. Excluding the non-banks AIG and American

Express, we observe that all banks had a notable increase in their total assets, ranging

from two times to nearly ten times more assets than in 2000.
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Market Cap. Total Assets
Institution Ticker 2000Q1 2019Q4 2000Q1 2019Q4

American Int. Group AIG 168.8 44.66 279.3 525.06
American Express AXP 66.2 100.84 150.7 198.32
Bank of America BAC 86.9 311.21 656.1 2434.08
Bank of NY Mellon BK 30.6 45.33 76.0 381.51
Citigroup C 201.8 168.9 738.2 1951.16
Goldman Sachs GS 44.8 83.19 276.9 992.97
JPMorgan Chase JPM 71.9 429.91 391.5 2687.38
Morgan Stanley MS 79.9 81.48 408.1 895.43
Wells Fargo WFC 66.4 222.43 222.3 1927.56

Table 1: US financial institutions key figures in billions of US dollars.

Our sample period starts on January 3, 2000, and ends June 12, 2020; hence, it includes

three major crisis: the 9/11 crash in 2001, the GFC with Lehman Brothers defaulting

and the AIG bailout in September 2008, and at the beginning of 2020 the COVID-19

market crash. The data source for all the aforementioned is Reuters. We estimate the

model in a two-step procedure (see Appendix C). Specifically, we use kernel-weighted

least-square estimation for the coefficients and the extremum estimator from Section 2.2

for the structural matrices. The bandwidths assign 95% of the weight to 150 trading days

for the VAR coefficients and the structural parameters.

In the following, we first visualize the whole network for specific dates, and the sample

average, and then we show the evolution of connectedness and other key figures related to

systemic risk.

4.2 Idiosyncratic risk

Figure 2 shows the entries of Bt over time, and it contains two main findings. First, we

see that AIG faced the highest peaks for the idiosyncratic risks. Mainly, we see its curve

peaking around the GFC in 2008-09. This result is expected since AIG faced significant

problems around the Lehman default in September 2008, followed by AIG’s bailout. Later,

we will highlight the Lehman default further. Interestingly, we see that the idiosyncratic

risks peaked roughly a year later in August 2009. This is because the bailout did not

mitigate risks altogether but instead transferred them to AIG. More precisely, potential

risks are now more rooted in the firm than received from other firms.

Second, the solid black line shows that the average idiosyncratic risk for the banks
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Figure 2: Average idiosyncratic risks over time. The lines show the estimation results for entries
in Bt, which correspond to the idiosyncratic risk of a single firm, i.e., the standard deviation of
an orthogonal shock. The fat blue dashed line highlights American International Group (AIG),
and the fat red dotted line highlights the stock market exchange-traded fund SPY. The bold black
solid line shows the average across all banks in the sample. The following stocks and exchange
traded funds are included: American International Group (AIG), American Express (AXP), Bank
of America (BAC), Bank of NY Mellon (BK), Citigroup (C), Goldman Sachs (GS), JPMorgan
Chase (JPM), Morgan Stanley (MS), Wells Fargo (WFC), SPDR S&P 500 Trust (SPY), Energy
Select Sector SPDR (XLE).

decreased over the sample. This finding highlights that even though banks massively

increased their total assets, they could lower their risks stemming from their business

models. A potential explanation is that the Basel accords forced banks to diversify their

portfolios further, such that they face fewer risks idiosyncratically. Note, however, that

this does not imply that banks face fewer risks overall. Instead, it hints that bank-specific

risks edged lower. Dependent risks relate to the concept of connectedness, which we will

investigate further.

4.3 Network representation

To show the effect of having an idiosyncratic and connectedness component, we compare

the generalized forecast error variance decomposition with its structural counterpart in

Figure 3.
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In the liquidity crisis of 2008, AIG, in particular, stood in focus when it became public

that major banks and trading partners, such as Goldman Sachs, Morgan Stanley, and

Bank of America, depended on AIG’s liquidity. Credit default swaps and collateralized

debt obligations were mainly responsible for the firms’ tight entanglement. On September

14, AIG sought $40 billion in Fed aid to survive the uprising liquidity crisis. It followed

the default of Lehman Brothers on September 15 and the bailout of AIG on September

