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Abstract 

This paper focuses on econometric issues, especially the common assumption that 
monetary payoff is subjects’ actual utility, in estimating subjects’ learning behaviors 
using experimental data. I propose a generalized adaptive learning model that nests 
commonly used learning rules. First, I show that for a wide range of model parameters, 
adding a constant to the utility function alters players’ learning dynamics. Such a range 
includes commonly used learning models, such as experience-weighted attraction 
(EWA), payoff assessment and impulse-matching learning. This result implies that the 
usual treatment of monetary reward as the actual utility is potentially misspecified, in 
addition to the common concern of risk preference. To deal with such an issue, the 
econometric model specifies a player’s utility as an unknown function of monetary 
payoff. It is estimated jointly with the generalized learning model. I show that they are 
jointly identified under weak conditions. Using the experimental dataset by Selten and 
Chmura (2008) and Chmura et al. (2012), I reject the null hypothesis that monetary 
payoffs are utility. Incorrectly imposing such a restriction substantially biases the 
learning parameters, especially the weight on forgone utility. In addition, when a 
generalized model is considered, subjects are found to depreciate the unchosen action’s 
experience more than the chosen one. Consequently, they are more responsive to the 
unchosen action’s recent utility, rather than that of the chosen one. This feature is absent 
in commonly used learning models, such as EWA. 

 

Bank topics: Econometric and statistical methods; Economic models 
JEL codes: C57, C72, C92 

 



1 Introduction

Players’ learning behaviors have an important implication for their actual choices in games, especially

when identical or similar games are played repeatedly. Specifically, learning relates to at least three core

questions: Will players’ behaviors converge to a Nash equilibrium or other solution concepts? If they

converge, which equilibrium will they reach, and what is the speed of convergence? Because of the

importance of this, economists have proposed a variety of models for understanding players’ learning

behaviors.1 The performance of these models is usually evaluated by experimental data. In this literature,

researchers commonly assume that the monetary payoffs assigned by experimentalists are subjects’ actual

utilities. This paper both argues that such an assumption is misspecified and provides a solution to the

misspecification.

Assuming monetary payoff is the actual utility places strong restrictions on subjects’ preferences.

First, subjects must be risk neutral if this assumption is true. However, Goeree et al. (2003) and Harrison

and Rütstrom (2008) provide evidence of risk preference at the payment scale in common experiments.

Second, besides the concern regarding risk preference, this paper provides another reason why monetary

payoff cannot be regarded as the actual utility. Many learning models, such as Mookherjee and Sopher

(1994, 1997), Erev and Roth (1998), Camerer and Ho (1999) and Sarin and Vahid (1999, 2001), dis-

tinguish between actual utility and forgone utility. Specifically, players will discount the forgone utility

of the strategy they have not chosen before.2 I show that such a feature implies that adding a constant

to the utility function will change subjects’ learning path and, potentially, the converging outcome. In

more detail, let u(m) denote the utility function of monetary payoff m. Even when players are risk neu-

tral, restricting u(m) = m can still be misspecified. This is because another risk-neutral utility function

u(m) = m+ c for some c 6= 0 can generate a different dynamic of choices. Consequently, researchers

need to impose a correct value of c even though players can reasonably be assumed to be risk neutral.

At first glance, that a learning path is variant to adding a constant to the utility function seems to

be a surprising result. Intuitively, if players value actual and forgone utilities differently, their learning
1A partial list of important contributions includes belief-based learning by Brown (1951), Fudenberg and Levine (1995,

1998) and Cheung and Friedman (1997); reinforcement learning by Erev and Roth (1998) and Mookherjee and Sopher (1994,
1997); experience-weighted attraction model by Camerer and Ho (1999), Camerer et al. (2002) and Ho et al. (2007); payoff
assessment learning by Sarin and Vahid (1999), Sarin and Vahid (2001) and Cominetti et al. (2010); and impulse-matching
learning by Chmura et al. (2012, 2014).

2The discount can be due to either incomplete information about the payoff or inattention.
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paths depend not only on the history of each player’s actions but also on the realized past utility. This

is similar to the fallacy of sunk cost. Specifically, players make their current decisions based on their

realized past utility even though it has no impact on their current expected utility. This feature implies

that adding a constant to the utility will induce a different learning path. Finally, such a result has its

own interest and can be used to test different versions of learning models. Specifically, the belief-based

model does not distinguish between actual and forgone utility. Therefore, the learning dynamic depends

only on the history of actions and is invariant to adding a constant to the utility function, in contrast to the

reinforcement learning and payoff assessment models listed above. It consequently provides a testable

restriction of belief-based learning against other models.

The constant c added to the utility function has a structural interpretation. Take the reinforcement

learning model as an example; players will choose an action more/less frequently in the future if such

an action is successful/unsuccessful in the current period. In this context, assuming monetary payoff as

the utility restricts zero dollars to be the division between a successful and an unsuccessful strategy. In

more detail, an action with a positive/negative monetary reward is coded as successful/unsuccessful. This

restriction is implausible in many games.3 The constant c is then interpreted as how successful does a

player view the action with zero monetary reward. Such a constant is potentially unknown to researchers

but could be estimated from players’ choices.

Incorrectly assuming monetary payoff as the actual utility could generate considerable bias on the

estimated learning parameters. Moreover, even though researchers know the learning parameters, we

could still make incorrect counterfactual predictions. To address such an issue, this paper considers a

general adaptive learning rule that nests most existing models as special cases. In addition, players’ utility

is specified as an unknown non-parametric function of the monetary payoff. Such a utility function is

estimated together with the parameters of the general learning model. I show that under weak conditions,

the utility function and learning parameters are jointly identified.

The experimental literature has developed several methods to relax the assumption of monetary pay-

off as utility. Roth and Malouf (1979) propose linearizing utility function by assigning the payoff as

the probability of winning a fixed reward. This mechanism has been applied by Ochs (1995) and Fel-

3For instance, in a coordination game where both players can receive a positive monetary reward in some equilibria, an
action that earns zero or a small positive amount of dollars is likely to be coded as an unsuccessful strategy.
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tovich (2000), among others. Another common method is to elicit players’ risk preference using a lottery

choice. Such a method is used in Heinemann et al. (2009), among others. Even though these meth-

ods can adequately address risk preference, they are not suitable for estimation in the adaptive learning

model. As described above, the knowledge of risk preference is not sufficient to consistently estimate

learning parameters since adding a constant to the utility function could change the dynamics of learning

behaviors.

Cabrales and Garcia-Fontes (2000) and Bracht and Ichimura (2001) study the identification and es-

timation of the experience-weighted attraction (EWA) model by Camerer and Ho (1999), but under the

assumption that utility is the monetary payoff and therefore known by econometricians. This paper

emphasizes the misspecification of such an assumption and specifies utility as an unknown function of

money. This poses an additional identification burden on the model. Moreover, I consider a generalized

model that nests EWA as a special case.

The identification results developed in this paper seem to conflict with the common wisdom that

learning models are usually imprecisely estimated. Specifically, Salmon (2001) conducts a Monte Carlo

study and shows that experimental data are insufficient to distinguish between different learning models.

However, his study assumes a sample size of 40 subjects, which was a common experimental size at that

time. Recently, many studies, such as Feri et al. (2010), Selten and Chmura (2008), Chmura et al. (2014),

have conducted large-scale experiments with around 1,000 subjects. Using a Monte Carlo experiment,

I show that researchers can reliably estimate both learning parameters and utility function with such an

experimental scale. Moreover, incorrectly assuming monetary payoff as the utility generates considerable

bias in both estimated learning parameters and counterfactual predictions.

In summary, this paper argues that researchers should be cautious when assuming monetary payoff

as the actual utility. Such an assumption can be misspecified and leads to serious bias. When researchers

have a large-scale experiment, a general learning model that nests commonly used learning procedures

can be reliably estimated together with subjects’ utility functions. Finally, using actual experiments by

Selten and Chmura (2008) and Chmura et al. (2012), I reject the null hypothesis that the monetary payoff

equals the actual utility. Players are risk averse and code a zero-dollar reward as unsuccessful.

The rest of this paper is organized as follows. Section 2 describes the model and Section 3 shows the
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identification results. I present the Monte Carlo experiment in Section 4 and the empirical results of an

actual experiment in Section 5. Section 6 concludes.

2 Model

This section first presents the general adaptive learning model considered in this paper. This model nests

commonly used learning procedures, such as the EWA model proposed by Camerer and Ho (1999), the

payoff assessment learning studied by Sarin and Vahid (1999, 2001) and Cominetti et al. (2010), and the

impulse-matching learning analyzed by Chmura et al. (2012), as special cases.

Consider an n-player normal-form game. Each player i ∈ {1,2, · · · ,n} has Ji actions, and Si =

{s1
i ,s

2
i , · · · ,s

Ji
i } denotes the action set. An action/strategy is indexed by j. Consequently, the Carte-

sian product S = S1× S2 · · · × Sn represents the set of action profiles in this game. Denote s ∈ S as an

arbitrary action profile; player i receives a payoff/utility πi(s) when s is the realized outcome of the game.

This normal-form game is repeated for T periods. At period t, let si(t) and s(t) denote the actual choice

of player i and the realized outcome of the game, respectively. Then πi[s(t)] represents player i’s actual

utility received in period t.

Researchers design an experiment that assigns each player’s monetary reward for every action profile.

Specifically, let mi(s) denote player i’s monetary payoff when the realized outcome is s. The existing

literature commonly assumes the monetary payoff is the players’ utility; for instance, πi(s) = mi(s). In

contrast, this paper makes a distinction between these two terms. Even though mi(·), referred to as the

monetary payoff, is perfectly observed by researchers, term π(·), referred to as the utility, is unobserved.

