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Abstract 
We analyze ways to reduce funding costs when issuing government debt, without changing 
the level of debt. Leveraging an institutional feature that auctions of different Treasury 
securities are held simultaneously, we propose and implement a method for estimating own- 
and cross-security demand elasticities, avoiding the usual endogeneity issues in demand 
estimation. We show that these elasticities, together with the auction format, determine how 
to optimally allocate debt across securities. Starting from an equal supply split between two 
securities, a government can save money by issuing more of the price-sensitive and less of the 
price-insensitive security in a discriminatory price auction, and vice versa in a uniform price 
auction. 
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1 Introduction

Governments finance expenditures by issuing debt. They attempt to do so in a manner

that minimizes costs. Given the record debt levels in many countries, this has recently

become a primary concern. In order to fulfill this objective, governments have to decide

how to sell their debt: the format of sale, which securities to offer, and how to allocate debt

across different maturities. This is difficult because the demand for securities of different

maturities is likely interdependent, for instance, because their returns are correlated.

We propose and implement a method to estimate full demand systems for potentially

interdependent Treasury securities, using data from all Canadian Treasury auctions from

2002 until 2015. With these estimates, we illustrate how a government can lower the cost

of financing by changing the maturity composition of debt, without changing the total

amount.

In contrast to the existing literature (e.g., Krishnamurthy and Vissing-Jørgensen

(2012)), we use data from Treasury auctions rather than the secondary market to exploit

two unique institutional features. First, in these auctions, bidders submit full demand

schedules. This implies that we do not have to pool data across time and market partic-

ipants to construct demand schedules.1 Second, in many countries (including the U.S.,

Japan, Brazil, France, China, and Canada) securities of different maturities are sold in

separate, parallel auctions. The auctions take place under the same market rules, with

the same set of participants, at the same time and in the same economic situation. There-

fore, we can ensure that variation in quantities is attributable to variation in prices and

not something omitted that is correlated with prices. In contrast, the existing literature

addresses this issue by employing instruments aimed at isolating such exogenous variation

by making the appropriate exogeneity and validity assumptions (e.g., Berry et al. (1995);

Koijen and Yogo (2019)).

Our data contain information on all auctions for Canadian Treasury bills and bonds.

For most of the paper, we focus on bills; bills of different maturities are sold in parallel,

while bonds of different maturities are sold on different days.2 Further, we mostly con-

1A common approach for studying interdependencies across maturities is via term-structure

models. To identify the implied correlations of prices (yields) across maturities, various papers

rely on changes in the supply of Treasury securities (e.g., Krishnamurthy and Vissing-Jørgensen

(2012); D’Amico et al. (2012); Lou et al. (2013)). Other papers provide evidence that even

government bonds that are issued by different countries are close substitutes (e.g., Nagel (2016)).
2The U.S. and other large economies also issue bonds in parallel. Our methodology is easily
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centrate on banks that act as primary dealers (dealers) because they buy almost all the

debt in an average auction. Non-dealer banks (customers) must place their bids via one

of the dealers who can observe each bid before passing it to the auctioneer. We see which

security and maturity type is issued at what amount, in addition to unique anonymized

bidder identifiers. Moreover, we observe all submitted bids (i.e., demand schedules) and

know at what time and how the bids are submitted, whether directly to the auctioneer

or via a dealer. Finally, we observe the identity of the winning bidders, how much they

won and at what price.

We describe the data and the institutional environment in detail in Section 2. We then

devote Section 3 to descriptive evidence that is aimed to motivate that it is important to

consider demand systems that account for interdependencies across different securities.

Using the time-stamps on when bids are placed, we show that dealers who observe their

customers placing bids for one security before the auction closes, say the 3 month bill

(3M), change their own bids not only for the 3M bill (as in Hortaçsu and Kastl (2012)),

but also for the 6M and 12M bill. This points towards interdependencies across the

different maturities. If instead demand for the 3M bill was entirely independent of the

6M bill, the dealer would bid in the 3M auction as if this auction took place in isolation.

In Section 4 we introduce a model of the bidding process in simultaneous Treasury

auctions to identify full demand systems, i.e. demand schedules for all maturities and

describe how to estimate its parameters. For this, we extend previous results on iden-

tifying demand (or willingness to pay) from bidding data in auctions by Guerre et al.

(2000), Hortaçsu (2002) and Kastl (2011) to allow demand to depend not only on the

allocation of the underlying security, but also on prices of securities of other maturities—

similar to theory contributions by Wittwer (2020, 2021); Rostek and Yoon (2021a,b). The

model allows us to overcome two challenges. First, bidders are strategic and shade their

bids which implies that we do not observe their actual demand. Second, by the auction

rules, bidders cannot submit multi-dimensional demand schedules that are contingent on

prices of multiple securities. This means that, unless demand for different maturities is

independent, we only observe parts of the demand schedules.

We present our three main estimation findings in Section 5. First, demand for all

three maturities of bills is rather price-insensitive. For instance, when the average dealer

wins 1% more of the supply of 12M bills, his price offer for the 12M bills decreases by

portable to these other settings.
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0.24 basis points (bps).3 Second, perhaps surprisingly, for the average dealer bills are only

weak substitutes, despite the claim that all bills are cash-like. For instance, if the average

dealer wins 1% more of the supply of the 3M bills, the price offered for the 12M bills

decreases by 0.06 bps, and of the 6M bills by 0.02 bps. Third, dealers are heterogeneous.

To show this, we extend our model to allow each dealer to have a latent type (market

maker or non-market maker) that is unobservable to the econometrician.4

In Section 6, the final part of the paper, we use our demand estimates to study whether

and how a government can increase total auction revenues, and thus reduce funding costs,

by simply reshuffling government debt strategically across different maturities. Here, we

contribute to the literature that examines how to sell Treasuries (e.g., Back and Zender

(1993); Bukhchandani and Huang (1989); Hortaçsu (2002); Hortaçsu et al. (2018)) and to

the literature that determines the optimal maturity structure of government debt (e.g.,

Missale and Blanchard (1994); Greenwood et al. (2015a,b); Bhandari et al. (2019); Bigio

et al. (2021)). In contrast to the first literature, we focus on how to allocate debt across

different maturities. Unlike the second literature, we set aside the dynamic aspects of the

debt allocation problem by including roll-over costs of debt that absorb the (mechanical)

price difference of bonds with different maturities. We then highlight how a government

can reduce its cost of financing by exploiting the fact that demand for shorter bonds tends

to be less price-sensitive than demand for longer bonds, similarly to a monopolist that

price discriminates.

We first introduce a theoretic framework that builds on a simple intuition. Assume

the government seeks to sell a total amount Q in the form of two maturities, S and L.

Aggregate demand is price-insensitive for S and price-sensitive for L, meaning that the

market price for S decreases less when increasing the supply of S by dQ than the market

price for L increases when decreasing the supply of L by the same amount. Then, starting

from an equal split of total supply, a government can increase total revenue by issuing a

3Allen and Wittwer (2021) find that the demand elasticity of an average investor in the sec-

ondary market is of similar magnitudes, applying a fundamentally different estimation approach.
4In Appendix A we provide a micro-foundation for our demand curve specification (in the

spirit of Vayanos and Vila (2021)). This model highlights how demand and prices in the primary

market are affected by the structure of the secondary markets. This complements the literature

on intermediary asset pricing (e.g. He and Krishnamurthy (2013), Brunnermeier and Sannikov

(2014), and He et al. (2017)); in addition to the literature studying how secondary market

structure interacts with Quantitative Easing (e.g., D’Amico and King (2013) and Gorodnichenko

and Ray (2017)).
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bit less of L and a bit more of S. Given the difference in price-sensitivity, this increases

the revenue in the auction for L by more than it decreases the revenue in the auction for

S. However, the lower the supply of L, the lower the revenue gain in the auction for L,

even though the price for L increases more strongly. There is a price-quantity trade-off.

We show that this intuition goes through in a uniform price auction—used, for exam-

ple, in the U.S.—in which all winning bidders pay the market clearing price. It would be

misleading, however, in a discriminatory price auction—used, for example, in Canada—in

which winning bidders pay the prices they bid, adding a novel aspect to the list of things

that distinguish the two auction formats. The reason is that unlike in a uniform price

auction, the entire aggregate demand curve, and not just the market clearing price, mat-

ters in a discriminatory price auction. When supply changes, bidders place different bids

and the aggregate demand curve adjusts. It becomes an empirical question whether it is

revenue-increasing to issue more of S or L.

We then use our demand estimates to show that it is revenue-increasing to issue

more of the price-sensitive bond (longer maturity) and less of the price-insensitive bond

(shorter maturity) in a discriminatory price auction and vice versa in a uniform price

auction. In particular, in a discriminatory price auction, assuming that bonds are perfect

substitutes would lead us to over-estimate the effects on revenue of maturity-shuffling

government debt. On the other hand, assuming independence would lead to an under-

estimate of these same revenue effects. Even though the economic magnitudes are small

for the Canadian bill market (since demands are overall price-insensitive), the exercise

highlights the importance of correctly accounting for interdependencies across maturities

when calculating revenues. Revenue gains from reshuffling supply are larger when demand

is more price-sensitive, as is the case in other markets, such as the Spanish and Portuguese

primary markets (see Bigio et al. (2021); Albuquerque et al. (2022)). It is straightforward

to quantify these gains with our framework and the appropriate data.

In this paper we focus on the demand and supply of government debt, yet our method

and insights on how to split supply across different goods can be useful in many other set-

tings. For example, interdependencies in the demand for different procurement products,

commodities or electricity frequencies are likely to arise for various reasons. For instance,

bidders might face budget constraints which turn different goods into complements or sub-

stitutes. Unlike standard “BLP” demand estimation (following Berry et al. (1995)), our

method can identify both types of interdependencies: substitutes and complements. Our
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counterfactual exercises highlight that taking these interdependencies seriously can help

auctioneers achieve higher auction revenues. Future work could generalize our techniques

to study sequential auctions of related goods.

Throughout the paper, random variables are denoted in boldboldbold.

2 Institutional Environment and Data

We use data on Canadian Treasury bill auctions to leverage institutional features that

help us identify full demand systems.

Institutional Environment. In Canada, Treasury bills are issued with three maturi-

ties: 3, 6, and 12 months. Since 2002 they are sold every second Tuesday by the Bank of

Canada in three separate, but parallel, discriminatory price auctions.

There are two groups of bidders: “dealers” and “customers.” Dealers are either pri-

mary dealers or government securities distributors. Customers can only submit bids

through primary dealers, but like dealers, they tend to be large financial institutions.

They choose not to register as dealers, perhaps to sidestep additional monitoring and

dealer-obligations.5

From the time the tender call opens until the auctions close, bidders may submit and

update their bids in two forms. The first is a competitive bid. This is a step-function

with at most 7 steps, which specifies how much a bidder offers to pay for specific amounts

of the asset for sale. Bids “must be stated in multiples of $1,000, subject to the condition

that each individual bid be for a minimum of $100,000. Each bid shall state the yield to

maturity to three decimal places” (Bank of Canada (2016)). Equivalently, we can convert

yields into prices so that demand schedules are decreasing rather than increasing (see

Figure 1a for an example).6 For this, we use a face value of C$ 1 million throughout the

paper.

The second form is a non-competitive bid. This is a quantity order, which the bidder

will win for sure, but for which he pays the average price of all accepted competitive bid

5One example is Desjardins Securities. As the securities division of one of the largest Cana-

dian financial institutions it is a primary dealer in the bond market, but a customer in the

Treasury market. Similarly, both Casgrain & Company and JP Morgan are not registered as

primary dealers and yet are very important players in the Canadian government bond market

(Hortaçsu and Kastl (2012)). For details see Sections 10 and 11 in Bank of Canada (2016).
6yield =

(
face value−price

price

)(
365

days left to maturity

)
, with face value= C$1 million.
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Figure 1: Bids in the Canadian Treasury bill market

(a) Competitive Bid for 12M (b) Time to Deadline

Figure 1a displays an example of a bidding step function. It is the one of the median dealer in
a 12M auction, computed as follows: Determine the median number of steps in all competitive
bid functions submitted by dealers, and then take the median over all (price, quantity) tuples
corresponding to each step by a dealer who submitted the median number of steps. Figure 1b
depicts the distribution of the time at which bids arrive prior to the deadline in each of the
auctions. Very early outliers and bids that go in after auction closure are excluded.

prices. It is capped at 10 million dollars for dealers and 5 million dollars for customers,

and hence trivial relative to the competitive order sizes—with one exception: the Bank of

Canada itself. It utilizes non-competitive bids to reduce the previously announced supply

and to purchase Treasuries (assets) to match its issuance of bank notes (liabilities).7

When the auction closes, the final bids are aggregated and the market clears where

aggregate demand meets total supply. Everyone wins the amount they asked for at the

clearing price (subject to pro-rata rationing on-the-margin in case of excess demand at

the market clearing price) and pays according to what they bid.

Data. Our data set consists of all 366 Canadian Treasury bill auctions between 2002

and 2015, in addition to all Treasury bond auctions. Table 1 summarizes the data on

bills. On average the Bank of Canada announced issuances of C$6.41 billion for 3M bills

and C$2.47 billion for each of the 6M and 12M bills per auction, of which it actually

distributed roughly C$5.76 (3M) and C$2.12 billion (6/12M). The total amount issued

7The amounts purchased is typically divided proportionally across maturities. The amounts

purchased depend on the Bank’s projection of expected future demand for notes and the amount

of Treasury bills maturing over the following weeks (see Bank of Canada (2015)).
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Table 1: Data Summary of 3M/6M/12M Auctions

Mean SD Min Max
3M 6M 12M 3M 6M 12M 3M 6M 12M 3M 6M 12M

Issued amount 5.76 2.12 2.12 1.68 0.52 0.52 3.05 1.22 1.22 10.40 3.80 3.80
Dealers 11.88 11.79 11.03 0.90 0.93 0.83 9 9 9 13 13 12

Global part. (%) 93.67 93.84 98.84 24.34 24.04 10.67 0 0 0 100 100 100
Customers 6.26 5.68 5.35 2.69 2.94 2.54 1 0 0 14 13 15

Global part. (%) 35.66 40.13 39.46 47.90 49.02 48.88 0 0 0 100 100 100

Comp demand as %
of announced sup. 16.29 16.91 17.02 7.96 7.61 7.31 0.002 0.019 0.005 25 25 25
Submitted steps 4.83 4.23 4.35 1.86 1.78 1.75 1 1 1 7 7 7
Dealer updates 2.89 2.18 2.48 3.58 2.87 3.18 0 0 0 31 31 42
Customer updates 0.12 0.13 0.19 0.40 0.40 0.58 0 0 0 4 3 9

Non-comp dem. as %
of announced sup. 0.05 0.15 0.15 0.03 0.10 0.10 5/105 4/105 2/103 0.24 0.58 0.58

Table 1 displays summary statistics of our sample, which goes from January 2002 until December
2015. There are 366 auctions per maturity. The total number of competitive bids (including
updates) in the 3M, 6M, 12M auctions is 66382, 48927, and 56721, respectively. These individual
steps make up 18272, 15514, and 17077 different step-functions. The total number of non-
competitive bids is 2477, 2378, and 1932. From the raw data we drop competitive bids with
missing bid price (133) and competitive or non-competitive bids with missing quantities (69).
Global part. is the probability of attending the remaining auctions, conditional on bidding for
one maturity. Dollar amounts are in billions of C$.

per year was C$81 billion for the 3M bills and C$29 billion of the longer maturities.8

We identify each bidder through a bidder ID, and bidders are classified as a dealer or

a customer. The average auction has 11 to 12 dealers and 5 to 6 customers. Roughly

71% of participants bid for all three maturities. Such “global participation” is even more

regular among dealers. To keep their bidder status as government security distributor or

primary dealer they have to be active in the primary market.9 Consequently, almost all

who are active in a given auction week go to all three auctions (95%).