16. For this sample, September 15, 2008, marks a key date since it moved investor atten-

tion towards AIG. Figure 3 shows the five-day forecast error variance decompositions for

this date. We compare the generalized version as in Diebold and Yılmaz (2009) to the

structural version introduced in Section 3.1.11
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Figure 3: One day after Lehman Brothers defaulted on September 15, 2008: Comparison of forecast
error variance decompositions with the generalized version as in Diebold and Yılmaz (2014) on the
left and the structural version on the right. Arrows show the 25% strongest connections, with
the thickness indicating the quantile of the effect. Node colors indicate the sum of all outgoing
arrows, i.e., the outgoing effects of an individual stock on others. The graph is arranged with the
force layout, which places nodes closer to each other when they are more connected. The following
stocks and exchange-traded funds are included: American International Group (AIG), American
Express (AXP), Bank of America (BAC), Bank of NY Mellon (BK), Citigroup (C), Goldman Sachs
(GS), JPMorgan Chase (JPM), Morgan Stanley (MS), Wells Fargo (WFC), SPDR S&P 500 Trust
(SPY), Energy Select Sector SPDR (XLE).

For the generalized version, we see a higher connectedness of financial institutions

11The generalized version has an implicit undirected contemporaneous connectedness assumption.
Namely, for a forecast horizon of one day, we would not be able to see directions in the graph.
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in the node colors and mainly see connections for the traditional banks. This side-by-

side comparison highlights issues with approximating contemporaneous effects. In crises,

investors are more alerted and react faster to shocks. Thus, most significant reactions

occur within the same day. Since the generalized FEVD approximates contemporaneous

connections with undirected correlations, it cannot uncover the full directed FEVD. We

can also see that it connects all receiving institutions as they co-move contemporaneously.

In the left graph of Figure 3, firms with high incoming and low outgoing connections

are overestimated. AIG has mainly outgoing connections in this period, and thus its

effect gets highly underestimated. For the structural FEVD (right graph of Figure 3), in

comparison, the graph is nearly star-shaped, i.e., one central node in the middle affects

all others. That is, AIG has outgoing connections to all other institutions and the market

components. However, this finding does not imply that connections increased necessarily,

but investors valued relationships more due to the uncertainty emanating from AIG.

Figure 4 shows the average of the FEVD over time and the end of the sample estimate.12

From the left-hand graph, we observe mostly sensible links. First, it is evident that

Goldman Sachs and Morgan Stanley, the two investment banks before the GFC, share a

mutual link. Their business models are relatively similar, such that they appear to affect

each other. These links could stem from an unaccounted for component. Moreover, we

see that American Express appears relatively satellite. Its business model is, compared

to others, different such that this result is unsurprising. The energy ETF XLE appears

rather central and shows strong outgoing effects on the big banks and the market (SPY).

In particular, XLE links to JPMorgan Chase, Wells Fargo, and Citigroup, which rank top

three as fossil fuel investors from 2016 to 2019.13 Perhaps surprisingly, AIG shows central

for the network as it has a lot of outgoing arrows. This result not only stems from the

2008 bailout but also potentially highlights how important the insurance company is for

the US banks.

The right-hand graph shows the end of the sample estimate amidst the COVID-19

pandemic crisis. Here, the effect of the market component SPY on the network is striking:

most arrows emerge from SPY (color-coded in red). Recall that shocks to SPY most

likely have no economic meaning since the exchange-traded fund bundles many potential

12Note here that, for identification reasons, the smoothness assumption forces us to use a two-sided
kernel. This makes the accuracy of the estimation better in the middle of the sample than at the end.

13http://priceofoil.org/content/uploads/2020/03/Banking_on_Climate_Change_2020.pdf
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Figure 4: Structural forecast error variance decompositions for the average over time (on the left)
and for June 12, 2020 (on the right), with the 25% strongest connections. The thickness of the
arrows shows the strength of the effect. Node colors indicate the sum of all outgoing arrows, i.e.,
the outgoing effects of a respective stock on others. The graph is arranged with the force layout,
which places nodes closer to each other when they are more connected. The following stocks
and exchange-traded funds are included: American International Group (AIG), American Express
(AXP), Bank of America (BAC), Bank of NY Mellon (BK), Citigroup (C), Goldman Sachs (GS),
JPMorgan Chase (JPM), Morgan Stanley (MS), Wells Fargo (WFC), SPDR S&P 500 Trust (SPY),
Energy Select Sector SPDR (XLE).

aggregate effects. However, the fact that a diversified index has a substantial impact on

single stocks is interpretable. Namely, if shocks are not diversified away by the index,

shocks are likely to be aggregate, i.e., they simultaneously affect more than one stock.