I assume only that the utility is strictly increasing in monetary payoff; it is summarized by Assumption 1.

Assumption 1. πi(s) = u[mi(s)] where u(·) is a non-parametric, strictly increasing function.

Note that I assume each player has the same utility function, for simplicity; the model and identifica-

tion results are easily generalized to heterogeneous u(·) across players.

Each strategy has a numerical value, referred to as attraction, that determines the probability of choos-

ing that action. An adaptive learning rule describes the evolution of these attractions and how the choice

probability of each action depends on attractions. Specifically, let A j
i,t denote player i’s attraction of
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strategy s j
i at period t. It evolves according to

A j
i,t+1 =

φ [t,1(si(t) = s j
i )]

N(t)
A j

i,t +
f (s j

i ,st)

N(t)
πi(s

j
i ,s−i(t)), (1)

=
φ [t,1(si(t) = s j

i )]A
j
i,t + f (s j

i ,st)πi(s
j
i ,s−i(t))

N(t)
.

As shown in the first line, the future attraction of action s j
i can be seen as a weighted sum of its current

attraction and utility given other players’ choices st . Both φ(·) and N(·) are non-parametric functions;

therefore, I put no restrictions on how these weights will evolve across time. In addition, 1(·) is the

indicator function that equals 1 if the statement in parentheses is true. Therefore, the weight on current

attraction A j
i,t is allowed to differ based on whether action s j

i is actually chosen or not. Finally, f (·) is the

weight on the current utility, up to normalization of N(t). It takes the following expression:

f (s j
i ,s−i(t)) =


1 if si(t) = s j

i ,

δ0 if si(t) 6= s j
i and πi[s

j
i ,s−i(t)]< πi[si(t),s−i(t)],

δ1 if si(t) 6= s j
i and πi[s

j
i ,s−i(t)]≥ πi[si(t),s−i(t)].

(2)

If s j
i is chosen at period t, then πi[s

j
i ,s−i(t)] represents the realized/actual utility received by player i

and it is updated with full weight. On the other hand, when s j
i is not chosen, πi[s

j
i ,s−i(t)] represents player

i’s utility if she deviates to s j
i , holding other players’ actions constant at period t. It is referred to as the

forgone utility. Due to a player’s limited attention, regret and/or potentially incomplete information about

the preference, πi[s
j
i ,s−i(t)] will be updated with a multiplier δ . Specifically, δ < 1 if players pay less

attention to the unchosen strategy, and δ > 1 if players regret not choosing s j
i . If player i has incomplete

information such that the forgone utility is unknown to her, δ would be zero. In addition, depending on

whether the forgone utility is higher than the actual utility πi[si(t),s−i(t)], δ is allowed to take different

values. This captures the possibility that players could pay more attention to the unchosen action that

yields a higher utility than the current chosen strategy. For instance, Ho et al. (2007) assume δ1 = 1 and

δ0 = 0.

In a similar vein to the EWA model by Camerer and Ho (1999), the second line of equation (1)
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provides another interpretation of the evolution. Specifically, N(t) can be interpreted as the number of

“observation-equivalent” stage games that a player has played. Term φ(·)A j
i,t then represents the cu-

mulative attraction of action s j
i at period t. The weight f (·) describes how the current utility of s j

i is

accumulated into future attractions. Consequently, A j
i,t+1 can be interpreted as a weighted average of

historical utilities for action s j
i up to period t.

The attractions in each period determine players’ choice probabilities of every action. Let P j
i,t denote

player i’s choice probability of action s j
i at period t. As standard in the literature, I specify a logit formula:

P j
i,t =

exp(λA j
i,t)

∑
Ji
k=1 exp(λAk

i,t)
. (3)

As in McKelvey and Palfrey (1995), the logit formula can be seen as player i chooses an action that

maximizes the following:

max
si∈Si

Ãsi
i,t = Asi

i,t + ε
si
i,t ,

where ε
si
i,t is a random shock to attraction of s j

i at period t. It follows the Gumbel distribution and is

independent across time and actions. Moreover, λ measures the inverse of the standard deviation of

ε
si
i,t . It is referred to as the sensitivity parameter. If player i best responds to attraction (i.e., chooses the

strategy with the highest attraction), then λ = ∞. In contrast, λ = 0 implies that players are insensitive to

attraction and randomly choose different actions with equal probabilities. Finally, following the discrete

choice literature, the identification results are easily generalized when ε follows other distributions, for

instance, the multinomial probit model.

Subsections 2.1 to 2.3 show that the adaptive learning model considered in this paper nests commonly

used learning rules as special cases. For the sake of brevity, the learning rule specified by equations (1)

to (3) is referred to as the Generalized Adaptive Learning (GAL) model.

2.1 Experience-weighted Attraction (EWA)

Camerer and Ho (1999) propose the EWA model. It is the benchmark in the literature and shown to fit

experimental data successfully.4 Compared with the GAL model described above, EWA learning imposes

4See Camerer and Ho (1999), Ho et al. (2007), and Chmura et al. (2012).
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three additional restrictions. First, the evolution of weights N(·) and φ(·) are parametric functions of time

t. Second, the weight on current attraction of action s j
i is independent of whether s j

i is chosen or not.

Third, players discount the forgone utility equally regardless of whether it is higher than the actual utility

or not. These three restrictions are represented by the following equations:

N(t) = ρ ·N(t−1)+1,

φ [t,1(si(t) = s j
i )] = φ ·N(t), (4)

δ1 = δ0 = δ ,

where ρ , φ and δ are unknown parameters. With these three restrictions, the GAL model becomes the

EWA as follows:

N(t) = ρ ·N(t−1)+1,

A j
i,t+1 =

φN(t)A j
i,t +[δ +(1−δ ) ·1(si(t) = s j

i )] ·πi[s
j
i ,s−i(t)]

N(t)
.

Camerer and Ho (1999) further show that the EWA model nests the reinforcement learning of Mookher-

jee and Sopher (1994, 1997) and weighted fictitious play in Brown (1951), Fudenberg and Levine (1995,

1998) and Cheung and Friedman (1997). Consequently, these models are also nested in the GAL model.

2.2 Payoff Assessment Learning

Sarin and Vahid (1999, 2001) study a payoff assessment learning model. When s j
i is chosen, its future

attraction is a weighted average of its current attraction and actual utility. In contrast, when s j
i is not

chosen, player i does not update its attraction at all and the same value of attraction transmits to the next

period. Equivalently, the weight on the forgone utility is zero, and the weight on the current attraction

A j
i,t depends on whether s j

i is chosen or not. In addition, Cominetti et al. (2010) study a general version

of payoff assessment learning that allows the weights to evolve across time.
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Suppose we impose the following restrictions on the GAL model:

φ(t,0) = N(t),

φ(t,1)
N(t)

+
1

N(t)
= 1, (5)

δ1 = δ0 = 0.

The evolution of attraction turns to

A j
i,t+1 =


(1− 1

N(t))A
j
i,t +

1
N(t)πi[s

j
i ,s−i(t)], if si(t) = s j

i ,

A j
i,t , otherwise.

This is the evolution considered in Cominetti et al. (2010). It also nests Sarin and Vahid (1999, 2001).

Consequently, payoff assessment learning can be seen as a special case of the GAL model.

2.3 Impulse-matching Learning

Chmura et al. (2012) consider an impulse-matching learning in the context of a two-player binary-choice

game. They argue that players would value gains differently than losses, according to the prospect the-

ory proposed by Kahneman and Tversky (1979). Specifically, let m∗i = maxsi∈Si{mins−i mi(si,s−i)}. It

represents the maximal monetary payoff that player i can obtain for sure in each period. Chmura et al.

(2012) argue that m∗i forms a natural aspiration level. Any monetary payoff lower than it is perceived as

a loss, while a higher one is regarded as a gain. In line with Kahneman and Tversky (1979), they assume

losses are counted double in comparison with gains. Specifically, for each action profile s, they assume

the following utility function:

πi(s) =


mi(s)+m∗i

2 , if mi(s)≥ m∗i ,

mi(s), if mi(s)< m∗i .
(6)

The utility function is strictly increasing in monetary payoff and therefore is nested in Assumption 1.5

5Given equation (6), players have heterogeneous utility functions as they have different aspiration levels m∗i . This seems to
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Consider the following restrictions imposed in the GAL model:

N(t) = φ [t,1(si(t) = s j
i )] = 1,

δ1 = δ0 = 1. (7)

The evolution of attraction then becomes

A j
i,t+1 = A j

i,t +πi[s
j
i ,s−i(t)].

Such an evolution seems to be different from the following rule specified in Chmura et al. (2012):

A j
i,t+1 = A j

i,t +max
{

0,πi[s
j
i ,s−i(t)]−πi[sk

i ,s−i(t)]
}
.

However, under the logit formula given by equation (3), only the difference in the two strategies’ attrac-

tions determines the choice probability. Moreover, it is easy to see that both evolutions yield the same

difference as the following:

A j
i,t+1−Ak

i,t+1 = A j
i,t−Ak

i,t +πi[s
j
i ,s−i(t)]−πi[sk

i ,s−i(t)].