We observe all bids submitted from the opening of the tender call until the auction

8Appendix Figure A1 plots the issuance amounts over the period 2012–2017. Except for the

spike in 3M issuance starting with the financial crisis and an increase in government expenditures,

issuances are steady and predictable.
9“At every auction, a primary dealer’s bids, and bids from its customers, must total a

minimum of 50 per cent of its auction limit and/or 50 per cent of its formula calculation,

rounded upward to the nearest percentage point, whichever is less. [...] Each government

securities distributor must submit at least one winning competitive or non-competitive bid on

its own behalf or on behalf of customers, every six months.” (Bank of Canada (2016), p. 12).
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closes. The updating period lasts one week, although most bids arrive within 10 to 20

minutes prior to closing (see Figure 1b). Typically, a dealer updates his (competitive or

non-competitive) bid once or twice. The median number of updates is one. The higher

average (2.26) is driven by outliers. Customers are less likely to update, with an average

number of 0.1 (and a median of no updates).

An average step-function of a competitive bid has 4.5 steps with little difference across

maturities. Non-competitive bids are small in size. On average, bidders only demand

0.1% of the total (announced) supply via non-competitive bid. Given their size, our

structural model abstracts from non-competitive bids, and focuses solely on the decision

of placing competitive bids. The Bank of Canada, on the other hand, demands substantial

amounts via non-competitive bids to reduce the total supply on the day of the auction.

On average, it takes away 11.13% (3M), 14.35% (6M), 14.26% (12M) with a maximum

of 20.45% (3M), 41.66% (6M), 25.00% (12M) of the total previously announced supply.

Our empirical model will need to account for unannounced changes in actual supply.

3 Motivating Interdependencies in Demands

Before estimating demand for different maturities, we present evidence suggesting that

studying auctions for individual maturities in isolation provides an incomplete picture

of demand. Different maturities might be interconnected both on the supply and the

demand side. On the supply side, the Bank of Canada might determine the total amount

for sale at each auction jointly, which leads to a non-zero correlation between the sold

amounts across maturities. On the demand side, dealers might want to buy bundles of

maturities to satisfy the demand of their clients after the auction.

Cross-market correlations. A natural starting point to look for dependencies across

markets is to analyze correlations on the supply and demand side (see Table 2).

The supply that the Bank of Canada announces exhibits perfect positive correlation

across maturities. In fact, over our long sample the Bank of Canada always announces

the exact same issuance size for the 6M and 12M bills. The amount it actually distributes

on the auction day is also almost perfectly correlated.10

10Policy-makers perform stochastic simulations to determine a debt strategy that is desirable

over a long horizon, e.g. 10 years. The model (https://github.com/bankofcanada/CDSM)

trades off risks and costs of different ways to decompose debt over the full spectrum of gov-
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Table 2: Cross-Market Correlations

(a) Supply Side

Q̄3M Q̄6M Q̄12M Q3M Q6M Q12M

Q̄3M 1.00 Q3M 1.00
Q̄6M 1.00 1.00 Q6M 0.99 1.00
Q̄12M 1.00 1.00 1.00 Q12M 0.99 1.00 1.00

(b) Demand Side

qD3M,i qD6M,i qD12M,i q∗3M,i q∗6M,i q∗12M,i

qD3M,i 1.00 q∗3M,i 1.00

qD6M,i 0.92 1.00 q∗6M,i 0.57 1.00

qD12M,i 0.91 0.91 1.00 q∗12M,i 0.54 0.57 1.00

Table 2a displays the correlation between the announced issuance amount,
Q̄m, and the distributed supply, Qm, for the three maturities, m = 3, 6, 12M .
Table 2b correlates bidder i’s demand qDm,i and the amount he won q∗m,i across
the different maturities.

We observe a similar pattern on the demand side. The total amount bidders demand

(via competitive or non-competitive bid) when the auction closes is highly positively

correlated across maturities, about 0.91–0.92. The correlation between quantities actually

won drops to 0.54–0.57 for all maturities which suggests that bidders do not always achieve

this goal.

These correlations suggest that bidders don’t value bills as independent. Bills could

be complements or substitutes. This depends on how much bidders are willing to pay

for one maturity when winning more of the other maturities, and not on the correlation

patterns of supply and demand quantities alone.

Bid updating. Another piece of evidence suggesting dependencies across auctions con-

cerns dealer updating behavior. Observing their customer orders, dealers may update

their own bids, for instance, because customer bids provide information about compe-

tition or the fundamental security value (Hortaçsu and Kastl (2012)). The demand for

ernment securities. Part of the simulation routine is to specify ratios between maturities, for

instance 1/4th of each of the 3/6/12M bills and 1/16th of each of the 2/5/10/30-year bonds (see

Bolder (2003)). Final issuance decisions are taken based on model simulations and judgment.

“The typical practice is to split the total amount purchased by the Bank [of Canada], so that

the Bank’s purchases approximate the same proportions of issuance by the government across

the three maturity tranches” (Bank of Canada (2015)).
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bills across auctions is likely interdependent if dealers, upon observing a customer order

flow (which may be concentrated only in one maturity), update their own bids across

all maturities. To be concrete, say a dealer observes a customer bid in the 3M auction.

This triggers the dealer to update his own bid for the 3M bill. If his demand for 3M,

6M, and 12M bills are interdependent, this should also lead to an update of bids for the

other maturities. To get a preliminary look at this pattern, we run the following Probit

regression on competitive bids placed by dealers:

updatem,i = α +
∑
m

Im (βmcustomerm + δm,−mcustomer−m) + εm,i. (1)

To avoid double counting, each step-function (as in Figure 1a) is treated as one obser-

vation. The dependent variable updatem,i takes value 1 if dealer i updated his bid in

an auction for m, and 0 otherwise. Im is an indicator variable equal to 1 if the update

occurs in the auction for maturity m. customerl (for l = m or −m) is also an indicator

variable, which is created in two different ways. In the more conservative specification (1)

customerl takes value 1 only if the dealer received a competitive order by his customer

for maturity l immediately before taking action in auction m himself. Specification (2)

builds on this benchmark but takes a longer sequence of events, which are less than 20

seconds apart, into account (e.g., as in Appendix Table A1). This acknowledges that it

takes time to calculate bids, enter them manually—which until 2019 is the rule rather

than exception—and transfer them electronically.

Table 3 displays the estimated coefficients for specifications (1) and (2), in columns

(1) and (2), respectively. The significant positive β̂m coefficients support existing evidence

by Hortaçsu and Kastl (2012) on dealer updating. They found that dealers respond to

customer orders by updating their bids within the same auction.

The significantly positive δ̂m,−m suggest that dealers also update their bids across

maturities. As expected, the level of significance increases when taking into account the

fact that in practice dealers’ bids are hardly ever simultaneous, but instead placed in close

sequence.

Taken together, the evidence suggests cross-maturity updating by dealers. The impli-

cations of this phenomenon on government financing, however, are unknown. This requires

a model of bidding behavior and quantifying the magnitude of the cross-maturity demand

elasticities.
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Table 3: Probability of Dealer Updating Bids

Coefficient Verbal description (1) (2)

β̂3M update in 3M after order for 3M 0.533 (0.056) 0.711 (0.053)

δ̂3M,6M update in 3M after order for 6M 0.405 (0.064) 0.531 (0.061)

δ̂3M,12M update in 3M after order for 12M 0.303 (0.057) 0.446 (0.054)

δ̂6M,3M update in 6M after order for 3M 0.086 (0.063) 0.248 (0.059)

β̂6M update in 6M after order in 6M 0.848 (0.076) 0.929 (0.070)

δ̂6M,12M update in 6M after order in 12M 0.729 (0.080) 0.762 (0.074)

δ̂12M,3M update in 12M after order for 3M 0.556 (0.070) 0.664 (0.066)

δ̂12M,6M update in 12M after order for 6M 0.120 (0.059) 0.244 (0.056)

β̂12M update in 12M after order for 12M 0.828 (0.061) 0.934 (0.059)
α̂ constant 0.476 (0.007) 0.448 (0.007)

Table 3 shows the results of the Probit regression (1). In column (1) customerl is an indicator
variable equal to 1 if the dealer received a competitive order from a customer for maturity l
immediately before taking action in auction m himself. In column (2) customerl is an indicator
variable equal to 1 if the dealer received an order for maturity l within one minute before placing
his own bid in auction m, or if the dealer’s bid is part of a sequence of bids which are each less
then 20 seconds apart, starting less than one minute after the customer’s order. The total
number of observations is 39,271. Standard errors are in parentheses.

4 Explaining and Identifying Demand Systems

It is challenging to consistently estimate the full demand system for multiple Treasury

securities for two main reasons. First, banks have private information about how much

they value these securities. This generates incentives to misrepresent the true demand.

As in a first-price auction, bidders shade their bids to reduce the total payments they

must make to win. Thus, we cannot infer their true demands by looking at bids. Second,

even if bidders wanted to report their true demands, by the rules of the auction, they can,

in auction m, only submit a one-dimensional bidding step-function (such as in Figure 1a)

that depends on amounts of security m, not on securities −m. This implies that we only

observe parts of the demand system.

To solve these challenges, we model the auction process. Before doing so, however, it

is useful to take a step back and ask what drives the demand of dealers. In Appendix A,

we formalize a micro-foundation for demand in which dealers buy bonds in the primary

market to sell them to preferred habitat clients who have tastes for specific maturities
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(in the spirit of Vayanos and Vila (2021)). Dealers want to buy enough bonds to satisfy

client demand because it is costly to turn down a client. We show that demand schedules

can be approximated by linear functions (Proposition 3), and that different maturities

are less substitutable (even complementary) for dealers for whom it is more costly to turn

down clients; for large dealers—whom we identify as market makers—who can more easily

satisfy investor demand, bills are stronger substitutes (Corollary 1).

4.1 Model of Primary Auction Market

The micro-foundation motivates key elements of our auction model. In light of Corollary 1

we consider two versions. In the benchmark, all dealers are ex-ante identical. In a model

extension, we allow dealers to be heterogeneous. In this second case, each dealer carries a

business type (e.g., market maker) that is unobservable to the econometrician but known

to the bidders.

Benchmark model. M perfectly divisible goods, indexed m, are auctioned in M sep-

arate discriminatory price auctions, run in parallel. In each auction, there are two groups

(g) of bidders: dealers (d) and customers (c). We assume that the total number of po-

tential dealers Nd and customers Nc is commonly known, and denote the total number of

bidders by N = Nc +Nd.

Over the course of the auction, bidder i of group g draws a private signal sgi,τs
g
i,τs
g
i,τ ≡

(sg1,i,τsg1,i,τsg1,i,τ . . . s
g
M,i,τsgM,i,τsgM,i,τ ) at time τ . The signal may be multi-dimensional. To account for differences

between bidder groups, it may be drawn from different distributions for customers and

dealers.

Assumption 1. Dealers’ and customers’ private signals sdi,τs
d
i,τs
d
i,τ and sci,τs

c
i,τs
c
i,τ are for all bidders i

independently drawn from common atomless distribution functions F d and F c with support

[0, 1]M and strictly positive densities fd and f c.

Notably, a bidder’s signal can be time persistent since we do not pool bids from

auctions held at different points in time. The signal must only be independent from all

other signals conditional on anything that everyone knows at the time of the auction.

This includes all public information that is available in the active forward (when-issued)

market. The presence of this market implies that most, if not all, information relevant for

price-discovery is aggregated prior to the auction and that any private information about

future resale value can be arbitraged away. Thus the heterogeneity of information at the
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time of the auction is likely driven mostly by idiosyncratic factors such as the structure

of the balance sheet, investment opportunities or repo needs—which do not depend on

private information of other dealers. Consistent with this, Hortaçsu and Kastl (2012) fail

to reject that dealers only learn about competition from observing customers’ bids, which

provides some support for assuming that valuations are private.11

Motivated by our micro-foundation (Proposition 3), the bidder’s signal affects his true

linear (inverse) demand or marginal willingness to pay.

Assumption 2. The marginal willingness to pay (or valuation) of a bidder with signal

sgm,i,τ for amount qm conditional on purchasing q−m of the other securities −m is

vm(qm, q−m, s
g
m,i,τ ) = fm(sgm,i,τ ) + λmqm + δm · q−m, (2)

where fm(·) maps any realization of sgm,i,τsgm,i,τsgm,i,τ into R+ for all m, and λm < 0, |δm| < λm, αm

are sufficiently high such that the marginal willingness to pay does not drop below 0 for

any amount that might be for sale.

Note that δm and q−m are vectors when there are more than two maturities—a sim-

plified notation we adopt throughout the paper. The vector of δm parameters measures

interdependencies across maturities. Take the example of the m = 3M auction, where

q−m ≡ (q6M q12M)′ and δm ≡ (δ3M,6M δ3M,12M). If δ3M,6M < 0, bidders are willing to pay

less for any amount of the 3M maturity the more they purchase of the 6M bills, hence

the bills are substitutes. When δ3M,6M > 0 they are complementary, and independent if

δ3M,6M = 0.

Knowing their own true demands, each bidder chooses how to bid. A bid in the

auction for maturity m consists of a set of quantities in combination with prices. It is a

step-function which characterizes the price the bidder would like to pay for each amount.

Assumption 3. In auction m each bidder has the following action set each time he places

a bid:

11In other settings, the independent signal assumption might be too strong. For example,

Boyarchenko et al. (2021) provide evidence of information sharing in U.S. Treasury auctions.