Thus, the strong outgoing effects of SPY tell us that significant parts of increased volatility

in the COVID-19 pandemic stem from aggregate components. Later in this section, we

will disentangle these effects further.

Table 2 shows the entries of the right-hand network graph. The effect of the market

SPY on others is pronounced. Additionally, the incoming effects on the market are rela-

tively low, highlighting further that this crisis is mostly an aggregate shock. JPMorgan is

the only bank showing a substantial effect on the market. We will analyze this peculiarity

later in this section.
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AIG AXP BAC BK C GS MS SPY WFC JPM XLE In

AIG 59.15 0.93 8.90 2.28 1.30 1.60 2.71 9.62 5.09 2.84 5.59 40.85
AXP 7.72 26.42 9.68 4.31 2.05 5.55 0.93 19.92 6.03 13.69 3.68 73.58
BAC 7.71 1.24 26.52 5.75 4.07 10.31 1.55 19.12 13.62 5.93 4.16 73.48
BK 9.79 1.25 6.89 39.41 1.55 5.99 2.44 20.42 2.65 7.05 2.58 60.59
C 8.23 1.10 8.89 5.75 26.38 7.20 2.05 17.49 9.14 8.93 4.84 73.62
GS 9.26 1.69 6.03 5.72 4.22 34.98 1.82 19.78 6.15 7.35 3.01 65.02
MS 7.34 0.74 6.84 10.03 2.89 12.51 18.11 22.68 6.92 8.23 3.71 81.89
SPY 5.01 0.34 3.74 4.83 1.89 2.07 0.97 59.87 2.07 11.28 7.94 40.13
WFC 11.64 0.89 6.67 3.20 2.22 5.05 0.90 16.15 44.27 5.36 3.64 55.73
JPM 7.15 1.15 8.72 6.94 3.73 10.57 0.82 16.46 9.64 31.21 3.61 68.79
XLE 4.87 0.40 2.95 2.11 5.41 1.64 0.89 27.86 1.90 4.21 47.77 52.23

Out 78.73 9.71 69.30 50.91 29.34 62.49 15.08 189.50 63.21 74.87 42.75 62.36

Table 2: Structural forecast error variance decompositions as of June 12, 2020, multiplied by 100.
“Out” sums up all column entries without the respective diagonal value. “In” sums up all row
entries without the respective diagonal value. The value in the bottom right corner is the average
connectedness for that date. The table reads like a matrix, e.g., the effect from American Express
(AXP) to American International Group (AIG) is in the first row and second column. The following
stocks and exchange-traded funds are included: American International Group (AIG), American
Express (AXP), Bank of America (BAC), Bank of NY Mellon (BK), Citigroup (C), Goldman Sachs
(GS), JPMorgan Chase (JPM), Morgan Stanley (MS), Wells Fargo (WFC), SPDR S&P 500 Trust
(SPY), Energy Select Sector SPDR (XLE).

4.4 The evolution of average connectedness and market spillovers

Analyzing the evolution of dependencies, we are interested in peaks of the general trend.

To frame the dynamics, we include a list of events that are potentially important for the

whole system. Table 3 gives an overview of these events.

# Date Event Description

1 July 31, 2007 Bear Stearns liquidates hedge funds:
peak of the subprime crisis

2 September 14-16, 2008 Lehman Brothers default, AIG bailout
3 May 6, 2010 Flash Crash / Crash of 2:45
4 August 6, 2011 Downgrading of the US to AA+

amidst the European sovereign debt crisis
5 November 2014 Oil glut
6 June 2015-February 2016 Chinese stock market turbulence
7 April 20, 2020 Oil futures drop below 0 dollars

amidst the COVID-19 crisis

Table 3: Important events for the dynamics of average connectedness

Figure 5 contains four lines: the average connectedness and its decompositions in

market components and financial firms. Here, an average connectedness of 60 means 60%

variation in stocks’ volatilities are explained by shocks to others. Moreover, the value 20

in the dashed green line means 20% of financial institutions’ volatilities are explained by
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market components, i.e., the SPY or XLE. These spillovers are the summed entries of the

cross-section of the SPY and XLE columns and the financial firms’ rows (divided by N).