Therefore, when researchers impose logit choice probability, the impulse-matching learning by Chmura

et al. (2012) is nested in the GAL model.6

2.4 Parametrized Generalized Adaptive Learning

The next section shows that when researchers have a perfect dataset such that the number of experimental

subjects approaches infinity, utility function and transitional functions can be identified. However, in

practice, experimentalists recruit only a finite and usually small number of subjects, due to time and

financial constraints. In this case, researchers have to make a compromise and consider a parsimonious

model to achieve precise estimation. This subsection proposes parameterizing the transitional function to

be contradicted by Assumption 1, in which the preference is assumed to be homogeneous. However, as described above, the
model and identification results in this paper are easily generalized when the utility function is player specific.

6Chmura et al. (2012) apply a power probability with power equal to 1.
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ease the estimation burden. Similar to the EWA model, I consider the following restrictions:

N(t) = ρN(t−1)+1,

φ(t,0) = φ0 ·N(t−1), (8)

φ(t,1) = φ1 ·N(t−1).

The evolution of N(t) is identical to the EWA model. In contrast, φN(t − 1) represents the weight on

the current attraction. The EWA model restricts φ to be constant across all actions, while I allow φ to be

different for the chosen and unchosen strategies. Comparing equation (8) with equations (4), (5) and (7),

it is easy to see that the EWA, payoff assessment learning and impulse-matching models are also nested

in this parametrized GAL model.

3 Identification

This section first presents conditions for the data-generating process. Subsection 3.2 derives some em-

pirical properties of the GAL model; they lead to some normalizations for identification. One important

property is that adding a constant to the utility can alter players’ learning path. Subsection 3.3 presents

the identification results, and Subsection 3.4 discusses individual heterogeneity. All proofs are in the

Appendix.

3.1 Data-Generating Process

Suppose researchers recruit in total nG subjects and divide them into G groups. Each subject is randomly

assigned one role of n players. The role is fixed, and each subject plays a sequence of normal-form

games described in Section 2 for T periods. Groups can be either fixed or randomly re-paired across

time. Importantly, each subject learns according to the GAL model, as specified by equations (1) to (3).

They are homogeneous so that each subject has the same utility function and learning rule. Specifically,

N(·), φ(·) and u(·) are identical across subjects. Subsection 3.4 discusses the identification results when

individual heterogeneity is allowed in the econometric model.
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This paper focuses on players’ learning behaviors. Therefore, I assume each action will be chosen

with a positive probability in each period.7 Suppose a player sticks to one particular action; it can be

interpreted as this player stops learning. Such a scenario is not the focus of this paper. The asymptotics

come from the number of subjects approaching infinity while T is fixed; equivalently, G→ ∞. Denote

P j
i,t [s(1), · · · ,s(t− 1)] as player i’s choice probability of s j

i given an arbitrary history [s(1), · · · ,s(t− 1)].

Such a choice probability can be consistently estimated. This is because any history can be observed in-

finitely many times when G→ ∞. Consequently, I assume P j
i,t [s(1), · · · ,s(t−1)] is known to researchers.

The objective is to use this type of experimental data to identify unknown functions of the GAL model

and utility, for instance, transitional function N(·) and φ(·), weighting function f (s j
i ,s(t)), utility function

u(·) and initial attraction A j
i,1.

3.2 Empirical Properties and Normalizations

It is straightforward to show that any transformations in Lemma 1 will leave λA j
i,t unchanged for any t.

According to equation (3), a player’s choice probability is invariant to any of these transformations. This

result calls the normalizations in Assumption 2.

Lemma 1. Player i’ choice probability P j
i,t [s(1), · · · ,s(t− 1)] is invariant to any of the following trans-

formations:

(a) Multiply a constant c to initial attraction A j
i,1 and utility function u(·), then multiply the sensitivity

parameter λ by a constant 1
c .

(b) Multiply u(·), N(·), and φ(·) by the same constant c.

Assumption 2. Lemma 1 leads to the following normalizations: λ = 1 and N(1) = 1.

As argued by McKelvey and Palfrey (1995), λ measures the players’ sensitivity to the expected utility

or attraction. However, as stated in Lemma 1 (a), it is indistinguishable from the scale of initial attraction

and utility function. For example, suppose a subject’s action is extremely sensitive to the payoff of $1.

Such a behavior can be equivalently explained by either the subject having a high sensitivity parameter

λ or the utility of $1 being extremely high. Previous literature identifies λ because it assumes utility is

7Such an assumption can hold under weak conditions. For instance, it is true if λ and attraction are finite numbers.

11



money; for instance, the utility of $1 is 1. This paper non-parametrically specifies the utility function and

therefore normalizes λ to unity. Finally, this paper presents the model that focuses on a single normal-

form game. Suppose researchers design an experiment with multiple types of normal-form games where

each type of game has a different monetary payoff matrix. Under the assumption that utility function is

constant across all games, the identification results studied in this paper identify how the λ varies across

different types of games. Consequently, researchers can test the hypothesis, for instance, whether players

are more sensitive to attractions in coordination games than in matching pennies games. Moreover,

normalizing λ = 1 in only one game is enough for point identification.

Camerer and Ho (1999) estimate initial experience N(1); they achieve the identification because

they parametrize the transition function–for instance, N(t) = ρN(t − 1) + 1. In contrast, this paper

non-parametrically specifies such a transition and normalizes N(1) = 1. More importantly, even with

parametrization, N(1) is usually poorly estimated, and assuming N(1) is common in the literature, for

instance, Ho et al. (2007).

Proposition 1. Under Assumptions 1 and 2, player i’s choice probability P j
i,t+1[s(1), · · · ,s(t)] is invariant

to adding a constant to the utility function u(·) if and only if the following two conditions hold:

(a) δ1 = δ0 = 1; i.e. f (s j
i ,s) = 1 for each s j

i ∈ Si and s ∈ S.

(b) δ (t,1) = δ (t,0) ∀t > 1.

Under standard preference theory, adding a constant to the utility of each action has no impact on

the optimal decision; consequently, the choice probability is invariant. As shown in Proposition 1, such

a property is preserved only in some special cases of the GAL model. Specifically, conditions (a) and

(b) imply that players put the same weight on chosen and unchosen strategies when they update their

attractions; therefore, adding a constant to the utility has no effect on the evaluation of each strategy.

However, if either condition fails, chosen and unchosen strategies will follow different updating rules.

For instance, consider that condition (a) fails and δ < 1. Suppose a positive constant c is added to the

utility; then the chosen strategy receives the full weight of the actual utility and its future attraction will

increase by c. In contrast, the unchosen strategy receives less than the full weight of the forgone utility,

and its future attraction increases by less than c. As a result, the unchosen strategy will be chosen less

frequently in the future, compared with the scenario in which c is not added to the utility. As shown in
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Section 2, a broad class of learning models, such as reinforcement and payoff assessment, assume unequal

weights on the chosen and unchosen actions; therefore, players’ learning paths in all these models will be

different if a constant is added to the utility. As a comparison, the belief-based learning model restricts

an identical updating rule of attractions for all strategies; therefore, the invariance property of choice

probability holds. By the above comparison, Proposition 1 also provides a testable implication of belief-

based learning against other types of models.

3.3 Identification Results

This subsection presents the identification results. Proposition 2 states that transitional functions N(·),

φ(·) and initial attractions are identified under weak conditions.

Proposition 2. Under Assumption 2 and supposing T ≥ 3, we have the following:

(a) N(t), φ(t,0) and φ(t,1) are point identified for each t.

(b) Initial attraction A j
i,1 is identified for each player i and strategy s j

i .

(c) Term f (s j
i ,s)πi(s

j
i ,s−i)− f (sk

i ,s)πi(sk
i ,s−i) is identified for any pair of s j

i , sk
i and any s = (si,s−i).

The identification of transitional functions only requires the normalizations in Assumption 2, and the

stage game is repeated more than twice. Note that it does not rely on Assumption 1. Therefore, N(·) and

φ(·) are identified even when a player’s utility function may depend on other players’ monetary rewards.

It consequently allows the social preference, as studied by Güth et al. (1982), Kahneman et al. (1986) and

Fehr and Schmidt (1999), etc.

Term f (s j
i ,s)πi(s

j
i ,s−i)− f (sk

i ,s)πi(sk
i ,s−i) represents the weighted difference of any two actions’

utilities. The remainder of this subsection shows how to separately identify the utility function and the

weight f (·) under Assumption 1.

Suppose researchers design a variety of treatments in which each treatment constitutes a different

monetary payoff matrix. Moreover, every monetary reward can be received by a subject with positive

probability as the number of treatments approaches infinity. Such a data-generating process directly

identifies utility function and weight given the information on weighted difference of utility. However,

due to time and financial constraints, experimentalists commonly study a small number of treatments, and

the number of possible monetary payoffs is finite. This paper presents a sufficient condition to identify
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the utility function under such a data-generating process. It therefore provides guidance for researchers

to design an experiment.

Proposition 3. Under Assumptions 1, 2 and with T ≥ 3, suppose further that φ(t,0) 6= φ(t,1) for some

1 < t < T ; then the utility function πi(s) = u[mi(s)] is identified for any s ∈ S. Moreover, the weight

function f (si,s) is identified for any si and s.

Besides Assumptions 1 and 2, Proposition 3 requires only that φ(t,0) 6= φ(t,1) for some t. Such a

condition is satisfied in payoff assessment learning. In this model, the chosen action receives a different

weight on its attraction than the unchosen strategy. Moreover, given Proposition 2, φ(·) is identified;

therefore, the condition that φ(t,0) 6= φ(t,1) is testable. When the above condition holds, the utility

function is identified for any monetary payoff matrix.

There exists a broad class of models that restrict φ(t,0) = φ(t,1)–for instance, the EWA learning. Un-

der such a scenario, additional restrictions have to be imposed on the monetary payoff matrix to achieve

the identification. To describe these restrictions, some burdensome notations have to be introduced. The

description and restrictions summarized by Assumption 3 are included in the Appendix.