Estimating bidder valuations in such settings without having to make strong functional form

assumptions remains an open question in the literature. Bonaldi and Ruiz (2021) take a first

step in this direction for uniform price auctions.
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Am =


(bm, qm, Km) : dim (bm) = dim(qm) = Km ∈ {1, ..., Km}

bm,k ∈ [0,∞) and qm,k ∈ [0, 1]

bm,k > bm,k+1 and qm,k > qm,k+1∀k < Km.

To compare bids in auctions with different sizes of supply, qm,k ∈ [0, 1], representing

the share of total supply. A bid of 0 denotes non-participation.

To capture the updating process of bids prior to auction closure, we follow Hortaçsu

and Kastl (2012) and assume that new information may arrive at a discrete number of

time slots τ = 0, ...,Γ. At τ = 0, a bidder draws an iid random variable ΨiΨiΨi ∈ [0, 1].

It is one dimension of the bidder’s private signal and thus unobservable to competitors.

It corresponds to the mean of an iid Bernoulli random variable, ΩiΩiΩi, which determines

whether the bidder’s later bids will make it in time to be accepted by the auctioneer.

Specifically, for τ > 0, the bidder’s information set includes the realizations ωi ∈ {0, 1} of

ΩiΩiΩi, where ωi = 1 means that the bid of time τ will make it in time. This gives an incentive

to bid at each arrival of new information because there might not be an opportunity to

successfully bid in the future.

Given that the rules of the auction do not allow for customers to submit their own

bids, at each time τ all customers who want to place an order are matched to a dealer. The

dealer can observe his customer’s bid. This provides him with additional information—one

that is unavailable to other dealers or customers. A dealer might have the same customer

in all three auctions. Denoting the information obtained from observing a customer’s bids

at time τ in auction m by Zm,i,τZm,i,τZm,i,τ , dealer i’s information set or, equivalently, his type is

θgi,τθ
g
i,τθ
g
i,τ = (sgi,τs

g
i,τs
g
i,τ ,Z1,i,τZ1,i,τZ1,i,τ ,Z2,i,τZ2,i,τZ2,i,τ ,Z3,i,τZ3,i,τZ3,i,τ ). If he only has a customer in one auction, say for maturity

1, θgi,τθ
g
i,τθ
g
i,τ = (sgi,τs

g
i,τs
g
i,τ ,Z1,i,τZ1,i,τZ1,i,τ ), and so on. Notice that by Assumption 1, (sgi,τs

g
i,τs
g
i,τ ,Zi,τZi,τZi,τ ) are independent

across dealers and time. However, sgi,τs
g
i,τs
g
i,τ and Zi,τZi,τZi,τ can be correlated within a dealer across τ .

Definition 1. A pure-strategy is a mapping from the bidder’s set of types at each time τ

to the action space of all three auctions: Θg
i,τ → A1 × A2 × A3.

A choice in auction m by a bidder who draws type θgi,τ may be summarized as bidding

function bgm,i,τ (·, θ
g
i,τ ). When auction m closes at τ = Γ, the auctioneer aggregates the

bidders’ final bids, and the market clears at the lowest price P c
m at which aggregate

demand satisfies aggregate supply. The latter is the announced amount for sale net of

what the Bank of Canada demands in the form of non-competitive bids during the auction

plus all other competitive bids by bidder i’s competitors.
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Assumption 4. Supply {Q1Q1Q1,Q2Q2Q2,Q3Q3Q3} is a random variable distributed on [Q
1
, Q1] ×

[Q
2
, Q2] × [Q

3
, Q3] with strictly positive marginal density conditional on sgi,τ ∀i, g = c, d

and τ .

If aggregate demand equals total supply exactly there is a unique market clearing price

P c
m. Each bidder wins their demand at the market clearing price and pays for all units

according to their individual price offers. When there are several prices at which total

supply equals aggregate demand by all bidders, the auctioneer chooses the highest one.

Finally, in the event of excess demand at the market clearing price, bidders are rationed

pro-rata on-the-margin.12

Denoting the amounts bidder i gets allocated by qci = (qc1,i q
c
2,i q

c
3,i) when submitting

bgi,τ (·, θ
g
i,τ ) ≡ (bg1,i,τ (·, θ

g
i,τ ) b

g
2,i,τ (·, θ

g
i,τ ) b

g
3,i,τ (·, θ

g
i,τ )) his total surplus is

TS(bgi,τ (·, θ
g
i,τ ), s

g
i,τ ) = V (qci , s

g
i,τ )−

3∑
m=1

∫ qcm,i

0

bgm,i,τ (x, θ
g
i,τ )dx (3)

in the event in which τ is the time of his final bid, with V (qci , s
g
i,τ ) given by

∂V (qm,q−m,s
g
i,τ )

∂qm
=

vm(qm, q−m, s
g
m,i,τ ) in (2). It is the total utility he achieves from obtaining the amounts

he wins minus the total payments he must make. Ex ante, when placing a bid, the bidder

knows neither how much he will win nor at which price the market will clear. His optimal

choice maximizes the expected total surplus.

Definition 2. A Bayesian Nash equilibrium (BNE) is a collection of functions bgi,τ (·, θ
g
i,τ )

that for each bidder i and almost every type θgi,τ at each time τ maximizes the expected

total surplus, E[TS(bgi,τ (·, θ
g
i,τ ), s

g
i,τ )|θ

g
i,τ ].

We focus on type-symmetric BNE of the auction game, in which bidders who are

ex ante identical follow the same strategies. Dealers who draw the same signal employ

the same function, and similarly for customers: bdi,τ (·, θi,τ ) = bd(·, θi,τ ) and bci,τ (·, θi,τ ) =

bc(·, θi,τ ) ∀i, τ. Across bidder groups strategies might be asymmetric.
12“Under this rule, all bids above the market clearing price are given priority, and only after

all such bids are satisfied, the remaining marginal demands at exactly price P c = p are reduced

proportionally by the rationing coefficient so that their sum exactly equals the remaining supply.

An alternative rationing rule would, for example, not give bids at higher prices priority.” (Kastl

(2011)). The rationing coefficient satisfies Rm(P cm) = Qm−TD+
m(Pm

c )

TDm(P c
m)−TD+

m+(P c
m)

where TDm(P cm)

denotes the total demand at price P cm, and TD+
m(P cm) = limpm↓P c

m
TDm(pm).
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Model extension. Motivated by our micro-foundation (Corollary 1), we consider a

model extension in which dealers have a latent business type χ. Each dealer is either a

market-maker type (χ = mm) or a niche-customer type (χ = nc). Assumptions 1 and 2

adjust in that the private signals draw independently from three distributions F g,mm, F g,nc

and F c, and the marginal willingness to pay may be bidder specific: vm,i(qm, q−m, s
g
m,i,τ ) =

fm,i(s
g
m,i,τ ) + λm,iqm + δm,i · q−m.

Assumption 5 (Model extension). Dealers can be partitioned into two types: Nd =

Nd,mm ∪ Nd,nc, such that ∀ m ∈ Nmm : δd,mmm,i ≤ 0.

From the perspective of the econometrician, who does not know these types, this

means that one of the groups that can be identified (the dealers) splits into subgroups

based on unobservable characteristics.

From the perspective of the bidders, who know these types, this just means that there

are more than two bidder groups. Therefore, there are more than two strategies in the

type-symmetric equilibrium: ∀χ : bd,χi,τ (·, θi,τ ) = bd,χ(·, θi,τ ) and bci,τ (·, θi,τ ) = bc(·, θi,τ ) ∀i, τ .

4.2 Estimation Strategy

We identify the demand schedules in two stages, both, for the benchmark and the extended

model. In stage one, we back out how much each bidder is actually willing to pay. In

stage two, we estimate all demand coefficients.

Bechmark model. To identify how much bidders are willing to pay, we first character-

ize an equilibrium by extending Kastl (2011) and Wittwer (2020). We then assume that

bidders in our data play this equilibrium and estimate the joint distribution of market

clearing prices by extending resampling techniques developed by Hortaçsu (2002), Kastl

(2011) and Hortaçsu and Kastl (2012). This allows us to back out each bidder’s true

willingness to pay from the equilibrium condition.

Bidding incentives in simultaneous discriminatory price auctions are similar to those

in an isolated auction. To fix ideas, it is useful to begin with this simpler case and

eliminate all interdependencies by setting all δ parameters to 0. In this case all auctions

are independent—the demand for one maturity vm(qm, s
g
m,i,τ ) no longer depends on the

amount allocated to this bidder in auctions of other maturities.

In an isolated auction, a bidder chooses his bids to maximize total surplus subject to

market clearing. If the bidder knew the residual supply curve when choosing his bids, he
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would just pick a point on this curve that maximizes his total surplus. Yet, when making

his choices, he does not know this curve as it depends on the random total supply and

the private information of his competitors. He thus has to integrate out the uncertainty

about the market clearing price and evaluate marginal benefits and costs of changing a

bid. The marginal cost is losing the surplus on the last infinitesimal unit demanded, which

happens exactly when the price is between bids, defined by the kth and k + 1st step. The

marginal benefit is saving the difference between these bids whenever the market clearing

price ends up being actually weakly lower than bk+1.

Proposition 1 (Unrelated Goods). Consider a bidder i of group g with private informa-

tion θgi,τ who submits K̂m(θgi,τ ) steps in auction m at time τ . Under Assumptions 1-4 in

any type-symmetric BNE every step k in his bid function bgm(·, θgi,τ ) has to satisfy

vm(qm,k, s
g
m,i,τ ) = bm,k +

Pr
(
bm,k+1 ≥ P cmP cmP cm|θ

g
i,τ

)
Pr
(
bm,k > P cmP

c
mP
c
m > bm,k+1|θgi,τ

)(bm,k − bm,k+1) ∀k < K̂m(θgi,τ )

and bm,k = vm(q̄m(θgi,τ ), s
g
m,i,τ ) at k = K̂m(θgi,τ ) where q̄m(θgi,τ ) is the maximal amount the

bidder may be allocated in the equilibrium.

Given the evidence presented in Section 3 it is highly unlikely that demands for Trea-

sury bills of different maturities are independent. Bidders take this interconnection across

auctions into account when determining their optimal bidding strategies.

Consider an auction for maturity m = 1. When preferences are no longer separable

across maturities, the agent’s demand for amount q1 depends on how much of the other

goods he gets allocated, v1(q1, q−1, s
g
1,i,τ ). Ideally, he would want to condition his price

b1,k for amount q1,k on how much he will purchase of the other securities in equilibrium,

q∗−1,i ≡ (q∗2,i q
∗
3,i)
′. Given that the rules of the auction do not allow participants to express

their preferences in this way, they have to integrate out the uncertainty. Conditional on

winning q1,k, which happens when b1,k ≥ P c
1P
c
1P
c
1 > b1,k+1, a bidder expects a marginal benefit

equal to the following: E
[
v1

(
q1,k, q∗−1,iq∗−1,iq∗−1,i, s

g
1,i,τ

)∣∣ b1,k ≥ P c1P
c
1P
c
1 > b1,k+1, θ

g
i,τ

]
. Analogous to the

decision process in an isolated auction, the agent equates the benefit of winning the bid

with its marginal cost. Since auctions clear separately the cost is identical to the cost

in an isolated auction with one important difference. With stochastic dependence across

auctions, market clearing prices are connected. With M maturities, they are drawn from

a joint M -dimensional distribution.
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Proposition 2 (Related goods). Consider a bidder i of group g with private information

θgi,τ who submits K̂m(θgi,τ ) steps in auction m at time τ . Under Assumptions 1-4 in any

type-symmetric BNE every step k in his bid function bgm(·, θgi,τ ) has to satisfy

ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) = bm,k +

Pr
(
bm,k+1 ≥ P cmP cmP cm|θ

g
i,τ

)
Pr
(
bm,k > P cmP

c
mP
c
m > bm,k+1|θgi,τ

)(bm,k − bm,k+1) ∀k < K̂m(θgi,τ )

with ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) ≡ E

[
vm
(
qm,k, q

∗
−m,iq∗−m,iq∗−m,i, s

g
m,i,τ

)∣∣ bm,k ≥ P c
mP
c
mP
c
m > bm,k+1, θ

g
i,τ

]
for all m

with −m 6= m, and bm,k = ṽm(q̄m(θgi,τ ), s
g
m,i,τ |θ

g
i,τ ) at k = K̂m(θgi,τ ) where q̄m(θgi,τ ) is the

maximal amount the bidder may be allocated in an equilibrium.

To back out the bidders’ valuations from the equilibrium conditions, we estimate the

distribution of market clearing prices P c
t,mP c
t,mP c
t,m and, equally important, the corresponding

amount q∗t,−m,iq∗t,−m,iq∗t,−m,i of each maturity bidder i would win at the market clearing price, by

resampling. Unlike to the case of isolated auctions, the resampling must be done jointly

for all—in our case three—maturities (see Appendix B for details).

The resampling procedure gives consistent estimates under two scenarios: in the bench-

mark, all bidders (customers and dealers) are ex ante symmetric. In particular, dealers

do not know whether their rivals have complementary, substitutable, or independent pref-

erences for different maturities. This is plausible if we believe that these preferences are

mostly driven by fluctuating factors in the secondary market. In the extended model,

there are two groups of dealers. They consistently display different preferences, for ex-

ample, because they follow different business models. Each dealer is aware of how many

dealers are in each group but they do not know dealer identities.13 In principle, this could

be extended to more than two groups.

With the estimated joint distributions, we can estimate how much each bidder expects

to win of the other maturities −m if he were to win a given quantity in maturity m:

Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
= E

[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|bt,m,i,τ,k ≥ P c

t,mP c
t,mP c
t,m > bt,m,i,τ,k+1, θ

g
t,i,τ

]
+ εqt,m,i,τ,k. (4)

Moreover, using Proposition 2, we can back out each bidder’s valuations given the observed

bids at all steps:

v̂t,m,i,τ,k = E
[
vm
(
qt,m,i,τ,k, q

∗
t,−m,iq∗t,−m,iq∗t,−m,i, s

g
m,i,τ

)∣∣ bt,m,i,τ,k ≥ P c
t,mP c
t,mP c
t,m > bt,m,i,τ,k+1, θ

g
t,i,τ

]
+εvt,m,i,τ,k. (5)

13With this specification, our estimates are consistent if the number of bidders is large enough.
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Figure 2: Steps by Bidder Groups

Figure 2 shows a histogram of the number of steps customers (in gray) and
dealers (in red) submit. The fraction is measured in percentage points.