The dotted red line shows the spillovers only happening between financial institutions,

i.e., the sum of entries from financial firms to financial firms (divided by N). Analogously,

the spillovers from financial firms to the market components are plotted in dash-dotted

purple. Note here that there are nine financial institutions and only two market variables.

Therefore, a quantitative comparison of the spillover lines is meaningless without scaling

them.
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Figure 5: Average spillovers (solid blue), spillovers between the financial institutions (dotted red),
spillovers from the market to financial institutions (dashed green), spillovers from financial insti-
tutions to the market (dash-dotted purple). The nine financial institutions are as in Table 1, and
the two market components are the SPY and the XLE, representing the overall stock market and
the energy sector, respectively. Events are described in Table 3.

First, note that the first two events during the GFC show a clear build-up to a peak

of average connectedness. That is, Event 1 was mainly a market spillover during the time

when the subprime crisis emerged. The spillovers from the market to financial institutions

(green dashed line) increased and stayed on this level until mid-2008. At that time, the

spillovers between the financial institutions (red dotted line) were already exceptionally

high. In mid-2008 things changed, and the crisis rightly arrived in the nine financial
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institutions. While the market effects diminished, the financial institutions got into more

trouble and spilled more risk. The purple dash-dotted line also increased, showing that

the financial sector had a larger impact on the market than vice versa. The intra-financial

spillovers showed a clear peak during the Lehman default and AIG bailout. This is the

highest measured peak for this measure during the whole sample.

Second, we see other peaks coinciding with major events (Events 3-7). These events

appear to come mainly from the market components. That is, we see all these events

peaking in the dashed green line. The flip side shows in the dotted red line, where intra-

financial spillovers appear relatively unaffected by the major events. Perhaps surprisingly,

the highest peak in market-to-financial-institution spillovers is the downgrading of the US

to AA+ (Event 4) in the middle of the European sovereign debt crisis. This event caused

notable troubles on the stock market and measured exceptionally high volatilities. How-

ever, it shows that the intra-financial spillovers were relatively unaffected by this event. In

contrast, the COVID-19 and the oil price drop (Event 7) caused high market-to-financial-

institution spillovers and led to high intra-financial spillovers. These two combined re-

sulted in the highest average connectedness (blue line) measured in the whole sample.

This highlights that the COVID-19 crisis appears to be mainly a commonality effect.

Excursion The May 6, 2010, Flash Crash, also known as the Crash of 2:45 (Event

3), was a stock market crash that lasted for approximately 36 minutes. On this day,

the stock market indices lost nearly 10% within minutes, only to rebound half an hour

later. Volatility measured exceptionally high and, perhaps surprisingly, connectedness

did as well. Since we cannot identify any other events around this peak, the question

arises whether the volatility level causes the level of average connectedness. In particular,

more uncertainty in the stock market goes hand in hand with a higher average correlation

between the stock returns. However, it is unclear whether a higher volatility level causes

more connectedness or vice versa. Through the story, we expect that connections in

the network form exogenously. That is, a higher degree of connectedness enhances the

spillover of idiosyncratic shocks. By investigating the lead-lag correlation (see Appendix

D) of average connectedness and average volatility, we find support for exogenous network

formation. This finding suggests that average connectedness is a predictor of risk since

its variations lead variations in average volatility. This finding opens up a new research

question: Is average connectedness a good predictor of volatility?
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4.5 On the relevance of single institutions

As a firm-level analysis, we show the Systemic Relevance of the nine financial institutions.

This measure, which we introduced in Section 3.3, demonstrates the centrality of institu-

tions. Recall that the measure is equivalent to a placebo experiment and is meant to reveal

the importance of the respective financial institution. That is, it measures the difference

in the amplification of the impact matrix when institution i’s outgoing causal connections

are mitigated. A higher value of this measure relates to a higher relevance for the system.

The result is a combination of outgoing connections, ingoing connections and the general

architecture of the system’s network. Table 4 describes events related to this analysis.