Proposition 4. Suppose that φ(t,0) = φ(t,1) under Assumptions 1 to 3 and T ≥ 3; we then have the

following:

(a) The weight function f (si,s) is identified for any si and s.

(b) If f (si,s) 6= 1 for some (si,s), then utility function u[mi(s)] is identified for any s.

(c) If f (si,s) = 1 for all (si,s), then the difference of utility u[mi(s
j
i ,s−i)]−u[mi(sk

i ,s−i)] is identified

for any pair of s j
i , sk

i and any choice of other players s−i.

If weight function f (·) equals 1 for any action profile, under restriction such that φ(t,1) = φ(t,0),

players’ learning path is invariant to adding a constant to the utility function as shown in Proposition 1.

In this case, a player’s choice probability depends on the difference of two actions’ utilities, rather than

the absolute value. Therefore, such a difference is the only utility primitive that can be identified from

the data. If f (·) 6= 1 for some action profile, the utility of every possible monetary reward is identified.
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3.4 Individual Heterogeneity

The previous subsection assumes homogeneous subjects with identical learning rules and utility func-

tions. Consequently, the identification results directly imply that model primitives can be consistently es-

timated when the number of subjects approaches infinity. However, individuals can have heterogeneous

preferences and learning parameters. The existence of individual heterogeneity, as shown by Wilcox

(2006), produces a bias that tends to favor the reinforcement learning relative to the belief-based model.

A natural way to deal with individual heterogeneity is to consider the other extreme of the data-

generating process, as studied in Cabrales and Garcia-Fontes (2000). Suppose researchers impose no

restrictions on the distribution of individual heterogeneity; is it possible to consistently estimate learning

rules and utility functions at the individual level if a subject makes infinite choices (i.e., T → ∞)? The

answer is obviously "no" in the non-parametric version of the GAL model. As the learning rule imposes

no restrictions on the weights across time, the model has more unknowns than observations. In contrast,

the parametrized GAL model restricts the evolution of weights. With an additional restriction such that

the action profile chosen at period t has zero impact on period t + h’s choice probability when h→ ∞

(assumption of the independence of remote history), Cabrales and Garcia-Fontes (2000) show that the

model primitives are consistently estimated, provided they are identified.8 Since Propositions 2 to 4

establish the identification of primitives, the parametrized GAL model can allow individual heterogeneity.

There exist some practical issues. First, the number of periods T is typically small, and parameters

are imprecisely estimated at the individual level. Second, the independence of remote history assump-

tion restricts the converging outcome to be independent of initial choices; it rules out many interesting

scenarios, such as the coordination game. In practice, researchers have to make a compromise by impos-

ing additional restrictions on the distribution of individual heterogeneity. For example, Camerer and Ho

(1999), Cabrales and Garcia-Fontes (2000) and Wilcox (2006) estimate a mixture model.
8Initial experience and initial attraction cannot be consistently estimated because remote future choices are independent of

them.
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4 Monte Carlo Experiment

This section presents a Monte Carlo experiment. It aims to illustrate the consequences of misspecifying

the utility function. Specifically, the misspecification causes considerable bias in both estimation and

counterfactual predictions. It also shows that, under the parametrization in Subsection 2.4, the GAL

model and utility function can be reliably estimated in a dataset with 1,000 subjects. This is the sample

size in many recent large-scale experiments, such as Feri et al. (2010), Selten and Chmura (2008), and

Chmura et al. (2012, 2014). Throughout this subsection, I consider the parametrization given by equation

(8).

This subsection focuses on a two-player binary choices coordination game shown in Table 1. The top

panel shows the monetary payoff matrix. In an experiment, such a matrix is designed and observed by

researchers. Specifically, each player has two choices. One is safe action X , which yields $4 regardless

of the other player’s behavior. Y is a risky choice that generates $9 if the other player also chooses Y , but

only yields $1 when the other selects the safe choice. This type of coordination game has received lots

of attention in both the learning and the experimental literature, for instance, Van Huyck et al. (1990),

Heinemann et al. (2009), Feri et al. (2010). It has two pure strategy Nash equilibria, an efficient equilib-

rium (Y,Y ) and an inefficient one (X ,X). A learning model plays an important role in this coordination

game since it explains whether and which one of these equilibria can be reached in the long run.

I assume players are risk averse with a utility function u(m) =
√

m. Therefore, the middle panel

in Table 1 represents the actual coordination game played by both players. Even though researchers

perfectly observe each player’s monetary payoff, they may not necessarily know the utility function. As

a result, the middle panel and the actual game are potentially unobserved by researchers. The results in

this paper can be used to reliably estimate the actual utility. The bottom panel, labeled “Incorrect Utility,”

assumes a utility function u(m) =
√

m+2. Since players have the same risk preference, the middle and

bottom panels represent the identical game and have the same set of Nash equilibria. However, the bottom

one is “incorrect” in the sense that it misspecifies the location of the utility function (i.e., u(0) = 2 rather

than u(0) = 0). In a wide range of parameter values in the GAL model, heterogeneous locations generate

different choice dynamics and converging outcomes.

I study the case in which groups are fixed across time. The experiment considers four sets of pa-
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Table 1: Monte Carlo Experiment: Coordination Game

Monetary Payoff
Player 2
X Y

Player 1 X [ 4 , 4 ] [ 4 , 1 ]
Y [ 1 , 4 ] [ 9 , 9 ]

True Utility
Player 2
X Y

Player 1 X [ 2 , 2 ] [ 2 , 1 ]
Y [ 1 , 2 ] [ 3 , 3 ]

Incorrect Utility
Player 2
X Y

Player 1 X [ 4 , 4 ] [ 4 , 3 ]
Y [ 3 , 4 ] [ 5 , 5 ]

rameters, shown in Table 2. The first column presents the benchmark set of parameters. It assumes that

players put more weight on both the current attraction and the actual utility of the chosen action. I choose

this set of parameters since it ensures each group of subjects will converge to one of the pure strategy

Nash equilibria.9 The second column assumes that players have the same weight on the current attraction

regardless of the action they actually choose. Moreover, actual and forgone utilities are updated equally.

Given Proposition 1, the dynamics of players’ choice probabilities are invariant to adding a constant to

the utility function under such a scenario. Therefore, the middle and bottom games in Table 1 should

generate the same learning path. Finally, the third column restricts the same weight on the actual and

forgone utility while the last column assumes equal weight on each action’s attraction. For each set of

parameter values in Table 2 and each matrix in Table 1, I simulate the learning paths of 100,000 groups

of two-player games. The number of periods is T = 200.

Figure 1 shows the fraction of efficient outcome (Y,Y ) across periods.10 The simulation can be seen

9In my simulation, more than 99% of groups converge to one of the equilibria.
10The simulation assumes that each player chooses Y with a low initial probability (i.e., 37%) such that the initial fraction

of efficient equilibrium is 15%. I choose a low starting efficiency because it sheds light on differential learning paths and
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Table 2: Monte Carlo Experiment: Values of Parameters

Parameter Benchmark Equal φ and δ Equal δ Equal φ

ρ 0.8 0.8 0.8 0.8
φ0 0.7 0.9 0.7 0.9
φ1 0.9 0.9 0.9 0.9
δ0 0.5 1 1 0.8
δ1 0.8 1 1 0.5

as an exercise of counterfactual predictions such that researchers know the values of learning parameters

but do not know players’ actual utility, as shown in the middle matrix of Table 1. It sheds light on the

bias of misspecification of the utility function. The black, blue and red lines represent the choice paths

under monetary payoff, incorrect utility and true utility, respectively. Therefore, the comparison between

the black and red lines reflects the effect of risk aversion on the learning path, and the difference between

the red and blue lines represents the effect of a constant on the utility function. As the benchmark shows,

incorrectly assuming monetary payoff as utility predicts a quick learning behavior; the fraction of efficient

outcome reaches 50% at around the 10th period and remains at that level thereafter. In contrast, if players

are risk averse, they will learn at a slower speed, and less than half of the groups can reach an efficient

equilibrium. Moreover, such a fraction decreases when a positive number is added to the utility function.

If φ and δ are fixed across each action, as shown in the top right graph, adding a constant to the utility

has no impact on the learning path. Therefore, the blue and red lines overlap. Finally, as shown in the

last row, when either φ or δ is the same across actions, adding a positive constant to the utility generates

a faster learning speed but a lower fraction of efficient equilibrium upon convergence.

The second Monte Carlo experiment studies whether researchers can reliably estimate the learning

parameters and utility function. The experiment first simulates a dataset with G = 500 groups of subjects

for T = 50 periods. This simulation uses the parameters shown in the benchmark column in Table 2

and true utility u(m) =
√

m. Since each group consists of two players, the sample size is 1,000. Given

this simulated data, I estimate the learning parameters as well as the utility function. The experiment

is repeated 100 times. In addition, the model is estimated by maximum likelihood estimation (MLE).