Finally, with (4), (5) and Assumption 2, we can estimate all demand coefficients by run-

ning the following regressions with auction-bidder-time fixed effects, ut,m,i,τ = fm(sgt,m,i,τ ):

v̂t,m,i,τ,k = ut,m,i,τ + λmqt,m,i,τ,k + δm · Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
+ εt,m,i,τ,k ∀m,m 6= −m (6)

on a subsample with competitive bids with at least two steps. Figure 2 shows that it is

the case for virtually all dealer bids: almost all submit more than one step.14

Model extension. In our model extension, we partition dealers into two latent types

χ = mm and χ = nc which are commonly known among bidders but unknown to the

econometrician. In theory one could allow for more than two types. In the estimation, this

is feasible only if there are sufficiently many bidders that participate in an auction, which

is not the case in our setting. Otherwise, one would need to pool auctions that take place

on different dates and lose the ability to control for unobservable auction characteristics.

To recover the valuations, v̂t,m,i,τ,k, we adjust Proposition 2 and extend the resampling

procedure as in Cassola et al. (2013) to account for asymmetric types. The resampling

proceeds in three steps: (i) Partition dealers into the two groups. (ii) Estimate a model,

where resampling is conditional on that assignment.15 (iii) Use the estimated demands to

14In Appendix Table A4 we show that our findings are robust when focusing on bids with at

least 3 steps.
15An mm−type needs to integrate over bids of Nmm−1 other mm-types and Nnc niche-client

types and vice versa.
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classify dealers into types.16 Repeat until (iii) yields the same assignment as we started

with in (i). While there is no formal argument that this procedure will converge, in

practice it converges within 2 or 3 steps. Finally, we estimate regression (6) for each

dealer group separately, identifying the group-specific average δχ and λχ parameters.

5 Findings: Demand Coefficients

We restrict attention to dealers, and impose valuations ṽm(·, sgm,i,τ |θ
g
i,τ ) to be weakly de-

creasing. Furthermore, to correct for outliers that occasionally occur due to small values

of the denominator in the estimated (marginal) hazard rate of the market clearing price,

P̂r
(
bm,k > P c

mP
c
mP
c
m > bm,k+1|θgi,τ

)
, we trim our estimated valuations. Specifically, we restrict

each to be lower than the bidder’s maximal bid plus a markup of about 5 bps (C$500 for

12M, C$250 for 6M, C$125 for 3M).17 This approach is conservative in light of the distri-

bution of how bidders shade the untrimmed estimated valuations per step (see Appendix

Figure A2). The less we trim, the larger, in absolute value, all coefficients (see Appendix

Table A5).

Regressions with bids. As a starting point, we estimate all regressions (6) using

observed bids rather than estimated valuations (see Table 4 (a) and Appendix Table A2).

All δ coefficients are positive (if statistically significant). This means that the average

dealer is willing to pay a higher price when winning more of the other maturities, implying

that bills are complements. This is a somewhat surprising result—there is a long literature

which classify securities of similar term and risk as substitutes.18

16Since we have 3 maturities, we have 6 coefficients in the demand system given by (2)

governing the substitution patterns. We assign a dealer to mm-type if at most 2 of those are

negative.
17Note that 1 bp of a 12M T-bill with a face value of 1 mil corresponds to 1 mil/10,000=C$100.

Hence, 1 bp for a 3M T-bill corresponds approximately to C$25 and for 6M T-bill to C$50.
18Dating back to the 1960s, there has been a long lasting debate about the degree of substi-

tutability of “cash-like” assets (e.g., Sertelis and Robb (1986)). Several recent papers document

that substitution between similar securities, for instance across short and long-term debt, is im-

perfect (e.g., Greenwood and Vayanos (2014); Krishnamurthy and Vissing-Jørgensen (2012) and

D’Amico et al. (2012); Krishnamurthy and Vissing-Jørgensen (2011)); Carlson et al. (2016)).

No study that we are aware of finds complementarities between cash-like assets.
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Regressions with valuations. To determine if bid-shading leads to biased estimates,

we re-estimate the regressions using the estimated valuations. We do this both with

valuations expressed as prices (in C$) and yields (in bps), but only report results for

prices (see Table 4 (b)). In contrast to the case of using bids, all δ coefficients are

now negative, implying that bills are substitutes. This highlights how important it is to

eliminate bid-shading and use the true valuations to identify interdependencies.

The magnitudes of all coefficients are relatively small in absolute terms, which is not

surprising given that the bidding curves in bill auctions are very flat. For instance, when

the dealer wins 1% more of the supply of the 6M bills, his price for the 6M bills decreases

by λ6M =C$11.53. Instead, if he wins 1% more of the supply of the 3M bills the price for

the 6M bills decreases by δ6M,3M =C$2.343, and of the 12M bills by δ6M,1Y =C$0.514.

The δ estimates imply that the dealer’s valuation for the 6M bill decreases by about

C$2.343*7.3+C$0.514*6.9 ≈ C$20.65 when obtaining the average amount of the 3M (7.3%

of supply) and 12M bills (6.9% of supply), rather than nothing. In the 3M auction

the analogous price decrease is about C$0.921*6.7 + C$0.140*6.9≈C$7.14 and in the

12M auctions about C$63.27. These price drops are not negligible in comparison to the

difference between the maximal and minimal bid in the average bidding function, which

is C$142.

Comparing the δ coefficients across auctions, we may notice that the estimates are not

symmetric. For example, δ̂3M,6M 6= δ̂6M,3M . The main reason for this asymmetry is that

prices for different bills are not directly comparable, as the price of a bill mechanically

increases as it approaches maturity. To a first-order approximation, we can eliminate

this difference by dividing the estimates of the 3M auction by 25, the 6M auction by 50

and the 12M auction by 100. Doing so, we obtain δ estimates that are symmetric across

auctions (up to some estimation error).

Heterogeneous dealers. Next, we analyze whether all dealers have similar demand

or whether there are significant heterogeneities. To do so, we estimate the extended

model in which dealers are allowed to have a business type that is unobservable to the

econometrician (see Appendix Table A3). We find that there are two dealer groups with

different preferences. For the 11 dealers in group one, bills are (in most cases) more

substitutable than for the average dealer in our benchmark model. For the 4 dealers in

the second group, preferences are mixed.

Our micro-foundation is able to rationalize these findings (see Corollary 1). Dealers in
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Table 4: Demand coefficients

(a) With bids as independent variables

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −5.033 (0.025) λ6M −7.990 (0.046) λ1Y −15.87 (0.084)
δ3M,6M +0.167 (0.055) δ6M,3M +0.435 (0.101) δ1Y,3M −0.014 (0.212)
δ3M,1Y +0.411 (0.059) δ6M,1Y +0.737 (0.110) δ1Y,6M +1.557 (0.214)

N 58542 42282 50408

(b) With valuations as independent variables

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −6.726 (0.033) λ6M −11.53 (0.066) λ1Y −24.03 (0.135)
δ3M,6M −0.921 (0.073) δ6M,3M −2.343 (0.146) δ1Y,3M −6.317 (0.339)
δ3M,1Y −0.140 (0.079) δ6M,1Y −0.514 (0.159) δ1Y,6M −2.561 (0.342)

N 58542 42282 50408

Table 4 (a) reports the coefficients for equation (6), but with the observed competitive bids
by dealers with more than one step as independent variables rather than the estimated true
valuations. Table 4 (b) reports the coefficients with valuations. Bids and valuations are in C$

and quantities in % of auction supply. The first three columns show the estimates for the 3M Bill
auction, the next three for the 6M Bill auction and the last three for the 12M Bill auction. The
point estimates are in the second, fifth and eight column. Standard errors are in parentheses.

the first group win on average larger amounts in the auctions than dealers in the second

group. They are the bigger players in the market who are not concerned about turning

down clients, either because they hold large inventory positions or because they can rely

on their trading network to quickly and cheaply find the security a clients wants. For

dealers in the second group, who tend to win less at auction, this might not always be

true.

Take away. Taken together, our analysis highlights that bills are (at best) imperfect

substitutes, despite being cash-like. We find that larger dealers (market makers) view

bills more often as substitutes. For the smaller dealers (non-market makers), bills can

become complementary. This can happen, for instance, during or after a financial crisis

when market conditions make it harder for some dealers to (cheaply) serve their clients.
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6 Policy Takeaway: Counterfactual Analysis

In this section we use our demand estimates to analyze how to split total debt across

different maturities strategically so as to reduce the cost of financing, or equivalently,

maximize auction revenues.

We consider the two auction formats most commonly used for Treasuries: discrimi-

natory price and uniform price. In discriminatory price auctions—used, for instance, in

Brazil, Canada, France, Italy, U.K.—bidders pay how much they offered to pay for each

unit of a bond that they win. This implies that different bidders pay different prices for

different amounts of the bond. In contrast, in uniform price auctions—used, for instance,

in Argentina, Korea, Switzerland, U.S., Norway—all bidders pay the market clearing price

for the full amount won.

We make two simplifications. First, we consider the supply split of two bonds pairwise,

and ask under what conditions total revenue increases when issuing a little bit more of one

bond, and a little bit less of the other, holding the total amount of debt constant. Second,

we abstract from non-competitive bids because the large majority of these are allocated

to the auctioneer (Bank of Canada). Therefore, most of the revenue that the auctioneer

collects from non-competitive bids comes from its own pocket, and can thus be viewed as

revenue-neutral in-house transfer. It is straightforward to include non-competitive bids

in the revenue calculations with our framework.

6.1 How to Split Supply Across Maturities?

Assume that there are only two bonds, S for short and L for long, which are auctioned in

two separate auctions. There are two key components that determine how to split total

supply across the two bonds: (i) roll-over costs, and (ii) market price elasticities.

Roll-over costs. Roll-over costs drive a wedge between the market price of the short and

long bond—shorter bonds are typically sold at higher prices than longer bond, PS > PL.19

Thus, if the government’s objective were to maximize the auction revenue on a single day,

it should issue only the short bond. In practice, however, governments do not take this

19In normal times, the yield curve of government bonds is upward sloping, implying that bond

prices decline in term to maturity. Occasionally, this pattern can invert. The key idea, that we

want to normalize prices of bonds of different maturities to take out the term-structure, carries

over.
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strategy. They seek, instead, to maximize revenues over a planning horizon—typically

one year. Doing so, they take into account that the short bond must be rolled-over more

frequently than the long bond to maintain the same level of expenditures, all else equal.

Rolling over debt is costly not only because it involves running more auctions, but also

because it is risky. For instance, if the level of interest rates in the economy suddenly

increases, future auction revenue is lower than expected. To a first-order approximation,

the roll-over cost (and other similar considerations) must be such that the government

does not want to issue more of the short bond and less of the long bond only to cash in

the higher price of the short bond: cS = PS − PL.

Market price elasticities. The second component are the elasticities of the aggregate

demand, Pm(Qm), which sums all (competitive) bids for bond m ∈ {S, L} per unit of

supply. These elasticities not only depend on the bidders’ price sensitivity when winning

more in the auction—the own maturity effect (the λ’s)—but also on how this sensitiv-

ity changes when winning more of the other bonds—the cross-maturity effect (the δ’s).

Typically, the aggregate demand for the long bond is more price-sensitive than for the

short bond, which means that the price for the long bond responds more strongly to a

change in auction supply than the price for the short maturity. This is true when bonds

are independent and when they are substitutes. It may not hold when they are highly

complementary—a case we exclude from our discussion since it seems not to be empirically

relevant.

In a uniform price auction, the difference in price elasticities implies that the gov-

ernment can increase total auction revenue by issuing less of the long bond and more of

the short bond, without changing total supply (see Figure 3 (a)-(b)). The reason is that

everyone pays the market prices, and the market price of the long bond increases more

strongly than the market price of the short bond decreases.

However, there is a price-quantity trade-off. Starting from an equal supply split across

maturities, when the auctioneer moves one dollar from the long into the short bonds, the

price of the short bond drops less than the price of the long bond increases. Thus, while

the revenue of the short bond auction decreases, the revenue of the long bond auction

increases by more. Total revenue increases. Yet, the more debt is issued as short rather

than long, the lower the revenue gain in the long bond auction given that the higher price

for the long bond is multiplied by a smaller and smaller amount. In the extreme, when

the auctioneer goes from a mixed supply split to issuing only short bonds, no one pays
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Figure 3: Simplified example of revenue under two auction formats

(a) Uniform price auction: S
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(c) Discriminatory price auction: S
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The figures on the LHS show the revenue gain (in green) and loss (in red) when issuing dQ
more of S depending on the auction format. The figures on the RHS show the analogous
changes in revenue when issuing dQ less of L. In all cases, we assume that ∂Pm(Qm)

∂Qm
= −µm for

m ∈ {S,L} does not change. Formally, before the change in supply, Q1
S = Q1

L = Q, P 1
S > P 1

L,
c1
S = P 1

S − P 1
L. After issuing dQ more for S and dQ less of L, Q2

S = Q + dQ, Q2
L = Q − dQ

P 2
S = P 1

S −µSdQ, P 2
L = P 1

L +µLdQ. In the uniform price auction, the total change in revenue is
[−µS(Q+ dQ) +µL(Q− dQ)]dQ > 0 when dQ is small, dQ > 0, µL > µS . In the discriminatory
price auction it is [−µS/2dQ− µL/2dQ]dQ < 0 when dQ > 0, µL > 0, µS > 0.

the hypothetical high price for the long bond that would clear the market, and therefore

total revenue decreases.

A similar price-quantity trade-off can arise in the discriminatory price auction (see

Figure 3 (c)-(d)). There are two differences. First, shifting supply towards the short

bond may decrease total revenue. Second, the revenue of one auction is determined by

the area underneath the aggregate demand curve. The key is that this area shrinks in the

long bond auction by more than it increases in the short bond auction when decreasing
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the supply of the long bond—unless bidders adjust the price offers for small amounts of

the bond.

If aggregate demand curves were linear as in Figure 3 and no bidder adjusted bids given

the new supply quantities, we could formalize the price-quantity trade-off for both auction

formats, and determine the revenue-maximizing supply split. In reality, the optimal

supply split cannot be determined as easily.

From theory to practice. In reality, things are more complicated for two main reasons.

First, bidders respond to changes in supply. Therefore, the aggregate demand curves

change. This is especially important when the auction is discriminatory price since the

auction revenue is determined by the shape of the entire aggregate demand curve, and

not only the market clearing price. Take Figure 3 (c)-(d), as an example. Due to the

change in the aggregate demand curve, it is actually not true that the gray area is the

same before and after the change in supply. Generally, it is an empirical question as to

whether total revenue increases or decreases because the theoretical effect is ambiguous.

Second, bidders submit step functions based on their individual willingness to pay and

shade their bids. Both imply that it is not straightforward to compute the steepness of

the aggregate demand curves. These curves have steps and cannot be constructed based

on any single parameter (such as the λ’s) that we can estimate.

6.2 Computing Revenues

We now provide details on how we compute the bids, aggregate demand, and roll-over

costs in our setting so as to quantify the change in total revenue from increasing supply

of a short maturity (6M) and decreasing supply of a long maturity (12M). Throughout,

we keep the supply of the third maturity (3M) that is issued in parallel at the observed

amount. We view this exercise as proof-of-concept to qualitatively test the insights from

our theoretical model.