Date Event Description

A September 16, 2008 AIG bailout
B November 27, 2011 Writedown of 50% of Greek bonds

amidst the Greek sovereign debt crisis
C December 14, 2012 Government commitments to AIG fully recovered
D March 1, 2018 Trump announces steel tariffs

amidst stock market corrections

Table 4: Important events at the firm level

Figure 6 depicts the Systemic Relevances. A value of 25 for institution i relates to a

25% increase in shock amplification due to i. While most of the pattern appears to be

somewhat random, we can still observe some interesting dynamics. First, from eyeballing,

the lines appear to be less co-moving and varying before the GFC. Most likely, this stems

from increasing regulations and, consequently, more interconnections. Second, we see a

sharp drop in AIG’s importance after the bailout by the Fed (Event A). AIG’s Systemic

Relevance stayed low, except for the downgrading of the US to AA+ (small peak in

2011). After Event C, when AIG fully recovered government commitments, its Systemic

Relevance went to higher levels. This story is in line with the fact that AIG should not

have spread more risk after the Fed bailed them out.

Moreover, we see in Event B how a writedown of 50% on Greek bonds affected the

relevance of Goldman Sachs. In particular, GS stood out in the European sovereign debt

crisis since they were involved in hiding the beleaguered state’s debt. At that point, it

was well known that GS even bet on a Greek default. Thus, we see for GS a higher

peak than for anybody else at this event. In Event 6, during the Chinese stock market
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Figure 6: Systemic Relevance measured as described in Section 3.3. Firm-specific events are
denoted by letters and are described in Table 4. General events are denoted by numbers as in
Table 3.
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turbulences, some institutions showed more relevance than others. Bank of America,

Citigroup, Goldman Sachs, Morgan Stanley, and JPMorgan Chase show a notable increase

in relevance during that time. This observation is in line with the exposure of US banks to

China. Namely, these banks also showed the highest exposures to the Chinese market in

2015. To accurately assess common exposures like the Chinese market, it is advisable to

include some sort of proxy. However, given the scope of this paper, we leave this question

for future research.

Moving forward, Event D shows the highest relevance during the sample: Bank of

America’s relevance measured just above 25 when President Trump announced steel and

aluminum tariffs. These tariffs are known to be disruptive for US firms and consumers

(see Amiti et al. (2020)). However, it remains unclear whether this specific peak for Bank

of America comes from the stock market corrections observable at that time or from some

sort of increased exposure to steel-related industries. Lastly, we see a sharp increase of

Bank of America, Goldman Sachs and JPMorgan Chases’s relevance at the end of the

sample and during the COVID-19 crisis. In particular, JPMorgan Chase is the most

relevant institution as of June 2020.

5 Conclusion

In this paper, we tackle the question of how to analyze causal networks. We develop

time-varying assumptions that can identify directed contemporaneous connections. More

precisely, we model time variation non-parametrically, which allows us to estimate a time

trend, ensuring identification. The identification works under parsimonious conditions

and comes with a tractable estimation function. Furthermore, we seize the problem of

static response matrices by allowing all parameters to be time-varying. By arguing about

the causality of the contemporaneous response matrix, we introduce a new centrality

measure that is economically meaningful. This centrality measure highlights the relevance

of financial firms and serves as a critical tool for policymakers to monitor risk.

In the application, we study measures of connectedness. That is, we are interested in

spillovers measured by the framework of Diebold and Yılmaz (2014). We highlight issues

with approximating contemporaneous relations by correlations and, further, successfully

address these with a structural decomposition. The application includes a contemporane-
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ous causal dependency matrix, which provides new insights into financial firms’ connect-

edness. Eventually, we argue how this estimation approach relates to the establishment

of causality.

Empirically, we find that banks show decreasing idiosyncratic risks over the last 20

years. From a connectedness perspective, we find that investors mostly react within a

day in uncertain periods. This finding stresses the importance of using directed contem-

poraneous dependencies. We exemplify the directed connectedness of financial firms by

comparing generalized and structural forecast error variance decompositions. In so doing,

we show the dependency structure for specific dates and the sample average.

Moreover, it appears that average connectedness based on market data mostly peaks

with adverse financial events. However, decomposing it shows that most of these events

are common effects, and only the GFC and the most recent COVID-19 crisis manifest an

increase in financial firm spillovers. This finding highlights not only that investors care

more about the connection of banks in crisis periods but also that financial firms’ spillovers

were rather flat over the sample.