Specifically, consider subject n. Given the learning parameters and utility function, her choice probabili-

converging outcomes for various sets of model parameters and payoff matrices. In contrast, players will remain at choice Y if
they start from (Y,Y ), for a wide range of parameters values and preferences.
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Figure 1: Monte Carlo Experiment: Simulation Path

ties of two actions PX
n,t and PY

n,t are well defined for each period t. Therefore, the model can be estimated

by maximizing the following log-likelihood function:

LL =
1,000

∑
n=1

1(sn,t = X) log(PX
n,t)+1(sn,t = Y ) log(PY

n,t). (9)

Table 3 presents the average and standard deviation of estimates for 100 Monte Carlo samples. The

first column assumes that researchers know the utility function u(m) =
√

m and plug it into the log-

likelihood. As true utility is usually unobserved by researchers, this specification is a hypothetical

scenario and serves as a benchmark for comparison. The second column shows the estimates when

researchers incorrectly assume monetary payoff as utility. First, there is moderate bias in transitional

parameters ρ and φ . The bias is less than 10%. As the proof of Proposition 2 shows, the utility function

does not appear into the identifying equations of ρ and φ . Therefore, the misspecification of u(·) has a

relatively small impact on these two parameters. In contrast, there is substantial bias on the weight of

the forgone utility. Specifically, δ1 is biased down by 35% and δ0 is biased up by more than three times.

Moreover, it also leads to a qualitatively incorrect conclusion that δ0 > 1 > δ1. It implies that, compared

with an unchosen action with high utility, a player regrets not choosing an action with low utility. Such
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Table 3: Monte Carlo Experiment: Full Model Estimation Results

Parameters
True Utility

Monetary Incorrect Parametric Non-parametric
and True Values Payoff Utility Utility Utility

ρ = 0.8
0.7981 0.8663 0.8488 0.7962 0.7958

(0.0109) (0.0081) (0.0113) (0.0197) (0.0202)

φ0 = 0.7
0.6995 0.7598 0.7573 0.6998 0.7000

(0.0109) (0.0088) (0.0079) (0.0129) (0.0159)

φ1 = 0.9
0.8990 0.8734 0.8819 0.8988 0.8986

(0.0056) (0.0071) (0.0068) (0.0057) (0.0061)

δ0 = 0.5
0.5036 1.7592 0.7903 0.5086 0.5092

(0.0541) (0.0257) (0.0226) (0.1318) (0.1422)

δ1 = 0.8
0.7984 0.5193 0.9445 0.7914 0.7909

(0.0342) (0.0139) (0.0243) (0.0395) (0.0397)

u(1) = 1
n.a. n.a. n.a. 0.9871 0.9902
n.a. n.a. n.a. (0.1324) (0.1693)

u(4) = 2
n.a. n.a. n.a. 2.0017 2.0062
n.a. n.a. n.a. (0.2291) (0.2518)

u(9) = 3
n.a. n.a. n.a. 3.0273 3.0343
n.a. n.a. n.a. (0.3923) (0.4254)

Notes: Numbers without parentheses are averages of estimates among 100 Monte Carlo samples. Numbers in parentheses are
corresponding standard deviations.

an anomaly is the result of incorrectly assuming money as utility. As shown in the proof of Propositions

3 and 4, the identification of δ crucially depends on players’ utility. Consequently, the misspecification

of u(·) has a potentially serious impact on the weight of the forgone utility. The third column assumes

an incorrect utility function u(m) =
√

m+2. Specifically, researchers correct players’ risk preference but

impose an incorrect location (e.g., u(0) = 2 rather than u(0) = 0). Compared with the second column,

correcting players’ risk preference estimates a correct qualitative relationship with δ0 < δ1 < 1. However,

a sizable bias still remains for both δ0 and δ1.

The fourth column assumes that researchers do not know the utility but know the functional form.

Specifically, it assumes a utility function u(m) = α +mβ , where α and β are unknown parameters that

are estimated together with the learning model. As shown in the table, both utility and learning parameters
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are precisely estimated; their averages across Monte Carlo samples are close to true values. Compared

with the first column, except for ρ and δ0, all parameters’ standard deviations increase by a negligible

amount in the fourth column. Finally, the last column relaxes the assumption that researchers know the

utility functional form. Instead, it specifies utility as a non-parametric function of monetary payoff. In

more detail, u(1), u(4) and u(9) are specified as three unknown parameters. As the last column shows,

all parameters are reliably estimated. Compared with the fourth column, the standard deviations for all

parameters increase by a small amount.

Since commonly used existing learning models can be seen as special cases of GAL considered in this

model, my last Monte Carlo experiment studies how these additional restrictions increase the precision

of estimated parameters. It then sheds light on the trade-off between a parsimonious and a generalized

model. Specifically, I consider the restrictions such that φ0 = φ1 and δ0 = δ1. As shown in Subsection

2.1, these restrictions reduce the generalized model to the EWA model.

Table 4: Monte Carlo Experiment: Reduced Model (EWA) Estimation Results

Parameters
True Utility

Monetary Incorrect Parametric Non-parametric
and True Values Payoff Utility Utility Utility

ρ = 0.8
0.7997 0.9372 0.8271 0.7975 0.7960

(0.0088) (0.0060) (0.0078) (0.0119) (0.0148)

φ0 = φ1 = 0.9
0.8997 0.8906 0.8987 0.8993 0.8993

(0.0047) (0.0101) (0.0046) (0.0047) (0.0047)

δ0 = δ1 = 0.5
0.4999 0.3928 0.7206 0.5009 0.5032

(0.0160) (0.0131) (0.0089) (0.0264) (0.0344)

u(1) = 1
n.a. n.a. n.a. 1.0050 1.0159
n.a. n.a. n.a. (0.1078) (0.1519)

u(4) = 2
n.a. n.a. n.a. 1.9963 1.9990
n.a. n.a. n.a. (0.1205) (0.1558)

u(9) = 3
n.a. n.a. n.a. 2.9848 2.9820
n.a. n.a. n.a. (0.1529) (0.1916)

Notes: Numbers without parentheses are averages of estimates among 100 Monte Carlo samples. Numbers in parentheses are
corresponding standard deviations.

Table 4 shows the simulation results. Again, the misspecification of utility generates considerable

bias, especially on δ . Compared with Table 3, with additional restrictions, all parameters are estimated
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with increased precision, especially for utilities whose standard deviations decrease by more than half.

5 Estimation of Experiments by Chmura et al. (2012)

Selten and Chmura (2008) and Chmura et al. (2012) study a large-scale experiment of matching pennies

games. Specifically, they consider 12 games with different payoff matrices, as shown in Table 5. The

number in parentheses represents the point a subject receives in the corresponding outcome. The point is

exchanged for a monetary reward at a fixed rate (i.e., 1.6 euros per 100 points). Therefore, this paper refers

to Table 5 as monetary payoff matrices. Selten and Chmura (2008) and Chmura et al. (2012) classify these

12 games into two types. One is a constant-sum game, as shown in the left column. The other is a non-

constant-sum game, as shown in the right column. Importantly, note that this paper distinguishes between

monetary reward and utility. Therefore, the left column represents the game that is constant sum in terms

of monetary payoff, not necessarily constant sum in terms of actual utility.

The experiment consists of 864 subjects, divided into 54 sessions with 16 subjects per session. Each

subject participates in only one session, and each session consists of only 1 of 12 games. Specifically,

each constant sum-game was played for 12 sessions, and each non-constant-sum game was run for 6

sessions. Subjects were students at the University of Bonn. In each session, a subject was randomly

assigned a player role and played such a role for 200 periods. All subjects knew the monetary payoff

matrices of each player, and it was common knowledge. In each period, a subject was randomly matched

with another subject in the opposing player role. After each period, the subject was informed about the

other player’s choice, monetary payoff received, period number and cumulative payoff. An experiment

session took around 1.5 to 2 hours with an average earning of about 24 euros.

Selten and Chmura (2008) use this experimental dataset to compare five stationary solution concepts

of 2×2 games. Chmura et al. (2012) apply the same experiment to study different learning models, such

as reinforcement, self-tuning EWA and impulse matching. As their experiment consists of a large number

of subjects, it is an ideal dataset for implementing the identification results in this paper.

For ease of estimation, I consider the parametrized GAL model in Subsection 2.4; this parsimonious

version also nests EWA and payoff assessment learning as special cases. In experiments, the behaviors

of a fraction of subjects are unresponsive to history. For instance, some individuals simply choose a fixed
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Table 5: Monetary Payoff Matrices: Experiments in Selten and Chmura (2008) and Chmura et al. (2012)

Constant-Sum Games Non-constant-Sum Games

Game 1
X Y

Game 7
X Y

X [ 10 , 8 ] [ 0 , 18 ] X [ 10 , 12 ] [ 4 , 22 ]
Y [ 9 , 9 ] [ 10 , 8 ] Y [ 9 , 9 ] [ 14 , 8 ]

Game 2
X Y

Game 8
X Y

X [ 9 , 4 ] [ 0 , 13 ] X [ 9 , 7 ] [ 3 , 16 ]
Y [ 6 , 7 ] [ 8 , 5 ] Y [ 6 , 7 ] [ 11 , 5 ]

Game 3
X Y

Game 9
X Y

X [ 8 , 6 ] [ 0 , 14 ] X [ 8 , 9 ] [ 3 , 17 ]
Y [ 7 , 7 ] [ 10 , 4 ] Y [ 7 , 7 ] [ 13 , 4 ]

Game 4
X Y

Game 10
X Y

X [ 7 , 4 ] [ 0 , 11 ] X [ 7 , 6 ] [ 2 , 13 ]
Y [ 5 , 6 ] [ 9 , 2 ] Y [ 5 , 6 ] [ 11 , 2 ]

Game 5
X Y

Game 11
X Y

X [ 7 , 2 ] [ 0 , 9 ] X [ 7 , 4 ] [ 2 , 11 ]
Y [ 4 , 5 ] [ 8 , 1 ] Y [ 4 , 5 ] [ 10 , 1 ]

Game 6
X Y

Game 12
X Y

X [ 7 , 1 ] [ 1 , 7 ] X [ 7 , 3 ] [ 3 , 9 ]
Y [ 3 , 5 ] [ 8 , 0 ] Y [ 3 , 5 ] [ 10 , 0 ]

action for the entire 200 periods. I classify these subjects as non-learners, and their behaviors cannot be

well explained by a learning model. In this paper, I classify learners as the subjects who pay attention and

respond to the other player’s past behavior. Specifically, I run an individual-level regression of a subject’s

current action on his/her past choice, the opponent’s past choice, and their interaction. I then select the

subject who responds to the opponent’s past behavior (i.e., the coefficients of the opponent’s past choice

and interaction term are jointly significant at the 1% level). The selected subjects are classified as learners

and are the focus of estimation. The selection reduces the sample size to 463.