We focus on the 6M and 12M bills to be conservative. Reshuffling supply from the

12M to 3M bills leads to slightly higher revenue impact since demand for the 3M bills is

less price sensitive than demand for the 6M bills. In addition, we illustrate how sensitive

these revenue gains are when the aggregate demand is more price sensitive—as is the case

for bonds with longer maturities than 12 months.

We present the framework and results using our benchmark model with homogeneous
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dealers. All findings generalize to the extended model with heterogeneous dealers (see

Table A6 and Figure A5 in the Appendix).

Bids for bills. We rely on the existing empirical research to approximate counterfactual

equilibrium bidding strategies.20 The idea is to extrapolate from the observed shading

factors to the counterfactual ones, given that there are by now a fair number of papers

that find shading factors of similar magnitudes for different settings (e.g., Chapman et al.

(2007); Kang and Puller (2008); Kastl (2011); Hortaçsu et al. (2018)).21

We assume that the shading factor changes sufficiently little when going from the status

quo to the counterfactual and approximate the counterfactual (final) bid for amount qm

of a bidder i for maturity m on day t by his demand minus the fixed shading factor:

bcft,m,i(qm) = v̂cft,m,i(qm)− ŝhadingt,m,i(qm) (7)

with v̂cft,m,i(qm) = ût,m,i + λ̂mqm + δ̂m · Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] (8)

and ŝhadingt,m,i(qm) = v̂t,m,i(qm)− bt,m,i(qm) ∀m, i. (9)

Here, v̂t,m,i(qm) is estimated demand for amount qm, and bt,m,i(qm) is the observed (final)

bid. v̂cft,m,i(qm) and bcft,m,i(qm) are the counterfactual demand and (final) bid. Both depend

on the slope parameters, λ̂m and δ̂m, the estimated fixed effect, ût,m,i, and on the amount

the bidder expects to win in the counterfactual, Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm].

Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] depends on how everyone bids in an auction, and thus can be found by

solving a fixed point problem. Solving this problem is computationally intensive since it

involves finding a fixed point for each bidder and each auction. To reduce the computa-

tional complexity, we show by means of examples that Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] is typically very close

to the amount one obtains when rescaling the original expectation by the factor by which

total supply of m is changed in the counterfactual, and approximate the fixed points by

rescaling (see Appendix C for details).

20It is still an open question on how to characterize these strategies. For environments that are

sufficiently complex to capture real world markets, we can only characterize necessary conditions.
21This assumption is stronger when we switch the auction format or scale the demand co-

efficients. As a robustness check we verify that our qualitative findings go through when we

abstract from bid-shading and assume that bidders submit their true demands as is the case in

a perfectly competitive auction.
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Bids for bonds. To highlight how important the market price elasticity is when deter-

mining the supply split, we illustrate how our findings change as price elasticities become

larger.

For this, we use data on Canadian Treasury bond auctions between 2002 and 2015.

We do not estimate the demand systems for bonds of different maturities because these

are sold on different days. This implies that we cannot implement the method developed

in this paper directly. However, we can compare the observed bidding curves across all

maturities to make an educated guess on how revenues might change when reshuffling

supply across longer bonds. This should give a lower bound of all effects given that we

systematically under-estimate the magnitude and differences of all λ estimates when using

bids rather than valuations (recall Table 4).

We first estimate the slopes of bidding curves for different maturities (see Table 5).

As expected, we find that curves become steeper, the longer the maturity. For instance,

bidding curves for 5Y (30Y) bonds are roughly 10 (100) times steeper than those for 6M

(12M) bills. Then, we compute how bidders bid if their willingness to pay was

v̂cft,m,i(qm) = ût,m,i + factorλ ∗ λ̂mqm + factorδ ∗ δ̂m · Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm]

for different factors. For example, we use a λ-factor of 10 to approximate the bids for the

5Y and 10Y bonds using the λ and δ estimates of the 6M and 12M bills, and a λ-factor

of 100 to approximate the bids for the 10Y and 30Y bonds using the λ and δ estimates

of the 3M and 12M bills. In both cases, we use a range of δ-factors from 0 (independent)

up to high enough to make bonds perfect substitutes (i.e., set the δ’s equal to the λ’s,

e.g., λ6M = δ6M,3M = δ6M,12M). This is to avoid imposing that 5Y and 10Y bonds are as

substitutable as 6M and 12M bills, and similarly for the other example.

Aggregate demand curves. Once we have computed all bids of an auction, it is

straightforward to compute the aggregate demand curves in each auction: Pt,m(Qm) =∑
i b
cf
t,m,i(qm).

Roll-over costs. It is an open question in the literature as to how to estimate roll-over

costs for government debt. Providing a precise answer to this question is beyond the scope

of this paper. Here, we merely seek to eliminate the mechanical price effect that makes

short bonds achieve higher auction revenues than long bonds.
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Table 5: Slopes of bidding curves per maturity

3M 6M 12M 2Y 3Y 5Y 10Y 30Y

qm -0.0710 -0.297 -0.534 -1.319 -2.562 -4.444 -11.34 -46.03
(0.000342) (0.00171) (0.00280) (0.0120) (0.0316) (0.0363) (0.0839) (0.438)

N 68045 42224 56880 29804 11413 25421 23246 13195

Table 5 shows the estimated slope of an average bidding curve for each maturity length that
Canada issues, using data of all final bids submitted in all Canadian Treasury Bill and Bond
auctions from 2002 until 2015. Each column displays the β estimate when regressing the sub-
mitted price bids of a bidder in an auction for maturity m on the quantity that this bidder asked
for at that price and a bidder-auction fixed effect: bt,i,m,k = ut,i,m + βqt,i,m,k + εt,i,m,k. Bids and
quantities are in million C$ to facilitate revenue calculations. Note that the units are different
in Table 4 so that the numbers are not directly comparable. Standard errors are in parentheses.

For this, we first compute the prices at which an auction clears when bidders bid as in

(7) and the government issues the observed supply. We normalize the roll-over cost of the

long maturity to zero, ct,L = 0, and define the roll-over cost of the short maturity relative

to the long maturity of an auction as ct,S = P c
t,S − P c

t,L.22 When we make out-of-sample

statements about bonds, we recompute the roll-over cost as the difference between the

market clearing prices that arise if the λ’s and δ’s in the bidders’ willingness to pay was

scaled up by a specific set of factors.

Revenue gains. To quantify how much revenue can be gained when moving slightly

away from the observed supply split, we compute by how much the revenue of one auction

day changes when issuing 1% more of total debt in form of the short maturity and 1%

less of the long maturity, and vice versa. For this, we compute the revenue achieved from

issuing different amounts of a long and a short maturity, for example, the 6M and 12M

bills:

Revenuet =


∑

m∈{S,L}
∑Nt,m

i=1

∫ q∗t,m,i
0 (bcft,m,i(qm)− ct,m)dqm if discriminatory price∑

m∈{S,L}(P
c
t,m − ct,m)Qt,m if uniform price,

22Alternatively, we could compute the costs that rationalize the supply split that we observe

in the data, assuming that the Bank of Canada chooses the supply split that maximizes the

revenue of an auction day, or on average in a year. These cost estimates are similar to the

ones we pick. We prefer to take the cleaner and more transparent approach to eliminate the

mechanical price effect.

29



where Nt,m is the observed number of bidders who participate in the auction for maturity

m on day t, bt,m,i(qm) is a bid for amount qm of a bidder i, q∗t,m,i is the amount this bidder

wins at market clearing, P c
t,m is the market clearing price, ct,m is the maturity’s roll-over

cost, and Qt,m is the supply issued to competitive bidders.

We measure the gain (or loss) in revenue in bps of the revenue before reshuffling supply

(locally). For example, a revenue gain of 1 bps means that the government earned 0.01%

more money in a single auction. Given the large quantities of new debt issued, even a

small percentage increase can translate into large annual costs savings.

6.3 Findings: Revenue Gains

Example. We start with an example shifting supply between the S = 6M and L = 12M

bills in one auction in our sample (see Figure 4). Given the observed supply, the 6M

auction clears at P 1
S = C$991, 162 and P 1

L = C$981, 627 and QS = QL = 2.575 billion.

Shuffling 1% of total debt between the 6M and 12M auction, we get the following prices:

P 2
S = P 1

S − 5, P 2
L = P 1

L + 25. The revenue gain is small: +0.09 bps in a uniform price

auction and −0.04 bps in a discriminatory price auction, similar to Figure 3.

To illustrate the impact of reshuffling longer-dated debt, for example, 5Y and 10Y

bonds, let us scale up all λ’s by a factor of 10. Now, a uniform price auction achieves a

larger revenue gain—both when bonds are independent (+0.32 bps) and when bonds are

perfect substitutes (+0.10 bps)—because the aggregate demand curve is steeper than it

is at the estimated λ. The revenue loss in a discriminatory price auction is also larger

than before. If bonds are independent, the loss is −0.25 bps; when bonds are perfect

substitutes, the loss is −1.55 bps. The non-negligible difference between these predictions

(1.55− 0.25) highlights the importance of taking substitution patterns into account when

comparing revenues across auction formats.

Average revenue gains. On average, it is revenue-increasing to issue more of the more

price-sensitive bond (typically the long maturity) and less of the more price-insensitive

bond (typically the short maturity) in a discriminatory price auction and vice versa in

a uniform price auction (see Table 6). The revenue effect increases when scaling up the

λ’s since the aggregate demand curves become more price-sensitive. This suggests that it

might pay off to reshuffle supply across longer bonds.

It is important to have a good understanding of the degree of substitutability of
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Figure 4: Example on an auction

(a) Aggregate demand for S (b) Aggregate demand for L

Figure 4 shows aggregate demand curves for two auctions that took place on the same day at
some point in our sample. Each graph plots four curves. Two of the curves look rather flat. In
4a, the flat curves correspond to the aggregate demand for 6M bills when the Bank of Canada
issues the supply as we observe it, and when we increase the supply of the 6M bills by 1% of the
total debt issued on that auction day. In 4b, we see the same curves but for the 12M bills. The
steeper curves correspond to the aggregate demand curves when scaling the λ parameters by a
factor of 10 and making bills perfect substitutes. Here we can see how the aggregate demand
curve changes in responds to the change in supply.

different maturities before changing supply. In particular, when the auction format is

discriminatory price, we over-estimate the revenue effect when assuming that different

maturities are perfect substitutes, and under-estimate the effect when we assume they are

independent (see Appendix Figure A4). This is because the revenue effect is determined

by the shape of the entire aggregate demand curve and not just the point at which the

market clears.

Price-quantity trade-off. So far, we have considered relatively moderate changes in

supply. Next, we present graphically the price-quantity trade-off described above, which

pins down the (two-dimensional) revenue-maximizing supply split. For illustration, we

consider one auction day in our sample. The qualitative findings of other auction days

are similar. Further, when scaling up the λ or δ parameters, the price-quantity trade-off

is more pronounced (see Appendix Figure A5).

When the auction is uniform price (as in Figure 5a), revenue increases when going

from issuing no short bonds to issuing some short bonds until 61% of debt is issued as

short and 39% as long. Until that point, the positive price effect dominates the negative
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Table 6: Average gain (in bps) per auction when reshuffling 1% of debt

S ↑ L ↓ S ↑ L ↓ S ↓ L ↑ S ↓ L ↑
Demand coefficients Uniform Discrim Uniform Discrim

Independent: factorλ=1, factorδ=0 +0.020 +0.007 −0.023 −0.010
Weak substitutes: factorλ=1, factorδ=1 +0.016 −0.002 −0.024 +0.001
Perfect substitutes: factorλ=1, δ = λ +0.011 −0.052 −0.016 +0.048

Independent: factorλ=10, factorδ=0 +0.234 −0.028 −0.297 +0.007
Weak substitutes: factorλ=10, factorδ=1 +0.225 −0.036 −0.292 +0.016
Perfect substitutes: factorλ=10, δ = λ +0.119 −0.609 −0.189 +0.590

Independent: factorλ=100, factorδ=0 +2.344 −0.446 −2.9757 +0.191
Weak substitutes: factorλ=100, factorδ=1 +2.341 −0.455 −2.970 +0.200
Perfect substitutes: factorλ=100, δ = λ +1.313 −6.720 −1.956 +6.624

Table 6 shows the revenue gains when issuing 1% of debt more for the short maturity and 1%
less of the long maturity in the second and third column (S ↑ L ↓) and vice versa in the fourth
and fifth column S ↓ L ↑ when the auction format is uniform price (Uniform) and when it
is discriminatory price (Discrim). The first three rows (factorλ=1) correspond to the demand
estimates of the 6M and 12M bills assuming different degrees of substitution. The fourth-sixth
row and seventh-ninth row correspond to hypothetical auctions in which the λ parameters in
the bidder’s demand are scaled by a factor of 10, and 100, respectively. The revenue gain is in
bps of the original revenue.

quantity effect in the auction for the long bonds. When further increasing the supply of

the short bond and decreasing the supply of the long bond, the negative quantity effect

dominates and total revenue decreases.

In the discriminatory price auction, we see a similar pattern (see in Figure 5b). The

difference is that the highest revenue gain is achieved when issuing less of the short (39%)

and more of the long bond (61%).

Back-of-the-envelope calculation. We conclude the discussion with a back-of-the-

envelope calculation to get a rough sense of how much the Canadian government could

save if it changed its current supply split only marginally. For illustration, we consider the

issuance in 2021. In 2021 the Canadian government issued C$416 billion in form of bills

and C$277 billion in form of bonds. Taking Table 6 at face-value, issuing slightly more of

the longer maturities would have brought a revenue gain of +0.001 bps per bill-auction

and roughly +0.02 bps per-bond auction, assuming bonds are weak substitutes. This

sums to moderate savings of C$595,600.

In other markets, in which demand is more price-sensitive, savings would be much
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Figure 5: Illustration of the price-quantity trade-off

(a) Uniform price auction (b) Discriminatory price auction

Figures 5 depict the price-quantity trade-off when the auction is uniform price (a), and discrim-
inatory price (b) using the estimated λ and δ parameters. On the y-axis is the total revenue
earn from issuing both maturities (in billion C$) when issuing x% of the short maturity and
(1-x)% of the long maturity. The x-axis scales up x from 0% to 100%.

larger. For example, Albuquerque et al. (2022) estimate an average price elasticity of

demand of 2.1-2.4 in Portuguese bond auctions between 2014 and 2019.23 In comparison,

the average price elasticity for Canadian T-bills is below 0.002 (see Appendix Figure A4a

and divide by 100). Scaling all demand coefficients by a factor of 1,000 and re-computing

revenues, our estimates suggest that the Portuguese government (which uses a uniform

price auction) would save about 40 bps per auction if it issued 1% more as short and 1%

less as long debt. This amounts to sizable annual cost savings for taxpayers. Naturally,

this is a rough approximation. With our framework and the appropriate data, it is

straightforward to identify demand systems and provide a more precise estimate of the

savings for other countries.