Finally, we investigate the Systemic Relevance of financial firms. In particular, Bank

of America measures high over the sample, and JPMorgan Chase stands out in June 2020.

At that time, JPMorgan Chase was the biggest bank and also asserted its dominance by

being the most relevant institution over the whole sample, suggesting that it warrants

further monitoring by the supervisory authorities.
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Appendices

A Structural Identification

A.1 Observationally equivalent matrices

To get further insights into the identification and estimation, we take the respective re-

duced form of (1),

ut = A−10,tBtεt, E[utu
′
t] = Σt = A−10,tBtB

′
t A
−1
0,t
′
. (10)

Consequently, we get ut as a forecast error with unconditional covariance matrix Σt.

Although we can estimate Σt, we are not able to deduce the structural components from

it. We need at least (N − 1)N/2 further relations to uniquely identify A0,t and Bt. This

requirement immediately follows from the (N2 +N)/2 equations provided by Σt and the

N2 unknowns in (A0,t, Bt).

In order to understand the challenges of structural identification, we follow Rubio-

Ramirez et al. (2010) and introduce the concept of observational equivalence. In short,

two structural parameter points are observationally equivalent if and only if they yield the

same reduced-form distribution of ut. In our setting, this holds true if they yield the same

Σt. To visualize this phenomenon, we redefine the structural parameters such that

Σt = StS
′
t, (11)

with St = A−10,tBt.

Consequently, the parameter set {S̃t = StQ|QQ′ = IN} satisfies (11) and thus produces

the same distribution. In the context of SVARs, we end up with the same observations.

The equivalence follows directly from the orthogonality of Q and can be observed by

plugging it into (11).

Note that whenever there exists more than one observationally equivalent structural

parameter, the structural model is not identified. Thus, the set of orthogonal matrices

defines all possible solutions in an estimation. However, the process in (1) suggests that

only St is correct. Also, this St is the only matrix that identifies the real shocks εt. The fact

34



that we can only observe and directly estimate (11) limits identification and estimation of

the real structural parameters in (1) to the set of observationally equivalent matrices. To

obtain local identification of the structural parameters (A0, Bt), we need to rule out all

Qs but Q = IN such that only the true S̃t = StIN remains.

Recall that conditions on the parameter space, such as exclusion and long-run re-

strictions, are sufficient for local identification in a structural VAR context. However,

economically motivating these restrictions is usually a fruitless challenge. Therefore, we

desire weaker conditions to fit more applications. Sign restrictions, for example, are easy

to motivate but only reduce the number of observationally equivalent parameters to more

than one S̃t. In this case, we say the parameters are partially identified or set-identified.

Although sign restrictions are frequently applied, they fall short when it comes to the

interpretation of the estimation results. Fry and Pagan (2011) point out that solutions

to the estimation cannot be interpreted with probabilistic language anymore, due to the

fact that all but one S̃t are untrue.14 Moreover, in the context of time variation, set-

identification prohibits depicting point dynamics and only allows for interval dynamics,

which are, as pointed out, non-probabilistic. To address this problem, this study focuses

on point-identification by exploiting the mild assumptions (A1) and (A2) for time-varying

parameters.

A.2 Propositions and proofs

Proposition 1. Let Σ−1 = SS′ and Σ̇−1 = SΛS′ be the inverse of a (N ×N) covariance

matrix and its differential, where S is invertible and Λ = diag(λ1, .., λN ) diagonal. If

λi 6= λj for all i 6= j ∈ 1, ..., N the (N ×N) matrix S in the decomposition from mappings

Σ−1 = SS′ and Σ̇−1 = SΛS′ is unique apart from permutation and sign reversal of the

columns, and Λ is unique up to the same permutation and sign reversal of its diagonal

entries.

Proof: Take any other solution of the decomposition S̃ = SQ and a diagonal matrix

14In a first draft of this paper, time variation was used to evaluate the goodness of fit of a single S̃t
in the set of partially identified parameters, but obtaining the complete set of observationally equivalent
solutions proved to be infeasible.
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Λ̃ with distinct values leading to same observations, such that

Σ−1 = SS′ = SQQ′S,′ (12)

⇒ Σ̇−1 = SΛS′ = SQΛ̃Q′S′. (13)

Multiplying the inverse of S from left and right in (12) gives QQ′ = IN . Hence, Q has

to be orthogonal. To prove the proposition, we need to rule out all orthogonal matrices

except the Qs which are permutation matrices with columns multiplied by 1s or −1s.