The estimation strategy follows the MLE described in Section 4. It assumes that subjects who par-

ticipate in different games share the same learning behavior. Therefore, all subjects are pooled together

in the estimation.11 Moreover, as the experiment consists of 19 possible monetary payoff outcomes (i.e.,

11As discussed in Subsection 3.4, a mixture model that captures individual heterogeneity is identified. However, specifying
utility as an unknown function of money introduces non-concavity even with the restriction of homogeneous agents. A mixture
model adds additional non-concavity such that finding the global maximum is extremely burdensome. To ease the estimation
burden, I choose to estimate under the homogeneity assumption.
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number of distinct points that can be received in 12 games), a fully non-parametric specification of utility

function introduces 19 parameters (i.e., utility of each possible monetary reward). This substantially com-

plicates the estimation. To ease the computational burden, I consider a polynomial function of order 4 as

an approximation. Additional order increases the log-likelihood by only a relatively small magnitude.

u(m) = β1 +β2m+β3m2 +β4m3. (10)

Table 6 presents the estimated learning parameters for various model specifications. The first column

assumes the full model but imposes the restriction that monetary payoff is utility. In comparison, the

last column estimates the utility function jointly with learning parameters. The three middle columns

present different restrictions imposed in the model. The second column assumes equal weight on the

attraction of unchosen and chosen strategies (i.e., φ0 = φ1). The third column estimates the standard

EWA model, and the fourth one shows the payoff assessment learning. To make a fair comparison with

the full model, the middle three columns also specify utility as an unknown function to be estimated. The

comparison excludes the original impulse-matching model in Chmura et al. (2012) because they assume

a power probability that is different from the logit probability in this paper. Therefore, the comparison is

confronted by a different choice rule. Moreover, if we assume a logit formula for the impulse-matching

model, it can be seen as a special case of the EWA model with unknown utility function. As a result,

I exclude impulse-matching learning in the comparison. Finally, as all specifications are nested in the

full model, a likelihood ratio test can be constructed as a specification test, as shown in the last row. All

specifications are rejected against the full model. Furthermore, we reject the null hypothesis that utility

is money.

First, ρ is robustly estimated to be zero across all specifications. Note that the estimation imposes

no restriction on ρ , as compared with the existing literature, which usually imposes 0 ≤ ρ ≤ 1. The

estimate suggests that N(t) = 1 for each t. It further implies that φ can be interpreted as the fraction of

current attraction that is carried to the next period. Such a fraction is constant across time given ρ = 0.

A comparison between the first and last column confirms the Monte Carlo experiment in Section 4.

Specifically, there is a relatively small bias on φ but a sizable bias on δ if researchers incorrectly assume

monetary payoff as utility. Both δ0 and δ1 are downward biased by more than 30%. In addition, the result
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Table 6: Estimation Results: Learning Parameters

Monetary Same φ EWA Payoff Assessment
Full ModelPayoff φ0 = φ1 φ0 = φ1, δ0 = δ1 All 0 But φ1

ρ
0.0000 0.0000 0.0000 0 0.0000

(0.1722) (0.3201) (0.2912) n.a. (0.0994)

φ0
0.2862∗∗∗ n.a. n.a. 0 0.2450∗∗∗

(0.0111) n.a. n.a. n.a. (0.0098)

φ1
0.9058∗∗∗ 0.5976∗∗∗ 0.5889∗∗∗ 0.9606∗∗∗ 0.9164∗∗∗

(0.0032) (0.0072) (0.0071) (0.0010) (0.0031)

δ0
1.7770∗∗∗ 0.7281∗∗∗ n.a. 0 2.6031∗∗∗

(0.0614) (0.0206) n.a. n.a. (0.0801)

δ1
2.2009∗∗∗ 0.7693∗∗∗ 0.7757∗∗∗ 0 3.1679∗∗∗

(0.0540) (0.0166) (0.0181) n.a. (0.0937)
Log-likelihood -47012 -47117 -47141 -52405 -46141

Specification Test (p-value) 0.0000 0.0000 0.0000 0.0000 n.a.

suggests that δ1 > δ0. It indicates that subjects pay more attention to the action that has a higher forgone

utility than the actual utility.

A result that seems striking at first glance is that δ0, δ1 > 1. This contrasts with the common wisdom

in EWA learning such that 0 ≤ δ ≤ 1. Based on this result, it is tempting to conclude that subjects

pay more attention to the forgone utility than the actual one. However, there exists a more plausible

interpretation. In the evolution rule of attraction, an action’s weights on its current attraction and the

current utility both substantially depend on whether such an action is chosen or not. As the full model

shows, subjects put a weight of more than 90% on their chosen strategies’ attractions. In contrast, only

about 25% of the current attraction is carried into the next period for the unchosen strategy. Instead,

subjects’ evaluation of such an action is based mainly on its current utility. Equivalently, subjects use

mainly past performance to evaluate a chosen action; in contrast, they focus more on current information

(i.e., current utility) in the evaluation of the unchosen action. This interpretation is further supported by

restricting φ0 = φ1, as in the second column, or the EWA model, in the third column. When φ0 = φ1,

players are assumed to forget the attractions of the chosen and unchosen strategies at the same rate. δ is

estimated with a downward bias and smaller than 1, which is in line with the literature.

Table 7 presents the estimated utility function under the full model. It is plotted in Figure 2. The
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blue line represents the estimated utility function, and the dotted line represents the 95% confidence

interval. The black line plots the utility when it is assumed to be equal to the monetary payoff.12 Such

an assumption is clearly rejected. The utility function is strictly increasing and concave. It suggests

that subjects are risk averse. Moreover, the location u(0) is significantly smaller than zero. It indicates

that subjects view an action with zero monetary reward as unsuccessful. This is plausible given that

each subject expects to earn a positive reward in order to participate in the experiment. It also provides

empirical evidence such that assuming u(0) = 0 is a restriction, rather than a normalization.

Table 7: Estimation Results: Utility Function

Constant
−0.0738∗∗∗

(0.0122)

m
0.1108∗∗∗

(0.0115)

m2 −0.0075∗∗∗

(0.0008)

m3 0.0002∗∗∗

(0.00002)

A common concern about a more general model is that it may be over fitted. To evaluate this po-

tential problem, I compare the out-of-sample predictions of various models. First, I estimate the model

based on the constant-sum game only and use the estimated results to predict subjects’ behaviors in the

non-constant-sum game. Second, I reverse the above procedure and predict the constant-sum game. I

choose out-of-sample log-likelihood as the measure of predictability. For both constant-sum and non-

constant-sum games, the full model performs substantially better than any restricted model in out-of-

sample predictions, as shown in Figure 3. Furthermore, the increase of out-of-sample log-likelihood is at

a similar level as the increase of in-sample log-likelihood. Moreover, other nested models, regardless of

restrictions on learning parameters or utility function, have similar out-of-sample predictability.13

12The black line is scaled down by the sensitivity parameter. Specifically, the plot is u(m) = λm where λ is estimated.
13Payoff assessment learning is excluded from this comparison as it performs substantially worse than any model.
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Figure 2: Utility Function

Figure 3: Out-of-sample Log-likelihood
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6 Conclusion

This paper focuses on the identification and estimation of adaptive learning models. I first propose a

generalized learning rule that allows the weights on both an action’s current attraction and current utility

to depend on whether such an action is chosen or not. This nests commonly used learning rules as special

cases. In addition, I show that adding a constant to the utility function induces different choice dynamics

for a wide range of parameter values; such a range includes a broad class of learning models, such as

EWA, payoff assessment and impulse matching. This property provides an additional reason, besides the

concern regarding risk preference, for the misspecification of utility as monetary payoff. Second, this

paper proposes estimating the utility function jointly with the learning parameters. I show that both the

utility and the generalized adaptive learning model are point identified under weak conditions. Finally,

using an experimental dataset by Selten and Chmura (2008) and Chmura et al. (2012), I reject the null hy-

pothesis that monetary payoff is utility. Incorrectly imposing such an assumption generates considerable

bias for both in-sample estimation and out-of-sample prediction.
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A Appendix

A.1 Conditions on Monetary Payoff Matrix

Define the following matrix:

Mi =

mi(s1
i ,s1
−i), mi(s1

i ,s1
−i), · · · mi(s2

i ,s1
−i), · · · mi(s

Ji−1
i ,s∏i′ 6=i Ji′

−i )

mi(s2
i ,s1
−i), mi(s3

i ,s
1
−i), · · · mi(s3

i ,s
1
−i), · · · mi(s

Ji
i ,s

∏i′ 6=i Ji′
−i )

 . (11)

A single column in Mi represents the monetary payoffs of two player i’s strategies given an action profile

chosen by other players. Therefore, Mi represents the monetary payoffs of all pairs of two actions for

any possible choice of other players. This matrix then measures player i’s choice incentive in the game.