Take away. We introduce a simple framework to guide policy makers in their decision

on how to split government debt across different bonds. We show that it is generally

revenue-increasing to issue more of the relatively price-insensitive bond (typically the

shorter bond) and less of the price-sensitive bond (typically the longer bond) when the

auction is uniform price and vice versa when it is discriminatory price.

23Another example is the Spanish primary market. Bigio et al. (2021) find that a one per-

centage point increase in monthly issuances (over annual GDP) reduces auction prices between

8 bps for the 3 year bonds and 56 bps for the 30 year bonds. In the Canadian T-bill market the

price changes by only a fraction of a bps.
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7 Conclusion

Using data from Canadian Treasury auctions over a 15 year period, we estimate full

demand systems for government bonds of different maturities. We find that Treasury

bills are only weak substitutes on average, but that different dealers have heterogeneous

demands. Then, we use our demand estimates to illustrate that governments can save

money by reshuffling debt strategically across the maturity spectrum, without changing

the total amount of debt.
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Appendix

A Micro-Foundation of Demand

Our micro-foundation features market segmentation in the spirit of Vayanos and Vila

(2021). Investors/clients may have preferences for specific maturities and dealers function

across maturities by participating in the primary market and making markets in secondary

trading. For simplicity, we restrict the number of maturities to M = 2, and drop the

superscript g and the subscripts i, τ for the remainder of the section with exception of the

formal statements.24

Each dealer has a type sss, which decomposes into ν (known by all bidders) and ttt

(private information):

sss = (ttt, ν) with ttt = (t1t1t1, t2t2t2) and ν = (a, b, e, γ, κ1, κ2, ρ).

Rather than assuming that dealers are risk-averse, we assume that dealers face a cost

of not meeting client demand.25 A dealer who draws type s obtains the following gross

benefit from “consuming” amounts (1− κ1)q1 and (1− κ2)q2:

U(q1, q2, s) = t1(1− κ1)q1 + t2(1− κ2)q2. (10)

The private type determines how much a dealer benefits from keeping a share (1− κm) ∈
[0, 1) of the purchased bill m in his own inventory or to fulfill existing customer orders.

Dealers function as market makers in the secondary market where they distribute the

rest of the bills {κ1q1, κ2q2} among investors who are yet to arrive. To incorporate future

resale opportunities we let there be a second stage following the primary auction.

In the secondary market a (mass of) client(s) with random demand {x1x1x1,x2x2x2} arrives to

the dealer.26 Equivalently, you may imagine that there are two types of clients, each with

a random demand for one of the two maturities. We assume that each of {x1, x2x1, x2x1, x2} is on-

the-margin uniformly distributed on [0, 1] but allow both amounts to be correlated. More

24Generalizing to more than two maturities is straightforward but mathematically cumber-

some and brings no major additional insights.
25A practical reason for why we model dealers as risk neutral is that it is much harder to

estimate auction models with risk-averse bidders than having a cost of not meeting demand.
26The terms “client” and “customer” denote different players. Customers participate in the

auction by placing bids with dealers, while clients buy in the secondary market.
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specifically, {x1, x2x1, x2x1, x2} assumes the following (Farie-Gumbel-Morgenstern cupola) density

f(x1, x2) = 1 + 3ρ(1 − 2F1(x1))(1 − 2F2(x2)) with marginal distributions Fm(xm) = xm

and correlation parameter ρ ∈
[
−1

3
,+1

3

]
.

The dealer sells to clients who arrive as long as there is enough for resale: xm ≤ κmqm.

Selling xm brings a payment of pmxm. The prices depend on the clients’ willingness to

pay, or the aggregate demand in the secondary market more generally. For simplicity we

assume that it is linear and symmetric across maturities. The inverse demand schedule

for maturity 1 in the secondary market takes the following form:

pi,1(x1, x2|q1, q2) =


a− bx1 − ex2 for x1 ≤ κ1q1 and x2 ≤ κ2q2

a− bx1 for x1 ≤ κ1q1 and x2 > κ2q2

0 for x1 > κ1q1 and x2 > κ2q2.

(11)

The price function for maturity 2 is analogous. It splits into three cases. In the first,

clients for both bills arrive and the dealer has enough of both in their inventory. The

dealer charges a bundle price of {p1(x1, x2|q1, q2), p2(x1, x2|q1, q2)} for selling {x1, x2}. In

the second case the dealer can only sell maturity 1. This might be because only clients

with demand for this maturity arrive or because the dealer does not have enough of

the other maturity in inventory for resale, x2 > κ2q2. The price the dealer charges is

independent of the maturity he does not sell, p1(x1, x2|q1, q2) = a − bx1. Finally, if the

dealer does not hold enough of either bill to satisfy the demand of client(s) he cannot sell.

Notice that the magnitudes of the resale prices are characterized by three parameters

{a, b, e}. A higher intercept a > 0 increases the dealer’s bargaining power, and with it

the price he can charge for each unit sold. Parameter b > 0 governs the price-sensitivity

of clients. Large clients (who demand more) have more negotiating power and can drive

down the price. When e > 0 bills are substitutes in the secondary market, and vice versa

for complements.

Selling {x1, x2} generates a resale revenue of:

revenue(x1, x2|q1, q2) = p1(x1, x2|q1, q2)x1 + p2(x1, x2|q1, q2)x2. (12)

Turning down clients is costly for the dealer. An unhappy client is, for instance, less likely

to contact the dealer again in the future. In reality, a dealer might even want to source

the security a client demands in the secondary market so as to avoid losing his client in

2



the longer run. This is costly for the dealer because it is expensive to borrow or buy

additional Treasury bills on the secondary market when demand is high. In our model,

dealers face the following cost function:

cost(x1, x2|q1, q2) =



0 if x1 ≤ κ1q1 and x2 ≤ κ2q2

γx1 if x1 > κ1q1 and x2 ≤ κ2q2

γx2 if x1 ≤ κ1q1 and x2 > κ2q2

γx1x2 if x1 > κ1q1 and x2 > κ2q2.

(13)

This function captures the idea that it is more costly to turn down larger clients, i.e. those

with larger demand. The important feature for our results is that it is supermodular in

x1, x2, i.e. has increasing differences.27 This means that the marginal cost from turning

down a client who demands one maturity is higher the larger the order for the other

maturity.

Taken together, a dealer expects to derive the following payoff from winning q1, q2 at

time τ in the primary market:

V (q1, q2, s) = U(q1, q2, s) + E [revenue(x1x1x1,x2x2x2|q1, q2)− cost(x1, x2x1, x2x1, x2|q1, q2)] . (14)

The gross payoff determines how much a dealer is willing to pay on-the-margin. Consider

auction 1. At time τ the dealer is willing to pay v1(q1, q2, s) = ∂V (q1,q2,s)
∂q1

for amount q1

conditional on winning q2 of the other maturity. The appendix shows that v1(·, ·, s) is a

third-order polynomial for any s. It can be approximated by a linear function. Taking

the first-order Taylor expansion around (E[x1x1x1],E[x2x2x2]) = (1/2, 1/2) we obtain the following

result.

Proposition 3. The marginal willingness to pay of a dealer with type sgm,i,τ for amount

qm conditional on winning q−m in the other auction can be approximated by

vm(qm, q−m, s
g
m,i,τ ) = fm,i(s

g
m,i,τ ) + λm,iqm + δm,iq−m (2)

for m = 1, 2−m 6= m, where fm,i(s
g
m,i,τ ) = αm,i + (1− κm,i)tgm,i,τ and αm,i, λm,i, δm,i are

polynomials of parameters {κ1,i, κ2,i, γi, ρi, ai, bi, ei}.
27Supermodularity is for functions that map from Rn → R equivalent to increasing differences:

cost(x′1, x
′
2|q1, q2) − cost(x1, x

′
2|q1, q2) ≥ cost(x′1, x2|q1, q2) − cost(x1, x2|q1, q2) for x′1 ≥ x1 and

x′2 ≥ x2.
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The higher the private marginal benefit t1 from keeping a share (1 − κ1) of the bill

for personal usage, the more the dealer is willing to pay. Bills might be substitutable or

complementary depending on the underlying exogenous parameters.

To understand this result, let us contrast the extreme cases where the dealer keeps all

of maturity 1 (κ1 = 0), keeps all of maturity 2 (κ2 = 0), or sells all of both (κ1 = κ1 = 1)

and the demand of clients is stochastically independent (ρ = 0).

v1(q1, q2, s1) =


t1 if κ1 = 0

1
4κ1(bκ2

1 − 2γ) + (1− κ1)t1 + κ2
1((a− bκ1) + 1

2γ)q1 if κ2 = 0

1
8(2(b+ e)− 6γ) + ((a− b)− 1

4e+ 7
8γ)q1 + 1

4(3γ − 2e)q2 if κ1 = κ2 = 1

When buying only for its own account (κ1 = 0) a dealer is willing to pay the marginal

value that the bill brings to his own institution, t1. When he anticipates that he will sell

at least some of maturity 1, his demand in auction 1 decreases in q1 as long as his clients

are sufficiently price-elastic (i.e. b is sufficiently high). If he sells all of both maturities

(κ1 = κ2 = 1) the demand is independent of his private type t1. How much he is willing to

pay for one maturity now hinges on the amount he wins of the other maturity. Whether

bills are substitutes or complements in the primary market depends on how large γ is

relative to e.

More generally one can derive the following corollary which will be useful when inter-

preting our estimation results. It holds for the general case where clients’ demand might

be correlated (ρ 6= 0) and the dealer keeps any amount of bills (κ1, κ2 ∈ [0, 1]).

Corollary 1. Securities in the primary market become less substitutable for a dealer when

(i) they are weaker substitutes in the secondary market (ei ↓),

(ii) it is more costly to turn down clients (γi ↑), or

(iii) it is more likely that clients with demand for different maturities arrive (ρi ↑).

The corollary has two interesting implications. First, it highlights that bills might

be substitutable for clients, or more generally for traders in the secondary market (ei >

0), but complementary for dealers who purchase in the primary auctions to sell in the

secondary market. Through the lens of our model, the existing literature using market-

level data to estimate the degree of substitutability between government securities (e.g.,

Koijen and Yogo (2019)) estimates the mean of parameter ei. We, instead, focus on the

preferences of dealers in the primary market.
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Second, the corollary tells us that it is possible that some dealers view bills as sub-

stitutes and others as complements, depending on νi. For some dealers it could be more

costly to turn down clients (high γi), for instance, because they are not at the core of

the market’s trade network, such as the key market makers. For these dealers bills are

less substitutable—potentially even complementary—than for the market makers. This

insight motivates us to allow dealers to have a latent business type (market makers versus

non-market makers) in our structural model.

B Resampling Procedure

A natural starting point is to extend Hortaçsu (2002)’s resampling procedure. We fix a

triplet of bids submitted by a bidder i and draw a random subsample of N − 1 bid-vector

triplets with replacement from the sample of bids. From this, we construct the bidder’s

realized residual supply for all maturities were others to submit these bids to determine

the realized clearing prices P c = (P c
3M P c

6M P c
12M) and the amount q∗i = (q∗3M,i q

∗
6M,i q

∗
12M,i)

this bidder would have won for all q∗i , P
c. Repeating this procedure a large number of

times provides an estimate of the joint distribution of market clearing prices and, equally

important, the corresponding amount of each security i would win.

There are two complications when auctions are not considered separately. First, bids

in different auctions are not submitted at the exact same time given electronic or human

delays (see the example in Appendix Table A1). In our procedure, we define bids to be

“simultaneous” if they are the closest bids of all bids a bidder places within 200 seconds,

or they are the last bids made before the auction deadline, i.e. final bids. Setting an upper

bound of 200 seconds seems sensible when looking at the number of seconds between bids

across maturities which we know were determined “simultaneously”. Those are cases

where the bidder does not update his bids over the course of the auctions. On average

551(383) seconds pass between such bids for different maturities by dealers (customers).

Excluding outliers reduces the time (see Appendix Figure A3).

Second, a customer might place his order via different dealers in an auction week.

He might, for instance, go via one dealer in the 3M auction and via another in the 6M

auction. Furthermore, two bids for the same maturity but by different customers might

go through the same dealer. Neither of these cases happens more than a handful of times.

Therefore, we assume that the information set of dealers who observe the same customer
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is independent across maturities, conditional on his own signal. In addition, we restrict

the number of possible observed customer bids to two. Given that most customers only

submit one bid and that there are many more dealers than customers in a typical auction,

this simplifying restriction is reasonable.

With these simplifications our procedure is as follows: Draw Nc customer bids from

the empirical distribution of customer bids at date t. If a customer did not participate in

one auction, replace his bid by 0. For each customer, find the dealer(s) who observed this

customer’s bid(s). If the customer submitted only one bid, take the dealer who observed

it. If the customer submitted more than one bid, draw uniformly over dealer-bids having

observed this customer. Finally, if the total number of dealers drawn is at this point

lower than the total number of potential dealers, draw the remaining bids from the pool

of uninformed dealers, i.e., those who do not observe a customer bid in any of the three

auctions. Note that—while theory allows for many updates—we restrict the number of

possible observed customer bids to two in order to simplify our resampling algorithm.

This includes most cases as most bidders only update once or twice.

C Fixed Point Problem and Approximation

In order to compute how bidders bid when we change supply, we must determine how

much each bidder expects to win in the other auctions, Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm]. This depends on

how all bidders bid in all auctions. Therefore, finding Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] of all bidders and all

auctions is a complicated fixed point problem. Below we fix one auction date and omit

the day subscript.

Exact fixed point routine. Assume we change the supply from Qm to Qcf
m for all m.

Step 1. Rescale all amounts demanded and expectations:

qcfm,i,k =
Qcf
m

Qm

qm,i,k (15)

Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]old =
Qcf
m

Qm

Ê[q∗−m,iq∗−m,iq∗−m,i|qm,i,k] for all m,−m, i, k. (16)

Then compute the counterfactual bids for each step k, bidder i and maturity m according

to (7):
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bcfm,i,k = ûm,i + λ̂mq
cf
m,i,k + δ̂m · Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]old − ŝhadingm,i,k. (7)

Step 2. Given the counterfactual bids, estimate how much each bidder expects to win

in the other auctions by simulating market clearance for each bidder and maturity many

times (e.g., 5,000 times). Update all expectations, Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]new.

Step 3. With the updated expectations, update all bids. Repeat steps 2-3 until none of

the expectations change when updated.