From (13) it follows that QΛ̃Q′ = Λ and therefore QΛ̃ = ΛQ, i.e. λ̃jqij = λiqij ∀i, j. So,

either qij = 0 or λ̃j = λi. Trivially, it also holds that λ̃kqik = λiqik ∀k 6= j. That is, every

other value in row i also has qik is 0 or λ̃k = λi. Now, when λ̃j = λi, it has to hold that

λ̃k 6= λi ∀k 6= j, since all values in Λ and Λ̃ are distinct. Hence, there exists exactly one en-

try per column in Q. Combined with QQ′ = IN , it follows that q2ij ∈ {0, 1}. Thus, Q has to

be a permutation matrix with entries multiplied by 1s and −1s. Moreover, Λ̃ = Q′ΛQ.

Proposition 2. Assume S = A′0B
−1 and Λ = −2ḂB−1 with A0 having unit diagonal,

B = diag(b1, .., bN ), Ḃ = diag(ḃ1, ..., ḃN ) and S and Λ are as Proposition 1. Then the

decomposition Σ−1 = A′0B
−1B−1A0 and Σ̇−1 = A′0 − 2ḂB−3A0 leads to unique A0 and

unique up to sign B, Ḃ, if the off-diagonal elements of A0 are restricted to be between −1

and 1.

Proof: Assume Ã0, B̃ and ˜̇B are solutions to the decomposition. That is,

S̃ = Ã′0B̃
−1,

Λ̃ = −2 ˜̇BB̃−1.

Further, since all off-diagonal values in Ã0 have to be between −1 and 1, |s̃ij | < s̃jj ∀j 6= i.

More precisely, since the diagonal entry in Ã0 is the biggest absolute value in its row, it

also has to hold for columns of S̃. From Proposition 1 we know that S̃ = SQ, where Q is

either diagonal or a permutation matrix with entries multiplied by 1s and −1s. Now, as-

sume Q is non-diagonal such that the columns in S are permuted. Then, the permutation

would contradict |s̃ij | < s̃jj ∀j 6= i. Thus, Q is diagonal with entries ±1.
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B Structural Forecast Error Variance Decompositions

Without loss of generality, assume a structural VAR(1),

A0,tyt = A1,tyt−1 +Btεt,

where this can be the companion form of a higher order VAR. The MA(∞) representation

for forecast errors ut reads

yt =

∞∑
k=0

Φk,tut−k, Φ0,t = IN , ∀t (14)

where Φk,t is built from the autocorrelation parameters. Since we assume a structural

vector auto regression, we already possess knowledge about a decomposition of ut. That

is, we use ut = A−10,tBtεt to obtain

yt =
∞∑
k=0

Θk,tεt−k, Θk,t = Φk,tA
−1
0,t−kBt−k. (15)

Then matrix Θk,t contains response functions for horizon k. We observe impulse responses

of a unit shock on variable j in the j-th column of matrix

[θij,k,t] = Φk,tA
−1
0,t−kBt−k.

Since εt has mean zero and unit variance, squaring the elements of Θk,t gives us the error

variance for the forecast at horizon k. Summing these error variances from 0 to H − 1

gives us the H-step forecast error variances

Ψ2
t (H) =

H−1∑
k=0

((Φk,tA
−1
0,t−kBt−k)

·2), (16)

where (·)·2 denotes the element-wise squared matrix. The FEVD-table DH
t = [dHij,t] reads

dHij,t =
ψ2
ij,t(H)∑
g ψ

2
ig,t(H)

, (17)

where ψ2
ij,t(H) denotes the ij-th entry of Ψ2

t (H). The ratio explains j-th percentage

contribution on the total forecast variance of all variables on i. Note that, in contrast to
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the generalized version of Pesaran and Shin (1998), the rows of DH
t sum to one.