Denote M = (M1,M2, · · · ,Mn) as the matrix of monetary payoffs for all players. Let ml be the lth

column of M. Assumption 3 states the conditions on M that achieve the identification of utility when

φ(t,0) = φ(t,1).

Assumption 3. Matrix M contains two pairs of columns, one pair denoted by ml , ml′ and another pair

by mk, mk′ , such that:14

(a) ml and ml′ share one and only one identical element denoted by m1; similarly, mk and mk′ share

one and only one identical element denoted by m2.15

(b) If m1 = max(m′l,m
′
l′), then m2 6= max(m′k,m

′
k′).

(c) If m1 = min(m′l,m
′
l′), then m2 6= min(m′k,m

′
k′).

Although Assumption 3 may be difficult to interpret at first glance, it imposes weak restrictions on

monetary payoffs. Consider a game in which some players have more than two choices. Moreover, player

i has three actions that generate distinct monetary payoffs for some of the other players’ choices; specifi-

cally, denote these three monetary rewards by (m′,m′′,m′′′). Assumption 3 is satisfied by considering two

pairs, (m′,m′′) with (m′,m′′′) and (m′,m′′) with (m′′,m′′′). Consequently, Assumption 3 holds for a broad

class of games in which some players have more than two actions. An important class of games that is

excluded from Assumption 3 is binary-choice symmetric games (i.e., Mi equals Mi′ up to the permutation

14ml and mk can be either the same or different.
15m1 and m2 can be either the same or different.

31



for any player i and i′). However, the matrix M can be extended to multiple treatments in which each

treatment shares a different monetary payoff matrix; then Assumption 3 provides guidance on how to

design multiple treatments in a symmetric binary-choice game to achieve the identification.

A.2 Proofs

Proof of Proposition 1. Express equation (1) recursively as a weighted sum of initial attraction and s j
i ’s

utility in each period.

A j
i,t+1 =


φ [1,1(si(1)=s j

i )]
N(1) A j

i,1 +
f (s j

i ,s(1))
N(1) πi[s

j
i ,s−i(1)], if t = 1,

∏
t
l=1 φ [t,1(si(l)=s j

i )]

∏
t
l=1

A j
i,1 +

f (s j
i ,s(t))

N(t) πi[s
j
i ,s−i(t)]+∑

t−1
τ=1

∏
t
l=τ+1 φ [l,1(si(l)=s j

i )] f (s
j
i ,s(l))

∏
t
l=τ

N(τ)
πi[s

j
i ,s−i(τ)], if t ≥ 2.

(12)

Under the logit formula, the choice probability is determined by the difference of attractions for any pair

of actions. For any two strategies s j
i and sk

i , the difference of attractions A j
i,t+1−Ak

i,t+1 is

f (s j
i ,s(1))
N(1) πi[s

j
i ,s−i(1)]−

f (sk
i ,s(1))
N(1) πi[sk

i ,s−i(1)], if t=1,

f (s j
i ,s(t))
N(t) πi[s

j
i ,s−i(t)]−

f (sk
i ,s(t))
N(t) πi[sk

i ,s−i(t)]+∑
t−1
τ=1

∏
t
l=τ+1 φ [l,1(si(l)=s j

i )] f (s
j
i ,s(l))

∏
t
l=τ

N(τ)
πi[s

j
i ,s−i(τ)]−∑

t−1
τ=1

∏
t
l=τ+1 φ [l,1(si(l)=sk

i )] f (s
k
i ,s(l))

∏
t
l=τ

N(τ)
πi[sk

i ,s−i(τ)], if t≥2.

Now, let us add a constant c 6= 0 to the utility function. Define π̃i(s) = πi(s)+ c for any s ∈ S. Assuming

players’ actual utility is π̃i(·), we can calculate the difference of any two actions’ attractions under the new

utility function. Let us denote this new difference as Ã j
i,t+1− Ãk

i,t+1. For the logit formula, the sufficient

and necessary condition for choice probability to be invariant for any c 6= 0 is

(Ã j
i,t+1− Ãk

i,t+1)− (A j
i,t+1−Ak

i,t+1) = 0.

This is equivalent to the following equations:

f (s j
i ,s(1))− f (sk

i ,s(1))
N(1)

c = 0,

f (s j
i ,s(t))− f (sk

i ,s(t))
N(t)

c+
t−1

∑
τ=1

∏
t
l=τ+1 φ [l,1(si(l) = s j

i )] f (s
j
i ,s(l))−∏

t
l=τ+1 φ [l,1(si(l) = sk

i )] f (s
k
i ,s(l))

∏
t
l=τ

N(τ)
c = 0.
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The above equations have to hold for any history of action profile, any constant c and any period t. The

only condition for the above equations to hold true is when the coefficients on c all equal zero. It implies

that f (s j
i ,s) = 1 for all strategy s j

i and s, and φ(t,1) = φ(t,0) for t > 1. This completes the proof.

Proof of Proposition 2. For any period t, consider an arbitrary history denoted by ht =(s(1),s(2), · · · ,s(t)).

Similarly, ht−1 = (s(1), · · · ,s(t−1)). Denote the realized outcome at period t as s(t) = (s j
i ,s−i) for some

s j
i and s−i. Given the evolution of attraction specified by equation (1), we have the following equation for

any pair of s j
i and sk

i .

N(t)[A j
i,t+1(ht)−Ak

i,t+1(ht)] = φ(t,1)A j
i,t(ht−1)−φ(t,0)Ak

i,t(ht−1)+πi(s
j
i ,s−i)− f [sk

i ,(s
j
i ,s−i)]πi(sk

i ,s−i).

(13)

The notation A j
i,t(ht−1) emphasizes that the value of attraction depends on the entire history. Such a

notation is suppressed for the sake of brevity in the main text. Consider another history h′t , which is

identical to ht except that player i now chooses action sk
i at period t. It consequently yields an equation

similar to equation (13).

N(t)[A j
i,t+1(h

′
t)−Ak

i,t+1(h
′
t)] = φ(t,0)A j

i,t(ht−1)−φ(t,1)Ak
i,t(ht−1)+ f [s j

i ,(s
k
i ,s−i)]πi(s

j
i ,s−i)−πi(sk

i ,s−i).

(14)

Adding equations (13) and (14) yields

N(t)
{
[A j

i,t+1(ht)−Ak
i,t+1(ht)]+ [A j

i,t+1(h
′
t)−Ak

i,t+1(h
′
t)]

}
= [φ(t,0)+φ(t,1)][A j

i,t(ht−1)−Ak
i,t(ht−1)]+Q(s j

i ,s
k
i ,s−i),

⇒ N(t)
{

log
[P j

i,t+1(ht)

Pk
i,t+1(ht)

]
+ log

[P j
i,t+1(h

′
t)

Pk
i,t+1(h

′
t)

]}
= [φ(t,0)+φ(t,1)] log

[P j
i,t(ht−1)

Pk
i,t(ht−1)

]
+Q1(s

j
i ,s

k
i ,s−i), (15)

where Q1(s
j
i ,s

k
i ,s−i) = πi(s

j
i ,s−i)− f [sk

i ,(s
j
i ,s−i)]πi(sk

i ,s−i)+πi(s
j
i ,s−i)− f [sk

i ,(s
j
i ,s−i)]πi(sk

i ,s−i).

The second line applies the inversion of the logit formula such that log[
P j

i,t

Pk
i,t
] = A j

i,t −Ak
i,t . Similarly,

consider t ′> t and two histories ht ′ and h′t ′ , which differ only in the action profile at period t ′. Specifically,

s(t ′) = (s j
i ,s−i) for ht ′ and s(t ′) = (sk

i ,s−i) for h′t ′ , respectively. We can derive an equation similar to
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equation (15).

N(t ′)
{

log
[P j

i,t ′+1(ht ′)

Pk
i,t ′+1(ht ′)

]
+ log

[P j
i,t ′+1(h

′
t ′)

Pk
i,t ′+1(h

′
t ′)

]}
= [φ(t ′,0)+φ(t ′,1)] log

[P j
i,t ′(ht ′−1)

Pk
i,t ′(ht ′−1)

]
+Q(s j

i ,s
k
i ,s−i). (16)

Subtracting equation (15) from (16), we get

N(t ′)
{

log
[P j

i,t ′+1(ht ′)

Pk
i,t ′+1(ht ′)

]
+ log

[P j
i,t ′+1(h

′
t ′)

Pk
i,t ′+1(h

′
t ′)

]}
−N(t)

{
log
[P j

i,t+1(ht)

Pk
i,t+1(ht)

]
+ log

[P j
i,t+1(h

′
t)

Pk
i,t+1(h

′
t)

]}

=[φ(t ′,0)+φ(t ′,1)] log
[P j

i,t ′(ht ′−1)

Pk
i,t ′(ht ′−1)

]
− [φ(t,0)+φ(t,1)] log

[P j
i,t(ht−1)

Pk
i,t(ht−1)

]
. (17)

We then consider another set of histories such that h′′t = (ht−1,(s
j
i ,s
′
−i)), h′′′t = (ht−1,(sk

i ,s
′
−i)), h′′t ′ =

(ht ′−1,(s
j
i ,s
′
−i)), and h′′′t ′ = (ht ′−1,(sk

i ,s
′
−i)). We can get an equation similar to equation (17).