Statistical fixed point routine. It is computational infeasible to implement the exact

fixed point routine. Therefore, we propose a routine that finds the fixed point with some

estimation noise.

Steps 1-2 are as before. Step 3. Find out whether the expectations are too large or

too small, by regressing:

Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]new = αm + βm ∗ Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]old + εm,i,k for all m.

Update all expectations: Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]new become Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]old and the new Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]new =

β̂m ∗ Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]old for all m, i, k. Repeat this step until all β̂m estimates are within the

95% confidence interval around 1.

We determine fixed points using our statistical routine for a couple of randomly se-

lected auction days. We do this for two reasons. First, we want to illustrate that this

method works reasonably well (see Appendix Figure A6a). Second, we want to show that

the fixed point is sufficiently close to the rescaled expectations (16) with which we start

the fixed point routine (see Appendix Figure A6b). This motivates us to use the rescaled

expectations in our counterfactual exercises.

D Proofs

D.1 Proof of Proposition 1

The proposition follows from Proposition 2 when all δ parameters are 0.
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D.2 Proof of Proposition 2

Take the perspective of bidder i who belongs to group g ∈ {c, d}. Fix his type, a time

slot τ , as well as one of his information sets θgi,τ , and let all other agents j 6= i play a type-

symmetric equilibrium. In this equilibrium it must be optimal for the bidder to choose the

same set of functions {bg1(·, θgi,τ ), ...b
g
M(·, θgi,τ )} as all other bidders in his bidder group with

information θgi,τ . These M functions must jointly maximize the bidder’s expected total

surplus. It must therefore be the case that each of the functions bgm(·, θgi,τ ) maximizes his

expected total surplus separately when fixing all the other bidding functions −m at the

optimum. To determine necessary conditions of the type-symmetric equilibrium we can

consequently fix the agent’s strategy in all but one auction at the equilibrium. Without

loss take this auction to be for security 1, and denote the inverse of bid function bg1(·, θgi,τ )
by yg1(·, θgi,τ ).

The remainder of the proof extends Kastl (2012)’s proof for a K-step equilibrium of

a discriminatory price auction that takes place in isolation. To facilitate the comparison

with the original proof (on pp. 347–348 of Kastl (2012)) we copy it as closely as possible

but adopt our notation.

There are two main differences to the original proof. First, our framework allows

bidders to update their bids due to arrival of new information. Such information arrives

at discrete time slots τ = 1...Γ. Bidding functions do not (only) depend on the bidder

i’s type sgi,τ drawn at time τ but on the (entire) information set at that time θgi,τ . It

includes the type, sgi,τ ⊆ θgi,τ . Since only final bids count, bidders bid as if it was their

last bid each time they place a bid. We can just keep some τ fixed throughout the proof.

Second, following Hortaçsu and Kastl (2012) we allow for asymmetries in bidding behavior

between dealers and customers. They draw types from (potentially) different distributions

and may have different information available. The original proof extends to this setup.

We drop subscripts τ, i as well as superscript g. We refer to the amount a bidder

with information θ wins at market clearing in auction m (for a given set of strategies

in the event that τ is the time of the bidder’s final bid) by qc1q
c
1q
c
1, and the amount he wins

in equilibrium by q∗1q
∗
1q
∗
1. Notice that both, qc1q

c
1q
c
1 and q∗1q

∗
1q
∗
1 are (for given strategies of all agents)

functions of the total supply Q1Q1Q1 and the information of all agents {θiθiθi}Ni=1. They are

implicitly defined by market clearing.

The proof of the proposition relies on three lemmas. The second and third are taken

from Kastl (2012).
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Lemma 1. Fix a bidder with information θ. Denote his marginal willingness to pay in

auction m at step k when submitting some function b′1(·, θ) with {(b′1,k, q′1,k−1), (b′1,k+1, q
′
1,k)}

by ṽ1(q1, θ|b′1,k, b′1,k+1) ≡ E
[
v1

(
q1, q

∗
−1q∗−1q∗−1, s1

)∣∣ b′1,k ≥ P c
1P
c
1P
c
1 > b′1,k+1, θ

]
for q1 ∈ (q′1,k−1, q

′
1,k].

(i) ṽ1(q1, θ|b′1,k, b′1,k+1) is bounded.

(ii) In equilibrium, where the bidder submits function b1(·, θ) with {(b1,k, q1,k−1), (b1,k+1, q1,k)},
ṽ1(q1, θ|b1,k, b1,k+1) is decreasing in q1 and right-continuous in b1,k.

Proof of Lemma 1. (i) By Assumption 2

ṽ1(q1, θ|b′1,k, b′1,k+1)
(2)
= f1(s1) + λ1q1 + δ1 · E

[
q∗−1q∗−1q∗−1|b′1,k ≥ P c

1P
c
1P
c
1 > b′1,k+1, θ

]
for q1 ∈ (q′1,k−1, q

′
1,k]. Since types and total supply are drawn from distributions with

bounded support by Assumptions 1 and 4, E
[
q∗−1q∗−1q∗−1|b′1,k ≥ P c

1P
c
1P
c
1 > b′1,k+1, θ

]
and with it

ṽ1(q1, θ|b′1,k, b′1,k+1) is bounded.

(ii) In equilibrium ṽ1(q1, θ|b1,k, b1,k+1) must be decreasing in q1 or it could not give rise

to a decreasing bidding function that fulfills the necessary conditions of Proposition 2.

To see why ṽ1(q1, θ|b1,k, b1,k+1) is right-continuous in b1,k note first that it can only jump

discontinuously if changing b1,k breaks a tie between this bidder and at least one other bid-

der. Since there can be only countably many prices on which a tie might occur, however,

there must exist a neighborhood at any b1,k for which for any price in that neighborhood

there are no ties. Therefore, when perturbing bk, there cannot be any discontinuous shift

in the conditional probability measure and thus in the object of interest.

Lemma 2. Fix a bidder with information θ. If at some step k in auction 1, Pr(qc1q
c
1q
c
1 ≥

q1,k|θ) > 0, then b1,k ≤ ṽ1(q1, θ|b1,k, b1,k+1).

Proof of Lemma 2. The proof is analogous to Kastl (2012)’s proof of Lemma 2. It

suffices to replace v(q, s) by ṽ1(q1, θ|b1,k, b1,k+1) and rely on Lemma 1.

Lemma 3. (i) Ties occur with zero probability for a.e. θ in any K-step equilibrium of

simultaneous discriminatory price auctions except possibly at the last step (k1 = K1).

(ii) If a tie occurs with positive probability at the last step, a bidder with information

θ must be indifferent between winning or losing all units between the lowest share he gets

allocated after rationing in the event of a tie qRAT
1

and the last infinitesimal unit he may

be allocated in equilibrium, q1:

b1,K1 = ṽ1(q̄1, θ|b1,K1) where q̄1 = sup
{Q1,θ−i}

y1(b1,K1 , θ|Q1, θ−i) ∀q1 ∈ [qRAT
1

, q1].

9



Proof of Lemma 3. The proof is analogous to the proof of Lemma 1 in Kastl (2012).

In essence, it suffices to replace the bidder’s true valuation v(q, s) in Kastl (2012) by

ṽ1(·, θ|bk, bk+1) in equilibrium and ṽ1(·, θ|b′k, b′k+1) for deviations and rely on Lemma 1.

To facilitate this conversion, we demonstrate the beginning of the proof: Suppose that

there exists an equilibrium, in which for a bidder i with information set θ a tie between

at least two bidders can occur with positive probability π1 > 0 in auction 1. Since there

can be only finitely many prices that can clear the market with positive probability, in

order for a tie to be a positive probability event, it has to be the case that there exists

a positive measure subset of information sets Θ̂−i ∈ [0, 1]N−1 such that for some bidder

j, and all profiles of information sets θ−i ∈ Θ̂′−i ⊂ Θ̂−i (another positive measure subset)

and some step k and l we have b1,k(θi) = b1,l(θj) = P c
1 . Without loss, suppose that this

event occurs at the bid (b1,k, q1,k), and that the maximum quantity allocated to i after

rationing is q̄RAT1 < q1,k. Let S̄R1π denote the maximal level of the residual supply at b1,k

in the states leading to rationing at b1,k.

Consider a deviation to a step b′1,k = b1,k+ε and q′1,k = q1,k where ε is sufficiently small.

This deviation increases the probability of winning q1,k − q1,k−1 units. Most importantly

in the states that led to rationing under the original bid, the bidder with information θ

will now obtain qu1 > q̄RAT1 where qu1 ≥ min{q1,k, S̄
R
1π}. Notice that since we hypothesized

a positive probability of a tie at b1,k, we need to have q1,k−1 < q̄RAT1 < q1,k due to rationing

pro-rata on-the-margin. Therefore, the lower bound on the increase in θ’s expected gross

surplus from such a deviation is

EDε = π1

(
Ṽε(q

u
1 , θ)− Ṽ (q̄RAT1 , θ)

)
(EDε)

where

Ṽε(q
u
1 , θ) ≡

∫ q̄RAT1

0

ṽ1(q1, θ|b1(q1|θ)) +

∫ qu1

q̄RAT1

ṽ1(q1, θ|b′1,k, b′1,k+1)dq1

and

Ṽ (q̄RAT1 , θ) ≡
∫ q̄RAT1

0

ṽ1(q1, θ|b1(q1|θ))dq1

with ṽ1(q1, θ|b1(q1|θ)) denoting the true valuation when submitting b1(q1|θ) not just at

step k, as ṽ1(q1, θ|b1,k, b1,k+1), but including all previous steps (if any).

To continue, let us first focus on steps other than the last one, k < K1, and suppose

that ṽ1(·, θ|b1,k, b1,k+1) is strictly decreasing. The increased bid b1,k + ε also results in

an increase in the payment for the share requested at this step. This increase, however,

10



is bounded by (q1,k − q1,k−1)ε. Comparing the upper bound on the change in expected

payment with the lower bound on the change in expected gross utility, in order for this

deviation to be strictly profitable we need to obtain

(q1,k − q1,k−1)ε < π1EDε. (17)

As b1,k ≤ ṽ1(q1,k, θ|b1,k, b1,k+1) by Lemma 2 and ṽ1(q1,k, θ|b1,k, b1,k+1) < ṽ1(qu1 , θ|b1,k, b1,k+1),

the LHS of (17) goes to 0 and the RHS to a strictly positive number as ε → 0. Since

ṽ1(q1, θ|b1,k, b1,k+1) is for any q1 ∈ [q̄RAT1 , q1,k] right-continuous in b1,k, the proposed de-

viation would indeed be strictly profitable for the bidder with information θ. Moreover,

there can be only countable many θ’s with a profitable deviation, otherwise bidder i

could implement this deviation jointly and thus for a.e. information sets θ ties have zero

probability in equilibrium for all bidders i.

Relying on Lemma 1, the remainder of the proof is analogous to the original proof.

It suffices to replace v(q, s) by ṽ1(·, θ|bk, bk+1) in equilibrium and ṽ1(·, θ|b′k, b′k+1) when

deviating, as well as V (q∗, s)−V (q̄RATi , s) by EDε. In our environment with updating, a tie

may occur with positive probability only at the last step and the bidder with information

θ (at the previously fixed time τ) must not prefer winning any units in
[
qRAT

1
, q1

]
where

q1 = sup{Q1,θ−i} y1(b1,K1 , θ|Q1, θ−i) is the maximal quantity the bidder may be allocated

in an equilibrium (in the event that τ is the time of his final bid).

Proof of Proposition 2. At step k = K1 Lemma 2 specifies the optimal bid-choice. At

steps k < K1 Lemma 3 can be applied. Kastl (2012) perturbs the kth step to q′1 = q1,k− ε
and takes the limit as q′1 → q1,k. The original proof goes through without complications.

It suffices to replace the type s by the information set θ, E [V (Qc
i(Q,SSS,yyy(·|S)), si)| states]

by E
[
V (q∗1q

∗
1q
∗
1, q
∗
−1q∗−1q∗−1, s)

∣∣ θ, states
]

with all states as specified in the original proof, and simi-

larly E [V (Qc
i(Q,SSS,yyy

′(·|S)), si)| states] by E
[
V (qc1q

c
1q
c
1, q
∗
−1q∗−1q∗−1, s)

∣∣ θ, states
]

where qc1q
c
1q
c
1 denotes the

amount the bidder wins at market clearing under the deviation in our simplified notation.

D.3 Proof of Proposition 3 and Corollary 1

For notational convenience we drop the superscript g and the subscript i of all parameters

{κg1,i, κ
g
2,i, γ

g
i , ρ

g
i , a

g
i , b

g
i , e

g
i }.
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Proposition 3. Recall that the dealer expects the following payoff from owning q1, q2:

V (q1, q2, s) = U(q1, q2, s) + E [revenue(x1x1x1,x2x2x2|q1, q2)− cost(x1, x2x1, x2x1, x2|q1, q2), ] (14)

with revenue(x1, x2|q1, q2) =
∑2

m=1 pm(x1, x2|q1, q2)xm. Given the aggregate inverse de-

mand of the dealer’s clients (11):

V (q1, q2, s) = U(q1, q2, s)

+

∫ κ1q1

0

∫ κ2q2

0
[p1(x1, x2)x1 + p2(x2, x1)x2]f(x1, x2)dx1dx2

+

∫ κ1q1

0

∫ 1

κ2q2

[p1(x1)x1 − γx2]f(x1, x2)dx1dx2 +

∫ 1

κ1q1

∫ κ2q2

0
[p2(x2)x2 − γx1]f(x1, x2)dx1dx2

−
∫ 1

κ1q1

∫ 1

κ2q2

[γx1x2]f(x1, x2)dx1dx2.

Inserting the assumed functional forms (10), (11), and f(x1, x2) = 1 + 3ρ(1− 2F1(x1)(1−
2F2(x2)), integrating and taking the partial derivative w.r.t. q1 we obtain:

v1(q1, q2, s1) =1/2γκ1(−1 + ρ)− 2γκ1κ
3
2q

3
2ρ+ 1/2γκ1κ

2
2q

2
2(1 + 3ρ)

+ q2
1(−6γκ3

1κ2q2ρ+ 3(3γ + 2e)k3
1k

2
2q

2
2ρ− 4(γ + 2e)κ3

1κ
3
2q

3
2ρ+ κ3

1(−b+ γρ))

+ q1(2(3γ + 2e)κ2
1κ

3
2q

3
2ρ+ cκ2

1κ2q2(1 + 3ρ) + 1/2κ2
1(2a+ γ − 3γρ)−

1/2κ2
1κ

2
2q

2
2(γ + 2e+ 15γρ+ 6eρ)) + (1− κ1)t1.