C Estimation Strategy

The estimation includes two steps. First, we estimate the reduced form, and, second,

we take the resulting residual series for the structural estimation.15 For the empirical

application, the companion form

Yt = A∗tXt + Ut (18)

demonstrates usefulness, where

Yt = (y′t, . . . , y
′
t−p+1)

′, Xt = (1, y′t−1, . . . , y
′
t−p)

′, Ut = (ut, 0, . . . , 0)′,

A∗t =


A−10,tα A−10,tA1,t A−10,tA2,t · · · A−10,tAp,t

0 IN 0 · · · 0
...

. . .
...

0 · · · 0 IN 0

 .

In the first step, we perform a time-variation estimation of (18). We use kernel-weighted

least squares estimation, i.e., a special form of the generalized least squares,

Â∗t = YWtX
′(XWtX

′)−1, (19)

where Wt is defined as in (7) and Y = [Y1, ..., YT ], X = [X1, ..., XT ]. The corresponding

reduced-form residuals are the first N values in Ût = Yt − Â∗tXt. We use this series in

(7) to obtain the structural parameters. Similar to the rolling window estimation, this

estimation approach has the advantage of great simplicity and allows us to stay in a prior-

free environment, i.e., it unveils a more meaningful evolution of connectedness. Note that

we explicitly need assumptions on the time variation of Ai,t. Because they are increments

contributing to the long-run dependency, we impose the same assumptions on them as on

A0,t.

A crucial step in the estimation concerns the choice of bandwidths for both steps: h1

15Note here that a joint estimation as in Kim and Kim (2011) could improve on the potential inference
problematic of the two-step procedure.
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and h2. While arguably the results of the first step affect the second step severely, we

explored robustness of the second step with respect to the first bandwidth. Due to this

robustness and the fact that misspecification potentially increases estimation uncertainty

in the second step, we apply a fully data-driven cross validation (CV) for this bandwidth.

In order to minimize forecast errors in the first step, it is advisable to use the likelihood

of the leave-one-out interpolation errors,

û◦t,h1 = yt − ŷ◦t,h1 , (20)

where ŷ◦t,h1 denotes the estimate of yt with bandwidth h1 and weight 0 on observation t.

This step is equal to setting the t-th diagonal entry of W in (19) to 0. The bandwidth we

consider is chosen with the following log-likelihood type leave-one-out criterion:16

hCV1 = arg max
h

− 1

2

∑
t

(
û◦t,h

′ Σ̂−1û◦t,h
û◦t,h + log(|Σ̂û◦t,h

|)
)
, (21)

where Σ̂û◦t,h
is the full-sample covariance of the interpolation errors. Then hCV1 is the

bandwidth that maximizes the explanatory power of the estimation given a training set.

This set is simply the bandwidth weighted sample without the value it predicts. The

maximization, however, resulted in a unreasonably high bandwidth, such that we are not

able to observe any dynamics in this context. Thus, we chose a bandwidth h1 = 150
2q0.95T

,

which corresponds to 150 trading days in our data. T is the sample length, and q0.05

denotes the 95% quantile of the respective kernel distribution. We use a Gaussian kernel

due to its good asymptotic behavior. The bandwidth assigns 95% of the kernel’s weight

to 150 trading days.

In the second step, we eliminate autocorrelation from the time series by using the

residual series ût = ût,hCV1
with the previously selected bandwidth. Optimally, we also

apply a data-driven bandwidth selection for the extremum estimation, but, unfortunately,

we did not find any convincing criterion to choose the respective bandwidth. To the best

of our knowledge, bandwidth selection for structural matrix estimates is still little studied.

That is, an optimal bandwidth for the covariance matrix does not necessarily imply that

it is also optimal for the structural parameters.

16The sum of squared interpolation errors is potentially inaccurate for a selection criterion because we
expect the covariance matrix to be very different than the identity.
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Thus, in this paper, we focus again on a bandwidth that is meaningful for the needs of

our story. Namely, we choose a bandwidth that assigns 95% of the kernel’s weight to 150

trading days. In particular, h2 = 150
2q0.95T

, where T is the sample length and q0.05 denotes

the 95% quantile of the respective kernel distribution. We use a Gaussian kernel due to

its good asymptotic behavior.

D Complementary Figures
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Figure 7: Lead-lag correlation: corr(C(D5
t ), volat−k). The average volatility at time t is taken over

all variables. The x-axis shows the difference in days.
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