N(t ′)
{

log
[P j

i,t ′+1(h
′′
t ′)

Pk
i,t ′+1(h

′′
t ′)

]
+ log

[P j
i,t ′+1(h

′′′
t ′ )

Pk
i,t ′+1(h

′′′
t ′ )

]}
−N(t)

{
log
[P j

i,t+1(h
′′
t )

Pk
i,t+1(h

′′
t )

]
+ log

[P j
i,t+1(h

′′′
t )

Pk
i,t+1(h

′′′
t )

]}

=[φ(t ′,0)+φ(t ′,1)] log
[P j

i,t ′(ht ′−1)

Pk
i,t ′(ht ′−1)

]
− [φ(t,0)+φ(t,1)] log

[P j
i,t(ht−1)

Pk
i,t(ht−1)

]
. (18)

Subtracting equation (17) from (18) yields

N(t ′)
{

log
[P j

i,t ′+1(h
′′
t ′)

Pk
i,t ′+1(h

′′
t ′)

]
+ log

[P j
i,t ′+1(h

′′′
t ′ )

Pk
i,t ′+1(h

′′′
t ′ )

]
− log

[P j
i,t ′+1(ht ′)

Pk
i,t ′+1(ht ′)

]
− log

[P j
i,t ′+1(h

′
t ′)

Pk
i,t ′+1(h

′
t ′)

]}

=N(t)
{

log
[P j

i,t+1(h
′′
t )

Pk
i,t+1(h

′′
t )

]
+ log

[P j
i,t+1(h

′′′
t )

Pk
i,t+1(h

′′′
t )

]
− log

[P j
i,t+1(ht)

Pk
i,t+1(ht)

]
− log

[P j
i,t+1(h

′
t)

Pk
i,t+1(h

′
t)

]}
. (19)

Since player i’s choice probability P j
i,t is observed for any history, equation (19) then identifies N(t ′)/N(t)

for any two t and t ′. Moreover, given the normalization that N(1) = 1, it consequently identifies N(t) for

any t > 1. Term φ(t,0)+φ(t,1) can be identified thereafter given the identification of N(t) by equation

(17) or (18).

Instead of adding, let us subtract equation (13) from (14). It will yield an equation similar to equation

(15), with term [φ(t,1)−φ(t,0)] as the coefficient of log[
P j

i,t(ht−1)

Pk
i,t(ht−1)

]. Applying the same argument as above,

we then identify [φ(t,1)−φ(t,0)]. Therefore, with both [φ(t,1)−φ(t,0)] and [φ(t,0)+φ(t,1)] identified,
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we have the identification of φ(t,0) and φ(t,1) for any t.

Next, I prove the identification of initial attractions and utility difference. Consider between periods 1

and 2, let (si,s−i) be an arbitrary outcome in period 1. For any pair of s j
i and sk

i , we can get the following:

N(2) log
[P j

i,2(si,s−i)

Pk
i,2(si,s−i)

]
= φ [1,1(s j

i = si)]A
j
i,1−φ(1,1(sk

i = si))Ak
i,1+ f (s j

i ,s)πi(s
j
i ,s−i)− f (sk

i ,s)πi(sk
i ,s−i).

(20)

First, consider the case that φ(t,0) = φ(t,1). Under this scenario, adding a constant c to the initial attrac-

tion of each action has no impact on the difference of any two actions’ future attractions. It consequently

leaves the sequence of choice probability unchanged. Therefore, a normalization such that A1
i,1 = 0 is

required for identification. Given such a normalization, initial attraction of any action s j
i is identified by

A j
i,1 = log[

P j
i,1

P1
i,1
]. It consequently yields the identification of f (s j

i ,s)πi(s
j
i ,s−i)− f (sk

i ,s)πi(sk
i ,s−i) for any

s j
i , sk

i and s by equation (20).

Suppose now φ(t,0) 6= φ(t,1) for some t, the normalization A1
i,1 = 0 is no longer innocuous. However,

given the argument in the above paragraph, both A j
i and difference of utilities are identified up to the

value of A1
i,1. Equivalently, player i’s choice probability in any period for any history is a function that

depends only linearly on the value of A1
i,1. Therefore, player i’s choice probability at period t ′> t provides

information that is sufficient to identify A1
i,1. This completes the proof.

Proof of Proposition 3. Without loss of generality, suppose φ(t,0) 6= φ(t,1) when t = 2. The case when

φ(t,0) 6= φ(t,1) for some t > 2 is conceptually equivalent and therefore is suppressed. For any action

profile (s j
i ,s−i), suppose it is observed in the first two periods; the evolution of attraction A j

i,t is then

A j
i,2 = φ(1,1)A j

i,1 +u[mi(s
j
i ,s−i)],

A j
i,3 =

φ(2,1)φ(1,1)
N(2)

A j
i,1 +

φ(2,1)
N(2)

u[mi(s
j
i ,s−i)]+

1
N(2)

u[mi(s
j
i ,s−i)]. (21)

Consider another action of player i, sk
i . Suppose that mi(sk

i ,s−i) < mi(s
j
i ,s−i); note the case when
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mi(sk
i ,s−i)≥ mi(s

j
i ,s−i) is conceptually equivalent and is suppressed. The evolution of Ak

i,t is

Ak
i,2 = φ(1,0)Ak

i,1 +δ0u[mi(sk
i ,s−i)],

Ak
i,3 =

φ(2,0)φ(1,0)
N(2)

Ak
i,1 +

φ(2,0)
N(2)

δ0u[mi(sk
i ,s−i)]+

1
N(2)

δ0u[mi(sk
i ,s−i)]. (22)

Taking the differences of equations (21) and (22) and applying logit formula, we get

u[mi(s
j
i ,s−i)]−δ0u[mi(sk

i ,s−i)] = log[
P j

i,2

Pk
i,2
]−φ(1,1)A j

i,1 +φ(1,0)Ak
i,1,

(φ(2,1)+1)u[mi(s
j
i ,s−i)]− (φ(2,0)+1)δ0u[mi(sk

i ,s−i)] = log[
P j

i,3

Pk
i,3
]−φ(2,1)φ(1,1)A j

i,1 +φ(2,0)φ(1,0)Ak
i,1.

(23)

Above is a linear equation system with two equations and two unknowns (i.e., u[mi(s
j
i ,s−i)] and δ0u[mi(sk

i ,s−i)]).

All other terms are identified given Proposition 2. Therefore, when φ(2,0) 6= φ(2,1), the equation system

has a unique solution. u[mi(s
j
i ,s−i)] and δ0u[mi(sk

i ,s−i)] are then identified.

Repeat the above procedure and suppose that (sk
i ,s−i), instead of (s j

i ,s−i), is observed in the first

two periods. It then yields the identification of δ1u[mi(s
j
i ,s−i)] and u[mi(sk

i ,s−i)]. The weights δ1 and

δ0 are identified thereafter given the identification of u[mi(s
j
i ,s−i)] and u[mi(sk

i ,s−i)]. This completes the

proof.

Proof of Proposition 4. Given Assumption 3, consider the following two pairs of vectors:

ml =

m1

m3

 , ml′ =

m2

m4

 , mk =

m2

m5

 , mk′ =

m2

m6

 .

As shown in Proposition 2, the weighted difference of any two actions’ utilities are identified. When such

a result is applied to vector ml , the following two terms are identified:

u(m1)−δ1 ·1(m1 ≤ m3) ·u(m3)−δ0 ·1(m1 > m3) ·u(m3), when m1 is realized,

δ1 ·1(m1 ≥ m3) ·u(m1)+δ0 ·1(m1 < m3) ·u(m1)−u(m3), when m3 is realized.
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Similarly, when the same result is applied to all four vectors ml , ml′ , mk and mk′ , the following eight

terms are identified:

u(m1)−δ1 ·1(m1 ≤ m3) ·u(m3)−δ0 ·1(m1 > m3) ·u(m3),

δ1 ·1(m1 ≥ m3) ·u(m1)+δ0 ·1(m1 < m3) ·u(m1)−u(m3),

u(m1)−δ1 ·1(m1 ≤ m4) ·u(m4)−δ0 ·1(m1 > m4) ·u(m4),

δ1 ·1(m1 ≥ m4) ·u(m1)+δ0 ·1(m1 < m4) ·u(m1)−u(m4),

u(m2)−δ1 ·1(m2 ≤ m5) ·u(m5)−δ0 ·1(m2 > m5) ·u(m5),

δ1 ·1(m2 ≥ m5) ·u(m2)+δ0 ·1(m2 < m5) ·u(m2)−u(m5),

u(m2)−δ1 ·1(m2 ≤ m6) ·u(m6)−δ0 ·1(m2 > m6) ·u(m6),

δ1 ·1(m2 ≥ m6) ·u(m2)+δ0 ·1(m2 < m6) ·u(m2)−u(m6).

Given conditions (b) and (c) in Assumption 3, the above identified terms contain eight unknowns, for

instance, δ1, δ0 and u(m1) up to u(m6). The rank condition is satisfied so all unknowns are identified.

Given the identification of δ1 and δ0, consider two arbitrary strategy profiles, (s j
i ,s−i) and (sk

i ,s−i), in

which only player i’s actions are different. Without loss of generality, assume mi(s
j
i ,s−i) > mi(sk

i ,s−i).

The following terms are identified:

u[mi(s
j
i ,s−i)]−δ0u[mi(sk

i ,s−i)],

δ1u[mi(s
j
i ,s−i)]−u[mi(sk

i ,s−i)].

When at least one of δ1 and δ0 is not equal to 1, the rank condition is satisfied. Therefore, both

u[mi(s
j
i ,s−i)] and u[mi(sk

i ,s−i)] are identified. When δ1 = δ0 = 1, the above two terms turn out to be

identical, represented as term u[mi(s
j
i ,s−i)]−δ0u[mi(sk

i ,s−i)], and is identified. This directly implies the

identification of the difference of utilities. This completes the proof.
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