A Taylor expansion around
(

1
2
, 1

2

)
gives

v1(q1, q2, s1) =(1− κ1)t1 + h0(κ1, κ2, γ, ρ) + h1(κ1, κ2, γ, a, b, e, ρ)q1 + h2(κ1, κ2, e, ρ)q2

with

h0(κ1, κ2, γ, ρ) =
1

16
(4bκ3

1 + 2eκ2
1κ

2
2(2 + (6− 9κ1 − 6κ2 + 8κ1κ2)ρ))

+
1

16
(γκ1(8(−1 + ρ) + κ2

1(−2 + κ2)(2 + κ2(−11 + 8κ2))ρ))

+
1

16
(γκ1(+2κ2

2(−1− 3ρ+ 4κ2ρ) + 2κ1κ2(−2 + κ2 − 3(−1 + κ2)(−2 + 3κ2)ρ)))

h1(κ1, κ2, γ, a, b, e, ρ) =
1

8
κ2

1(8a− 8bκ1 − 2eκ2
2(1 + (−1 + 2κ1)(−3 + 2κ2)ρ))

+
1

8
κ2

1(γ(4 + 4κ2 − κ2
2 − (−2 + κ2)(−6 + 3κ2 − 6κ2

2 + 2κ1(−2 + κ2)(−1 + 2κ2))ρ))

h2(κ1, κ2, γ, e, ρ) =− 1

4
κ1κ2(−2γκ1 + γ(−2 + κ1)κ2 + 2eκ1κ2)(1 + 3(−1 + κ1)(−1 + κ2)ρ)

12



Corollary 1. Securities become more complementary when h2(κ1, κ2, γ, e, ρ) increases.

For any κm ∈ [0, 1] and any ρ that is within the allowed range of correlation parame-

ters of the Farlie-Gumbel-Morgenstern Distributions with uniform marginal distributions,

[−1/3, 1/3]:

∂h2(κ1, κ2, γ, e, ρ)

∂e
= −(1/2)κ2

1κ
2
2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸

≥0

≤ 0

∂h2(κ1, κ2, γ, e, ρ)

∂γ
= −(1/4)κ1(κ1(−2 + κ2)− 2κ2)︸ ︷︷ ︸

≤0

κ2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸
≥0

≥ 0

∂h2(κ1, κ2, γ, e, ρ)

∂ρ
= −(1/4)κ1(κ1(−2 + κ2)− 2κ2)︸ ︷︷ ︸

≤0

κ2(1 + 3(−1 + κ1)(−1 + κ2)ρ)︸ ︷︷ ︸
≥0

≥ 0

Appendix Figure A1: Issuance of Canadian 3M, 6M, 12M Treasury bills
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Figure A1 displays a time series of the issued supply of the 3M, 6M, and 12M bills, where the
6M issuance do not appear in the graph because they are identical to 12M issuance. The Bank
of Canada always issues as many 6M bills as 12M bills. Over time, the amounts issued of the
different maturities are perfectly correlated.
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Appendix Figure A2: Distribution of the untrimmed shading factor

Appendix Figure A2 shows box plots of the untrimmed shading factor, v̂t,m,i,,τ,k − bt,m,i,,τ,k,
per step ∈ {1, 2, 3, 3, 5, 6, 7} in a bidding function. For each step, the distribution is taken over
dealers i, days t and time τ and maturities m. The shading factor is in bps.

Appendix Figure A3: Time Between Bids of Those Who Do Not Update

Appendix Figure A3 shows the distribution of the time difference (measured in seconds) between
the bids that a dealer and a customer who does not update the bids places in different auctions.
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Appendix Figure A4: Time series

(a) Proxy of market price elasticities

(b) Revenue gains in uniform price auction (c) Revenue gains in discrim. price auction

Appendix Figure A4 shows two time series. An observation in A4a approximates the yearly
average market price elasticity when scaling λ and δ parameters of the demands for the 6M
and 12M bills by a factor of 100: 1

Ty

∑Ty
t=1(−100)λ̂m

Qt,m
P ctm

, where Ty is the total number of

auction in year y. An observation in A4b and A4c is the gain in total revenue of the two
maturities on a day when issuing 1% of total debt more of the short and less of the long
bill, or vice versa, averaged across all auction days in a year. The revenue gain is com-
puted for a discriminatory price auctions and is measured in bps of the revenue earned when
issuing the observed supply. We scale up the λ and δ parameters to make the time trends visible.
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Appendix Figure A5: Illustration of the price-quantity trade-off (extended model with
heterogeneous dealers)

(a) Uniform price auction (b) Discriminatory price auction

Appendix Figures A5 is the analogue to Figure 5 but using the extended model with hetero-
geneous dealers. depict the price-quantity trade-off when the auction is uniform price (a), and
discriminatory price (b) using the estimated λ and δ parameters in the upper graphs and scaling
the parameters by 100 in the lower graphs. On the y-axis is the total revenue earn from issuing
both maturities (in billion C$) when issuing x% of the short maturity and (1-x)% of the long
maturity. The x-axis scales up x from 0% to 100%.
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Appendix Figure A6: Expectations on 3 auction days

(a) Did we find a fixed point? (b) Fixed point vs. rescaled expectations

Appendix Figures A6a shows the distributions of the difference (in million C$) between the last
two iterations of updating expectations in our statistical fixed point routine for all three matu-
rities on three different auction days. We claim to find a fixed point (up to measurement noise)
if the median difference is zero and there are only occasional outliers. Appendix Figure A6b
shows the difference (in million C$) between the rescaled expectations (16) and the expectations
that we find using our statistical fixed point routine. The median difference is again zero.
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Appendix Table A1: Bid Updating

Update in 12M for 3M order Update in 6M for 3M order

Bid by Time Maturity (1) (2) (1) (2)

Customer 10:19:52 3M . . . .
Dealer 10:21:59 12M 1 1 0 0
Dealer 10:22:17 6M 0 0 0 1
Dealer 10:22:34 3M 0 0 0 0
Dealer 10:26:52 12M 0 0 0 0
Dealer 10:27:16 12M 0 0 0 0
Customer 10:28:34 3M . . . .
Dealer 10:28:44 3M 0 0 0 0

Appendix Table A1 illustrates the sequence of events from a random dealer and their customer
for the last 10 minutes before the auction closes on 02/10/2015. Having observed a customer in
the 3M auction (visible in the first row), the dealer takes action himself and places several bids
in a row (as shown in the second until sixth row). He first bids in the 12M auction. Therefore
customer3M assume value 1 in specification (1) and (2) shown in the fourth and sixth column.
Then the dealer bids in the 6M auction. Now, the customer3M variable switches to 1 only in
specification (2) in the seventh column, but not in specification (1) in the sixth column. This is
because the dealer has observed a customer in the 3M auction one minute before placing a bid
in the 6M auction but not immediately before that.
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Appendix Table A2: Demand coefficients per dealer group with bids as independent
variables

(a) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −4.498 (0.023) λ6M −7.266 (0.040) λ1Y −14.59 (0.077)
δ3M,6M −0.081 (0.051) δ6M,3M +0.538 (0.086) δ1Y,3M +0.710 (0.191)
δ3M,1Y +0.305 (0.055) δ6M,1Y +0.145 (0.096) δ1Y,6M −0.070 (0.196)

N 45405 33464 40956

(b) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −8.879 (0.086) λ6M −13.43 (0.183) λ1Y −25.88 (0.340)
δ3M,6M +1.613 (0.193) δ6M,3M +1.156 (0.526) δ1Y,3M +0.993 (1.072)
δ3M,1Y +1.760 (0.201) δ6M,1Y +5.234 (0.442) δ1Y,6M +12.16 (0.875)

N 13137 8818 9452

Appendix Tables A2 (a) and (b) are analogous to Table 4 (a). They report the coefficients
for equation (6), but with the observed competitive bids by dealers with more than one step as
independent variables rather than the estimated true valuations. Bids are in C$ and quantities in
% of auction supply. The first three columns show the estimates for the 3M Bill auction, the next
three for the 6M Bill auction and the last three for the 12M Bill auction. The point estimates
are in the second, fifth and eight column. Standard errors are next to them in parentheses.
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Appendix Table A3: Demand coefficients per dealer group with valuations as independent
variables

(a) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −6.107 (0.033) λ6M −10.75 (0.066) λ1Y −22.53 (0.135)
δ3M,6M −1.158 (0.073) δ6M,3M −2.249 (0.142) δ1Y,3M −5.478 (0.336)
δ3M,1Y −0.243 (0.078) δ6M,1Y −1.080 (0.158) δ1Y,6M −4.258 (0.344)

N 45405 33464 40956

(a) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −11.19 (0.106) λ6M −17.42 (0.221) λ1Y −35.75 (0.462)
δ3M,6M +0.285 (0.237) δ6M,3M −1.666 (0.636) δ1Y,3M −6.957 (1.459)
δ3M,1Y +1.216 (0.247) δ6M,1Y +3.748 (0.536) δ1Y,6M +7.607 (1.190)

N 13137 8818 9452

Appendix Tables A3 (a) and (b) are analogous to Table 4 (b). They report the coefficients
for equation (6). Valuations are in C$ and quantities in % of auction supply. The first three
columns show the estimates for the 3M bill auction, the next three for the 6M bill auction and
the last three for the 12M bill auction. The point estimates are in the second, fifth and eight
column. Standard errors are next to them in parentheses.
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Appendix Table A4: Demand coefficients with valuations with more than 3 steps

(a) Average dealer

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −6.777 (0.034) λ6M −11.81 (0.069) λ1Y −24.46 (0.138)
δ3M,6M −0.931 (0.074) δ6M,3M −2.396 (0.149) δ1Y,3M −6.336 (0.345)
δ3M,1Y −0.171 (0.080) δ6M,1Y −0.552 (0.163) δ1Y,6M −2.647 (0.348)

N 55822 38856 46778

(b) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −6.165 (0.034) λ6M −11.07 (0.069) λ1Y −23.09 (0.140)
δ3M,6M −1.158 (0.074) δ6M,3M −2.290 (0.146) δ1Y,3M −5.498 (0.344)
δ3M,1Y −0.281 (0.080) δ6M,1Y −1.105 (0.163) δ1Y,6M −4.281 (0.352)

N 42937 30456 37820

(c) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction

λ3M −11.13 (0.106) λ6M −17.29 (0.224) λ1Y −35.04 (0.469)
δ3M,6M +0.236 (0.237) δ6M,3M −1.608 (0.639) δ1Y,3M −7.224 (1.463)
δ3M,1Y +1.243 (0.246) δ6M,1Y +3.524 (0.537) δ1Y,6M +7.319 (1.189)

N 12885 8400 8958

Appendix Table A4 (a)-(c) are analogous to Tables 4 (a) and A3. They report the coefficients for
equation (6), but estimated on a subsample of valuations estimated from bidding functions with
strictly more than two steps, instead of one step. Valuations are in C$ and quantities in % of
the auction supply. The first three columns show the estimates for the 3M bill auction, the next
three for the 6M bill auction and the last three for the 12M bill auction. The point estimates
are in the second, fifth and eight column. Standard errors are next to them in parentheses.
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Appendix Table A5: Demand coefficients for the average dealer with trimmed valuations

(a) 3M Bill auction

markup 4 bps 10 bps 20 bps 40 bps

λ3M −6.496 (0.031) −7.767 (0.046) −9.609 (0.075) −12.89 (0.135)
δ3M,6M −0.752 (0.069) −1.692 (0.101) −3.040 (0.163) −5.499 (0.293)
δ3M,1Y −0.040 (0.074) −0.605 (0.108) −1.449 (0.175) −2.806 (0.314)

N 58542 58542 58542 58542

(b) 6M Bill auction

markup 4 bps 10 bps 20 bps 40 bps

λ6M −11.05 (0.061) −13.62 (0.096) −17.25 (0.162) −23.75 (0.296)
δ6M,3M −1.892 (0.134) −4.350 (0.209) −7.910 (0.351) −14.02 (0.644)
δ6M,1Y −0.308 (0.147) −1.446 (0.228) −2.994 (0.383) −5.763 (0.701)

N 42282 42282 42282 42282

(c) 1Y Bill auction

markup 4 bps 10 bps 20 bps 40 bps

λ1Y −22.89 (0.123) −29.14 (0.202) −38.03 (0.345) −54.03 (0.637)
δ1Y,3M −5.102 (0.309) −12.25 (0.507) −23.42 (0.869) −44.35 (1.603)
δ1Y,6M −1.895 (0.312) −5.630 (0.512) −11.27 (0.877) −21.93 (1.618)

N 50408 50408 50408 50408

Appendix Table A5 (a)-(c) report the coefficients for equation (6), estimated using competitive
bids of more than one step that were placed by dealers for different valuations of the markup
(4 bps, 10 bps, 20 bps, 40 bps). The estimates for a markup of 5 bps, our favorite specification,
are in the main text. Valuations are in C$, quantities % of auction supply. Standard errors are
in parentheses next to the point estimates.
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Appendix Table A6: Average gain (in bps) per auction when reshuffling 1% of

debt in the extended model with heterogeneous dealers

S ↑ L ↓ S ↑ L ↓ S ↓ L ↑ S ↓ L ↑
Uniform Discrim Uniform Discrim

Independent: factorλ=1, factorδ=0 +0.021 +0.006 −0.024 −0.008
Weak substitutes: factorλ=1, factorδ=1 +0.012 −0.004 −0.020 +0.001
Perfect substitutes: factorλ=1, δ = λ +0.011 −0.056 −0.015 +0.047

Independent: factorλ=1, factorδ=0 +0.234 −0.029 −0.295 −0.002
Weak substitutes: factorλ=1, factorδ=1 +0.227 −0.036 −0.290 +0.007
Perfect substitutes: factorλ=1, δ = λ +0.089 −0.586 −0.208 +0.589

Independent: factorλ=1, factorδ=0 +2.365 −0.448 −2.996 +0.185
Weak substitutes: factorλ=1, factorδ=1 +2.361 −0.445 −2.992 +0.144
Perfect substitutes: factorλ=1, δ = λ +1.009 −6.591 −2.113 +6.523

Appendix Table A6 is analogous to Table 6 but builds on the extended model with two dealer
groups (market makers and non-market makers). It shows the revenue gains when issuing 1%
of debt more for the short maturity and 1% less of the long maturity in the second and third
column (S ↑ L ↓) and vice versa in the fourth and fifth column S ↓ L ↑ when the auction format
is uniform price (Uniform) and when it is discriminatory price (Discrim). The first three rows
(factorλ=1) correspond to the demand estimates of the 6M and 12M bills assuming different
degrees of substitution. The fourth-sixth row and seventh-ninth row correspond to hypothetical
auctions in which the λχ parameters in the bidder’s demand are scaled by a factor of 10, and
100, respectively. The revenue gain is in bps of the original revenue.
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